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Abstract

Standard off-policy reinforcement learning (RL) methods based on temporal dif-1

ference (TD) learning generally fail to learn good policies when applied to static2

offline datasets. Conventionally, this is attributed to distribution shift, where the3

Bellman backup queries high-value out-of-distribution (OOD) actions for the next4

time step, which then leads to systematic overestimation. However, this expla-5

nation is incomplete, as conservative offline RL methods that directly address6

overestimation still suffer from stability problems in practice. This suggests that7

although OOD actions may account for part of the challenge, the difficulties with8

TD learning in the offline setting are also deeply connected to other aspects such9

as the quality of representations of learned function approximators. In this work,10

we demonstrate that merely imposing pessimism is not sufficient for good per-11

formance, and demonstrate empirically that regularizing representations actually12

accounts for a large part of the improvement observed in modern offline RL meth-13

ods. Building on this insight, we identify concrete metrics that enable effective14

diagnosis of the quality of the learned representation, and are able to adequately15

predict performance of the underlying method. Finally, we show that a simple16

approach for handling representations, without any changing any other aspect of17

conservative offline RL algorithms, can lead to better performance in several offline18

RL problems.19

1 Introduction20

Offline reinforcement learning (RL), combined with powerful deep net function approximators,21

has the potential for solving decision-making tasks where online interaction is either expensive22

or unsafe, circumventing a major barrier to the deployment of RL in the real-world. Temporal23

difference (TD) learning methods, such as Q-learning, provide a natural framework for building24

offline RL algorithms [30], fitting a parametric value function by sequentially regressing to targets25

generated from its own previous snapshot using only offline data. However, directly applying TD26

to a static offline dataset often fails to learn effective policies, as the maximization in the target27

value computation will find erroneously high-valued out-of-distribution (OOD) actions, resulting28

in systematic overestimation. A variety of offline RL methods, such as those that apply value29

conservatism [26, 58] or behavioral constraint [14, 24, 53, 13, 18, 23, 22], have been proposed to30

address this issue with OOD actions in TD learning by inducing some form of pessimism. While31

all these methods lead to promising improvement in performance on offline RL tasks, determining32

why one method for addressing the OOD actions issue is better than another has proven challenging,33

which in turn makes it difficult to develop insights and guidelines for designing better offline RL34

algorithms. In fact, in theory, majority of these approaches essentially optimize the very same RL35

objective subject to a divergence constraint against the behavior policy that generates the data, and36
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would, behave identically in a tabular problem setting. Hence, a natural question to ask is: does the37

improvement observed from these methods really stem from their ability to induce pessimism?38

In this paper, we will show that a significant part of the benefit of offline RL approaches that aim to39

address OOD actions actually stems from the effect they have on the learned representations, rather40

than merely from their ability to avoiding overestimation. We first show that the even if we can prevent41

the value of the learned Q-function at OOD actions from being overestimated, training Q-functions42

against Bellman targets computed using OOD actions still induces Q-function representations that43

give rise to poor policy performance, which indicates that overestimation is not sufficient to explain44

poor performance in offline RL. Second, we empirically demonstrate that an offline RL method45

that does not apply any pessimism, but only regularizes the representation learned for the dataset46

and OOD actions to be different using adversarial training, can actually perform quite well. The47

method we develop resembles the conservative Q-learning (CQL) [26] approach, but crucially only48

regularizes the representations and not the final Q-values. Our analysis shows that this approach49

recovers 68% of the performance of CQL, indicating that the performance of CQL, in large part,50

comes from the implicit regularization obtained by penalizing OOD actions.51

Based on this analysis, we propose a metric that evaluates the quality of the representation learned by52

offline RL methods based on the ability to accurately reconstruct the dataset actions from the learned53

representation. We demonstrate that comparing this reconstruction error to a dynamic programming54

approach that does not utilize OOD actions gives us a good measure of representational quality, that55

is predictive of performance. Finally, we discover that good representations can actually be obtained56

by a surprisingly simple method: interpolating between TD and supervised learning via an ensemble57

of N-step returns, similar to TD(λ). We not only find that utilizing an ensemble of N-step returns58

approach attains better performance, but, more interestingly, we argue that this cannot be attributed59

to standard explanations of a better bias-variance tradeoff.60

Our main contributions are to demonstrate, via an extensive empirical study, that merely addressing61

the OOD action issue in offline RL via pessimism is not sufficient for TD-based offline RL methods,62

and that the quality of learned representation is crucial for good performance. Our analysis provides63

guidance on how to measure representational quality, and shows how simple methods such as an64

ensemble of N-step returns already attain better performance on benchmark tasks from D4RL [12] as65

a result of improved representational quality. We hope that our analysis provides concrete takeaways66

for researchers in offline RL and highlights a largely overlooked line of challenges beyond behavior67

regularization that is crucial in devising more effective and reliable offline RL methods.68

