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Abstract

Despite the widespread adoption of transformers in medical applications, the exploration
of multi-scale learning through transformers remains limited, while hierarchical represen-
tations are considered advantageous for computer-aided medical diagnosis. We propose
a novel hierarchical transformer model that adeptly integrates the feature extraction ca-
pabilities of Convolutional Neural Networks (CNNs) with the advanced representational
potential of Vision Transformers (ViTs). Addressing the lack of inductive biases and de-
pendence on extensive training datasets in ViTs, our model employs a CNN backbone to
generate hierarchical visual representations. These representations are adapted for trans-
former input through an innovative patch tokenization process, preserving the inherited
multi-scale inductive biases. We also introduce a scale-wise attention mechanism that
directly captures intra-scale and inter-scale associations. This mechanism complements
patch-wise attention by enhancing spatial understanding and preserving global percep-
tion, which we refer to as local and global attention, respectively. Our model signifi-
cantly outperforms baseline models in terms of classification accuracy, demonstrating its
efficiency in bridging the gap between Convolutional Neural Networks (CNNs) and Vi-
sion Transformers (ViTs). The components are designed as plug-and-play for different
CNN architectures and can be adapted for multiple applications. The code is available at
https://github.com/xiaoyatang/DuoFormer.git.
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1. Introduction

The Vision Transformer (ViT) (Dosovitskiy et al., 2020) adapted transformers from lan-
guage to vision, demonstrating superior performance over CNNs when pre-trained on large
datasets. ViT employs a patch tokenization process that converts images into a sequence
of uniform token embeddings. These tokens undergo Multi-Head Self-Attention (MSA),
transforming them into queries, keys, and values that capture extensive non-local relation-
ships. Despite their potential, ViTs can underperform similarly-sized ResNets (He et al.,
2016) when inadequately trained due to their lack of inductive biases such as translation
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equivariance and locality(Lee et al., 2021), which are naturally encoded by CNNs. Recent
efforts have focused on mitigating ViTs’ limitations by integrating convolutions or adding
self-supervised tasks (Liu et al., 2021a). Prevalent approaches combine CNN feature ex-
tractors with transformer encoders (Araujo et al., 2019; Wu et al., 2021; Yuan et al., 2021;
Li et al., 2021; d’Ascoli et al., 2021; Zhang and Yan, 2023; Hou et al., 2024), such as the
’hybrid’ ViT (Dosovitskiy et al., 2020). Other methods such as knowledge distillation (Tou-
vron et al., 2021) transfer biases from CNNs to ViT, add a convolutional kernel to the
attention matrix to bring translation equivariance (Dai et al., 2021), and use pooling to
build multi-stage transformers (Li et al., 2022). Nonetheless, ViTs’ uniform representations
throughout layers and their non-local receptive fields compared to CNNs limit their ability
to capture detailed semantics (Raghu et al., 2021), which is important for medical images.

