Under review as a conference paper at ICLR 2026

VCACHE: VERIFIED SEMANTIC PROMPT CACHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Semantic caches return cached responses for semantically similar prompts to
reduce LLM inference latency and cost. They embed cached prompts and store
them alongside their response in a vector database. Embedding similarity metrics
assign a numerical score to quantify the similarity between a request and its
nearest neighbor prompt from the cache. Existing systems use the same static
similarity threshold across all requests to determine whether two prompts can
share similar responses. However, we observe that static thresholds do not give
formal correctness guarantees, can result in unexpected error rates, and lead to
suboptimal cache hit rates. This paper proposes vCache, the first verified semantic
cache with user-defined error rate guarantees. It employs an online learning
algorithm to estimate an optimal threshold for each cached prompt, enabling
reliable cache responses without additional training. Our experiments show that
vCache consistently meets the specified error bounds while outperforming state-
of-the-art static-threshold and fine-tuned embedding baselines with up to 12.5 %
higher cache hit and 26 x lower error rates. We release the vCache implementation
and four benchmarks to support future research.

1 INTRODUCTION

Large language models (LLMs) power applications ranging from conversational assistants to search
engines and code generation, but their widespread use is limited by the high computational cost and
inference latency (Zhao et al., 2023; Xiong et al., 2024; Achiam et al., 2023). Each new prompt
requires multiple expensive forward passes through the model, which makes deployments costly and
slow (Kwon et al., 2023). Prompt caching offers a natural way to mitigate this issue: if a prompt
has already been answered, the system can return the cached response instead of performing another
inference. Traditional exact string-match caching reduces cost by returning responses for repeated
prompts, but it fails whenever the same intent is expressed in different words (Zhu et al., 2024). For
example, a cache that already answered “Which city is Canada’s capital?”” should also return the
same response when later asked “What is the capital of Canada?”’. Semantic caching addresses this
limitation by retrieving responses for prompts that are semantically similar, even if their lexical form
differs, and reduces inference latency by up to 100x (Bang, 2023). Semantic caches are effective in
single-turn interactions with short to medium context, such as web search queries or classification
tasks, where requests reappear in paraphrased forms but map to the same underlying response (Liu
et al., 2024b; Wang et al., 2024). In this paper, we study the reliability of semantic caches in returning
correct responses for semantically similar prompts.

Semantic caches operate as follows. The cache embeds every prompt request x into a vector £(z) €
R? and retrieves the semantically most similar prompt nn(z), alongside its response r(nn(x)), from
a vector database (Pan et al., 2024). The cache measures similarity (e.g., cosine similarity) between
two embeddings using s(z) = sim(&(z),&(y)) € [0, 1]. If no sufficiently similar prompt is found,
an LLM generates a response and adds the embedded prompt along with the response to the vector
database in the cache.

To determine whether a new prompt is sufficiently close to an existing prompt in the cache, state-
of-the-art semantic caches rely on a user-selected threshold ¢ € [0, 1] (Bang, 2023; Li et al., 2024;
Dasgupta et al., 2025; Razi et al., 2024; Sudarsan & MasayaNishimaki, 2024). If s(x) > ¢, the
system performs exploitation (cache hit) by returning the cached response r(nn(z)). Otherwise, it
performs exploration (cache miss) by querying the model for a new response (). The cache adds
E(x) to the vector database, stores r(x) in its metadata, and returns r(z).

Under review as a conference paper at ICLR 2026

However, selecting an appropriate threshold ¢ is nontrivial. If the threshold ¢ is set too low, the system
may treat unrelated prompts as similar, resulting in cache hits where the retrieved response r(nn(z))
differs from the correct output r(x). These false positives reduce response quality and compromise
cache reliability. If ¢ is too high, the system may forgo correct cache hit opportunities and invoke the
model unnecessarily (Rekabsaz et al., 2017).

Existing systems use the same static similarity threshold across all requests. Users either use a
predefined threshold (e.g., 0.8) or determine one by testing multiple values upfront (Dasgupta et al.,
2025; Li et al., 2024; Dan Lepow, 2025; Razi et al., 2024; lit, 2025; Bang, 2023). This approach
assumes that similarity correlates uniformly with correctness across all prompts and their embeddings.
However, two prompts may be close in embedding space yet require different responses. Figure 3
illustrates that correct and incorrect cache hits have highly overlapping similarity distributions,
suggesting that fixed thresholds are either unreliable or must be set extremely high to avoid errors,
making them suboptimal. Another significant limitation of existing semantic caches is the lack of
error-rate guarantees. While the latency benefits of caching are appealing, the risk of returning
incorrect responses can outweigh those advantages. For widespread adoption, semantic caches must
adhere to user-defined error rate tolerances.

We propose vCache, the first verified semantic cache with theoretical correctness guarantees. vCache
learns a separate threshold (Figure 1) for each embedding in the cache, capturing the threshold
variability observed in Figure 3. It requires no upfront training, is agnostic to the underlying
embedding model, and dynamically adapts its thresholds to the data distribution it encounters. As
a consequence, vCache is robust to out-of-distribution inputs. To our knowledge, no prior work in
semantic caching 1) learns thresholds in an online manner and 2) guarantees their correctness.

We adopt a probabilistic framework to bound the error rate conditioned on a learned per-embedding
threshold. When deploying vCache, the user specifies a maximum error rate bound 4, and the system
maximizes the cache hit rate subject to this correctness constraint (Figure 2). Let vCache(x) denote
the response returned by vCache. Let 7 denote the exploration probability—a value monotonically
decreasing in the likelihood of being correct—and calibrated such that the overall error rate remains
below the user-specified bound (Section 4). The decision rule modeling the probability of being
correct for whether to exploit the cached response or explore an LLM inference is given by:

_ [r(nn(z)) Uniform(0,1) > 7,
VcaChe(X)_{LLM(x) otherwise.)

An illustrative overview of the vCache workflow and system architecture is provided in Appendix B.

We evaluate the effectiveness of vCache in terms of correctness guarantees and overall performance.
To assess generalizability, we compare vCache across three embedding models, two LLMs, and
five datasets. We find that vCache consistently meets the error-rate bounds and outperforms static
threshold baselines, even when using fine-tuned embeddings. Specifically, it achieves up to 12.5x
higher cache hit rates and reduces error rates by up to 26 <. Our main contributions are as follows:

1. We propose vCache, the first semantic cache that enforces a user-defined correctness guarantee
by bounding the error rate.

2. We introduce an online threshold learning algorithm that requires no prior supervised training,
adapts to the observed data distribution, and is agnostic to the choice of embedding model.

3. We demonstrate that embedding-specific, dynamic thresholds improve decision quality. By
learning a separate threshold per cached embedding, vCache achieves equal or better performance
compared to both static thresholding and fine-tuned embeddings.

4. We introduce four benchmarks, derived from five real-world datasets, that capture common
semantic cache use cases: classification tasks, search queries, and open-ended prompt distributions.

5. We release the vCache implementation' and three benchmarks > to support future research.

2 RELATED WORK

Existing semantic caches, such as GPTCache (Bang, 2023) and industry variants (Razi et al., 2024;
Dan Lepow, 2025; lit, 2025; Dasgupta et al., 2025; Li et al., 2024), use a global similarity threshold

'nttps://anonymous.4open.science/r/vCache-FB5E/README . md
https://huggingface.co/vCache

https://anonymous.4open.science/r/vCache-FB5E/README.md
https://huggingface.co/vCache

Under review as a conference paper at ICLR 2026

Existing Cache Decision Boundary 10 Embedding 42 (Using 6=0.01)
g Probability curve ¢ {
P P, 2 0.8] ——- Pprobability curve t' |
-1--Nah ‘506 t=087 .'
e P, 7 — r=092
g Soal — 1)
Py P3 Py E ’ Correct observations (c(x) = 1) i
%_0_2 e Incorrect observations (c(x) = 0) !
vCache Decision Boundary fn . ° 000 w
0.0 0.2 0.4 0.6 0.8 1.0
P, 1 Embedding 128 (Using 5=0.01)
P1 2" f=070
e p, R 08 p-o7s
I'rue
P P, ¢ 2
6 Ps £0.56
c
204
o
Figure 1: The static threshold in existing se- —;0-2
mantic caches enforces naive decision bound- w ® soesiomfe ofos
. 0.0 0.2 0.4 0.6 0.8 1.0
aries, resulting in either low cache hit or high Similarity (s)
error rates. vCache’s embedding-specific and
dynamic thresholds learn decision boundaries Figure 2: Exploration probability for emb,o and
to guarantee a user-defined maximum error embiag. Top: Observations are perfectly separable.
rate. Gradient shading reflects decreasing Bottom: Observations are overlapping. vCache
confidence in correctness as similarity to the selects the optimal ¢ and adjusts the exploration
cached embedding decreases. probability based on the user-defined 6 = 0.01.

to make cache hit decisions. This assumes a uniform correlation between similarity and correctness
across all prompts and embeddings. However, as illustrated in Figure 3, similarity distributions vary
widely, making fixed thresholds unreliable. Further details are provided in Appendix D.9.

Semantic Cache Optimization. The threshold dilemma illustrated in Figure 3 can be addressed via
two approaches: optimizing the embedding space or learning more effective thresholding strategies.

Embedding Fine-tuning: Zhu et al. (2024) propose a distillation-based method that fine-tunes
embeddings for semantic caching, improving alignment between semantically equivalent prompts
and their responses. A related challenge arises in image retrieval, where systems must determine
whether a nearest neighbor corresponds to the correct target class. Zhang et al. (2023a) address this
by introducing the Threshold-Consistent Margin loss, which enforces tighter intra-class cohesion
and clearer inter-class separation by selectively penalizing negative pairs. However, they require
supervised training, are limited to open-source embedding models, and can fail to generalize to out-
of-distribution data at inference time (Hajipour et al., 2024). vCache’s online learning algorithm does
not require training, is model-agnostic, and generalizes to out-of-distribution data (see Appendix F.1).

Threshold Optimization: Threshold optimization learns a decision boundary over existing embeddings
without modifying the embedding model itself (Zhang et al., 2023b). To our knowledge, no prior work
in semantic caching learns thresholds online at inference time. Yet, as shown in Figure 3, the optimal
similarity threshold varies significantly across embeddings, motivating embedding-specific and online
threshold estimation. Related ideas have been explored in incremental learning. For example, Rudd
et al. (2017) propose the Extreme Value Machine (EVM), which models class boundaries using
extreme value theory to support generalization to unseen categories. However, these methods do not
guarantee user-defined error rates. In contrast, we introduce the first online algorithm that estimates
per-embedding thresholds for semantic caches while satisfying a user-defined error bound.