2 Related Work69

Modern offline RL methods based on Q-learning typically utilize dynamic programming to train70

a value function together with a mechanism to prevent backing up out-of-distribution (OOD) ac-71

tions [30]. This can be done by applying an explicit constraint that forces the learned policy to be72

“close” to the behavior policy under a variety of divergence measures [18, 54, 37, 42, 54, 24, 23,73

22, 50, 13], or by directly learning a conservative value function, either via a pessimistic training74

objective [26, 56, 36, 58] or by utilizing pessimistic bonuses [57, 39, 19, 54] in the backup. Other75

offline methods include model-based methods [20, 57, 2, 45, 38, 29, 58] that also utilize rollouts76

under a learned dynamics model to train the value function while also avoiding out-of-distribution77

actions. While most of these methods differ from each other in implementation details and empirical78

performance, in theory and in tabular problem settings, most of these methods can be traced back to79

the same objective that attempts to constrain the policy from choosing OOD actions. It is not entirely80

clear why one method should work better than another, or how one should go about designing better81

offline RL methods. In this paper, we show that, to a large extent, the benefits of offline RL methods82

comes from better representational quality, and how improving representational quality alone can83

lead to reasonable performance without any form of pessimism.84

Prior works have sought to analyze several aspects of the representations induced by TD-based85

methods with function approximation largely in the standard online RL setting [1, 5, 25, 48, 31, 32]86

and in the offline RL setting [28, 27]. In the linear setting, [15, 55], study which representations87

can induce stable convergence of TD and [44, 33] have tried to devise convergent TD methods88

for arbitrary representations, but these prior works do not attempt to study the effect of pessimism89

on representations, or how OOD actions affect representations. Recent work [27, 28] study the90

learning dynamics of Q-learning in an overparameterized setting and observes excessively low-rank91

and aliased feature representations at the fixed points found by TD-learning. These prior works92
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propose some metrics to evaluate representational quality, and we do evaluate these in our analyses93

in Section 5, but find that these metrics generally behave well, even though performance can be94

improved with simple representational regularization. As we show, the metric we propose is more95

predictive of algorithm performance. Moreover, these prior works do not quite study the interplay96

between pessimism and representations that we do.97

Finally, we note that our proposed approach of utilizing an ensemble of N -step returns is not new.98

Most notably, it is related to TD(λ) which has been instantiated in various forms [41, 21, 51, 9]. Prior99

works have also used N-step returns for a fixed value of N in methods that perform off-policy TD100

learning [49, 17, 10]. Besides the fact that most of these works are based in an online RL setting, the101

crucial distinction behind these prior works and our paper is that our work goes beyond the standard102

explanation of bias-variance tradeoff for N-step returns [40], and analyzes N -step returns from a103

different perspective: improving the quality of learned representations. We emphasize that our goal104

is not to produce a novel algorithm, but rather to understand the efficacy of different components105

towards the representations learned by the Q-function.106

3 Preliminaries107

The RL problem is formally defined by a Markov decision processes (MDPs) defined as M =108

(S,A, T, r, µ0, γ), where S,A denote the state and action spaces, and T (s′|s,a), r(s,a) represent109

the dynamics and reward function respectively. µ0(s) denotes the initial state distribution, and110

γ ∈ (0, 1) denotes the discount factor. The objective of RL is to learn a policy that maximizes the111

return (discounted sum of rewards): maxπ J(π) := E(st,at)∼π[
∑

t γ
tr(st,at)]. In offline RL, we are112

provided with an offline dataset, D = {(s,a, r, s′)}, of transitions collected using a behavior policy113

πβ , and our goal is to find the best possible policy only using the given dataset.114

Directing training a Q-value function from the offline dataset often suffers from OOD actions [14, 24,115