The application of ViTs in medical imaging, particularly in CT and X-ray data, is
gaining momentum, showcasing their potential in handling extensive datasets (Shamshad
et al., 2023). A notable application in histopathology is presented by (Shao et al., 2021),
which utilizes transformers to understand correlations between patches in whole slide im-
ages (WSIs), demonstrating the adaptability of transformers for complex pathological data.
Histopathology image analysis involves examining WSIs to detect and interpret complex tis-
sue structures and cellular details. This analysis faces challenges due to similar appearances
between background and tumor areas, as well as the varied scales of visual entities within
WSIs. These include differences in sizes of cell nuclei and vascular structures, both of which
can significantly impact a model’s ability to differentiate between low- and high-risk kidney
cancers as an example. Moreover, global features of cancer and its microenvironment, ob-
servable only at lower scales, are crucial for various downstream tasks. The neglect of these
multiple scales can significantly impair the performance of deep learning models in medical
image recognition tasks. CNNs tackle this issue by utilizing a hierarchical structure created
by lower and higher stages. Such hierarchical structures are thought to be advantageous
for cancer diagnosis and prognosis tasks. However, CNNs fall short in extracting the global
contextual information crucial for medical image classification compared to Transformers.
By harnessing a hierarchical structure similar to that of CNNs, ViTs can be prevented
from overlooking the critical multi-scale features, while also imparting necessary inductive
biases. Most existing works on directly integrating multi-scale information into ViTs vary
primarily in the placement of convolutional operations: during patch tokenization(Yuan
et al., 2021; Xu et al., 2021; Guo et al., 2022), within(Guo et al., 2022; Lin et al., 2023;
Fan et al., 2024) or between self-attention layers, including query/key/value projections(Wu
et al., 2021; Yuan et al., 2021), forward layers (Li et al., 2021), or positional encoding (Xu
et al., 2021), etc. Recent advancements, such as those by (Liu et al., 2024), which leverage
a feature pyramid and a k-NN graph to enhance local feature representation in histopatho-
logical images, reflect a growing trend in adopting hierarchical architectures tailored for
medical datasets (Azad et al., 2024). Inspired by the Swin Transformer (Liu et al., 2021b),
a shifting window strategy bringing locality to transformer, Chowdary and Yin (2024) used
different window sizes in attention mechanisms and shifted window blocks to improve the
accuracy of thoracic disease classification. Manzari et al. (2023) employed both convolu-
tions and poolings before and inside the attentions for medical data classification. Luo et al.
(2022) fused a UNet and a transformer, employing two cross-attention modules to enhance
medical image segmentation. Wang et al. (2022) proposed a channel attention to bridge the
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semantic gap between different stages of a UNet on medical image segmentation. Pina et al.
(2024) applied a multi-scale deformable transformer (Zhu et al., 2020) to cell detection and
classification. Additionally, Guo et al. (2023) considered a WSI pyramid as a hierarchical
graph and employed a hierarchical graph-transformer to communicate between different
resolutions of the WSI pyramids, thus improving the analysis of these images. Despite the
benefits of hierarchical configurations, a definitive model for medical image analysis has
not yet been established. Challenges persist in effectively producing and utilizing features
across various scales, with the influence of different scales requiring further exploration.

To address these challenges, we propose a novel hierarchical Vision Transformer model.
First, our proposed multi-scale tokenization involves a single-layer projection, patch index-
ing, and concatenation, assembling features from different stages of the CNN into multi-scale
tokens, facilitating a richer representation of an image. Second, we introduce a novel local
attention mechanism, combined with global patch attention, enabling the model to learn
connections between scales. This approach effectively bridges the gap between CNN and
Transformer architectures and various scales of features. Finally, our proposed scale token,
part of the scale attention, is initialized with a fused embedding derived from hierarchical
representations. It enriches the transformer’s multi-granularity representation and aggre-
gates scale information, serving as the input for the global patch attention.

2. Methodology

2.1. Multi-scale Patch Tokenization

The pipeline of our model is depicted in Figure 1. We replaced the embedding layer com-
monly used in ViTs with a pretrained CNN backbone, which produces hierarchical features
with decreasing spatial resolutions and increasing channel dimensions. We introduced a
novel patch tokenization process to adapt these hierarchical features for the transformer.
This process extracts features from different stages and performs embeddings based on
them using single-layer projections. Given the input of an image, x ∈ RH×W×3 with
H = W , we derive hierarchical outputs from multiple stages, denoted as xi ∈ RPi×Pi×Ci for
i ∈ {0, 1, 2, 3}. Here, i denotes the ith stage in the CNN backbone, where Pi =

H
4·2i specifies

the spatial resolution, and Ci indicates the channel dimension. We then apply a linear
projection to transform all the features into embeddings with dimension D. We refer to the
subsequent embeddings as multi-scale embeddings, denoted by x′

i, where x
′
i ∈ RPi×Pi×D, as

formulated in Equation (1).

x′
i = Projection(xi) (1)

