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Abstract

Understanding the training dynamics of deep learning models is perhaps a necessary
step toward demystifying the effectiveness of these models. In particular, how do
data from different classes gradually become separable in their feature spaces when
training neural networks using stochastic gradient descent? In this study, we model
the evolution of features during deep learning training using a set of stochastic
differential equations (SDEs) that each corresponds to a training sample. As a
crucial ingredient in our modeling strategy, each SDE contains a drift term that
reflects the impact of backpropagation at an input on the features of all samples.
Our main finding uncovers a sharp phase transition phenomenon regarding the
intra-class impact: if the SDEs are locally elastic [19] in the sense that the impact
is more significant on samples from the same class as the input, the features
of the training data become linearly separable, meaning vanishing training loss;
otherwise, the features are not separable, regardless of how long the training time is.
Moreover, in the presence of local elasticity, an analysis of our SDEs shows that the
emergence of a simple geometric structure called the neural collapse of the features.
Taken together, our results shed light on the decisive role of local elasticity in the
training dynamics of neural networks. We corroborate our theoretical analysis with
experiments on a synthesized dataset of geometric shapes and CIFAR-10.

1 Introduction
Deep learning models have achieved significant empirical success over the past decade across a wide
spectrum of domains spanning computer vision, natural language processing, and reinforcement
learning [31, 43, 48]. Despite these remarkable achievements at the empirical level, there is still
much to learn about deep neural networks, as evidenced by the fact that almost all important advances
concerning architecture design and optimization for deep learning are based on heuristics, without
much input from a theoretical perspective [20, 11, 21, 27].

An important step toward opening these black-box models and unveiling their formidable details is
to quantitatively understand the impact of backpropagation in deep learning training. While there
has been a continued effort to demystify how simple optimization methods give rise to impressive
generalization performance, for example, [49, 26, 4], this is by no means an easy problem, perhaps
because of the daunting nonconvex nature of neural networks. Accordingly, for near-term purposes,
a more practical approach is to take a phenomenological viewpoint by relating simple empirical
patterns to the effectiveness of deep learning models.

In this spirit, we are interested in how data from different classes gradually become separable in
their feature space by repetitively calling backpropagation. From a phenomenological viewpoint, this
question can be addressed by first analyzing the impact of a single update using a stochastic gradient
on the performance of the neural networks. More precisely, imagine that the gradient is evaluated in
an image of a cat, how does the hidden representation of another image—say, an image of another
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(a) GEOMNIST in R3.
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(b) GEOMNIST in R.
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(c) CIFAR in R3.
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(d) CIFAR in R.

Figure 1: Separation of features (logits). GEOMNIST dataset ((a)—(b))) and CIFAR dataset
((c)—(d)) trained using K = 3 classes on a variant of the ALEXNET model. Separation in R is done
by projecting the logits to ν ∈ R3, which is set to be the difference between a pair of class means
X̄
k
(T )−X̄ l

(T ) for a large T , where k, l are chosen heuristically. The dashed lines in (b) and (d) are
simulated paths from Equation (9) using estimated α̂(t) and β̂(t). More details are given in Section 4
and Appendix D.2.

cat or an image of a plane—evolves because of the backpropagation? Recent studies answer this
question by introducing a phenomenon called local elasticity, which, roughly speaking, means that
the impact is generally larger on a similar sample (an image of another cat) than on a dissimilar
sample (an image of a plane) [19].

Motivated by the phenomenon of local elasticity, we propose a model that captures the interaction
between different training samples during deep learning training using a set of stochastic differential
equations (SDEs) that reflect local elasticity in neural networks. Characterizing the intra-class and
inter-class effects is an essential component of our modeling strategy, each of which contains a drift
term that imitates the impact of backpropagation on specific training data of all samples.