30], and therefore effective offline RL algorithms must enforce some constraint to prevent querying116

the target Q-function on unseen actions. This constraint could be a behavior constraint, where the117

learned policy π is constrained to be close to the behavior policy πβ . In this work, we build our118

analysis on top of conservative Q-learning (CQL) [26], which applies a regularizer R(θ) to prevent119

overestimation of Q-values for OOD actions. R(θ) minimizes the Q-values under the policy π(a|s),120

and counterbalances this term by maximizing the values of the actions in D. Formally:121

min
θ

α

(
E

s∼D,a∼π
[Qθ(s,a)]− E

s,a∼D
[Qθ(s,a)]

)
+

1

2
E

s,a,s′∼D
a′∼π

[(
Qθ(s,a)− r − γQ̄(s′,a′)

)2]
, (1)

where Q̄ denotes the target Q-function. On the other hand, training a Q-value function for the122

behavior policy, that only relies on action samples from the offline dataset is fairly easy and does123

not suffer from the problem of OOD actions. A standard approach of learning such a Q-function is124

what we refer to as “offline SARSA” [43], which only queries the action observed in the dataset at125

the subsequent timestep to compute the Bellman target for training the Q-function. The objective for126

SARSA can be written as:127

min
θ

Es,a,s′,a′∼D

[(
Qθ(s,a)− r − γQ̄(s′,a′)

)2]
. (2)

Since the next step Q-values are computed using dataset actions, it eliminates the need to query128

Q-function for the values of any OOD actions. In effect, this procedure only relies on supervision129

observed in the dataset (i.e., actions, the corresponding rewards and the next states) to learn repre-130

sentations. Prior works [28] have argued that avoiding out-of-distribution actions altogether enables131

SARSA to enjoy benefits of implicit regularization [52, 3] that otherwise may hurt TD learning.132

In order to understand representational quality, we focus our analysis on the last layer feature133

representation ϕ(s,a) learned by the neural network, following the conventions in prior work [8, 28,134

27, 31, 32]. These prior works have also attempted to show that certain characteristics of the learned135

representations ϕ(s,a) of a value network can explain certain pathologies with Q-learning.136

4 To What Extent Do OOD Actions Explain the Instability in Offline RL?137

Most prior works in offline RL focus on addressing the action distribution shift problem, proposing138

a wide variety of methods in preventing the policies from taking OOD actions during the training139

process. However, it remains unclear why different methods for mitigating OOD actions seem to140
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attain significantly different performance, and whether being better at preventing OOD actions is141

actually the key to better results. It therefore seems natural to ask: to what degree is good (or bad)142

performance of offline RL approaches really dependent on their ability to be pessimistic? In this143

section, we study this question by performing a controlled empirical study. We perform experiments144

to investigate both the sufficiency and necessity of being pessimistic and present them next.145

4.1 Is Pessimism Sufficient for Good Performance?146

While several recent offline RL methods that correct for OOD actions by adding some form of147

pessimism work well, in most of these approaches, the pessimism-inducing penalty (e.g., value148

conservatism penalty like in CQL) or constraint (e.g., behavioral constraints) also affects the rep-149

resentation learned by the internal layers of the Q-function (or the policy). In this section, we150

argue via an empirical study on top of the CQL algorithm that, to a large extent, the benefits of this151

pessimism-inducing mechanism stem from its impact on the learned representation and not so much152

from its ability to combat overestimation.153

Empirical results showing insufficiency of pessimism. To decouple the effects of pessimism in154

handling overestimation and representational quality, we train a CQL [26] agent on the hopper-155

medium-replay-v2 environment from the D4RL [11] suite, and make the following modification: we156

let the last layer representation ϕ(s, a) of the Q-network be updated by the TD-error (second term in157

Equation 1) and the conservatism regularizer (R(θ)) is not allowed to affect this representation. That158

said, this regularizer R(θ) is allowed to affect the final layer weights of the Q-function. As a result,159

while the CQL regularizer can still curb overestimation by manipulating the last layer Q-values, it is160

unable to affect the representations, thereby inhibiting pessimism from providing any representational161

benefits. For comparison, we also train a regular CQL agent on the same environments. For both162

runs, we apply the same weight on the conservatism penalty.163
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Figure 1: CQL w/ stop gradient vs CQL in hopper-medium-replay task. Left: CQL w/ stop gradient is able to
prevent overestimation and results in non-divergent Q-values. Middle: the performance of CQL w/ stop gradient
is significantly lower than regular CQL. Right: Values of the CQL regularizer are quite comparable between
CQL and CQL w/ stop gradient, even though the observed performance is quite different.

