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Figure 1: ConceptFusion is a real-time approach to building open-set multimodal 3D maps from RGB-D images, and features from foundation
models like CLIP and DINO. These maps, built on-the-fly, can be queried for arbitrary concepts specified as text, images, audio samples, or
clicks on the 3D map. The fused features implicitly capture semantic concepts, as evident by visualizing clusters obtained from a K-means
algorithm. ConceptFusion features are significantly more adept at retaining fine-grained concepts, such as the disney character “Baymax”. We
also build 3D spatial reasoning modules that enable reasoning about frequently observed spatial relationships. We demonstrate the applicability
of ConceptFusion to the real-world robotic tasks of tabletop manipulation of novel objects, and an urban autonomous driving setting. (Webpage)

Abstract

Building 3D maps of the environment is central to robot
navigation, planning, and interaction with objects in a scene.
Most existing approaches that integrate semantic concepts
with 3D maps largely remain confined to the closed-set set-
ting: they can only reason about a finite set of concepts, pre-
defined at training time. Further, these maps can only be
queried using class labels, or recently, using text prompts.

We address both these issues with ConceptFusion, a scene
representation that is: (i) fundamentally open-set, enabling
reasoning beyond a closed set of concepts (ii) inherently
multi-modal, enabling a diverse range of possible queries to
the 3D map, from language, to images, to audio, to 3D ge-
ometry, all working in concert. ConceptFusion leverages the
open-set capabilities of today’s foundation models that have
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been pre-trained on internet-scale data to reason about con-
cepts across modalities such as natural language, images, and
audio. We demonstrate that pixel-aligned open-set features
can be fused into 3D maps via traditional SLAM and multi-
view fusion approaches. This enables effective zero-shot spa-
tial reasoning, not needing any additional training or finetun-
ing, and retains long-tailed concepts better than supervised
approaches, outperforming them by more than 40% margin
on 3D IoU. We extensively evaluate ConceptFusion on a num-
ber of real-world datasets, simulated home environments, a
real-world tabletop manipulation task, and an autonomous
driving platform. We showcase new avenues for blending
foundation models with 3D open-set multimodal mapping. We
encourage the reader to view the demos on our project page:
https://concept-fusion.github.io/

https://krrish94.github.io
https://www.alihkw.com/
https://georgegu1997.github.io/
https://scholar.google.com/citations?user=jFH3ShsAAAAJ&hl=en
https://taochenshh.github.io/
https://scholar.google.com/citations?user=6r72e-MAAAAJ&hl=en
https://scholar.google.com/citations?user=6r72e-MAAAAJ&hl=en
https://people.csail.mit.edu/lishuang/
https://epiception.github.io/
https://saryazdi.github.io/
https://nik-v9.github.io/
https://ayushtewari.com/
http://web.mit.edu/cocosci/josh.html
http://web.mit.edu/cocosci/josh.html
https://celsodemelo.net/
https://robotics.iiit.ac.in/
http://liampaull.ca
http://www.cs.toronto.edu/~florian/
https://groups.csail.mit.edu/vision/torralbalab/
https://groups.csail.mit.edu/vision/torralbalab/
https://www.mit.edu
https://montrealrobotics.ca
https://robotics.utoronto.ca/
https://robotics.iiit.ac.in/
https://www.cmu.edu
https://www.aboutamazon.com/what-we-do/devices-services
https://www.concordia.ca/
https://www.arl.army.mil/
https://concept-fusion.github.io/
https://concept-fusion.github.io/


1. Introduction

To be as broadly applicable as possible to a diverse set of
robotics tasks, map representations need to be usable zero-
shot (i.e. without the need to be retrained each time reasoning
capabilities for a new task are desired), and must posess the
following two capabilities. First, 3D maps should be open-
set; they should capture a large variety of concepts (orders of
magnitude more than existing systems), and at varying lev-
els of detail. For example, the concept “can of soda” could
equivalently be “something to drink” or a “<particular
brand of soda>” or “a refreshment”. Second, 3D maps
should be multimodal; they should be queryable using as
many modalities as robots or end-users can leverage.