Our main finding uncovers a sharp phase transition phenomenon regarding the intra-class and inter-
class impact; if the SDEs are locally elastic in the sense that the impact is more significant on samples
from the same class as the input (the intra-class effect is strictly greater than the inter-class effect),
the features of the training data are guaranteed to be linearly separable, meaning vanishing training
loss; otherwise, the features are not separable, no matter how long the training time is. This result
provides convincing theoretical evidence for the presence of local elasticity in deep learning [19].
Our model is also quite accurate in simulating the feature dynamics of deep learning. As shown in
Figure 1 and detailed in Section 4, the dynamics of the simulated logits are reasonably close to the
real dynamics of deep learning on both synthetic and real datasets, indicating a well-suited model
for theoretical and practical purposes. Moreover, in the presence of local elasticity, our SDEs also
predict the emergence of a simple geometric structure called neural collapse of features [38].

Taken together, our results shed light on the decisive role of local elasticity in the training dynamics
of neural networks. We corroborate our theoretical analysis with experiments on a synthetic dataset
of geometric shapes, as well as on CIFAR-10. The experimental evidence consistently supported our
model, which provides new insights into the dynamics of deep learning training.

1.1 Related Work
Dynamics in Deep Neural Nets. Many properties of linear deep neural nets are relatively well
understood, such as the loss landscapes [25], trajectory-based convergence [2, 12], and implicit
acceleration [3]. Exact solutions of the training dynamics can be obtained in certain initialization
schemes [40, 41, 30]. In the presence of non-linearity, various assumptions are generally made.
[39, 17] studied the dynamics of shallow neural nets with non-linearity and the neural tangent
kernel (NTK) literature [22, 4, 14] linearizes the network function of an infinitely wide neural
net at initialization, which is similar to that of the deep Gaussian process literature [9, 18, 32] (a
treatise comparing and contrasting them can be found in [47]). Although as approximations, NTKs
are generally used when studying optimization trajectories of neural nets such as [34], which also
appears implicitly in many works when studying the optimization trajectories of neural net training
[45, 1, 13, 24, 7].

SGD as SDEs in Neural Nets. The study of dynamics or trajectories of weights in deep neural
nets via SDEs relies on the more precise characterization of stochasticity [33, 36]. Built on top of
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this formalism, [44] studied the trade-off between batch size and learning rate, [23], analyzed factors
influencing the quality of local minima, [5] studied the behavior of the SGD near local minima, and
[42] studied the effect of learning rates. Although SGD-SDE approximation requires an infinitesimal
learning rate, [35] verified that the SDE approximation can be meaningful in practical settings and
obtained necessary conditions for the validation of such approximation.

Local Elasticity and Phenomenological Models. Local elasticity is proposed in [19] as a phe-
nomenological approach to reasoning the behaviors of neural networks. This phenomenon has
inspired several works on generalization bounds [10] and an improvement on the NTK [6].

2 Binary Separation via LE-SDE
2.1 Setup, Notations and Assumptions
Throughout the paper, we work with the following setup and assumptions. For ease of reading,
vectors and matrices are written in boldface and we denote by [n] the set {1, . . . , n}. When there is
no ambiguity, we will write both X(t) and Xt for a continuous-time (possibly stochastic) process.

Classification Problem. Consider a K-class classification problem with K ≥ 2, with each class
having n training examples. We denote by zki ∈ Rd the i-th sample of the k-th class, and yki ∈ [K]
its label, where i ∈ [n], k ∈ [K]. A neural net is a function f : Rd → RK that maps the samples to
logits ( pre-activation of the softmax).

Feature Vectors. We denote byXk
i (m) ∈ Rp a p-dimensional feature of the i-th sample in the k-th

class learned by the neural net at iteration m. For example, it can be the logits or the output of the
second-to-last layer. Assume that the initial valuesXk

i (0) are i.i.d. samples from some distribution
for each i ∈ [n], k ∈ [K]. We use i, j ∈ [n] as indices for an individual sample, k, l ∈ [K] for classes,
and capital letters J and L to indicate random samples from Unif([n]) and Unif([K]), respectively.