Next, we split the multi-scale embeddings x′ intoN non-overlapping patches, and flatten the
spatial dimensions of them. Thus, for each scale, we obtain a sequence of tokens, each token
with a spatial size P ′

i
2, where P ′

i = H
4·2i·

√
N
, for i ∈ {0, 1, 2, 3}. We index and concatenate

the corresponding tokens across multiple scales for each patch to form the multi-scale tokens
Xt∑. This process is explained by Equations (2) and (3).

x′′
i ∈ RN×P ′

i
2×D (2)
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Figure 1: Left: Converting an image into hierarchical representations using a CNN back-
bone. Right: Process 1 illustrates multi-scale patch tokenization, including projection,
patch splitting, and concatenation, with blue cubes representing embeddings from multiple
scales of a single patch. Various colors and lengths indicate different embedding lengths at
each scale in the multi-scale tokens. ’S’ denotes the total embedding lengths for each patch.
Process 2 shows learning the scale token from hierarchical representations. L indicates the
depth of attention modules.

, where P ′
i
2 = HW

16·4i·N , i ∈ {0, 1, 2, 3}. In Equation (3), S denotes the total embedding length

of each embedded patch in the multi-scale tokens, and S =
∑

P ′
i
2.

Xt∑ = concat(x′′
i ) ∈ RN×S×D (3)

2.2. Scale Token

In local attention for scale, a scale token—akin to the class token—aggregates scale informa-
tion and is then passed into the global attention. We obtained the scale token xs by applying
a downsampling strategy to the hierarchical representations from the CNN, explained in
Equation (4). This strategy normalizes the spatial dimensions of embeddings from different
scales to N , maintaining consistent channel dimensions. N denotes the number of patches.
These embeddings are then concatenated along the channel dimension and projected into a
dimension D using a simple projection, illustrated by process 2 in Figure 2 and outlined in
Equation (5). The resultant scale token distills important multi-scale information, serves
as an effective guide for the local attention and efficiently aggregates scale information.

x̃0 = MaxPool(Conv(x0)), x̃1 = MaxPool(Conv(x1)),

x̃2 = MaxPool(x2), x̃3 = x3, where xi ∈ RN×Ci ,

X̃∑ = concat(x̃0, x̃1, x̃2, x̃3) ∈ RN×C , C =
∑

Ci,

(4)

xs = ReLU(BN(Conv(X̃∑))) ∈ RN×D (5)
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Figure 2: Left: Local (blue arrows) attention models intra- and inter-scale dependencies,
while global (orange arrows) attention models relationships among image patches. From
top to bottom, the embedding length (spatial sizes) for a single patch increases from 1 to
64, with rich scale information embedded in the multi-scale tokens. Right: Implementation
of the duo attention module, including L layers of local and global attentions, respectively.

2.3. Duo Attention Module

Our encoder employs local and global attentions to respectively focus on detailed image
features and broader contexts, as illustrated in Figure 2(Left). The local attention(LMSA)
follows the principles of Multi-Head Self-Attention (MSA) but includes an adaption to
incorporate an additional scale dimension. This adaptation integrates multi-scale analy-
sis directly into the attention mechanism and modifies tensor operations to accommodate
multi-scale tokens. Learnable 2D positional embeddings are added before the first layer of
local attention, encoding scale-wise information for every patch. The implementations are
depicted in Figure 2(Right), taking the first layer as an example. The input to the first
local attention layer is denoted by Xs

0 in Equation (6). Wqkv is transformation matrix.
Equation (6) details the calculations performed within a local attention(LMSA) in a single
head. dk is the scaling factor, and A stands for the attention weights for scales. We use
multi-head attention in implementation.