Foundation models possess some of the desired traits
needed to achieve open-set, multimodal representations, but
are not directly applicable to 3D mapping. This major lim-
itation exists because most foundation models consume im-
ages (e.g., CLIP [1], ALIGN [2], AudioCLIP [3]) and pro-
duce only a single vector encoding of the entire image in
an embedding space. On the other hand, recent approaches
trained specifically to align foundation features to 2D pix-
els forget a large number of concepts during finetuning [4]
(see Fig. ??). This does not allow for the level of precise
(pixel-level or object-level) reasoning robotic perception sys-
tems need across a wide range of concepts, particularly for
interaction with the external 3D world (e.g., navigation, ma-
nipulation).

To this end, we propose ConceptFusion; an open-set and
multimodal 3D mapping technique that blends advances in
foundation models for images, language, and audio, with
dense 3D reconstruction and simultaneous localization and
mapping (SLAM). We demonstrate that pixel-level founda-
tion features may be fused into 3D maps by leveraging pre-
cisely the same surface fusion techniques as for fusing depth
or color information into a 3D map. Crucially, we show that
this approach is conceptually simple, principled, and effective
even in the zero-shot setting (requiring no additional training
or finetuning of foundation model features). In addition, these
features can be queried using computationally efficient vector
similarity metrics. Our key contributions are the following:

• An approach to open-set multimodal 3D mapping that
constructs map representations queryable by text, image,
audio, and click queries in a zero-shot manner.

• A novel mechanism to compute pixel-aligned (local) fea-
tures from foundation models that can only generate
image-level (global) feature vectors. This is a key pre-
requisite for 3D mapping, and our approach captures
long-tailed concepts significantly better than supervised
or finetuned counterparts, outperforming them by a large
margin (> 40% mIoU).

We evaluate ConceptFusion on multiple real-world datasets
and tasks, including searching for objects in the real world
and simulated home environments, robot manipulation tasks,
and autonomous driving.

2. The ConceptFusion approach
The open-set multimodal 3D mapping problem: Given

a sequence of image (and depth) observations of an environ-
ment I = {It} (t ∈ {0 · · ·T}), we build an open-set multi-
modal 3D mapM. This map is queryable for concepts from
multiple modalities, using query vectors qmode ∈ Rd. Multidi-
mensional signals such as images, text, audio, and clicks can
be encoded into such a vector space using a modality-specific
encoder (a foundation model) Fmode.

Components of ConceptFusion: The three primary com-
ponents of the ConceptFusion include (a) a universal, in-
stance segmentation module (such as Mask2Former [5] or
SAM [6]), (b) a pixel-aligned feature extraction mechanism
(which takes an image-level foundation model like CLIP and
computes pixel-level features), and (c) a 3D feature fusion
module (which fuses the pixel-aligned features to a 3D map).

Map representation: We represent our open-set multi-
modal 3D mapM as an unordered set of points (indexed by
k), each with the following attributes: (a) a vertex position
vk ∈ R3, (b) a normal vector nk ∈ R3, (c) a confidence
count c̄k ∈ R, (d) a 3D color vector (optional), and (e) a con-
cept vector fPk enabling open-ended querying.

Pixel-aligned feature extraction: For each image, we first
extract class-agnostic instance masks by passing it through a
universal segmentation model [5, 6]. For each mask, we com-
pute local CLIP [1] features fL of a bounding box sampled
around the masked out region (blanking out all pixels that are
not a part of the mask). We also compute the image-level
CLIP feature vector fG. We fuse fL and fG to compute pixel
aligned features fP by computing the cosine similarity ϕi =〈

fLi , fG
〉
=

(fLi )T fG

∥fLi ∥∥fG∥+ϵ
. Additionally, we compute a unique-

ness score for each mask, µi, which is the average cosine
similarity between mask i and every other mask. We com-
bine the two similarities above to compute a mixing weight
wi ∈ [0, 1] (with a temperature τ , set to 1 in all reported re-

sults). wi =

exp

(
ϕi + µ̄i

τ

)
∑R

i=1 exp

(
ϕi + µ̄i

τ

) Finally, the pixel-aligned

feature for each region ri is fPi = wifG + (1− wi)fL which
is normalized and mapped to the pixels (u, v) in ri.