Training Dynamics. We model the training dynamics in neural nets under SGD with an emphasis
on local elasticity. At the m-th iteration, the Jm-th sample is sampled from the Lm-th class, where
Jm ∼ Unif([n]) and Lm ∼ Unif([K]). Training on zJmIm affects the features of another data sample
zki in the form of

Xk
i (m)−Xk

i (m− 1) = h · Ek,Lm(m)XLm
Jm

(m− 1) +
√
hζki (m− 1) (1)

where i ∈ [n], k ∈ [K], h is the step size, and ζki (m) is the noise term that is modeled as Gaussian
noise. The scalar Ek,Lm measures the strength of local elasticity that zLmJm exerts on zki at iteration
m. We assumeXk

i (0), ζki (m) are jointly independent.

Local Elasticity. Clearly, by writing Ek,l(m), we assume that this effect depends only on the class
l, k, and time m. We write the effect matrix as E(m) = (Ek,l(m))

K
k,l=1. For ease of exposition, we

assume E only consists of two values α(m) and β(m), with α(m) representing the intra-class effect
and β(m) the inter-class effect. To this end, we assume the effective training assumption, that is,
as training progresses, the features become more discriminative: features from the same class are
more similar, whereas those from different classes are more distinct, as measured by some similarity
measure in the feature space. We also assume that the LE effect is “proportional” to the feature
XLm
Jm

(m) itself. We generalize this point in Section 3 by introducing a transformation matrixH on
the features.

2.2 Binary LE-SDE
Our construction of equation (1) emphasizes the effect of intra- and inter-class effects on the dynamics
of features, and thus differs from the usual weight dynamics that is common in the literature. Before
deriving the general form of our locally elastic SDE (LE-SDE), we shall familiarize the reader with
our model by demonstrating this in the case of binary classification (K = 2) with a one-dimensional
features (p = 1) — the output of the model to be fed into the softmax function, also called the logit.

Let the intra-class effect be E11 = E22 = α, and the inter-class effect is E12 = E21 = β, both of
which are time-independent. Expanding equation (1), for 1 ≤ i, j ≤ n and m ≥ 0, when we train the
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model on the Jm-th training example from the Lm-th class, we have{
X1
i (m) = X1

i (m− 1) + h · αXLm
Jm

(m− 1) +
√
h · ζLmi (m− 1),

X2
j (m) = X2

j (m− 1) + h · βXLm
Jm

(m− 1) +
√
h · ζLmj (m− 1).

In the limit of h → 0, we can show that Xk
i (m) approximates some continuous-time stochastic

processes Xk
i (t) (under the identification of t = mh) governed by the set of stochastic differential

equations as follows:

dXk
i (t) =

(
α

2
X̄k(t) +

β

2
X̄3−k(t)

)
dt+ σ dW k

i (t), t ≥ 0, k ∈ [K], i ∈ [n] (2)

where X̄k(t) :=
(
Xk

1 (t) + · · ·+Xk
n(t)

)
/n, and W k

i are independent standard Wiener processes.
The detailed derivation is given in Appendix A.

Now averaging over i for each k in equation (2), we obtain the following set of two ordinary
differential equations (ODEs) governing the per-class means that X̄k(t) for k = 1, 2:

dX̄k(t) =

(
α

2
X̄k(t) +

β

2
X̄3−k(t)

)
dt+ σ d

W k
i (t) + · · ·+W k

i (t)

n
.

Taking the limit of n → ∞, we observe that σdW
1(t)+···+Wn(t)

n ⇒ 0. Thus, the above display
converges weakly to the following ODE:

dX̄k(t)

dt
=
α

2
X̄k(t) +

β

2
X̄3−k(t). (3)

With the initial conditions EXk
i (0) = ck, the solution to the above ODE is

X̄1(t) =
c1 − c2

2
e
α−β

2 t +
c1 + c2

2
e
α+β

2 t, X̄2(t) = −c1 − c2
2

e
α−β

2 t +
c1 + c2

2
e
α+β

2 t.

In the finite-sample setting, we may replace X̄1, X̄2 in the SDE (2) by their deterministic solutions
and obtain {

X1
i (t) = c1−c2

2 e
α−β

2 t + c1+c2
2 e

α+β
2 t − c1 +X1

i (0) + σW 1
i (t),

X2
j (t) = − c1−c22 e

α−β
2 t + c1+c2

2 e
α+β

2 t − c2 +X2
j (0) + σW 2

j (t).