Semantic Cache Guarantees. Even with high-quality embeddings and a presumably carefully
tuned threshold, semantic caches remain inherently approximate. Unless a threshold of 1.0 is used
(effectively restricting cache hits to exact prompt matches), there is always a risk of returning
incorrect responses (Razi et al., 2024; Jim Allen Wallace, 2024). Despite this, existing semantic
caching systems rely on fixed thresholds to decide whether to return a cached response (Dasgupta
et al., 2025; Li et al., 2024; Dan Lepow, 2025; Razi et al., 2024; lit, 2025; Bang, 2023). As a result,
they offer no formal guarantees on accuracy or error rates, making it difficult to justify their reliability
in production environments. To address this, we propose vCache, the first semantic caching system
that combines competitive performance with a user-defined correctness guarantee.

Under review as a conference paper at ICLR 2026

3 OVERVIEW OF SEMANTIC CACHING

Let {x1, 22, ...,y } be the set of all prompts inserted into the cache, in that order. Note that this set
excludes prompts for which a cache hit was found and served. Let D denote all the data stored in
the cache. For each prompt z inserted into the cache, we store its vector embedding &(z) € RY, the
true response r(x) = LLM(z) produced by the LLM, and optional additional metadata O(z). Given
E(x), the cache retrieves the most similar prompt from the vector database with an approximate
nearest neighbor search (Arya et al., 1998), where

nn(x) = arg max sim(&(x),E(y)). 2)

In vCache, for a prompt x;, the metadata O(z;) stores similarity and response match information
for all future prompts x; (with j > 4) such that nn(z;) = x;. The exact workings of vCache are
presented in Algorithm 1. The sets D and O can be represented as follows:

n n

D={(£@).r@). 0w) || O@w)={ (s(@)). @) [nnay) =2})
where s(z) € [0, 1] is the similarity between x and its nearest neighbor nn(z) and ¢(x) indicates if
the cached response of nn(x), r(nn(x)), matches the true response r(x).

1 ifr(nn(z)) = r(z),
0 otherwise.

s(x) = sim(E(x), E(nn(x))) clx) = { (€]
Algorithm. Given a prompt, say z, we first compute the embedding £(z) and find its nearest
neighbor nn(x). The caching policy P then determines whether we should use the cached response
for this prompt (exploit) or run the LLM inference (explore). In case we decide to exploit, 7(nn(z))
is returned. Otherwise, we run r(z) = LLM(x), compute s(x) and ¢(x), update the observations
O(nn(z)) and add z to the database D using,

O(nn(z)) = O(nn(z)) U {s(x),c(z)}, D=DU{(&(x),r(z),0)}. 5)

The key challenge lies in designing a decision policy P(...), as it directly impacts both the cache hit
rate and the overall error rate.

Policy of existing systems (Pgptcache(S(X))). In existing semantic caching systems, the decision
function is implemented as a fixed threshold rule. Given a user-defined threshold ¢, the cache exploits
if s(x) > ¢ by returning the cached response r(nn(z)). Otherwise, it explores by invoking the model
for a response. As discussed in Section 2, this approach lacks formal guarantees and does not adapt
to variation in similarity value distributions.

Policy of vCache (Pycache(s(x), O(nn(x)),d)). vCache replaces static thresholding with an
embedding-specific decision function that respects a user-defined error bound ¢. If the function returns
exploit, the cache is sufficiently confident and outputs the cached response r(nn(x)) (Algorithm 1,
L5). Otherwise, it returns explore by inferring the LLM. Section 4 provides further details.

Scope of definitions. All quantities such as nn(x), s(z), and ¢(z), are evaluated at a fixed (but
arbitrary) point in time. Since the analysis is performed online, these definitions apply consistently
across time steps. Policy discussion always refers to a specific embedding in the cache, with all
parameters and estimates interpreted as conditional on it.

For ease of reference, a glossary of all symbols and functions is provided in Appendix A.

4 VCACHE

Given a user-defined maximum error rate §, vCache maximizes the cache hit rate while ensuring the
probability of correctness remains above 1 — §. Instead of relying on an unreliable static threshold or
fine-tuned embeddings, vCache models probability distributions to make cache hit or miss decisions.
The distributions are specific to each embedding in the cache and model the probability of correct
cache hits for a given similarity value. To remain dataset agnostic and avoid costly offline training,
vCache estimates these distributions online by selectively generating labels for uncertain similarity
values. Since generating a label requires an LLM inference, equivalent in cost to not using a cache,

Under review as a conference paper at ICLR 2026

20
. == KDF (c(x) =0 at s(x))
Algorithm 1 vCache Workflow 315 KDF (c(x) = 1 at s(x))
1: e, + E(x) §10 - Mean (miss): 0.84
2: y < nn(x) o 5 Mean (hit): 0.85
3: s(x) + sim(ez, E(y))

.3 — 3 0.0 0.2 0.4 0.6 0.8 1.0
;—1 it Plg{u(/l)'l(lygég)) = exploit then 100 Similarity Values
6: else > 75 Mean (f): 0.88
7: r(z) < LLM(x) =
8 c(x) =1(r(x) =r(y)) g 30
9: O(y) < O(y) U{(s(z), c(z))} 2 25
10: if ~¢(z) then

. 0.0 0.2 0.4 0.6 0.8 1.0
H: D < DU{(&(z),r(2), Q)} Optimal Threshold Values

12: end if

13: return r(z) Figure 3: Results from 45k samples in the Sem-

14: end if CacheClassification benchmark. Motivates the
need for dynamic, embedding-specific thresholds.

vCache workflow for deciding whether to ex- Top: Similarity values of correct and incorrect ex-

ploit a cached response (cache hit) or explore plorations exhibit highly overlapping distributions.
an LLM inference (cache miss). The decision Bottom: Optimal per-embedding thresholds vary
relies on the Py cache policy (Section 4) and substantially, indicating that no single threshold
guarantees a user-defined error rate bound 6. can suffice across embeddings (see Appendix D.9).

vCache minimizes such inferences. We refer to such inferences as explore and classify them as a
cache miss. For a given prompt z, the cached response (nn(z)) is considered uncertain when the
observations O(nn(z)) do not provide sufficient evidence to determine whether the cached response
is correct (¢(z) = 1). In contrast, if O(nn(x)) provides sufficient evidence, vCache proceeds with
exploit by returning the cached response r(nn(z)) without an LLM inference. The rest of this section
formalizes these ideas and provides a detailed explanation of the vCache policy, Py cache-

4.1 USER GUARANTEE

One of the key features of vCache is that it takes a user-defined maximum error rate, §, and ensures
that the overall performance of the cache remains within this error bound. Let vCache(z) denote
the response returned by vCache, regardless of whether the decision was to explore or exploit. Then,
an error rate guarantee of § implies:

Definition 4.1 (user-guarantee). An error-rate guarantee of 6 for vCache implies that the marginal
probability of vCache returning the correct answer, given any arbitrary prompt x, is lower bounded
by (1 —9). In other words,

Pr(vCache(z) = r(x)) > (1 —9). (6)

To achieve the error guarantee, vCache probabilistically decides when to explore and when to exploit.
Let Prexplore (2| D) be the probability that, given a prompt « and having accumulated data D, vCache
decides to explore. Then, we can decompose the probability that vCache is correct as,

Pr(vCache(z)=r(z)) = Pr(explore|x, D) + (1 — Pr(explore|z, D))Pr(c(z) = 1|z, D). (7)

This expression reflects two disjoint events. First, vCache decides to explore with probability
Pr(explore|z, D), and in this case, the output vCache(x) is same as LLM(x) by design. In the
second case, the vCache decides to exploit with probability (1 — Pr(explore|z, D)) and in this case,
the probability of vCache being correct is represented as Pr(c(x) = 1|z, D) using notation from the
previous section. To ensure error guarantees are maintained, we should have,

(1=96)—Pr(c(x) =1]z,D)
1—Pr(c(z) = 1|z, D)

To meet the guarantees, vCache models the Pr(c(z) = 1|z, D). This inequality provides an
actionable constraint: if the estimated probability of correctness from the cache is high, the system

Pr(explore|z, D) >

= Tan(z) (5('7:)) 3

Under review as a conference paper at ICLR 2026

may exploit; if the estimate is low, the system must explore. As long as Pr(explore|z, D) is larger
than the 7,,,(,) (s(x)), the guarantees are achieved. Notation of 7 is chosen to emphasize that it is a
function over similarities and is specific to each embedding in the cache.

Since vCache can only estimate Pr(c(z) = 1 | ,D) based on a limited number of samples, it
accounts for the uncertainty in the estimation by considering the confidence band of Pr(c(z) =1 |
x, D). The modeling details and the vCache policy are presented in the following subsection.

4.2 VCACHE MODELING

vCache imposes a sigmoid parametric model on the relationship between similarity and correctness.
Specifically, for an arbitrary prompt x, the probability of correct cache hit is defined as

1

Pr(c(z) = 1|z, D) = L(s(x),t,7) = 1T e G@=D’ ©)
where s(z) € [0,1] is the similarity of = with its near neighbour. ¢ € [0, 1] is an embedding-specific
decision boundary parameter, and v > 0 is a parameter controlling the steepness of the function. The
sigmoid form is well-suited for this task: it induces a smooth and monotonic relationship between
similarity and correctness probability and enables efficient maximum-likelihood estimation (MLE) of
the threshold ¢ from labeled data (justification in Appendix H). By fitting a continuous likelihood

function rather than enforcing a hard threshold, vCache generalizes better from limited observations.

The MLE estimates for the parameters, say fnn(x) and Yyn(z), using all the meta-data Oy, (., solves
the binary cross entropy loss,

Enn(x)a ’AYnn(a:) = arg r{fli’ynE(s,c)GOnn(I) |:<C . IOg(,C(S, 2 7))) + ((1_0) ’ 1Og(1 - ‘6(57 L, 7))):|
(10)
Note that these parameters belong to a specific embedding in the cache (specifically nn(z)).