As shown in Figure 1, once we prevent the CQL conservatism penalty from affecting the represen-164

tation, the performance decreases significantly. In the left part of the figure, we see that when the165

CQL regularizer is not allowed to affect the learned Q-function representations (denoted “CQL w/166

stop gradient”), we are still able to attain stable and non-divergent Q-values, thereby avoiding the167

issues typically observed with standard TD methods. However, CQL w/ stop gradient performs168

significantly worse than base CQL (Figure 1, middle). As shown in Figure 1 (right), the value of the169

CQL regularizer (i.e., the amount of pessimism) is still quite comparable in both cases, differing only170

by about 0.5, which is quite small relative to the average magnitude of the learned Q-values (∼ 300),171

however there is a significant performance difference. This difference indicates that while pessimism172

might be beneficial in lowering the value of OOD actions, it also contributes significantly to other173

factors such as representation learning, and this representation learning benefit accounts for much of174

the improvement from CQL, since without it the method performs much worse.175

Takeaway 4.1. Besides preventing OOD actions, pessimism-inducing mechanisms in offline
RL algorithms can also contribute to representation learning, and simply ensuring pessimism,
without affecting representations might not be sufficient for good performance.

176

4.2 How Much Performance Improvement Do Good Representations Account for?177

While the above results suggest that pessimism alone does not account for full performance of178

of offline RL methods, and the quality of the learned representation has a crucial role to play in179

determining the performance of value-based offline RL, it is not quite clear how much performance180
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do good representations account for, how much performance is accounted to by other factors and181

what even a good representation even means. In this section, we attempt to answer this question182

by construction: we perform an empirical study that completely removes any sort of pessimism,183

but applies a representational regularizer. We show that it is still possible to obtain reasonable184

performance if the learned representation is carefully regularized, despite the fact that the method we185

test has no explicit mechanism for ensuring pessimistic estimates for OOD actions or constraining186

the policy to remain in-distribution.187

Figure 2: A schematic illustration of our approach
for representational regularization that trains a Q-
function with an auxiliary discriminator head for
distinguishing potentially out-of-distribution pol-
icy actions from in-distribution dataset actions.

Experiment setup. As shown in Equation 1, the188

CQL regularizer (R(θ) in Equation 1) pushes down189

the Q-value at OOD actions and pushes up the Q-190

value for in-distribution dataset actions. If this kind191

of a pessimism penalty truly induces beneficial repre-192

sentational regularization, a nature conjecture is that193

representations that trained to minimize just the CQL194

regularizer independently of the TD error must also195

be useful, and must contain enough information to196

distinguish dataset actions from OOD actions. On its197

own, the CQL regularizer (Equation 1) resembles the198

objective of the discriminator in generative adversar-199

ial networks (GAN) [16] which serves a similar function of distinguishing dataset examples from200

generated examples. Based on this intuition, in the next experiment, we construct an offline RL201

method that utilizes a GAN objective, but only to train a separate linear output head on top of the202

Q-function network, whereas the Q-values are simply trained to minimize TD error with no form of203

pessimism whatsoever. A schematic illustration of this approach is shown in Figure 3. Specifically,204

we adopt the least square GAN [34] objective due to its simplicity and stability. Concretely, let us205

denote the linear discriminator weight as wd, then given the Q-network representation ϕθ(s,a), our206

explicit regularization objective can be written as207

min
θ,wd

Es∼D,a∼π

[
(ϕθ(s,a)

⊤wd + 1)2
]
+ Es,a∼D

[
(ϕθ(s,a)

⊤wd − 1)2
]
. (3)

We apply this regularization on top of standard off-policy SAC [47], without any form of pessimism,208

and evaluate the algorithm in the same environment as Section 4.1. For comparison, we also train an209

nnaïve SAC agent with identical hyperparameters but without this second head.210
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Figure 3: SAC with representation regularization vs regular SAC on hopper-medium-replay-v2 task.
Left: SAC with representation regularization learns similar Q-values to regular SAC. Right: Representation
regularization significantly improves the performance even without pessimism.