3D feature fusion: We fuse fPu,v,t into the global map fol-
lowing a 3D reconstruction pipeline [7]. First, vertex and nor-
mal maps for each RGB-D image are mapped to the global
(map) coordinate frame using the camera pose Pt. We then
filter out points with noisy depth values by following the
depth map fusion procedure outlined in [7]. The remain-
ing points are fused into the global map. A key departure
from dense mapping approaches is the fusion of concept vec-
tors fPu,v,t in addition to depth (and optionally, color). For
each pixel (u, v)t in the image Xt that have a corresponding
point pk inM, we integrate the features using a weighted av-

eraging scheme fPk,t ←
c̄kfPk,t−1+αfPu,v,t

c̄k+α and c̄k ← c̄k + α,

where α = e−γ2/2σ2

is the confidence assigned to each pixel-
grounded feature assigned to the vertex being aggregated, γ
is the radial distance, and σ = 0.6 is a scaling term. We find
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Figure 2: ConceptFusion constructs pixel-aligned features fP by: processing input images to generate generic (class-agnostic) object masks
(regions) ri, computing a bounding box for each region and extracting a local feature vector fLi , computing a global feature fG for the input
image as a whole, and fusing the region-specific features with global features as illustrated in Fig. ?? and described in Sec. ??.

empirically that having a confidence value based on the nor-
malized radial distance to the camera center, similar to [7, 8]
works well. We refer to the appendix for hyperparameter val-
ues and more details.

Implementation details: Our feature fusion algorithm is
implemented on top of the ∇SLAM [9] dense SLAM sys-
tem, as this was one of the few implementations of the Point-
Fusion algorithm [7], and for its convenience of interfacing
with PyTorch for computing and accessing foundation fea-
tures. For generating class-agnostic (generic) object masks,
we use the Mask2Former [5] models for instance segmenta-
tion and generate 100 mask proposals per image. Our odom-
etry and mapping approaches run at frame-rate (15 Hz). For
frame-rate feature extraction, we quantize all foundation mod-
els used, and compile them to a static computation graph.

3. Case studies
We design a systematic experimental study to investigate

the following questions:
1. How do open-set multimodal 3D maps fare when queried

using text, images, clicks, or audio?
2. How well does ConceptFusion work on real-world

robotics tasks?

Figure 3: Real-world tabletop rearrangement experiments. The
robot is provided with rearrangment goals involving novel objects.
(Top row) push goldfish to the right of the yellow line, where goldfish
refers to the brandname of the pack of Cheddar snack. (Bottom row)
push baymax to the right of the yellow line, where baymax refers to
the plush toy depicting the famous Disney character.

Experimental setup: Our experimental benchmark com-
prises comprises 20 RGB-D scenes, spanning 78 commonly
found household and office objects on a tabletop surface (see
appendix). We crowdsource text, image, audio, and click
queries for each object, resulting in a little over 500000
queries.

Approaches evaluated: Since there is no prior work on
constructing open-set multimodal maps of the kind we build
with ConceptFusion, we make a best-effort comparison with

Figure 4: Real-world autonomous navigation experiments. (Left to
right; top to bottom) Autonomous drive-by-wire platform deployed;
pointcloud map of the environment with the response to the openset
text-query ”football field” (shown in red); path found to the football
field (shown in red); car successfully navigates to the destination
autonomously. See our webpage for more results.

concurrent work in this space. Approaches such as VL-
Maps [10], NLMap-SayCan [11], CoWs [12, 13], CLIP-
Fields [14] leverage LSeg [15]; while OpenScene [16] exper-
iments with both LSeg [15] and OpenSeg [17]. We there-
fore implement two baseline approaches that leverage LSeg
and OpenSeg features respectively, and apply our feature fu-
sion technique to obtain open-set 3D maps. We refer to these
baselines as LSeg-3D and OpenSeg-3D respectively. Addi-
tionally, to compare with a state-of-the-art zero-shot segmen-
tation approach, we also implement MaskCLIP-3D, which
fuses per-pixel MaskCLIP [18] features into a 3D map.