Since these estimates are based on a limited number of samples, estimating the true Pr(c(z)=1|z, D),
and thus the correct 7,,(,)(s()) is not possible. To ensure we still achieve guarantees, vCache,
instead computes a upper bound, say 7 for 7,,(;)(s(x)) using pessimistic values for ¢, y from the
(1 — €) confidence band for these points for some € € (0, 1). Let these estimates be t'(¢), v/ (¢). We
compute 7 using,

 _ in (1—208)— (1 —e)L(s(x),t(e),7(€))) T i
= e€(0,1) 1-— (1 — e)ﬁ(s(x),t’(e),yl(g)) 2 nn(z)(())

Y

The details of why 7 > 7;,,(2) (s(2)) and how to obtain confidence bands for ¢ and v are explained in
Appendix C. Once we have 7, we have to ensure that the probability of exploration is above this value
(see Eq 8). This is achieved by sampling a uniform random variable u ~ Uniform(0, 1). If u < 7,
the vCache explores, i.e., runs the LLM model to obtain the correct response. Otherwise, it exploits
the cache by returning r(nn(z)). This randomized policy ensures that, in expectation, the system
explores sufficiently often to meet the correctness guarantee while maximizing cache usage when
reliability is high. The exact algorithm of how explore and exploit decisions are made is presented
in Algorithm 2. Figure 2 illustrates the vCache modeling, where each subplot shows one cached
embedding. Green and red points indicate correct and incorrect responses to observed similarities.
The yellow dashed curve is the sigmoid model, with threshold £ obtained by MLE. The blue dashed
curve represents the sigmoid fit based on confidence bounds, with threshold ¢’ selected to meet the
user-defined error bound §. The dark green curve 7(s) denotes the exploration probability, where for
a given similarity s, vCache explores with probability 7(s) and exploits the cache otherwise.

4.3 VCACHE ALGORITHM

To summarize, the final vCache algorithm works as follows. First, for each incoming prompt z, it
retrieves its nearest cached embedding y = nn(x) and fits a logistic decision boundary () using
all labeled examples observed for y. It then computes the 7 using Eq 11 by iterating over different
values of confidence e. Then we use a uniform random variable u ~ Uni form/|0, 1] and explore if
u < 7 and exploit otherwise.

Under review as a conference paper at ICLR 2026

Algorithm 2 vCache Policy Pycache (s(z), O(nn(z)),)

1: function P,cqche(s(z), O(nn(z)), 0) 1: function G, (s, £, 4, 9, €)
2: t,4 + argmin, ., LogisticLoss(t, v, O) ty o7 t,A,1 —¢)
3 > i.e solve Eq 10 a+ (1—e) Lz, t',v)
4 T <= mineo 1 G (x,1,6,¢) (1-9¢)—«

5: u ~ Uniform(0, 1) T
6: if u < 7 then
7.
8
9
10

1—«
return 7
end function

SANSANEE

return explore
else
return exploit
: end if
11: end function

vCache makes two assumptions. First, the data D received by the cache is independently and
identically drawn from the underlying distribution. Second, the true probability of correctness of
response match given similarity, i.e. Pr(c(z) = 1|D, x) is well represented by the sigmoid family of
functions (Eq 9).. Under these assumptions, the vCache policy can provide user-defined error-rate
guarantees, as summarized in the following theorem.

Theorem 4.1. Let 6 € (0, 1) be the user-provided maximum error tolerance. Let D, |D| = n be the
set of prompts seen by vCache at an arbitrary point in time. Then under the assumptions that prompts
D are drawn i.i.d. from underlying distribution and sigmoid family of functions (defined in Eq 9)
correctly model the true likelihood of correctness for each embedding, the probability of correct
response from vCache for any arbitrary prompt x, executed in an online manner in accordance with
Algorithm 2, is guaranteed to be greator than 1 —§. i.e.

Pr(vCache(z) = r(x)|D) > (1 — §)Vz,n (12)

5 EVALUATION

For our experiments, we use three popular embedding models (GteLargeENv1-5 (Zhang et al., 2024),
E5-large-v2 (Wang et al., 2022), and OpenAl text-embedding-3-small (ope, 2025)), and two LLMs
(Llama-3-8B-Instruct (Dubey et al., 2024) and GPT-4o0-mini (gpt, 2024)), representing both high-
quality proprietary models and efficient open alternatives. We use the HNSW vector database (Malkov
& Yashunin, 2018) with cosine similarity, a standard metric for comparing vector embeddings in
semantic caching systems (Bang, 2023; Li et al., 2024; Dasgupta et al., 2025). All experiments are
conducted on a machine running Ubuntu 24.04.2 LTS, with an Intel Xeon Platinum 8570 CPU and an
NVIDIA Blackwell with 192 GB of memory.

Baselines. We use the following Cache-settings in our experiments

* GPTCache (zilliztech): SOTA using a static threshold for all embeddings (Parameter: threshold).
* GPTCache + Fine-tuned embedding: Changing the embedding model in GPTCache. Embedding
models are fine-tuned on data and method provided by Zhu et al. (2024) (Parameter: threshold).

* vCache: This is our proposed method (Parameter: error-rate bound §).
¢ vCache + Fine-tuned embedding (Zhu et al., 2024): Same as vCache, but uses a fine-tuned
embedding model (Parameter: error-rate bound).

Datasets. To the best of our knowledge, no realistic open-source benchmark currently exists for
evaluating semantic caches. We introduce and open-source four diverse benchmarks designed to
reflect common caching scenarios. Appendix F provides the complete dataset and benchmark cards.

* SemCacheLLMArena: A randomly sampled subset of 60,000 queries from the LM-Arena human
preference dataset (Chiang et al., 2024), containing open-ended, and user-generated prompts.

* SemCacheClassification: A benchmark of 45,000 prompts derived from three classification
datasets (Saurabh Shahane, 2023; Talmor et al., 2018; Ni et al., 2019).

* SemCacheSearchQueries: A random subset of 150,000 web-search queries from the ORCAS
dataset (Craswell et al., 2020). The results are presented in Appendix D.1.

* SemCacheCombo: A 27,500-prompt benchmark combining SemCacheSearchQueries and distinct
SemCacheLMArena queries to model partial workloads with no cache hits. The results are
presented in Appendix D.2.

Under review as a conference paper at ICLR 2026

—— GPTCache vCache + Fine-tuned Embedding —— vCache —— Fine-tuned Embedding
_80 6 Target =
§ — Actual Error ~3 =30
0] 6.0 § ()

-~ -
© 9 2
<40 52 20
S | =
=20 I 5=0.015 <
o= U
w e £1 ’Wfﬂ/ £10
w | [
00 QOO p——— 8
QoA Q9 QO QOO Q

ol -
0 20000 40000 60000 0 20000 40000 60000
E5-large-v2 embedding model, OpenAl GPT-40 mini LLM, SemCachelLmArena benchmark

8.0
~7.0 6 Target 25 =
£6.0] — Actual Error 520 By S /
5.0 o L 920
240 %1-5 - 5= 0015 < /
53.0 o 7 £ //
£2.0 5100 Jh pe 310 /
£ eSS e <
2.)8 wos5 hf;ﬂ\ Q /
TN LLLL s O
\
N A SN 0.0 0
& Values 0 20000 40000 0 20000 40000
Sample Size Sample Size

GtelargeENv1embedding model, Llama 3.1-8B LLM, SemCacheClassification benchmark

Figure 4: vCache meets the user-defined maximum error rate bound ¢ with steadily increasing
cache hit rates (vCache is learning). GPTCache shows increasing error and hit rates, illustrating the
unreliability of static thresholds. Static baselines use fixed thresholds (0.99 top, 0.86 bottom). See
Figure 5 for a threshold vs. § Pareto comparison.

Metrics. We measure the following metrics. (1) Error Rate: (Lower is better) defined as F P/n,
where FP is the number of false positives and n is the total number of prompts. (2) Cache hit rate:
(Higher is better) defined as (T'P + F'P)/n where TP and FP are true positives and false positives,
respectively. Together, TP and FP measure the total cache hits. We also show ROC curves Hoo et al.
(2017). For the non-deterministic evaluation of vCache (Algorithm 2, Line 5), we compute 95%
confidence intervals using Wallis binomial confidence bounds and contingency tests Wallis (2013).

vCache respects user-defined error-rate requirements. We evaluate whether vCache satisfies the
user-defined error rate bound § while maintaining competitive performance. As shown in Figure 4
(left), vCache consistently meets the maximum error rate across ¢ values, with actual error remaining
below the specified bound. The small gap between maximum error rate and observed error stems
from the conservative ¢’ estimation, which ensures robustness and can be further refined. Notably, as
the error rate stabilizes, vCache continues to increase its cache hit rate (Figure 4, right), demonstrating
effective learning over time. In contrast, GPTCache baselines exhibit increasing error rates with
sample size, reflecting the inherent limitations of fixed thresholds despite improving hit rates.

Dynamic and embedding-specific thresholds are superior to static thresholds. We evaluate
whether semantic caches benefit from dynamic, embedding-specific thresholds over a single static
threshold. To this end, we compare vCache with static-threshold baselines by systematically varying
threshold values for GPTCache and the maximum error rate () for vCache across a feasible range.
Each point in Figure 5 represents a complete evaluation over the benchmark dataset, enabling direct
Pareto comparison between vCache and static-threshold configurations. vCache achieves better ROC
curves, higher cache-hit rates at a given error rate, and lower average latency. On SemCacheLMArena
(Figure 5, top), it achieves up to 6x lower error, 2x higher hit rates, and reduced latency. On
SemCacheClassification (Figure 5, bottom), vCache outperforms all baselines for error bounds above
1.5%, where static methods either violate constraints or underutilize the cache. For bounds below
1.5%, vCache is more conservative, reflecting its strategy of prioritizing correctness by increasing
exploration under uncertainty. We note that GPTCache error rates have not fully converged and
exhibit an upward trend, suggesting the reported results likely overstate GPTCache performance.

Under review as a conference paper at ICLR 2026

—— GPTCache vCache + Fine-tuned Embedding Random Classifier
—— vCache —— Fine-tuned Embedding —— No Cache
1.07 x 100 8
0.8 &1.97 1 = 80 5-.08 -
8] \ N 6
5=.01 §=.08 t=.84 .8 ~
2 0.6 & 60 “l g
a = e o4
Foa T 40/ / -
) J e
0.2 § 20 / 0 2 5=.01
O N s-01 l
0.00 0.25 0.50 0.75 1.00 0.0 2.5 5.0 7.5 1 2 .3
E5-large-v2 embedding model, OpenAl GPT-40 mini LLM, SemCachelLmArena benchmark
1.0 50 5
S _
08 jss 540 oo a\°,4
206 830 3
= L £ <
0.4 // =9 :(']:) 20 t=.9975 5 25
0.2 oo S10 o i1
™~ 5=.01 O
0.00 0.25 0.50 0.75 1.00 0 2 4 6 0.175 0.200 0.225 0.250
FPR Error Rate (%) Average Latency (sec)

GtelargeENv1embedding model, Llama 3.1-8B LLM, SemCacheClassification benchmark

Figure 5: Pareto comparison across a range of thresholds and § values. Each point represents a
full run on 60k (SemCacheLmArena) or 45k (SemCacheClassification) samples. vCache generally
outperforms static-threshold baselines. While it may slightly underperform for small 4, its stability
under increasing sample sizes (Figure 4) indicates greater long-term reliability than static thresholds.