We are now ready to derive the condition under which these 2n feature vectors become asymptotically
separable, that is, miniX

1
i (t) > maxj X

2
j (t) or maxiX

1
i (t) < minj X

2
j (t) as t→∞.

Theorem 2.1 (Separation in Binary Classification). Given the feature vectors X1
i (t), X2

j (t) for
i, j ∈ [n], as t→∞ and large n,

1. if α > β, they are asymptotically separable with probability tending to one,

2. if α ≤ β, they are asymptotically separable with probability tending to zero.

This result indicates a sharp phase transition when α is just above β, that is, in the regime of local
elasticity. As long as the intra-class effect is slightly greater than the inter-class effect, separation is
guaranteed. This simple model already captures local elasticity and reveals the important role it plays
in the perfect separation of training samples. We can generalize this model to more realistic settings:
when there are multiple classes, when features are high-dimensional, and when the LE matrix E is
time-dependent. In the next section, we discuss each of these three generalizations in more depth.

3 General LE-SDE Model
Now, we consider the general case where K ≥ 2 and the feature vectors are p-dimensional with
p ≥ K. Inquisitive readers may have already noticed that Theorem 2.1 only asserts the emergence
of the separation of features, while being inconclusive to their relative orders at separation, that is,
which class converges to where? This drawback is intrinsic to the toy model as neither intra-class nor
inter-class effect identifies different classes. In this section, we introduce the general LE-SDE model
that alleviates this difficulty with the help of an extra block matrixH with the (i, j)-th blockHi,j

models how features in the j-th class affect those in the i-th class, which also partially defines how

4



classes are separated in higher dimensions. In the local elasticity formalism,Hi,j can be viewed as
inducing a metric on the feature space under which local elasticity manifests.

As hinted before, in the case of multiple-class features in higher dimensions, we want to guarantee a
stronger separation: to know which class converges to where, thus incorporating supervision from
label information. For example, when the features are logits (outputs of the neural nets) and the model
is trained under the softmax cross-entropy loss, previous work suggests they separate according to
specific geometric structures [38]. To this end, we need to adjust the raw feature vectorsXk

i with a
proper transformation that incorporates the label information into the dynamics. This motivates the
following modification of the dynamics (1) by adding an extra transformationHk,Lm ∈ Rp×p to the
features. For k ∈ [K], i ∈ [n], and at iteration m, we have the following:

Xk
i (m) = Xk

i (m− 1) + h · Ek,Lm(m)Hk,Lm(m)XLm
Jm

(m− 1) +
√
hζki (m− 1). (4)

TheHk,Lm(m) term models the LE effect as proportional to a linear “transformation” of the features.
The dynamics in Equation (1) are special cases whenHk,l(m) ≡ Ip for all k, l ∈ [K]. By specifying
a properH , we can overcome the limitation in our toy example of not knowing which class converges
to where. We specify interesting choices ofH in Section 3.2.

A further step of abstraction is to write X̃
k
(m) instead ofXk

i (m), to indicate one generic sample
from the distribution Dk(m) of all the features of class k at iteration m. As in Section 2.2, we
can derive the continuous dynamics of equation (4) in the limit of h → 0 in the same way as

equation (2). Similar to writing X̃ = (X̃
k
)Kk=1 ∈ RKp for the concatenation of per-class features,

X̄ = (X̄
k
)Kk=1 ∈ RKp is the concatenation of per-class mean features. Our model (4) approximates

the following SDE with identification t = mh as h→ 0. We term this model the LE-SDE:

dX̃t = M tX̄t dt+ Σ
1
2
t dW t, (5)

whereW t is the standard Wiener process in RKp, Σt is the covariance matrix, andM t ∈ RKp×Kp
is aK×K block matrix, with each block of size p×p. The (k, l)th block ofM t isEk,l(t)Hk,l(t)/K
when l 6= k, and El,l(t)H l,l(t)/K when l = k. The rationale for dividing K is that we assume that
the data are balanced; therefore, each of the K possible classes has an equal chance of being sampled,
as proved in Equation (2), where K = 2. In Appendix E, we discuss how we can generalize this to
model SGD with mini-batches, imbalanced data, and label corruptions.