Xs
0 = concat(xs,X

t∑) +Epos,Epos ∈ R(S+1)×D,

Xs′
0 = Xs

0 + LMSA(LN(Xs
0)),Y

s
0 = Xs′

0 + FFN(LN(Xs′
0 )

[qkv] = Xs
0Wqkv,Wqkv ∈ RD×3D,q/k/v ∈ RN×(S+1)×D,

A = Softmax

(
qkT

√
dk

V

)
, dk =

D

nh
,A ∈ R(S+1)×(S+1),

(6)

After the local scale-wise attention, each patch is expected to encapsulate the necessary
details across all scales. The scale token, aggregating key details from this module, is aug-
mented with standard learnable 1D positional embeddings and passed into the global patch
attention. Global attention mirrors standard MSA but empirically removes layer normal-
ization(LN), feed-forward networks (FFN), and residual connections, as demonstrated in
Figure 2(Right). A classifier, consisting of a single linear layer, is attached to the Lth global
attention layer, taking the CLS token as the final image representation.
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3. Experiments

3.1. Experimental Setup

Our evaluation utilized two datasets, Utah ccRCC and TCGA ccRCC (Zhang et al., 2023).
The Utah ccRCC dataset comprises 49 WSIs from 49 patients, split into training (32 WSIs),
validation (10 WSIs), and testing (7 WSIs). Tiles were extracted from marked polygons at
400x400 pixel resolution at 10X magnification with a 200-pixel stride and center-cropped to
224x224 pixels for model compatibility. The training set included 28,497 Normal/Benign,
2,044 Low Risk, 2,522 High Risk, and 4,115 Necrosis tiles, with validation and test sets
proportionately distributed. The TCGA ccRCC dataset features 150 labeled WSIs divided
into 30 for training, 60 for validation, and 60 for testing, using similar cropping methods
but adjusted strides to gather more training patches. It contains 84,578 Normal/Benign,
180,471 Cancer, and 7,932 Necrosis tiles in the training set, with similar distributions in
the validation and test sets.

All models, including baselines, were trained using the Adam optimizer with β1 = 0.9
and β2 = 0.999, without applying weight decay. For the DuoFormer model, batch sizes
were set to 32 for the Utah dataset and 6 for the TCGA dataset. We employed a OneCycle
learning rate scheduler that starts from a minimal learning rate, progressively increasing
to a set rate of 1 × 10−4. A cross-entropy loss was utilized for training all models. Each
model underwent training for 50 epochs on Utah and 200 epochs on TCGA, utilizing early
stopping with patience of 20 and 50 epochs, respectively. We saved the best-performing
model from the validation data for inference. Model performances were evaluated using
balanced accuracy across all classes for both datasets. All computations were performed
on an NVIDIA RTX A6000 with 48 GB of memory. Training our model for 50 epochs on
a single gpu takes around 17.4 hours. For data augmentation, we applied color jittering,
random rotation, center crop, random crop, and random flips horizontally and vertically for
training data. We used the mean and standard deviation from ImageNet to normalize the
data. For inference, we used only center cropping and the same normalization.

3.2. Result and Discussion

We utilized ResNet18 and ResNet50 backbones (He et al., 2016) to examine the efficacy
of our model under two paradigms: fine-tuning with ImageNet supervised pre-trainıng and
transfer learning with pathology (The Cancer Genome Atlas-TCGA dataset (Weinstein
et al., 2013) and TULIP self-supervised pre-trainıng (Kang et al., 2023). Results, shown
in Table 1, demonstrate that our model outperforms the ResNet baselines by over 2%
across all settings and exceeds various Hybrid-ViTs in both scenarios. The results under-
score our model’s capacity to harness multi-scale features and integrate crucial inductive
biases without necessitating additional tasks or additional pre-training of the transformer
encoder. In the fine-tuning scenario, particularly with TCGA using a ResNet 50 backbone,
deeper encoders sometimes hindered performance, highlighting the need for careful design
when integrating CNN architectures, especially considering domain shifts. Our DuoFormer
improved performance by 3.83%, demonstrating its effectiveness in leveraging multi-scale
representations, compared to the shifting window strategy of Swin transformer(Liu et al.,
2021b). This also indicates our model’s ability to learn representations for the task at hand
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Dataset Fine-tuning Params Acc.(%)

ViT-Base 86.57M 73.50 ± 0.94
ResNet50 23.50M 72.74 ± 6.22

TCGA ResNet50-ViT Base 112.5M 75.89 ± 2.60
ResNet50-ViT Large 197.6M 73.34 ± 3.72
ResNet50-Swin Base 87.00M 72.31 ± 1.68
ResNet50-DuoFormer (Ours) 186.0M 76.57 ± 2.23