Latency, vLLM, and Additional Baselines. @ We report additional experiments on the Sem-
CacheCombo benchmark (Appendix D.2), OpenAl text-embedding-3-small model (Appendix D.3),
7 computation (Appendix D.4), embedding generation (Appendix D.5), logistic regression (Ap-
pendix D.6), vLLM inference (Appendix D.7), and extended baseline evaluations (Appendix D.8).

6 LIMITATIONS

There are two main limitations of vCache. First, for responses longer than a few words, string
matching is insufficient and vCache uses a standard LLM-as-a-judge (Zheng et al., 2023a) approach
to assess response equivalence (Algorithm 1, L8), requiring an additional LLM inference. However,
this can be executed asynchronously outside the critical path, so it does not impact latency (see vCache
implementation). Moreover, since the output is a single token (e.g., "yes” or ’no”), the computational
overhead is minimal (Leviathan et al., 2023). In SemCacheLMArena and SemCacheSearchQueries,
response equivalence is assessed with LLM-as-a-judge, whereas in SemCacheClassification it is
determined by string matching. vCache performs reliably under both evaluation regimes. Second,
vCache relies on the assumptions of independent and identically distributed (i.i.d.) data and a sigmoid
function family to represent the probability of correctness. If these assumptions are violated, the
analysis may not hold. Nonetheless, both assumptions are natural and appear to model most use cases
well, as supported by our experimental results.

7 CONCLUSION

We introduced vCache, a semantic cache that provides correctness guarantees by learning an optimal
similarity threshold for each cached embedding online. This approach addresses the limitations of
static thresholds and embedding fine-tuning in the semantic caching domain, ensuring that the error
rate remains below a user-specified bound. Our experiments demonstrate that vCache consistently
satisfies this guarantee while outperforming existing methods. These results suggest that reliable,
interpretable caching for LLMs is both practical and deployable.

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

This work contributes to the advancement of machine learning by improving the efficiency of
large language model (LLM) inference. By reducing both computational cost and latency, our
approach makes LLM-based systems more accessible to organizations and individuals with limited
computational resources, thereby lowering the barrier to adoption. In addition, by decreasing the
frequency of full LLM invocations, our method reduces overall compute demand and, consequently,
the environmental impact associated with training and operating large-scale Al infrastructure.

9 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our work. The full implementation of
vCache, including all algorithms and experiments, is publicly available in an anonymous repository-.
The three semantic caching benchmarks introduced in this paper are released on HuggingFace*,
and Appendix F describes their construction and preprocessing in detail. All experimental settings,
including hardware, software, and model configurations, are specified in Section 5. Theoretical
assumptions and complete proofs of our correctness guarantees are provided in Appendix C. Together,
these resources ensure that our results can be verified and extended by future work.

REFERENCES

gpt, 2024. URL https://openai.com/index/gpt—-4o-mini-advancing-cost-eff
icient—intelligence/. [Accessed 11-11-2024].

Cache LLM Responses, 11 2025. URL https://docs.litellm.ai/docs/proxy/cachi
ng. [Accessed 02-05-2025].

text-embedding-3-small., 2025. URL https://platform.openai.com/docs/models/
text—embedding—-3-small. [Accessed 11-11-2025].

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM
(JACM), 45(6):891-923, 1998.

Fu Bang. Gptcache: An open-source semantic cache for llm applications enabling faster answers and
cost savings. In Proceedings of the 3rd Workshop for Natural Language Processing Open Source
Software (NLP-OSS 2023), pp. 212-218, 2023.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open
platform for evaluating llms by human preference. In Forty-first International Conference on
Machine Learning, 2024.

Nick Craswell, Daniel Campos, Bhaskar Mitra, Emine Yilmaz, and Bodo Billerbeck. Orcas: 18
million clicked query-document pairs for analyzing search. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pp. 2983-2989, 2020.

Robby Millsap Dan Lepow, Arie Heinrich. Enable semantic caching for Azure OpenAl APIs in
Azure API Management, 01 2025. URL https://learn.microsoft.com/en-us/az
ure/api-management/azure-openai-enable-semantic-caching. [Accessed
22-01-2025].

*https://anonymous. 4open.science/r/vCache-FB5E/README . md
*nttps://huggingface.co/vCache

10

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://docs.litellm.ai/docs/proxy/caching
https://docs.litellm.ai/docs/proxy/caching
https://platform.openai.com/docs/models/text-embedding-3-small
https://platform.openai.com/docs/models/text-embedding-3-small
https://learn.microsoft.com/en-us/azure/api-management/azure-openai-enable-semantic-caching
https://learn.microsoft.com/en-us/azure/api-management/azure-openai-enable-semantic-caching
https://anonymous.4open.science/r/vCache-FB5E/README.md
https://huggingface.co/vCache

Under review as a conference paper at ICLR 2026

Soumik Dasgupta, Anurag Wagh, Lalitdutt Parsai, Binay Gupta, Geet Vudata, Shally Sangal, Sohom
Majumdar, Hema Rajesh, Kunal Banerjee, and Anirban Chatterjee. wallmartcache: A distributed,
multi-tenant and enhanced semantic caching system for llms. In International Conference on
Pattern Recognition, pp. 232-248. Springer, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Kai Franz, Samuel Arch, Denis Hirn, Torsten Grust, Todd C. Mowry, and Andrew Pavlo. Dear
user-defined functions, inlining isn’t working out so great for us. let’s try batching to make our
relationship work. sincerely, sql. In Conference on Innovative Data Systems Research, 2024. URL
https://api.semanticscholar.org/CorpusID:266738256.

Hossein Hajipour, Ning Yu, Cristian-Alexandru Staicu, and Mario Fritz. SimSCOOQOD: System-
atic analysis of out-of-distribution generalization in fine-tuned source code models. In Kevin
Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pp. 1400-1416, Mexico City, Mexico, June 2024. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.90. URL
https://aclanthology.org/2024.findings—naacl.90/.

Zhe Hui Hoo, Jane Candlish, and Dawn Teare. What is an roc curve?, 2017.

Jim Allen Wallace. Semantic caching for faster, smarter LLM apps, 7 2024. URL https:
//redis.io/blog/what-is—semantic—-caching/. [Accessed 05-04-2025].

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611-626, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Jiaxing Li, Chi Xu, Feng Wang, Isaac M von Riedemann, Cong Zhang, and Jiangchuan Liu. Scalm:
Towards semantic caching for automated chat services with large language models. arXiv preprint
arXiv:2406.00025, 2024.

Lin Liu, Jiajun Meng, and Yongliang Yang. LIm technologies and information search. Journal of
Economy and Technology, 2:269-277, 2024a.

Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo, Shiyi Cao, Joseph E Gonzalez, lon Stoica, and
Matei Zaharia. Optimizing llm queries in relational workloads. arXiv preprint arXiv:2403.05821,
2024b.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE transactions on pattern analysis and machine
intelligence, 42(4):824-836, 2018.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pp. 188—-197, 2019.

James Jie Pan, Jianguo Wang, and Guoliang Li. Survey of vector database management systems. The
VLDB Journal, 33(5):1591-1615, 2024.

Kamran Razi, Anila Joshi, Sungmin Hong, and Yash Shah. Build a read-through semantic cache with
Amazon OpenSearch Serverless and Amazon Bedrock, 11 2024. URL https://aws.amaz
on.com/blogs/machine-learning/build-a-read-through—-semantic-cac
he-with-amazon-opensearch-serverless—and—-amazon—-bedrock/. [Accessed

17-01-2025].

11

https://api.semanticscholar.org/CorpusID:266738256
https://aclanthology.org/2024.findings-naacl.90/
https://redis.io/blog/what-is-semantic-caching/
https://redis.io/blog/what-is-semantic-caching/
https://aws.amazon.com/blogs/machine-learning/build-a-read-through-semantic-cache-with-amazon-opensearch-serverless-and-amazon-bedrock/
https://aws.amazon.com/blogs/machine-learning/build-a-read-through-semantic-cache-with-amazon-opensearch-serverless-and-amazon-bedrock/
https://aws.amazon.com/blogs/machine-learning/build-a-read-through-semantic-cache-with-amazon-opensearch-serverless-and-amazon-bedrock/

Under review as a conference paper at ICLR 2026

Navid Rekabsaz, Mihai Lupu, and Allan Hanbury. Exploration of a threshold for similarity based on
uncertainty in word embedding. In Advances in Information Retrieval: 39th European Conference
on IR Research, ECIR 2017, Aberdeen, UK, April 8-13, 2017, Proceedings 39, pp. 396—409.
Springer, 2017.

Ethan M Rudd, Lalit P Jain, Walter J Scheirer, and Terrance E Boult. The extreme value machine.
IEEE transactions on pattern analysis and machine intelligence, 40(3):762-768, 2017.

Saurabh Shahane. Ecommerce text classification, 10 2023. URL https://www.kaggle.c
om/datasets/saurabhshahane/ecommerce-text-classification. [Accessed
12-11-2024].

Tomshapland Sudarsan and MasayaNishimaki. Optimize azure openai applications with semantic
caching, Apr 2024. URL https://techcommunity.microsoft.com/blog/azure
architectureblog/optimize—-azure—openai-applications—-with—-semanti
c—caching/4106867. [Accessed 12-11-2024].

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Sean Wallis. Binomial confidence intervals and contingency tests: Mathematical fundamentals and
the evaluation of alternative methods. Journal of Quantitative Linguistics, 20(3):178-208, 2013.
doi: 10.1080/09296174.2013.799918.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533, 2022.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Large
search model: Redefining search stack in the era of llms. In ACM SIGIR Forum, volume 57, pp.
1-16. ACM New York, NY, USA, 2024.

Haoyi Xiong, Jiang Bian, Yuchen Li, Xuhong Li, Mengnan Du, Shuaigiang Wang, Dawei Yin, and
Sumi Helal. When search engine services meet large language models: visions and challenges.
IEEE Transactions on Services Computing, 2024.

Qin Zhang, Linghan Xu, Qingming Tang, Jun Fang, Ying Nian Wu, Joe Tighe, and Yifan
Xing. Threshold-consistent margin loss for open-world deep metric learning. arXiv preprint
arXiv:2307.04047, 2023a.

Qinghua Zhang, Chengying Wu, Shuyin Xia, Fan Zhao, Man Gao, Yunlong Cheng, and Guoyin Wang.
Incremental learning based on granular ball rough sets for classification in dynamic mixed-type
decision system. [EEE Transactions on Knowledge and Data Engineering, 35(9):9319-9332,
2023b.