Taking expectation with respect to the randomness arising from sampling X̃t from its distribution,
the per-class mean X̄t satisfies the following system, which we term the LE-ODE:

X̄
′
t = M tX̄t. (6)

Under the assumptions in Section 2.1, we define γ(t) = min {α(t)− β(t), α(t) + (K − 1)β(t)} ,
A(t) =

´ t
0
α(τ) dτ , B(t) =

´ t
0
β(τ) dτ , and Γ(t) = min {A(t)−B(t), A(t) + (K − 1)B(t)}.

3.1 The Separation Theorem
Similar to the discussions in Theorem 2.1, the LE-SDE allows us to derive the separability result
for a general K and p ≥ K. We say the feature vectors

{
(Xk

i )i∈[n]

}
k∈[K]

are separable if for any

two classes k 6= l, there exists a hyperplane in Rp that linearly separates the features of the two
classes. To characterize the separation as in Theorem 2.1, we need conditions on α(t), β(t) as therein.
Intuitively, when γ(t) ≤ 0, the classes cannot be separated, even in a pairwise manner. Therefore,
we focus on a more interesting case when γ(t) > 0. We now state the following characterization
theorem of separability for general LE-SDE dynamics:

Theorem 3.1 (Separation of LE-SDE). Under our working assumptions in Section 2.1, and in the
case of local elasticity (i.e., γ(t) > 0), assume H = (Hij)ij is positive semi-definite (PSD) with
positive diagonal entries. As t→∞, we have1:

1. if γ(t) = ω (1/t), the features are separable with probability tending to 1;

1Here, γ(t) = ω (1/t) stands for γ(t)� 1/t as t→∞. For example, 1/t0.5 = ω (1/t) and (t ln t)−1 =
o (1/t) as t→∞.
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2. if γ(t) = o (1/t), and the number of per-class-feature n tending to∞ at an arbitrarily slow
rate, the features are asymptotically pairwise separable with probability 0.

This theorem sheds light on the crucial impact of the local elasticity effect for separation in a general
case. The proof to Theorem 3.1 as well as discussions on the empirically best ways of choosing
the universal direction ν (i.e., a direction that does not depend on the class index) are detailed in
Appendix C.2.

3.2 Two Specific Models

We next discuss two specific choices of theH matrix that allows us to analyze X̃ precisely.

3.2.1 Isotropic Feature Learning Model
As a straightforward extension to Section 2.2, we can simply choose H lk = Ip to be the identity
matrix. This choice ofH is PSD, and thus, we can apply Theorem 3.1 to obtain the conditions for
asymptotic separation. In this case, the solution X̄(t) to the LE-ODE can be computed analytically
as given in the following proposition.

Proposition 3.2 (I-model). LetHk,l = Ip, then the solution to the LE-ODE (6) is given by

X̄(t) = ce
1
KA(t)− 1

KB(t) + (1K ⊗ c0) e
1
KA(t)+K−1

K B(t), (7)

where c = (ck)Kk=1 ∈ RKp and c0 ∈ Rp are constants with
∑K
k=1 ck = 0 ∈ Rp and X̄(0) = c+c0.

The derivation of Equation (7) is deferred to Appendix C.2.1. From equation (7), we can easily
reconstruct Theorem 3.1 in this special case. The difference between a feature vector from class k
and that from class l at time t is given by (ck − cl)e

1
KA(t)− 1

KB(t) + Σ1/2(W k
t −W l

t), provided
that the first deterministic term dominates the random second term, thus ensuring separation, which
are precisely the conditions specified in Theorem 3.1. We term this model as the isotropic feature
model, or I-model for short; as theH matrix has identity matrices as its blocks and consequently the
dynamics do not prescribe any preferred directions for each class.