Discussion: We evaluate text query (structured and un-
structured), image query, and audio query based object lo-
calization performance on the UnCoCo dataset. This task is
extremely challenging due to the versatility of objects present
in the dataset, ranging from extremely small objects (e.g., a
4-gram sachet of sugar, whiteboard markers), to thin objects
(e.g., face masks, compact discs), to nonconvex geometries
(e.g., a whisk, lego block constructions, shells). Results are
shown in Tables 1 through 4. For each technique evaluated,
we report the 3D mean intersection-over-union (IoU) metric,
and also detection accuracies at IoU thresholds of 0.15, 0.25,
and 0.5. We see that ConceptFusion outperforms all other
approaches by a significant margin. We attribute this to two
key characteristics of ConceptFusion. First, ConceptFusion
operates on the unmodified CLIP feature space, whereas ap-
proaches like LSeg and OpenSeg specialize to the datasets



3D mIoU IoU >0.15 IoU >0.25 IoU >0.5

LSeg-3D 0.128 25% 16.66% 9.72%Supervised OpenSeg-3D 0.289 43.05% 36.11% 27.78%
MaskCLIP-3D 0.091 25.97% 9.09% 1.30%
ConceptFusion 0.446 77.78% 69.44% 45.83%

Table 1: Text-query based object localization performance on Un-
CoCo – the structured subset. In each column, a higher value cor-
responds to superior performance.

3D mIoU IoU >0.15 IoU >0.25 IoU >0.5

LSeg-3D 0.122 31.45% 20.65% 5.65%Supervised OpenSeg-3D 0.153 27.26% 21.94% 11.29%

Zero-Shot MaskCLIP-3D 0.092 20.63% 11.88% 3.06%
ConceptFusion 0.378 70.16% 59.52% 34.03%

Table 2: Text-query based detection performance on UnCoCo – the
unstructured subset. Results averaged over 20 trials. In each column,
a higher value corresponds to superior performance.

3D mIoU IoU >0.15 IoU >0.25 IoU >0.5

LSeg-3D 0.134 26.88% 21.51% 9.68%Supervised OpenSeg-3D 0.112 23.66% 18.28% 8.60%

Zero-Shot MaskCLIP-3D 0.094 21.51% 11.83% 4.30%
ConceptFusion 0.331 54.84% 51.61% 31.18%

Table 3: Image-query based detection performance on UnCoCo – the
structured subset. Results averaged over 3 trials.

Accuracy (%) IoU

source-ambiguous
Random 7.14% N/A
AudioCLIP [3] 23.81% N/A
ConceptFusion 64.29% 0.287

ecological
Random 5.56% N/A
AudioCLIP [3] 22.22% N/A
ConceptFusion 66.67% 0.301

Table 4: Audio-query based detection and classification performance
on UnCoCo.

they are finetuned on and end up gradually forgetting concepts
that are infrequent on the finetuning set. Second, ConceptFu-
sion features efficiently combine global (image-level) features
with local (region-level) context; providing a rich pixel-level
(and subsequently point-level) grounding.

Additional datasets: We also evaluate our approach on
existing datasets like ScanNet [19], Replica [20], and Seman-
tic KITTI [21]. Fig. 5 illustrates the performance of Concept-
Fusion on a sequence from the ScanNet dataset. Concept-
Fusion works out-of-the-box, even on free form text queries,
while other approaches like OpenSeg [17] fail on all but the
simplest of text queries.