As shown in Figure 3, this modified algorithm can attain reasonable performance, significantly211

outperforming naïve SAC, despite having no explicit mechanism to ensure pessimism, conservatism,212

or policy constraints. Since the additional GAN term only influences the last layer representation,213

its benefits can be attributed entirely to learning better representations. While the method is not as214

effective as dedicated offline RL approaches such as CQL, this result, together with the experiment215

from Section 4.1 strongly suggests that representation learning is not only important for offline RL,216

but it also explains a large fraction of the performance gains for methods such as CQL. This in turn217

implies that, in designing better offline RL methods, we should put particular emphasis on their effect218

on representation learning, rather than simply on enforcing pessimism.219

Takeaway 4.2. The ability to learn good representations can explain a large fraction of the
performance gains for practical offline RL methods. Explicit regularization techniques that
gives good representations can be effective in offline RL, even in the absence of pessimism.

220
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5 What Constitutes a Good Representation for Offline RL?221

Our empirical analysis from the previous section suggests that pessimistic offline RL methods do222

affect the representations learned by offline RL algorithms such as CQL, and utilizing only the TD223

error can give rise to representations that fail to adequately distinguish the dataset action from actions224

from the learned policy. This distinction is crucial: since an offline RL algorithm only observes225

ground truth supervision only in the form of instantaneous rewards and the subsequent environment226

state, for dataset actions, the ability to successfully associate the right (long-term) reward with the227

right dataset action is critical for attaining good performance. Can we formalize this intuition into a228

diagnostic metric for measuring the “goodness” of the learned representation?229

The most natural choice of such a metric inspired by our experimental analysis in Section 4.2 is230

the accuracy of the separate discriminator head trained to distinguish dataset actions from policy231

actions. In our preliminary experiments, we find that while a discriminator accuracy near 50% is232

clearly indicative of poor performance, a reasonable discriminator accuracy (say ≥ 60− 70%) does233

not necessarily indicate the absence of any representational issues. This is because while even a234

somewhat correct representation can attain high accuracy, the representation may still not be rich235

enough to match the fidelity needed for Q-value estimation. Therefore, we propose to utilize a236

more complete metric for tracking the extent of action information in the learned representation: we237

propose to train a non-linear model to reconstruct both the dataset and policy actions from the learned238

representation ϕ(s,a), and suggest tracking the reconstruction error of this model in aggregate over239

dataset actions. This metric can be formalized as:240

Metric 5.1. Train a parametric model, ∆ : S× Rd → A on the dataset: D∆ := Dπ
∆ ∪ Dπβ

∆ ,
where Dπβ

∆ := {(si, ϕ(si,ai)) ,ai}Ni=1 and Dπ
∆ := {(si, ϕ(si, π(si)) , π(si)}Ni=1. Then, track

the error metric:

Lrecons(Φ) :=
1

|D|
∑

(si,ai)∈D

||ai −∆(si, ϕ(si,ai))||22 . (4)

241

Since the reconstruction error, Lrecons(Φ), can take on a range of values, how should we choose values242

to decide whether a representation is good enough or not? Specifically, what is a baseline value of this243

quantity that can be considered a “gold standard” for comparison? To identify a good value of this244

good standard, we seek to intuitively understand how OOD actions would impact the representations245

learned by a value-based offline RL algorithm. We can do so by utilizing the following informal model246

of the behavior of neural networks that is implied by several theories of deep learning [3, 4, 46, 7]:247

sufficiently expressive and overparameterized neural networks are believed to learn the “simplest”248

function that can fit the training data (i.e., match the actual label on the training datapoints). That249

is to say that the learned function retains only information about the training data that is absolutely250

critical for making predictions, and attempts to lose any unnecessary information.251

When instantiated in the context of TD-learning, this intuitive model implies that the simplicity of the252

function approximator would depend on its ability to fit the Bellman constraints on the training data.253

If several of the actions used to compute Bellman targets are out-of-distribution, in principle, a simpler254

function approximator can be learned by assigning arbitrary values to them, as Q-values at such255

actions are hallucinated by the function approximator itself. On the other hand, if all the actions used256

to produce Bellman targets also appear in the dataset (i.e., these actions also appear on the left hand257

side of some Bellman constraint), the resulting function approximator is the most constrained, and258

likely least simple. This implies that a good baseline that can serve as a gold standard for comparing259

Lrecons is the reconstruction error attained by offline SARSA (Equation 2). This means that closer the260

value of Lrecons(Φoffline RL) to Lrecons(ΦSARSA), the more desirable the learned representation.261