ViT-Base 86.57M 84.69 ± 1.33
ResNet18 11.20M 88.87 ± 1.99

UTAH ResNet18-ViT Base 99.03M 82.35 ± 3.40
ResNet18-ViT Large 184.1M 86.39 ± 0.96
ResNet18-Swin Base 86.91M 84.24 ± 1.08
ResNet18-DuoFormer (Ours) 91.22M 91.22 ± 1.74

Table 1: Comparıson of supervised pretrained models on ImageNet for TCGA and UTAH
datasets. Accuracies are reported as mean values from five independent experiments.

and better guide the feature extractor to adapt to domain shifts when trained together.
During the transfer learning phase, shown in Table 2, the backbone, self-supervised pre-
trained on TCGA and TULIP, two large-scale medical datasets, was frozen to serve as a
feature extractor. The backbone provided robust visual representations, leading to the most
promising performance improvements. Our model significantly outperformed the baseline
by 6.96% and clearly surpassed the Hybrid-ViTs and swin transformer, showing the superi-
ority of our model in leveraging multi-scale features. These findings suggest that the model
can effectively capture essential local features while preserving global attention capabilities,
thereby addressing the typical inductive bias limitations found in transformers.

Transfer Learning Params Accuracy (%)

SwaV 0.008M 77.98 ± 0.54
SwaV-ViT Base 89.03M 74.00 ± 1.59
SwaV-ViT Large 174.1M 83.35 ± 1.90
SwaV-Swin Base 86.74M 68.90 ± 1.24
SwaV-DuoFormer(Ours) 124.7M 84.94 ± 2.63

Table 2: Pathology self-supervised pretrained model performances on TCGA.

3.2.1. Ablation on Multi-Scale Representations

A natural question to ask is whether it always better to incorporate additional scales, es-
pecially in medical datasets characterized by diverse scales. Intuitively, we might expect
performance improvements as more scales are integrated. Interestingly, our results reveal
significant performance enhancements when utilizing a single scale, which outperforms other
baselines and underscores the efficacy of our proposed components. As illustrated in Table
3, model performance generally improves with the incorporation of three and four scales in
TCGA, a medium-sized dataset. Conversely, adding more than two stages slightly dimin-
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ishes generalization capabilities on the UTAH dataset, given its smaller size. Our findings
indicate that the optimal combination varies between datasets, influenced by the dataset
size and potentially by the scale of the class-related lesions. Specifically, including scale
1 tends to yield substantial gains, which we attribute to an optimal balance between rich
semantic information and manageable embedding lengths.

Scale 0 Scale 1 Scale 2 Scale 3 UTAH (Acc. %) TCGA (Acc. %)

✓ 90.32 ± 1.61 81.02 ± 2.04
✓ 90.27 ± 2.78 81.47 ± 2.59

✓ 90.10 ± 0.85 81.13 ± 1.37
✓ 89.56 ± 0.53 81.59 ± 3.54

✓ ✓ 87.91± 1.96 81.64 ± 1.83
✓ ✓ 86.14 ± 2.17 80.56 ± 0.59
✓ ✓ 85.18 ± 0.63 79.74 ± 4.35

✓ ✓ 87.35 ± 1.35 81.36 ± 2.25
✓ ✓ 91.22± 1.74 80.07 ± 1.04

✓ ✓ 90.87 ± 1.22 80.24 ± 2.70

✓ ✓ ✓ 89.11 ± 1.58 82.87 ± 1.64
✓ ✓ ✓ 87.88 ± 1.54 81.96 ± 1.03
✓ ✓ ✓ 88.54 ± 2.93 81.90 ± 2.28

✓ ✓ ✓ 89.78 ± 0.84 84.00 ± 2.26

✓ ✓ ✓ ✓ 88.59 ± 1.97 84.94± 2.63

Table 3: Ablation study on inclusion of scales: Features from different stages are numbered
0 to 3 as in Figure 1 and Figure 2. Mean accuracies from five independent runs are reported.