3.2.2 Logits-as-Features Model
An important type of features in neural nets is the logits, the outputs of the neural net before the

softmax layer. A logit vector (or logits) is K-dimensional, and in this model we identify X̃
k
(t)

as the logits at time t of a generic sample from the k-th class. In a well-trained neural net, the
logits of a learned data instance from the k-th class should have its k-th logit being the largest,
and heuristically, the other coordinates should be approximately equal and negative. As we shall

detail in Appendix B, the exact dynamics of neural net training pushes the logits X̃
k

by its margin,

dk := ek − softmax(X̃
k
), which roughly aligns with the direction of ek − 1p/K. This suggests us

how to choose the metric under which local elasticity acts: we can chooseH l,k such that it always

aligns X̃
k

in the direction of dk, that is,

Hij = H̄
j

:=
djd

>
j

‖dj‖22
∈ Rp×p, dj := ej −

1

K
1p ∈ Rp, j ∈ [K]. (8)

Roughly speaking, the map x 7→ H̄
j
x projects x in the direction of dj and ideally aligns x with

dj after iterative applications; hence, H̄j can be viewed as an approximation of the nonlinear
transformation in the exact dynamics in the sense that the direction of their stationary point coincides.
Furthermore, H̄j thus defined has operator norm 1; thus, it does not affect the magnitudes, but only
directions. Note thatH does not satisfy the condition in Theorem 3.1 as it is not symmetric; yet the
separation theorem can be easily extended in light of the following proposition.

Proposition 3.3 (L-model). LetH be the same as in equation (8), then the solution to the LE-ODE
(6) is given by

X̄(t) = c0 + C1de
1
KA(t)− 1

KB(t) +

(
K−1∑
l=1

C2lf l

)
e

1
KA(t)+ 1

K(K−1)
B(t), (9)

where f l’s are fixed vectors in RK2

, c0 ∈ RK2

is a constant vector with K(K − 1) degrees of
freedom, and C1, C2l ∈ R, for l ∈ [K − 1] are constants.
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Figure 2: Samples from GEOMNIST dataset.

The specific form of f l is not the focus here; equation (9) allows us to prove the statement of
Theorem 3.1 under this choice of H . The proof of Proposition 3.3 is deferred to Appendix C.2.2,
where we also provide the analytical solution of f l’s when K = 3.

We term this model as the logits-as-features model, or L-model for short, because it is an elaborate
model specifically for logits. In Section 4, we provide concrete demonstrations of our abstract
feature vector X̃ as logits under L-model. We numerically simulated our LE-ODE and compared
its predicted dynamics with real deep learning training dynamics. The experimental results provide
strong empirical support for the validity of L-model.

3.3 Connection with Neural Collapse

Neural collapse is a recent phenomenological finding on the geometry of the logits learned by deep
neural nets at convergence with the cross-entropy loss [38] (see an explanation of neural collapse
in [16]). Simply speaking, taking our L-model as an example, with balanced training samples, this
model asserts that the logit vectors from different classes at convergence form an equiangular tight
frame (ETF). ETFs are the best configuration to spread K unit vectors in an ambient space of p
dimensions. Formally, we say a set of vectors {si}Ki=1 form an ETF in Rp if they are the columns of
a matrix

S =

√
K

K − 1
Q

(
IK −

1

K
1K1>K

)
, (10)

where Q ∈ Rp×K , and Q>Q = IK . As a direct corollary of Proposition 3.3, when H is set
according to equation (8), we find that our L-model also predicts the existence of neural collapse
from the local elasticity point of view.

Proposition 3.4 (Neural Collapse of the LE-ODE). Under L-model and the same setup as in
Theorem 3.1, if γ(t) > 0 and there exists some T > 0 such that B(t) < 0 for t ≥ T , then{
X̄
k
(t)/‖X̄k

(t)‖
}K
k=1

forms an ETF as t→∞.

4 Experiments

We perform various experiments to test our theory, where we choose logits as our protagonist2.