Empirical results. To empirically validate the efficacy of our reconstruction error metric, we compute262

the values of Lrecons for a variety of D4RL [12] tasks and compare them to the values attained by263

SARSA. Observe in Figure 4 that while in some cases (e.g. kitchen), the reconstruction error for264

naïve CQL is much larger than SARSA, indicating excessive loss of information about the dataset, in265

other cases (antmaze and antmaze-heterogeneous), the reconstruction error for naïve CQL is smaller,266

indicating that CQL hallucinates information about the dataset action. As an additional point of267

reference, we also plot this metric for an approach that utilizes an N -step Bellman backup with CQL,268

and observe that this approach attains a value of Lrecons closer to that of SARSA. Furthermore, even269

though the policies produced by naïve SARSA don’t perform well (as confirmed by prior works [6]),270
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the value of Lrecons to that of SARSA, the better the performance of the resulting method. This271

empirically corroborates our intuition about the efficacy of this metric.272
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Figure 4: Performance and metrics of R2-CQL vs regular CQL, in comparison with SARSA. Observe that
measuring of closeness of the reconstruction error on the dataset actions (Metric 5.1) to the corresponding value
for SARSA is able to accurately predict the performance trends, while other prior metrics may not.

Additionally, we also measure the predictive power of existing metrics from prior works such as273

feature rank penalty [27] and feature dot products [28] in predicting the performance difference274

between CQL and our approach. While these prior works used extreme values of these metrics (e.g.,275

extremely low rank or extremely large dot products) to diagnose pathologies in TD, our analysis276

shows that representational issues can still arise when these metrics behave relatively stably (see277

Figure 4).278

Takeaway 5.1. The closer the value of the reconstruction error metric of an offline RL method
based on TD-learning method that utilizes out-of-distribution actions, to that of SARSA, the
better we would expect the performance of the learned policy to be.

279

6 R2-CQL: A Simple Approach for Improving Representations For CQL280

How can we improve the representations learned by offline RL algorithms? Our analysis above281

suggests that this would involve constraining the learned representation to be closer to that learned282

via offline SARSA, which only utilizes dataset actions for which ground truth supervision is available.283

That is, we wish to devise an approach that can introduce a form of representational regularization,284

which makes the representations closer to that of offline SARSA.285

A simple approach that meets these requirements, and imposes a form of representational regu-286

larization, is one that utilizes a Bellman backup operator which interpolates between complete287

bootstrapping and estimating the value for SARSA. To this end, we propose to utilize an ensemble of288

n-step return estimators in conjunction with offline RL methods, similar to TD(λ) [43]. Concretely,289

for a given choice of values of n = {n0, n1, · · · , nk}, we utilize the following Bellman operator to290

generate regression targets for TD:291

B̃πQ(s0,a0) :=
1

k

k∑
j=1

(
nj−1∑
l=0

γlr(sl,al) + γnjQ(snj
,anj

)

)
. (5)

We will now discuss how we can convert this approach into a practical method for offline RL.292

Practical instantiation. Our practical algorithm only modifies the CQL training objective (Equa-293

tion 1) to now use the Bellman backup operator shown in Equation 5, with no other changes. We294

inherit the value of α directly from CQL, without tuning it, and do not modify any other hyperpa-295

rameters. We utilize values of n = {1, 3, 5} across all domains. Note that unlike prior methods296
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based on explicit regularization such as the feature rank [28] or dot products [27], our approach does297

not require any specific hyperparameter to be tuned per domain, highlighting the simplicity of this298

approach.299

Empirical results. We empirically validate our n-step approach by evaluating both the value of300

Lrecons and the performance across a wide range of offline RL tasks from D4RL [12]. Following301

the protocol in [28], we present two sets of performance numbers in Table 1: the final performance302

attained by the algorithm after a fixed number of gradient steps (denoted “Final Performance”) and303

the average performance attained over the course of training (denoted “Average Performance”), which304

is a measure of the stability of the offline RL algorithm over the course of training. We additionally305

already presented the value of the reconstruction error on a subset of domains in Figure 4.306

Observe that on all the tasks, our approach, R2-CQL attains a better or comparable performance both307

measured by the final performance of the algorithm and the average performance across iterations,308

which demonstrates the stability of training. The gap between naïve CQL and the n-step approach is309

larger under the average performance metric, indicating that the latter is much more stable. Finally,310

perhaps unsurprisingly, the representational metrics do indicate that utilizing the mixture of n-step311