3.2.2. Ablation on Scale Attention

We performed ablations on the local and global attention mechanism in DuoFormer using
our optimal models in both transfer learning and fine-tuning settings Table 4. Using only the
local attention outperforms setups of replying solely on global attention, which resembles a
hybrid ViT model(Dosovitskiy et al., 2020). Moreover, the results demonstrate that optimal
performance on both datasets is attained only when both attention modules are combined,
emphasizing the necessity of integrating both local and global information.

3.2.3. Ablation on Scale Token

The channel dimension embeds rich scale information as it captures different semantic pat-
terns in segmentations(Wang et al., 2022). We experimented with configurations with and
without a scale token in our model, as presented in Table 4. Results indicated that our
proposed scale token more effectively guides the model in capturing critical local informa-
tion. For configurations lacking a scale token, we observed enhancements over the baseline
model by either using the first token in scale attention or averaging all tokens. Remarkably,
employing the first token proved more beneficial than averaging. This token corresponds
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to the output from the final stage of the CNN backbone, typically utilized as the input for
the classification head. We hypothesize that this performance boost stems from the final
stage’s ability to convey concise, crucial information for the task, whereas averaging might
introduce unwanted noise.

Method UTAH TCGA

Local Attn 90.31 ± 1.15 79.90 ± 0.10
Global Attn 82.35 ± 3.40 74.00 ± 1.59
Ours 91.22 ± 1.74 84.94 ± 2.63

w/o Scale Token w/i Scale Token

Dataset First Token Average Learnable Ours

UTAH 90.61± 0.69 89.62± 1.40 88.80± 0.78 91.22± 1.74
TCGA 83.22± 1.58 82.62± 0.39 83.13± 0.46 84.94± 2.63

Table 4: (Top) Ablations on scale and patch attention. Configurations with only scale
attention use a single fully-connected layer to adapt the scale token for the classification
head. (Bottom) Ablation study on the impact of different scale token configurations.

4. Conclusion

We introduced a novel hierarchical transformer model that integrates duo attention mech-
anisms to enhance visual data interpretation across various scales. Our model effectively
captures spatial and contextual information, proving beneficial for medical image classifi-
cation. Ablation studies confirmed that combining both attention mechanisms optimizes
performance, showcasing the model’s robustness and versatility across different backbones
and tasks. This adaptability paves the way for broader applications in medical imaging and
other vision-related challenges.
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Appendix A. Ablation on Numbers of Heads and Layers

We assessed our model’s sensitivity to two hyperparameters: the number of heads and the
number of layers in dual attention modules. Results are given in Table 5. Initially, we fixed
the number of heads at 12 and varied the number of layers from 4 to 12 to identify optimal
configurations for each dataset. Subsequently, we tested heads from 4 to 12, excluding 10
due to incompatibility with the feature dimension D = 768, using the optimal number of
layers. We observed that performance generally increases and then decreases with attention
depth. Specifically, performance peaks at 6 layers for the Utah dataset and at 8 layers for
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the TCGA dataset, likely due to the varying sizes of the datasets. Additionally, we noted a
similar pattern of initial increase followed by a decrease in performance for the number of
heads across both datasets, peaking at 8 heads.

Number of TCGA UTAH
Layers Acc. (%) Acc. (%)

4 80.83 89.37
6 79.70 90.41
8 82.67 88.64
10 81.09 88.87
12 79.66 89.86

Number of TCGA UTAH
Heads Acc. (%) Acc. (%)

4 78.74 90.00
6 82.84 90.02
8 84.94 91.22
12 82.67 90.41

Table 5: Ablation studies comparing the impact of different configurations on dual attention
modules for both datasets: (a) variations in the number of blocks and (b) variations in the
number of heads. All configurations synchronize the blocks and heads in both scale and
patch attention. Encoder layers are set to be the optimized ones according to the ablations
on blocks.
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