Real-world experiments: Videos of our real robot exper-
iments are accessed on our companion website. We apply
ConceptFusion to the tasks of zero-shot tabletop rearrange-
ment (3) and text-goal based autonomous navigation (4). We
conduct experiments on a zero-shot tabletop rearrangement
task with a UR5e manipulator and an Intel Realsense D415
RGB-D camera. The task involves a workspace (here a table-
top) with a few previously unseen objects in it. In some tri-
als, the object set also includes distractors placed to hamper
perception and/or manipulation planning. Two sides of the
workspace (see Fig. 3) are tagged left and right respectively
(areas on either side of the table, as indicated by the green
and yellow lines). For each set of objects, a goal instruction
is specified in the form of a natural language command. For
instance, the two scenarios in Fig. 3 correspond to the com-
mands spindrift to the left; goldfish to the right; coca cola
to the left (top row) and baymax to the right (bottom row).
The autonomous navigation experiments are conducted on a
self-driving vehicle. Given a feature-fused map of an environ-
ment, we search the map for a best-match destination to a text
query, and navigate autonomously to the location thus chosen.
We used a drive-by-wire autonomous vehicle equipped with a
calibrated stereo camera and lidar to reconstruct a map of a
320000 square yard (4000 sq. m.) urban area.

There are two ovens under the kitchen 
counter. The counter is directly beneath 
a window, adjoining the wall to which a 

television is mounted.

A stainless steel refrigerator by the 
dining table and the kitchen counter. 

The refrigerator is just beside the 
kitchen sink.

Television.

ConceptFusion (Ours)
Similarity with respect to Query Text

Text Queries:

OpenSeg + 3D Fusion

A Kitchen Scene from ScanNet

Figure 5: Text queries over ScanNet [19]: ConceptFusion handles
long-form text queries and accurately localizes concepts. In the first
two scenarios, OpenSeg [17] is distracted by the presence of several
confounding attributes (kitchen counter, window, television). The
third scenario shows a single world query (television) that is part of
the COCO Captions [22] dataset used to train OpenSeg, placing it at
an advantage (and hence resulting in a more discriminable heatmap).
ConceptFusion, nonetheless, accurately assigns the highest response
to the map points representing the television. In each query, the ref-
erenced object is boldfaced.
4. Conclusion

In this work, we presented ConceptFusion as an effective
solution to the open-set multimodal 3D mapping problem.
The zero-shot nature of our method enables reasoning over a
significantly broad range of concepts; leveraging off-the-shelf
foundation features for open-set perception. We evaluate our
approach on in-house and established datasets, and on two
real robotic systems (a manipulator and a self-driving vehi-
cle). Our results indicate several promising avenues for inte-
grating foundation models trained over web-scale data with
traditional mapping systems to enable zero-shot, open-set,
and multimodal perception.

Limitations of our method are threefold. First, Concept-
Fusion operates over dense maps, comprising millions of
3D points over an apartment-scale scene, and augments each
point with high-dimensional concept embeddings, requiring
large amounts of memory. Third, we anticipate ConceptFu-
sion to inherit the limitations and biases of foundation mod-
els [23, 24], warranting further investigations for potential
harm as well as research into AI safety and alignment [25, 26].

https://concept-fusion.github.io/
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A3. 3D feature fusion details

For indoor datasets (ScanNet [19], Replica [20], AI2-
THOR [27], ICL [28], UnCoCo), we implement our 3D fea-
ture fusion algorithm on top of the∇SLAM dense reconstruc-
tion framework. By doing so, we leverage the point-based
fusion technique proposed in [7], ensuring that points on
nearby surface patches share the same surfel, decreasing the
overall number of map elements, and also increasing the ef-
fective number of pixels that contribute to each map element.
Another benefit we obtain is the ease of integration with Py-
Torch [29], which interfaces with a large number of founda-
tion models. For pointfusion, we use the default hyperparam-
eters as suggested in [7], i.e., a distance threshold of 5 cm
(on positions) and an angular threshold of 20 degrees (on nor-
mals) is used to discard noisy correspondences.