4.1 Setup

Datasets and Models. We perform experiments on a synthesized dataset called GEOMNIST
containing K = 3 types of geometric shapes (RECTANGLE, ELLIPSOID, and TRIANGLE) and on
CIFAR-10 ([28], denoted by CIFAR) with K ∈ [2, 3] classes. A few samples from GEOMNIST are
shown in Figure 2. We vary the number of training samples per class and label pollution ratio perr

and use variants of the ALEXNET ([29]) model. More details can be found in the Appendix.

Training Configurations. All models are trained for T = 105 iterations (for GEOMNIST) or
T = 3 × 105 iterations (for CIFAR) with a learning rate of 0.005 and a batch size of 1 under the
softmax cross-entropy loss. Models on GEOMNIST converged with training and validation losses to
zero, and those on CIFAR to validation accuracies greater than 90%.

Estimation Procedures. Each experiment is repeated for ntrial = 100 independent runs to estimate
X̄(t). We use both the isotropic feature learning model (Section 3.2.1) and the logits-as-features
model (Section 3.2.2), denoted by L-model and I-model respectively, to estimate α(t) and β(t). The

2Code for reproducing our experiments is publicly available at github.com:zjiayao/le_sde.git.
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(c) CIFAR (I-model).
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(e) GEOMNIST (L-model).
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Figure 3: Estimated Â(t), B̂(t), α(t), and β(t). The first row was estimated using I-model and the
second L-model; the first two columns are on GEOMNIST and the last two on CIFAR. The first and
third rows show Â(t) and B̂(t) and the other two rows α̂(t) and β̂(t).

L-model is used only when K = 3. To estimate α(t) and β(t), we first estimate A(t) and B(t) by

(I-model)

Â(t) = avg avgk log
∣∣∣|X(X̄k−|X)K−1

c0c
K−1
k

∣∣∣,
B̂(t) = − avg avgk log

∣∣∣ c0ck X̄k−|X
|X

∣∣∣, |Xt := avgl X̄
l
t,

(L-model)

{
Â(t) = A′(t) + 2B′(t),

B̂(t) = 2(B′(t)−A′(t)),

A
′(t) := log

∣∣∣〈X̄>v1 − 1
〉∣∣∣ ,

B′(t) := log
∣∣∣〈X̄> (v2 − 4

3v1

)〉∣∣∣ ,
(11)

where vector division is interpreted entry-wise. We write avgl for averaging over the class index, avg
for averaging over the coordinates, and define 〈X〉(t) := X(t)/X(0). We explain how and why
to choose the vectors v1 and v2 in Appendix D.1. The main idea is to view the eigenvectors of the
Kp-by-Kp drift matrix as a concatenation of K vectors of dimension p and construct their linear
combinations such that one or more independent components in the solution vanishes. With A(t)

and B(t) estimated, we use the Savitzky - Golay filter to obtain α̂(t) and β̂(t) through numerical
differentiation. For GEOMNIST and CIFAR datasets, we choose window sizes of this filter as 191
and 551, respectively, in Figure 3, and 21 and 21, respectively, in Figure 5.

We assess the tail of α̂(t) and β̂(t) by a tail index defined as rα := sups {s : limt→∞ α(t) · ts <∞}
and rβ is defined similarly. We estimate r̂α by fixing an interval [T1, T2] with T1 < T2 sufficiently
large such that we may ignore terms with smaller order and have r̂α = 1− avgT1≤t≤T2

logα(t)
log(1+t) , and

similarly for r̂β . We use the estimates from the last 1000 iterations for averaging in our experiments.

4.2 Results
Local Elasticity in Neural Net Training. Local elasticity manifests from our model as the heav-
iness of the tail of γ(t) = α(t) − β(t), and in Figure 3, we plot the estimations Â(t), B̂(t), α̂(t),
and β̂(t) using both I-model and L-model. We note that (i) The estimations from the two models are
visually similar, especially in the late stage of training when t is large; (ii) The major difference lies
in the initial stage, where the estimates from L-model behave slightly wilder. This is not surprising
because of the effect of the unknown constant offset c0 in the L-model; (iii) Both α̂(t) and β̂(t)
behave similarly on both datasets.