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong
Yang, Pengjun Xie, Fei Huang, et al. mgte: Generalized long-context text representation and
reranking models for multilingual text retrieval. arXiv preprint arXiv:2407.19669, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yinggian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023a.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Efficiently programming large language
models using sglang. arXiv e-prints, pp. arXiv—2312, 2023b.

Hanlin Zhu, Banghua Zhu, and Jiantao Jiao. Efficient prompt caching via embedding similarity.
arXiv preprint arXiv:2402.01173, 2024.

zilliztech. GPTCache : A Library for Creating Semantic Cache for LLM Queries. URL https:
//github.com/zilliztech/GPTCache. [Accessed 23-01-2025].

12

https://www.kaggle.com/datasets/saurabhshahane/ecommerce-text-classification
https://www.kaggle.com/datasets/saurabhshahane/ecommerce-text-classification
https://techcommunity.microsoft.com/blog/azurearchitectureblog/optimize-azure-openai-applications-with-semantic-caching/4106867
https://techcommunity.microsoft.com/blog/azurearchitectureblog/optimize-azure-openai-applications-with-semantic-caching/4106867
https://techcommunity.microsoft.com/blog/azurearchitectureblog/optimize-azure-openai-applications-with-semantic-caching/4106867
https://github.com/zilliztech/GPTCache
https://github.com/zilliztech/GPTCache

Under review as a conference paper at ICLR 2026

A NOTATION GLOSSARY

For clarity, we summarize the key symbols and functions used throughout the paper in Table 1. The

glossary covers cache contents, decision policies, probability functions, and modeling parameters.

Each entry is accompanied by a short explanation and, where applicable, references to the defining
equations, algorithms, or sections.

Table 1: A glossary of notations used in the paper and their explanations

Notation Explanation

r(x) Response produced by the LLM for prompt x.

E(x) Vector embedding of prompt x.

nn(z) Current nearest neighbor of z in the cache; may change as the
cache grows (see Equation 2).

s(x Similarity between prompt 2 and nn(x) (see Equation 4).

c(x Correctness: 1if r(nn(z)) = r(x), else 0 (see Equation 4).

D Cache contents: (E(x;),7(x;), O(z;)), (see Equation 3).

O(x;) Metadata for cached prompt z;: all observed (s(x;), c(x;)) with
nn(z;) = x; (see Equation 3).

Ppicache (5(2) Static-threshold policy used by existing systems.

)
Pycache(s(x), O(nn(x)),)

vCache policy using embedding-specific modeling under a user-
defined error bound § (Section 4).

§
Pr(vCache(z) = r(z))

Tan(x) (S(x))

7

u ~ Uniform(0, 1)

User-defined maximum error tolerance (see Section 4.1).

Probability that vCache returns the correct response (see Equa-
tion 8).

Required exploration probability to satisfy the guarantee (see Equa-
tion 8).

Upper bound used for exploration probability (see Equation 11).

Random draw used to realize the exploration decision (see Algo-
rithm 2).

L(s(x),t,7)

Sigmoid likelihood modeling Pr(c(z) = 1 | x,D) (see Equa-
tion 9).

True threshold (¢) and slope () parameters of £ (see Equation 9).
MLE estimates of ¢ and «y based on O(nn(x)) (see Equation 10).

Conservative estimates of the logistic parameters ¢, v, selected
from the confidence band of the MLE estimates. These values are
used to compute 7 and ensure that vCache respects the user-defined
error bound § (see Equation 11).

13

Under review as a conference paper at ICLR 2026

B VCACHE SEMANTIC CACHE ARCHITECTURE

Figure 6 illustrates the vCache architecture. When a new prompt gets processed, it is first embedded
into a vector representation and queried against the vector database to retrieve the nearest cached
prompt. The similarity score and metadata of the retrieved embedding are passed to the similarity
evaluator, which compares the correctness estimate against the user-defined error bound J (see vCache
decision policy in Section 4.2). If the policy returns exploit, the cached response is retrieved from the
response store and served immediately. If the policy returns explore, the system performs an LLM
inference to generate the true response, determines the correctness of the cached response with respect
to the newly generated one, updates the metadata of the nearest neighbor, adds the new embedding to
the vector database, adds the generated response to the response store, and returns it to the user (see
Algorithm 1). In the vector database, the green balls represent the confidence bounds specific to the
currently processed prompt. Larger balls indicate lower thresholds (more conservative exploitation).
In comparison, smaller balls correspond to higher thresholds (more conservative exploration).

E Bound: 1% v Return Response
ITOr bound: 0
‘ User

} |

j Ca C h e Receive Prompt Request

Embedding
Generator

l Retrieve Similar Embedding

aseqeiR(J010A

o Response Store
/ e D Cached Response
v 1 This is a great .

2 To implement a new class
3 Once upon a time ...

ma Is Hit? 4 The equation for ...
Similarity »
Evaluator 5 For writing a story ...
Is Miss?
Inference
Add Label Server Add LLM Response

& Embedding

Figure 6: Workflow of the vCache architecture. Prompts are embedded, nearest neighbors retrieved,
and the decision policy selects between exploiting a cached response or exploring via an LLM
inference while ensuring the user-defined error bound §.

14

Under review as a conference paper at ICLR 2026

C VCACHE MODELING PROOF

We provide the proof for Theorem 4.1 in this section.

Recall we use the following notation in the paper,

* z : prompt under consideration

* D : data inserted into the cache

* Tan(z)(8()) : minimum probability of exploration associated with embedding nn(z) at

similarity value s(x)

e Pr.=1-¢
Computing the exact probability Pr(c(x) = 1 | D, z) is expensive, so we derive a simpler upper
bound. If we have an upper bound, then computing an upper bound for 7,5, (s()) is straightforward.
Lemma C.1 (Upper-Bounding 7). if Pr(c(z) = 1|D, z) > «, then,

)

11—«

Thn(x) (8(.13)) <1-

Proof. Rewrite T to isolate the unknown probability:

(1 -9)—Pr(c(x)=1|D,z)
1 —Pr(c(x)=1D,z)

Tan(x) (S(I)) =

13
L 5 (13)
B 1 —Pr(c(z)=1|D, z)
Next, suppose we have a known lower bound
Pr(c(z)=1|D,z) > «
Then
1 — Pr(c(z)=1|D,z) < 1—aq,
and since 6 > 0, it follows that
d > i . (14)
1—Pr(c(z) =1|D,x) 1-a
O
Hence, to guarantee the exploration probability meets T, it suffices to ensure
Prexplore(xapn) > =1- > Tnn(z)(s('r))' (15)

11—«
Lemma C.2 (Lower-Bounding Cache-Correctness Probability). Given D, let fnn(m) and Y () be
the MLE estimates computed as,

Fun(o): Fn(e) = AW 010, | (¢ 108(£(5: 7)) + ((1=0) - log(1 = L(s,£,7)))]

(16)
Let t* and v* be the true parameters such that L(s(x),t*,~*) is the true probability of correct cache
hits. Consider an arbitrary € € (0,1). Let t',~' be such that,

Pr(t" > t'||v" <+) <e (17)

Then,
Pr(c(z) = 1|D,2) > (1 —) L(s(x),t',v") (18)

15

Under review as a conference paper at ICLR 2026

Proof. By the law of total probability:

Pr(c(z) = 1D, x)
= Pr(t* > #]7* <) - Pr(e(a) = 1D,z (¢ > £]1y* <))
+Pr(=(t" > t|ly" <)) - Pr(e(z) =1|D,z,t" <t',7" > v) (19)
Pr(—=(t* > t||v* <v)) - Pr(c(z) = 1D, x, t* < t',v* >+)
(1

>
> (1—¢€) -Pr(c(z) =1|D,z,t" <t' 7" >7).

(1—¢) -Pr(c(z) =1|D,a,t" <t',y" >7),

t’ oo
>(1- e)/ / Pr(t" =t,v* =t <t',v>7) Pr(c(z) =1|D,x,t" =t,v* = v)dtdy
0 !

’ t<t',y=>v'

t’ [e'e]
>(1-¢) (/ / Pr(t*t,v*vltét’,vzv’)dtdv) inf_ Pr(c(z) = 1|D,2,1)
0 Jvy

=(1—¢) inf Pr(c(z)=1|D,z,t)

t<t',y>v
=(l—¢) tgt%/fzw' L(z,t,7)
=1 - Lz, t',Y)
(20)
since, L£(x,t1,7) < L(x,ta,7), Vx. t1 > to and L(x,t,v1) < L(z,t,72), Vx. 71 < Y2 O
Combining these results lets us set
! ! ! 6
a=((1-¢ - L(z,t',y) = 7'(6):1771_a7 21

and then use 7. To find the best 7’ closest to the actual lower bound of exploration probability, we
search for the minimum 7’ over the entire range of ¢ € (0, 1) Thus,

1)
7= min |1

c01) | 1—(1—e)L(s(x),t(e),'(€)

Confidence Bound on Optimal Threshold To find ¢/, +’ from the estimated , 4, we can use the
confidence intervals by assuming a uniform prior on ¢* and v*. Since, under uniform prior the
distributions of Pr(¢*|t) and Pr(t, t*) are the same,

(22)

(23)

Thus we can obtain #', 4’ using CDF of Pr (£, y|t*, v*)

In our experiments, we only use confidence intervals for ¢, i.e., we use the ¢’ parameter to adjust the
likelihood. We estimate and use the point estimate 4 for ~.

D EVALUATION RESULTS

D.1 SEMCACHESEARCHQUERIES BENCHMARK
We discuss the SemCacheSearchQueries benchmark, focusing on understanding the limitations of

static-threshold caching. We highlight why fixed thresholds fail to maintain reliable error guarantees
at scale and how vCache addresses this issue through dynamic, embedding-specific thresholding.

16

Under review as a conference paper at ICLR 2026

—— GPTCache —— vCache
;\38.00 6 Target 2.0 %0.02 315
86'00 —— Actual Error ;\;1 . - ;
%4.00 % 510 -
x -
£2.00 T10 I —
w 8 v 5 /
0.00! 50.5 S
QO LI L ©
Q. Q. Q" Q) O O, Q. Q
& Values 0.0 0
0 50000 100000 150000 0 50000 100000 150000
Sample Size Sample Size

GtelargeENv1 embedding model, Llama 3.1-8B LLM, SemCacheSearchQueries benchmark

Figure 7: vCache meets the user-defined maximum error rate bound § with steadily increasing
cache hit rates (vCache is learning). GPTCache shows increasing error and hit rates, illustrating the
unreliability of static thresholds. The static baseline uses a fixed threshold of 0.985. See Figure 8§ for
a threshold vs. § Pareto comparison.

vCache respects user-defined error-rate requirements We evaluate whether vCache satisfies the
user-defined error rate § while maintaining competitive performance. As shown in Figure 7 (left),
vCache consistently remains below the specified error bound across all tested § values. Moreover, as
the error rate stabilizes, vCache continues to improve its cache hit rate (Figure 4, right). In contrast,
GPTCache exhibits increasing error rates as the sample size grows, despite improved hit rates. This
trend reflects a fundamental limitation of static thresholds: maintaining a bounded error rate requires
continuously increasing the threshold. Over time, no static threshold below 1.0 may suffice to satisfy
a strict error constraint, making such systems difficult to tune and unreliable at scale.