On outdoor datasets (SemanticKITTI [21], self-captured
autonomous driving sequences), we incrementally register
pointclouds into a global frame using the LegoLOAM [30]
technique for odometry estimation. We first compute all im-
age points that have a valid map point by projecting the li-
dar depths onto the image plane. We associate the features at
these pixels with the corresponding 3D locations.

A4. Pixel-aligned feature extraction

We use instance segmentation models from
Mask2Former [5]; specifically the Swin-L backbone
pretrained for image classification on ImageNet and sub-
sequently finetuned for class-agnostic instance proposal
generation on the COCO dataset. Note that we only use the
class-agnostic instance proposal generator; and do not use
any of the subsequent modules, which are explicitly trained
with instance segmentation ground-truth. This results in
100 mask proposals per image. We allow each each pixel to
recieve fused features from multiple overlapping or redundant
masks. This is achieved by a running normalization whenever
features from a new mask are assigned to a pixel.

A5. Foundation models used

We use two broad classes of foundation models: DINO
(and associated vision transformers) [31], and CLIP (and vari-
ants) [1].

Vision transformer variants include various DINO back-
bones implemented in [31], as well as several vision-
transformer variants explored in [32].

CLIP models used: We use open-source CLIP models
from the OpenAI CLIP [33] and OpenCLIP [34] packages.
We also use the publicly available AudioCLIP [3], trained on
AudioSet [35].

A6. More details on our experiment setup
In all evaluations presented in the paper, we focus only on

foreground objects, ignoring five background classes (wall,
floor, ceiling, door, window for indoor scenes, and road, side-
walk, building) for outdoor scenes.

ScanNet: We note that most sequences from the Scan-
Net dataset suffer from motion blur artifacts, devoiding sev-
eral interesting objects of texture; or are small rooms de-
void of interesting objects. We inspected every sequence
(and each frame therein) over the ScanNet validation set, and
identified the following sequences as being at least the scale
of a one-bedroom apartment, and not suffering motion blur:
scene0011, scene0050, scene0231, scene0378,
scene0518. We also use scene0084 and scene0168
for debugging and tuning our reconstruction system (and con-
sequently, these two scenes are left out of our evaluation set).

Replica: We evaluate on the following 8 replica scenes
office0, office1, office2, office3, office4,
room0, room1, room2.

Other datasets: We also qualitatively evaluate our map-
ping system over all sequences from the ICL [28] and on
floorplans 9 and 402 from the AI2-THOR [27] simulator. On
SemanticKITTI [21], we evaluate on all image frames con-
taining at least one foreground object.

A7. Details of the UnCoCo dataset
The UnCoCo dataset comprises 78 commonly found ob-

jects in homes and workplaces, captured on tabletop settings
over 20 RGB-D sequences. A subset of objects from UnCoCo
is visualized in Fig. A.1. Of the captured 20 sequences, one
was used for tuning parameters of the RGB-D reconstruction
algorithm [9] and another was used for tuning hyperparame-
ters (thresholds over cosine similarity scores); so we exclude
these two sequences from evaluation.

We list the set of objects available across the 18 validation
sequences in Table A.1.

A8. Details on 3D spatial query modules
In Sec. ??, we described our approach to handling 3D spa-

tial reasoning queries. As investigated in [36, 37, 38], CLIP
does not inherently capture spatial relationships or compo-
sitions. We therefore implement a set of primitive 3D spa-
tial comparator (3DSC) modules, and rely on a large lan-
guage model [39] (LLM) for parsing a natural language query
into the function signatures (function name and input argu-
ments) of the corresponding 3DSC. In particular, we use the
text-davinci-003model from OpenAI, with the default
settings (temperature of 0.7, maximum length of 256, and
TopP equalling 1). We first condition the LLM by presenting
a list of available 3DSCs and a brief natural language descrip-
tion of their behavior, followed by one example query and
response. Here is the exact text prompt used.