Phase Transition of Separability. Theorem 3.1 states that separation of features under the LE-SDE
takes place when γ(t) = α(t)− β(t) = ω(1/t), or roughly speaking, when rγ = min{rα, rβ} < 1.
Although we cannot directly control α(t) and β(t), we can bias them by tuning the label corruption
ratio perr. When perr ≈ p∗err := 2/3, we are in effect assigning labels completely at random and
thus we expect a phase transition of separability should happen around p∗err. This is indeed the story
depicted in Figure 4: Figures 4a and 4b show that the validation loss and accuracy for p ≥ perr
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(a) Validation loss versus perr.

0 2000 4000 6000 8000 10000

t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
al

id
at

io
n

A
cc

u
ra

cy

perr
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.67

0.7

0.8

(b) Validation accuracy versus perr.

0.0 0.2 0.4 0.6 0.8

perr (% corrupted label)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

E
st

im
at

ed
T

ai
l

In
d

ex

r̂α

r̂β

(c) Tail index versus perr.

Figure 4: Phase transition of separability. (a)—(b) Validation loss and accuracy suggest separation
fails for perr ≥ p∗err = 2/3. The dashed line in (a) carries the value at initialization and overlaps with
the case where perr = 0.6; the dashed line in (b) is p∗err = 2/3, when labels are assigned completely
at random. (c) Tail indices of α(t) and β(t). Note that γ(t) = α(t) − β(t) crosses the horizontal
line r = 1, entering the non-separable regime (shaded in red) from the separable regime (shaded in
green), around the same perr that cross the dashed lines in (a) and (b), as predicted by Theorem 3.1.
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Figure 5: Simulated LE-ODE solutions versus genuine dynamics. We use α̂(t) and β̂(t) estimated
from I-model ((a) and (c)) or L-model, ((b) and (d)) and numerically simulate the solution under the
L-model. The results were overlaid with true dynamics from neural nets. We note L-model in general
imitated true dynamics reasonably well.

are not increasing over time and in Figure 4c we observe the minimum tail index of α(t) and β(t)
crosses 1 from below around perr = 0.6, entering the non-separable regime (shaded in red) from the
separable regime (shaded in green), given in Theorem 3.1.

Simulating DNN Dynamics via LE-ODE. Having estimated α(t) and β(t), it is natural to ask, to
what capacity can our LE-ODE models recover the real dynamics of deep neural nets? We use the
forward Euler method to simulate the L-model using α̂(t) and β̂(t) estimated from either I-model
or L-model, We choose K = 3 and show in Figure 5 the simulated solution (solid line) with error
bars depicting one standard deviation over 500 independent runs, overlaying on the real dynamics
from DNNs in the background (shaded transparent markers). As the moving average may reduce
the magnitudes of α(t) and β(t), we rescale the simulated paths such that its first coordinate is
approximately equal to the ground truth at convergence. Note that estimations from L-model can
faithfully recover the genuine dynamics from neural nets, whereas those from I-model fail, notably in
Figure 5a, where the simulated paths preserve the relative magnitude but fail to identify the correct
order of three logits.

5 Discussion and Future Works
In this study, we introduce LE-SDE/ODE models that draw inspiration from the local elasticity
phenomenon. Conditions for sharp phase transition of separability of features are derived. We also
show that once the elasticity strengths α(t) and β(t) are well estimated, our model can faithfully
simulate the dynamics of neural nets. We outline a few interesting problems for future research
while leaving the details in the Appendix. (i) General LE Matrix. A similar result as in Theorem 3.1
may be expected for symmetric but no necessarily semi-definite LE matrices E(t). (ii) Mini-
batch Training, Imbalanced Datasets, and Label Corruptions. Generalizing the drift matrix to
M t = (Et ⊗ P ) ◦H/K for a K-by-K doubly stochastic matrix P can be used to model various
sampling effects. (iii) Beyond L-model for Imitating Genuine Dynamics of DNNs. Although the
L-model is shown to be able to mimic the real dynamics reasonably well, we postulate that a more
precise model might have its (i, j)-th block encode the other directions other than dj .
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