—— vCache —— GPTCache Random Classifier —— No Cache
1.0 5
<30,
. < <4
0.8 3 §
©
10'6 «— =955 o 20 %3
o = o4
0.4 T =2
210 2 £=.999
02 «—— $5=.08 %] 1
§=.01 (@] L X\
:: 1= 999 0 5=.01 ——>

0.00 0.25 0.50 0.75 1.00 4 0.16 0.18 0.20
FPR Error Rate (%) Average Latency (sec)

GtelargeENv1 embedding model, Llama 3.1-8B LLM, SemCacheSearchQueries benchmark

Figure 8: Pareto comparison across a range of thresholds and ¢ values on 150k samples from
the SemCacheSearchQueries benchmark. While vCache outperforms static baselines its error rate
remains bounded. In contrast, static-threshold methods like GPTCache require increasing thresholds
to maintain low error (i.e., a threshold of 0.99 for a 1.7% error rate after 150k samples), shifting
the Pareto curve upward over time. This highlights the limitations of static thresholds in sustaining
error-rate guarantees as sample size grows.

Dynamic and embedding-specific thresholds are superior to static thresholds We evaluate
whether dynamic, embedding-specific thresholds yield better long-term performance than static
thresholding. To this end, we compare vCache against GPTCache by varying static similarity
thresholds and vCache’s maximum error rate bound d. Each point in Figure 8 reflects a complete
evaluation over the SemCacheSearchQueries benchmark, enabling a direct Pareto comparison. Static-
threshold configurations achieve lower cache hit rates and higher error rates than vCache under
equivalent evaluation settings. As shown in Figure 7, GPTCache has an increasing error rate as
the sample size grows because the threshold remains fixed (both cache hit rate and error rate rise
together). As a result, the GPTCache curve in the middle plot (cache hit vs. error rate) is expected
to shift up and to the right, while the curve in the right plot (error rate vs. latency) shifts up and to
the left. This trend suggests that no static threshold below 1.0 can maintain a bounded error rate as

17

Under review as a conference paper at ICLR 2026

prompt diversity increases (see the threshold of 0.99, which yields an error rate of 1.7% after 150k
samples). In contrast, vCache learns its threshold online and per embedding, allowing it to enforce
the error constraint while gradually improving cache hit rate.

D.2 SEMCACHECOMBO BENCHMARK

vCache respects user-defined error-rate requirements on SemCacheCombo Figure 9 evaluates
whether vCache satisfies the user-defined error rate § on the SemCacheCombo benchmark. Across
all tested § values, the realized error of vCache remains below the requested bound, confirming that
the learned thresholds reliably enforce the target error rate. As more samples are processed, vCache
maintains its empirical error while steadily increasing cache hit rate, indicating ongoing learning
from additional data. In contrast, GPTCache with a fixed similarity threshold of 0.83 exhibits growth
in both error rate and hit rate as the sample size increases.

—— GPTCache vCache

8.00 ~
=7.00 6 Target 4 7 =20
%6-00 Actual Error 9 //::00; %
£5.00 3 o : 215
54.00 g e <
5 3.00 <2 £10
£2.00 5| / o /
w1.00 T 51,/ 65/

0-00 S O OO D PO i S 1

LARNBS X O o 0
TG 0 10000 20000 0 10000 20000
6 Values Sample Size Sample Size

GtelargeENv1 embedding model, Llama 3.1-8B LLM, SemCacheCombo benchmark

Figure 9: vCache meets the user-defined maximum error rate bound § with steadily increasing
cache hit rates (vCache is learning). GPTCache shows increasing error and hit rates, illustrating the
unreliability of static thresholds. The static baseline uses a fixed threshold of 0.83. Comparison on
27,5k samples from the SemCacheCombo bechmark. See Figure 10 for a threshold vs. § Pareto
comparison.

Dynamic, embedding-specific thresholds yield better trade-offs than static thresholds on Sem-
CacheCombo Figure 9 summarizes the resulting trade-offs by varying vCache’s error bound ¢
and GPTCache’s static similarity threshold. Each point corresponds to a full evaluation on Sem-
CacheCombo, enabling a direct Pareto comparison. vCache traces a strictly better frontier: it achieves
higher cache hit rates at the same error level, and lower error for comparable hit rates and latency. For
example, vCache attains up to 12.5x higher cache hit rates than the best static-threshold configuration
while still satisfying the user-defined error bound. At matched average latency, vCache consistently
delivers lower error than GPTCache. These results show that dynamic, embedding-specific thresholds
provide superior accuracy—efficiency trade-offs to static thresholds.

D.3 SEMCACHELMARENA WITH OPENAI EMBEDDINGS

vCache respects user-defined error-rate requirements on SemCacheLMArena Figure 11 evalu-
ates whether vCache satisfies the user-defined error rate on the SemCacheLMArena benchmark.
Across all tested 9 values, the realized error rate of vCache remains below the user-defined target,
confirming that the learned thresholds enforce the desired bound. As the sample size grows, vCache
further reduces its empirical error while steadily increasing cache hit rate, indicating that it continues
to learn from additional data. In contrast, GPTCache with a fixed similarity threshold of 0.98 exhibits
growth in both error rate and hit rate as more prompts arrive. Figure 12 outlines a Pareto comparison
across all feasible thresholds.

Dynamic, embedding-specific thresholds yield better trade-offs than static thresholds Figure 12
summarizes the overall accuracy—efficiency trade-offs on SemCacheLMArena by varying vCache’s
error bound ¢ and GPTCache’s static similarity threshold. Each point represents a complete evaluation

18

Under review as a conference paper at ICLR 2026

—— vCache —— GPTCache Random Classifier —— No Cache
1.0 5
:\5 _ — t=86
0.8 =30 2\‘14
0.6 80 2 L3
g 5=.07 1 i = 20 E
Fo.4l) T L2
i £10 £ (-9
0.2f cE |
5 S N
4/_&]) Ol =—— (- 9 dfm;\\\.\
0.00 0.25 050 0.75 1.00 0 2 4 o 115 1.20 1.25
FPR Error Rate (%) Average Latency (sec)

GtelargeENv1 embedding model, Llama 3.1-8B LLM, SemCacheCombo benchmark

Figure 10: Pareto comparison across a range of thresholds and ¢ values on 27,5k samples from the
SemCacheCombo benchmark. vCache outperforms the state-of-the-art GPTCache baselines with up
to 12.5x higher cache hit rates while satisfying the user-defined error rate bound.

—— GPTCache —— vCache
8.00
= 7.00 6 Target 1 530
©5.00 —— Actual Error E\il . 50015 %20
o1
. 9 S
210 /f =
5 S ﬁ
: Sos [£10
0.00 L ©
QOO0 — R O
SESLSKEXNS 00! o/
& Values 0 20000 40000 60000 0 20000 40000 60000

Sample Size Sample Size

OpenAl text-embedding-3-small model, OpenAl GPT 4.1-nano LLM, SemCacheLMArena benchmark

Figure 11: vCache meets the user-defined maximum error rate bound ¢ with steadily increasing cache
hit rates and decreasing error rates (vCache is learning). GPTCache shows increasing error and hit
rates, illustrating the unreliability of static thresholds. The static baseline uses a fixed threshold of
0.98. See Figure 12 for a threshold vs. d Pareto comparison.

run, enabling a direct Pareto comparison. vCache traces out a strictly better frontier: it achieves
substantially higher cache hit rates at the same error level and much lower error for comparable hit
rates and latency. For example, vCache reaches a cache hit rate of 57% while keeping the error rate
below 0.5%, whereas GPTCache requires an order-of-magnitude higher error to obtain similar hit
rates. At matched latency, vCache achieves up to 26 x lower error than the best static configuration.
These outcomes demonstrate that dynamic, embedding-specific thresholds are better suited than static
thresholds for maintaining strict error guarantees while exploiting semantic redundancy.

D.4 7 COMPUTATION OVERHEAD

Figure 13 reports the latency of computing 7 (Algorithm 1) on the SemCacheLMArena benchmark
as a function of the current sample size. Each point corresponds to one update step, and the solid
red line is a linear regression fit. The points form a tight horizontal band and the regression slope is
effectively zero (=~ 5.5 x 10710 sec per sample), indicating that 7 can be computed in constant time.
Across all sample sizes, the latency remains below 1.5 ms, indicating that the overhead of computing
T is negligible.

D.5 EMBEDDING GENERATION OVERHEAD
Semantic caches incur additional latency due to embedding computation, which must be evaluated

in relation to the cost of LLM inference. To quantify this overhead, we compare the embedding
latencies of four models to the inference latency of L1ama3.1-8B.

19

Under review as a conference paper at ICLR 2026

—— GPTCache Random Classifier —— No Cache
=20 100 6
X
=~ 80 I
ot
o 2
- 60 ©
= -4
I —_
2 40 g2
[S%s [} S_ 07
'\ — t=.99 8 w om0 5=.01
§8=.01 20 “«— t=.99 4&.‘_‘/
0.00 025 050 0.75 1.00 0.0 2.5 5.0 7.5 4 6 8
FPR Error Rate (%) Average Latency (sec)

OpenAl text-embedding-3-small model, OpenAl GPT 4.1-nano LLM, SemCacheLMArena benchmark

Figure 12: Pareto comparison across a range of thresholds and § values on 60k samples from
the SemCacheLMArena benchmark. Noticeably, vCache achieves a cache hit rate of 57% while
maintaining an error rate of less than 0.5%. vCache outperforms the state-of-the-art GPTCache
baselines with up to 26x lower error rates while satisfying the user-defined error rate bound.

0.0035 T Computation Latency in Seconds
o —— Regression Line (slope=5.5335e-10)
@ 0.0030
a2
$0.0025
c
8
© 0.0020
-
00015 At St o e S

0 5000 10000 15000 20000 25000 30000 35000 40000
Sample Size

Figure 13: Empirical latency of computing 7 in Algorithm 1 as a function of sample size. The fitted

regression line (slope ~ 5.5 x 10710) shows that the cost is effectively constant, adding at most
~ 1.5 ms (< 0.0015 s) per update.