Bellman targets does lead to reconstruction error values closer to that of offline SARSA.312

While this simple approach does lead to improvements in performance, perhaps the more important313

question is why does it actually improve performance. Traditionally, in the on-policy setting, the314

utility of an ensemble of N -step returns via approaches such as TD(λ) [43] or GAE [41] primarily315

emerges from an ability to better manage a bias-variance tradeoff: by controlling an algorithmic316

hyperparameter, the bias induced in learning a parametric Q-function can be effectively traded against317

the variance of a Monte-Carlo return estimator. However, in this case, we utilize N -step returns in an318

offline setting, with an already pessimistic algorithm (CQL). Since CQL already aims to underestimate319

the return of the learned policy, we would expect N -step Bellman targets to only be more conservative,320

since they bias the Q-function towards the values of the behavior policy and therefore be more biased321

than CQL. Typically, this bias issue is solved by utilizing importance corrections [9, 35], but we do322

not use any such correction. Therefore, not only does R2-CQL use a high variance Bellman target,323

but also a more biased one, and yet it outperforms CQL. This again indicates that the representation324

learning benefits of this approach are likely much more useful towards improving performance despite325

the bias.326

Task Final Performance Average Performance
CQL R2-CQL CQL R2-CQL

kitchen-mixed 0.000 ± 0.000 0.362 ± 0.013 0.085 ± 0.114 0.330 ± 0.098
kitchen-partial 0.138 ± 0.138 0.475 ± 0.075 0.089 ± 0.111 0.414 ± 0.139
kitchen-complete 0.000 ± 0.000 0.025 ± 0.025 0.163 ± 0.143 0.100 ± 0.106

antmaze-medium-play 0.435 ± 0.315 0.670 ± 0.090 0.569 ± 0.200 0.602 ± 0.216
antmaze-medium-diverse 0.680 ± 0.070 0.645 ± 0.045 0.511 ± 0.214 0.538 ± 0.212
antmaze-large-play 0.005 ± 0.005 0.320 ± 0.000 0.098 ± 0.105 0.265 ± 0.104
antmaze-large-diverse 0.095 ± 0.035 0.420 ± 0.010 0.162 ± 0.083 0.303 ± 0.145

antmaze-ht-large 0.090 ± 0.090 0.380 ± 0.160 0.082 ± 0.057 0.283 ± 0.125
antmaze-ht-large-biased 0.000 ± 0.000 0.310 ± 0.190 0.067 ± 0.057 0.302 ± 0.098
antmaze-ht-medium 0.000 ± 0.000 0.320 ± 0.140 0.155 ± 0.118 0.290 ± 0.121
antmaze-ht-medium-biased 0.000 ± 0.000 0.220 ± 0.040 0.126 ± 0.192 0.234 ± 0.083

Table 1: Final and average performance for R2-CQL and CQL across 7 D4RL tasks and 4 heteroge-
neous antmaze tasks. All performances are evaluated with 2 random seeds for 1000 epochs. We see
that R2-CQL improves the final and average perfromance over naïve CQL significantly.

7 Discussion and Conclusion327

In this paper, we demonstrate that while addressing the overestimation due to OOD actions is328

important for offline RL, a crucial ,but largely overlooked ,factor for obtaining good performance329

in value-based offline RL algorithms is good representation quality. We show through extensive330

empirical results that, perhaps surprisingly, pessimism in practical offline RL algorithms such as CQL331

contributes to the performance not only as a way to prevent overestimation, but more significantly332
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as a way to induce good representations. We also show that pessimism is not the only way to attain333

good representations and methods that attain good representations can still work well. Based on334

this experimental analysis, we propose a practical metric that quantitatively tracks the quality of335

learned representation, and show that simply utilizing a ensemble of N -step returns to compute336

Bellman targets can provide a strong representation regularization and thus significantly improve337

the performance of conservative offline RL algorithm. We hope that our discovery can highlight the338

importance of representation learning in offline RL, and thus open up new opportunities to devise339

stronger offline RL methods.340

While we provide a practical method R2-CQL to regularize representations, by no means we claim341

that it is an optimal method. Therefore a natural step for future work direction is to seek for better342

ways to understand and improve the quality of learned representations. We believe that such future343

search has the potential of bringing deep insights and profound influences to the field of offline RL344

and hope that our analysis sheds light on some of these questions.345
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