1 Here is a set of available functions:
2 1. howFar(object1, object2): returns the distance

between object1 and object2
3 2. isToTheRight(object1, object2): returns true if

object1 is to the right of object2



Sequence ID Set of objects in the sequence

Seq 03 Steel pouring mug, Ceramic coffee mug, Plastic banana, Windex spray bottle, SoftScrub
Seq 04 Baymax plush toy, Green caterpillar plush toy, Hedgehog plush toy
Seq 05 Hand-drill, Wooden spatula, Large lego block, Whiteboard marker
Seq 06 Plastic apple, Plastic grapes, Bottle of Vitamin E pills, Orange-colored bowl, Purple toy
Seq 07 Whisk, Spatula, Prongs, Silicone pastry brush
Seq 08 Paper cup, Spindrift can, Can of evaporated milk, Goldfish cheddar snack
Seq 09 Orange plastic cup, Paper cup, Steed pouring cup, Block of wood
Seq 10 Game of Bandu, Reacher grabber, Kitchen towel roll, Lysol wipes
Seq 11 Garbage bags, Cheetos, Steel measuring cup, Face mask
Seq 12 Coffee beans, Energy bar, Salted peanuts, Paper plates, Sugar sachet
Seq 13 Red hat, Magic candle, Molecule toy, Alligator toy, Blue frisbee
Seq 14 GoPro, Measuring tape, Scissors, Smartphone
Seq 15 Post-it notes, Black ceramic mug, Mustard, Tomato Ketchup
Seq 16 Bowl filled with sea shells, Ceramic vase, Large stapler
Seq 17 Stuffed mouse toy, Playing cube, Algorithms textbook, USB stick
Seq 18 USB adapter, NVIDIA Jetson board, Battery, Steel ruler
Seq 19 Compact Disk, Hard drive box, Teddy Bear, Inflatable brain toy
Seq 20 3D glasses, Spray bottle, Charger block, Purell bottle

Table A.1: List of objects from the UnCoCo sequences used for evaluation. The first two sequences (not listed here) were used for tuning
hyperparameters.

Figure A.1: A subset of objects from the UnCoCo dataset. The dataset includes commonly found objects in homes and workplaces captured in
a tabletop setting. Each object is annotated with 2D and 3D segmentation masks, and multimodal queries.

4 3. isToTheLeft(object1, object2): returns true if
object1 is to the left of object2

5 4. isContained(object1, object2): returns true if
object1 is contained in object2

6 5. onTopOf(object1, object2): returns true if
object1 is on top of object 2

7 6. under(object1, object2): returns true if object1
is underneath object 2

8 7. isBigger(object1, object2): returns true if
object1 is bigger than object2

9 8. canFitInside(object1, object2): returns true if
object1 can fit inside object2

10 Parse the provided queries into one of the above
function formats.

11

12 Query: How close is the chair from the sofa?
13 Response: howFar(chair, sofa)

Listing 1: Base prompt used to condition for spatial queries

Once conditioned with this prompt, the model is able to
parse language queries into function signatures. We directly
execute these function signatures as is. We find LLMs to be
very effective at parsing: of the 100 queries we used, each one
was parsed correctly. Shown below are a few outputs.

1 Query: Is the bread inside the bowl?
2 Response: isContained(bread, bowl)
3

4 Query: Is the apple on the table?
5 Response: onTopOf(apple, table)
6

7 Query: How far is the sanitizer from the door?
8 Response: howFar(sanitizer, door)
9

10 Query: I want to know the distance between the door
and the window.

11 Response: howFar(door, window)
12

13 Query: Where is the closest restroom from my
location?

14 Response: howFar(restroom, my location)
15

16 Query: I want to grab a can of soda and put this
into a bag.

17 Response: canFitInside(soda, bag)
18

19 Query: Is the soda inside the bag?
20 Response: isContained(soda, bag)

Listing 2: Sample outputs from the LLM after conditioning


	. Introduction
	. The ConceptFusion approach
	. Case studies
	. Conclusion
	. Contribution statement
	. Acknowledgements
	. 3D feature fusion details
	. Pixel-aligned feature extraction
	. Foundation models used
	. More details on our experiment setup
	. Details of the UnCoCo dataset
	. Details on 3D spatial query modules