Embedding Computation Latency Distribution

?
0.016
$0.014
C
o
©0.012
uJ
$0.010
c
3
% 0.008
-
0006 T
A & o D
N
& oS @é K
&2 @ &
& S N
&

Figure 14: Embedding computation latency distributions across models, shown as 95th percentile
whisker plots. GTE_FT = GteLargeENv1-5 (Zhang et al., 2024) fine-tuned (Zhu et al., 2024). ES
Large v2 FT = E5-large-v2 (Wang et al., 2022) fine-tuned (Zhu et al., 2024)

All experiments are conducted on a system with an Intel Xeon Platinum 8570 CPU and an NVIDIA
Blackwell GPU with 192 GB of memory. The results show that embedding computation is signifi-
cantly faster than model inference, confirming its applicability in caching pipelines.

20

Under review as a conference paper at ICLR 2026

D.6 LOGISTIC REGRESSION LATENCY OVERHEAD

Since vCache performs threshold estimation online for every request, the efficiency of logistic
regression directly impacts scalability. In our experiments, we use sklearn.linear_model on CPU,
yielding an average latency of 0.0017 seconds on the SemBenchmarkArena. Its negligible latency
ensures that online modeling does not introduce noticeable overhead and can scale to large caches.

D.7 VCACHE IN COMBINATION WITH VLLM

vCache is orthogonal to inference optimization systems, as semantic prompt caching reuses responses
for semantically similar prompts rather than accelerating inference itself. When a cache miss occurs,
vCache directly benefits from systems such as vLLM (Kwon et al., 2023) or SGLang (Zheng et al.,
2023b), which reduce model latency. To validate this, we hosted LLaMa 3.1 70B with vLLM on two
NVIDIA Blackwell GPUs and compared inference latency with and without vCache. For vCache,
we additionally ran the GteLargeENv1_5 embedding model on the same machine. Evaluation was
conducted on 45k samples from the SemCacheClassification benchmark.

Table 2: A comparison of overall runtime, latency, cache hit rate, and error rate with and without
vCache under different error tolerances

Baseline Confi Overall Avg. LLM Avg. Emb. Cache Error
€ Duration Inference Latency Latency Hit Rate Rate

vLLM - 240 min 0.32 sec - 0.0% 0.0%
VLLM 6=0.01 214 min 0.32 sec 0.018 sec 18.1% 0.4%
+ vCache 6=0.02 170 min 0.32 sec 0.018 sec 35.5% 1.2%
6=0.03 160 min 0.32 sec 0.018 sec 40.2% 1.4%

Despite the additional embedding overhead, vCache substantially reduces end-to-end latency by
avoiding repeated LLM inferences. This demonstrates that vCache is complementary to inference
optimization systems such as vVLLM.

D.8 ADDITIONAL BASELINE EVALUATIONS

vCache is the first adaptive, probabilistic, and Bayesian method for semantic caching. The most
competitive alternatives are static threshold methods, which we extend with several additional
baselines for completeness. The landscape of approaches can be ordered from naive to advanced as
follows:

GS: Global and Static threshold (i.e., GPTCache).

GD: Global and Dynamic threshold (vCache with global threshold).
LS: Per-embedding (L.ocal) and Static threshold.

LD: Per-embedding (Local) and Dynamic threshold:

LD1: Logistic regression to compute the threshold (%).
LD2: Logistic regression sigmoid fit to model correctness probability.

LD3: Logistic regression sigmoid fit with confidence intervals and guarantees (vCache).

We implement all baselines and perform ablations on the E5-1arge—v2 embedding model, OpenAl
GPT-40 mini LLM, and the SemCachelLmArena benchmark. For non-adaptive baselines (LD1
and LD2), we select the threshold or § values that produced error rates closest to their observed
performance. Results are shown in Table 3.

21

Under review as a conference paper at ICLR 2026

Table 3: A comparison of error rate, cache hit rate, and qualitative observations across baselines

Threshold/ Error Cache hit

Baseline Delta Rate Rate Comments and Observations
0.99 2.5% 37% No guarantee and worst trade-off.
GS 0.98 4.1% 53%
0.97 52% 67%
0.02 1.3% 14% Due to the large overlap between incorrect
GD and correct samples at a given similarity
(see 3), the optimal threshold converges to
1.0, yielding low cache hits.
0.03 2.5% 26%
0.05 4.3% 45%
LS - - - Impossible to compute a threshold for every
embedding a priori.
LD1 - 2.6% 70% No guarantees and no error-rate fine-tuning.
LD2 - 2.1% 68% No guarantees and no error-rate fine-tuning.
0.02 0.5% 41% Guarantees and beats both SOTA and GD
LD3 baselines.
0.03 1.1% 46%
0.05 2.0% 54%

This ablation underlines that (1) semantic caches benefit from embedding-specific thresholds, and
(2) probabilistic modeling is required to satisfy user-defined error bounds and ensure predictability.
Notably, only vCache provides guarantees. The importance of guarantees cannot be overstated, as in
practice, the absence of correctness guarantees has been a primary reason for the failure of semantic
caching deployments in industry.

D.9 THRESHOLD DILEMMA

To analyze the relationship between similarity scores s(z) and cache correctness ¢(z), we conduct an
experiment on the 45,000 entries of the SemCacheClassification benchmark using an error tolerance
of § = 0.02 (2%). For each cached embedding x;, we record the observations O(x;) and the
empirically estimated optimal threshold .

In the top plot of Figure 3, we separate all observations into two sets: one where ¢(x) = 1 (correct
cache hit) and another where ¢(z) = 0 (incorrect hit). We plot the kernel density functions (KDF),
also known as kernel density estimations (KDE), to visualize the distribution of correct and incorrect
observations. The result shows that correct and incorrect observations are nearly indistinguishable in
similarity space, with substantial overlap and similar means (0.84 vs. 0.85). This illustrates that one
single similarity threshold is not a reliable decision boundary.

The bottom plot shows a histogram of the optimal threshold values ¢ computed per embedding. The
thresholds span a range, from 0.71 to 1.0, indicating that no single similarity threshold can suffice
across embeddings. A threshold set too low increases the risk of incorrect cache hits; a threshold
set too high limits cache hits. Together, these results motivate the need for embedding-specific and
dynamically learned thresholds to ensure interpretable and reliable performance.

E HYPERPARAMETER GUIDANCE

vCache is designed to be simple to configure, with the error rate bound § as its primary hyperparameter.
We recommend setting this bound based on the desired trade-off between accuracy and cost. For
high-accuracy applications (e.g., customer support or safety-critical systems), a conservative value
such as 0.5% can be appropriate. For use cases with higher tolerance for occasional errors and

22

Under review as a conference paper at ICLR 2026

stronger cost or latency constraints (e.g., search or summarization), values around 2—-3% may be
reasonable. Ultimately, the choice depends on application-specific requirements.

F BENCHMARK CREATION

To the best of our knowledge, no open-source benchmarks currently exist for evaluating the perfor-
mance and applicability of semantic caching systems. To address this gap, we construct and release
three diverse benchmarks’, each designed to reflect a distinct real-world use case: classification tasks,
conversational chatbots, and search engines. This section describes the motivation and construction
process behind each benchmark.

F.1 SEMCACHECLASSIFICATION BENCHMARK

The SemCacheClassification benchmark is designed to evaluate semantic caching in structured
classification settings, such as those found in modern database environments (Liu et al., 2024b).
Several database systems, including Databricks, Snowflake, and AWS, have introduced LLM-based
extensions to SQL via User-Defined Functions (UDFs), enabling capabilities beyond traditional
SQL semantics (Liu et al., 2024b). However, LLM-based UDFs are inherently non-deterministic,
execute row by row, and pose integration challenges for parallelization and query optimization (Franz
et al., 2024). When table rows contain semantically similar values, semantic caching can reduce the
frequency of LLM invocations, thereby improving both latency and cost. This benchmark captures
such use cases, where slight variations in phrasing should not require repeated inference.

The benchmark consists of 45,000 short-form prompts with a fixed output label space. Each example
follows a prompt-response format, where the prompt expresses a classification query and the ex-
pected response is a one-word label. The benchmark combines three diverse classification datasets:
CommonsenseQA (Talmor et al., 2018), Ecommerce Categorization (Saurabh Shahane, 2023), and
Amazon Instant Video Review (Ni et al., 2019). This dataset composition models out-of-distribution
data because the three sources differ significantly in domain, style, and vocabulary, forcing semantic
caching methods to generalize beyond a single homogeneous dataset. Sample prompts and response
formats from each dataset are shown below, and Table 4 summarizes label distributions across the
benchmark.

A sample entry from the Ecommerce Categorization (Saurabh Shahane, 2023) dataset:

{

"prompt": "Which category does the text belong to? Text: <text
>",
"output_format": "Answer with ’Books’, ’'Electronics’, '

Household’, or ’Clothing & Accessories’ only"

}

A sample entry from the Commonsense QA Talmor et al. (2018) dataset:

{

"prompt": "What is the main subject of the following question?
Question: <question>",
"output_format": "Answer with only one of the words of this set

["people’, ’'potato’, ’'competing’, , ’'snake’, ’lizard’, ’food’
, 'car’, ’'water’, ’student’, ’crab’, ’children’, ’‘killing’, '
animals’, ’'ficus’, ’"horse’, ’"fox’, ’'cat’, ’'weasel’, ’shark’, '
person’, "human’]"

}

A sample entry from the Amazon Instant Video Review Ni et al. (2019) dataset:

{

"prompt": "Is this review friendly? Review: <review>",

Shttps://huggingface.co/vCache

23

https://huggingface.co/vCache

Under review as a conference paper at ICLR 2026

"output_format": "Answer with ’'yes’ or ’'no’ only"

}

The benchmark enables controlled evaluation of semantic caching strategies, especially in cases
where small changes in input phrasing must still map to the same output class. Its fixed label format
makes it particularly useful for evaluating systems like vCache, which rely on correctness guarantees
under threshold uncertainty. Table 4 summarizes the label distributions for the three subtasks in the
SemCacheClassification benchmark.

Response ~ Count Response Count Response ~ Count
person 2,806 Books 6,000 yes 10,000
people 625 Clothing 6,000 no 10,000
human 400 Electronics 6,000]
competing 272 Household 2,000 (c) Amazon Instant Video.
animals 225

food 202 (b) Ecommerce.

car 125

water 100

student 79

children 32

killing 27

horse 24

lizard 13

potato 13

fox 11

cat 10

ficus 10

weasel 8

shark 8

crab 7

snake 3

(a) Commonsense QA.

Table 4: Response distribution across three datasets that form the SemCacheClassification benchmark.

F.2 SEMCACHELMARENA BENCHMARK

The SemCacheLMArena benchmark is designed to evaluate semantic caching in chatbot environments,
where users may issue semantically similar prompts with different phrasing. In such settings, caches
must generalize across diverse surface forms while maintaining response correctness. This benchmark
addresses these challenges by grouping semantically similar user inputs and testing whether caching
systems can accurately reuse responses.

To construct the benchmark, we use the LM-Arena human preference dataset (Zheng et al., 2023a),
which contains 100,000 real-world user queries. We randomly sample 3,500 distinct prompts, each
of which defines a class. For each class, we generate between 1 and 23 semantically similar variants
using GPT-4.1-nano, resulting in a total of 60,000 prompts. A class ID is assigned to each prompt to
evaluate caching correctness: a cache hit is considered correct if the retrieved response belongs to the
same class as the query. Figure 15 shows the distribution of class sizes (number of prompts belonging
to a class), confirming broad variability in prompt paraphrasing. To support model-agnostic evaluation,
we generate responses for all prompts using GPT-4.1-nano and GPT-40-mini. The corresponding
response length distributions are shown in Figure 16.

F.3 SEMCACHESEARCHQUERIES BENCHMARK

The SemCacheSearchQueries benchmark is designed to evaluate semantic caching in open-domain
search applications. Large-scale search engines, such as Google, increasingly rely on LLMs to

24

Under review as a conference paper at ICLR 2026

w
o
o

=
o
o

Number of Classes
N
o
o

o

0 5 10 15 20 25
Number of Entries per Class

Figure 15: Distribution of class sizes in the SemCacheLMArena benchmark. Each class corresponds
to a unique user prompt and contains 2—-24 semantically similar variants.

GPT-4.1-nano GPT-40-mini
i ---- Mean: 290.46 4000 o ---- Mean: 283.55
3000 H— ---- Median: 237.50 i ---- Median: 228.00
o Frequency 3000 . Frequency
£ 2000 b € F
3 . 32000 o
o [© P
00 200 400 600 800 1000 O0 200 400 600 800 1000
Response Length (words) Response Length (words)

Figure 16: Response length histogram for GPT-4.1-nano and GPT-40-mini on the SemCacheLMArena
benchmark. Median and mean lengths are shown for each model.

generate direct answers to natural language queries (Liu et al., 2024a; Wang et al., 2024). While
this improves user experience, it introduces significant latency and cost, particularly at the scale of
millions of daily queries. Many queries issued to search engines are paraphrased variations of earlier
inputs, making semantic caching a natural fit for reducing redundant LLM inference in this setting.

The benchmark is constructed from a filtered subset of the ORCAS dataset (Craswell et al., 2020),
containing real-world search engine queries. We begin by sampling 500,000 queries and embedding
each using the gte-large-en-v1.5 embedding model (Zhang et al., 2024). We then apply k-means
clustering to group similar queries and retain the largest clusters, resulting in 150,000 entries. Within
each cluster, we apply a union-find algorithm guided by an LLM-based judge (GPT-4.1-nano) to
determine whether query pairs yield the same response. Sub-clusters identified in this step define the
equivalence classes used for caching evaluation. Figure 17 summarizes the benchmark properties,
including class size distribution, frequent query terms, and statistics on the number of queries per
class.

F.4 SEMCACHECOMBO BENCHMARK

We introduce the SemCacheCombo benchmark to evaluate semantic caching in workloads that contain
both reusable responses and unique, non-reusable responses. The dataset is constructed by combining
two sources into a single sequence of 27,500 prompts. First, we take the SemCacheLMArena
benchmark and select one representative prompt from each of its 3,500 semantic classes. Because each
prompt represents a different cluster, these 3,500 queries are pairwise semantically distinct and should
not share a reusable response. From the perspective of a semantic cache, every SemCacheLMArena
prompt is therefore expected to result in a cache miss; any cache hit on this subset is, by definition,
an incorrect reuse. Second, we append 24,000 prompts from the SemCacheClassification benchmark.
Correct cache hits may only occur within this set of prompts. Next, we randomly shuffle all 27,500
prompts.

G CONVERGENCE SPEED ESTIMATION

For each cached prompt y = nn(x), vCache fits the sigmoid model £(s(x),t,~) to the meta-data
O(y). Under the standard regularity assumptions for logistic regression, the MLE (%,,4,) converges

25

Under review as a conference paper at ICLR 2026

Distribution of Class Sizes Top 20 Most Common Words in Queries
17500
2500
15000
© 2000
@ 12500
© 9
© 1500 < 10000
u— [
: 3
=
élooo £ 7500
é 5000
500
2500
0 2 7 12 17 22.-27 32 37 42 47 O&Qb\ee&(eg\oeb(c\z(&e&o
2 N2 (2 D >
Number of Queries in Class o?'boﬁo%@‘:\\\‘\,\e%o CIERY B E o&\é‘&o& O\Ae?’
D OF e (e (ORSAIES
@bo Q SC @
Words
Top 20 Largest Classes
Min Set Size #Sets #Queries
" 80 2 11148 106187 (70.8%)
Q9
T g0 4 7808 98639 (65.8%)
g 8 6040 88954 (59.3%)
340 16 1014 42024 (28.0%)
€
S 32 170 6803 (4.5%)
Z20
Total queries: 150000
Total unique set_ids: 54961

o

0 5 10 15 20 Set_ids with multiple queries: 11148 (20.3%)
Class Rank Largest class size: 90 queries

Figure 17: Descriptive statistics for the SemCacheSearchQueries benchmark. Top left: Most classes
contain exactly two queries. Top right: The word best appears in over 16,000 of the 150,000 queries.
Bottom left: The largest class contains 90 semantically equivalent queries. Bottom right: 59.3% of
all classes contain more than eight queries, indicating substantial intra-class variability.

to the true embedding-specific parameters (t,,,) at the usual parametric rate O(1/,/n,,), where
n, denotes the number of explored queries whose nearest neighbor is . Any embedding-specific
threshold derived from this model (e.g., the similarity at which Pr(c(z) = 1 | z, D) exceeds
1 — 0, or the required exploration probability 7,,,,(,)(s(2))) is a smooth function of (t,,,) and
therefore inherits the same O(1/,/n,) convergence rate via the delta method. Intuitively, as vCache
collects more labels for a given neighbor, the decision boundary ¢ and the corresponding policy
Pycache(s(x), O(nn(x)), 0) stabilize at this standard parametric speed.

H EMPIRICAL JUSTIFICATION OF THE SIGMOID MODEL

We model, for each cached embedding nn(z), the probability Pr(c(z) = 1 | x, D) as a function
of similarity s(z) using the logistic family. We require the following structural properties from
L(s(x),t,v): 1) monotonicity in similarity, 2) boundedness in [0, 1], and 3) a low-dimensional
parameterization so that we can obtain tight confidence bands for (¢,) from the relatively small
observation sets O,,,, (). The logistic sigmoid is a canonical choice satisfying these properties and
allows efficient MLE.

To empirically validate this choice, we analyze the SemBenchmarkLmArena configuration with
text-embedding-3-small and GPT-4.1-nano. We randomly select and evaluation run and for each
cached embedding we collect all observed pairs (s(), c(z)) € Opp(a), Where s(z) is the similarity
between x and nn(z) and c¢(z) € {0, 1} indicates whether returning the cached response was correct.
Figure 18 shows, for the two embeddings with the largest numbers of labeled observations (42 and
33, respectively), a 1D k-NN estimate (k = 5) of Pr(c = 1 | s,nn(x)) as a function of similarity s.
Both curves are monotone and exhibit a S-shaped transition from low to high correctness as similarity
increases, which is the behavior that Eq. 9 is designed to capture for each nn(z) and then feed into
Tyn(z)(S(x)) and 7 in Eq. 9 and Eq. 11.

Figure 19 shows an aggregate view across all cached embeddings in the same configuration. We
bin all (s(x), c(x)) pairs by similarity and plot the empirical correctness probability Pr(c =1 | s)
per bin. The resulting curve is again monotone and clearly S-shaped, with low correctness at small
similarity, a rapid increase in a mid-range similarity region, and saturation near one at high similarity.

26

Under review as a conference paper at ICLR 2026

1.0 1.0
a —— 42 observations 2 —— 33 observations
£50.8 508
(9] %]
£ £
§06 §0.6
u— Y=
o o
20.4 20.4
3 3
802 802
Qe <]
o [=%

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Similarity (s) Similarity (s)

Figure 18: Empirical probability of correctness as a function of similarity s for the two cached
embeddings with the largest numbers of labeled observations (42 and 33) in SemBenchmarkLLmArena
with text-embedding-3-small and GPT-4.1-nano. We estimate Pr(c = 1 | s,nn(z)) using a 1D
k-NN smoother with £ = 5. In both cases the curve is monotone and approximately sigmoidal in s,
supporting the per-embedding sigmoid model £L(s(z), t,) in Eq. 9.

1.0

0.8

0.6

0.4

Probability of correctness

0.2

0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

Similarity (s)

Figure 19: Aggregate empirical correctness probability as a function of similarity s over all cached
embeddings in SemBenchmarkLLmArena with text-embedding-3-small and GPT-4.1-nano. We bin all
(s(x), c(x)) pairs by similarity and plot the fraction of correct reuse decisions per bin. The resulting
curve is monotone and clearly S-shaped, with low correctness at low similarity, a sharp increase in
a mid-similarity region, and saturation at high similarity, which matches the qualitative behavior
modeled by the sigmoid family in Eq. 9.

27

	Introduction
	Related Work
	Overview of Semantic Caching
	vCache
	User Guarantee
	vCache Modeling
	vCache Algorithm

	Evaluation
	Limitations
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Notation Glossary
	vCache Semantic Cache Architecture
	vCache Modeling Proof
	Evaluation Results
	SemCacheSearchQueries Benchmark
	SemCacheCombo Benchmark
	SemCacheLMArena with OpenAI Embeddings
	 Computation Overhead
	Embedding Generation Overhead
	Logistic Regression Latency Overhead
	vCache in combination with vLLM
	Additional Baseline Evaluations
	Threshold Dilemma

	Hyperparameter Guidance
	Benchmark Creation
	SemCacheClassification Benchmark
	SemCacheLMArena Benchmark
	SemCacheSearchQueries Benchmark
	SemCacheCombo Benchmark

	Convergence Speed Estimation
	Empirical Justification of the Sigmoid Model

