

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

vCACHE: VERIFIED SEMANTIC PROMPT CACHING

Anonymous authors

Paper under double-blind review

ABSTRACT

Semantic caches return cached responses for semantically similar prompts to reduce LLM inference latency and cost. They embed cached prompts and store them alongside their response in a vector database. Embedding similarity metrics assign a numerical score to quantify the similarity between a request and its nearest neighbor prompt from the cache. Existing systems use the same static similarity threshold across all requests to determine whether two prompts can share similar responses. However, we observe that static thresholds do not give formal correctness guarantees, can result in unexpected error rates, and lead to suboptimal cache hit rates. This paper proposes vCache, the first verified semantic cache with user-defined error rate guarantees. It employs an online learning algorithm to estimate an optimal threshold for each cached prompt, enabling reliable cache responses without additional training. Our experiments show that vCache consistently meets the specified error bounds while outperforming state-of-the-art static-threshold and fine-tuned embedding baselines with up to $12.5\times$ higher cache hit and $26\times$ lower error rates. We release the vCache implementation and four benchmarks to support future research.

1 INTRODUCTION

Large language models (LLMs) power applications ranging from conversational assistants to search engines and code generation, but their widespread use is limited by the high computational cost and inference latency (Zhao et al., 2023; Xiong et al., 2024; Achiam et al., 2023). Each new prompt requires multiple expensive forward passes through the model, which makes deployments costly and slow (Kwon et al., 2023). Prompt caching offers a natural way to mitigate this issue: if a prompt has already been answered, the system can return the cached response instead of performing another inference. Traditional exact string-match caching reduces cost by returning responses for repeated prompts, but it fails whenever the same intent is expressed in different words (Zhu et al., 2024). For example, a cache that already answered “Which city is Canada’s capital?” should also return the same response when later asked “What is the capital of Canada?”. Semantic caching addresses this limitation by retrieving responses for prompts that are semantically similar, even if their lexical form differs, and reduces inference latency by up to $100\times$ (Bang, 2023). Semantic caches are effective in single-turn interactions with short to medium context, such as web search queries or classification tasks, where requests reappear in paraphrased forms but map to the same underlying response (Liu et al., 2024b; Wang et al., 2024). In this paper, we study the reliability of semantic caches in returning correct responses for semantically similar prompts.

Semantic caches operate as follows. The cache embeds every prompt request x into a vector $\mathcal{E}(x) \in \mathbb{R}^d$ and retrieves the semantically most similar prompt $nn(x)$, alongside its response $r(nn(x))$, from a vector database (Pan et al., 2024). The cache measures similarity (e.g., cosine similarity) between two embeddings using $s(x) = sim(\mathcal{E}(x), \mathcal{E}(y)) \in [0, 1]$. If no sufficiently similar prompt is found, an LLM generates a response and adds the embedded prompt along with the response to the vector database in the cache.

To determine whether a new prompt is sufficiently close to an existing prompt in the cache, state-of-the-art semantic caches rely on a user-selected threshold $t \in [0, 1]$ (Bang, 2023; Li et al., 2024; Dasgupta et al., 2025; Razi et al., 2024; Sudarsan & MasayaNishimaki, 2024). If $s(x) \geq t$, the system performs exploitation (cache hit) by returning the cached response $r(nn(x))$. Otherwise, it performs exploration (cache miss) by querying the model for a new response $r(x)$. The cache adds $\mathcal{E}(x)$ to the vector database, stores $r(x)$ in its metadata, and returns $r(x)$.

054 However, selecting an appropriate threshold t is nontrivial. If the threshold t is set too low, the system
 055 may treat unrelated prompts as similar, resulting in cache hits where the retrieved response $r(nn(x))$
 056 differs from the correct output $r(x)$. These false positives reduce response quality and compromise
 057 cache reliability. If t is too high, the system may forgo correct cache hit opportunities and invoke the
 058 model unnecessarily (Rekabsaz et al., 2017).

059 Existing systems use the same static similarity threshold across all requests. Users either use a
 060 predefined threshold (e.g., 0.8) or determine one by testing multiple values upfront (Dasgupta et al.,
 061 2025; Li et al., 2024; Dan Lepow, 2025; Razi et al., 2024; lit, 2025; Bang, 2023). This approach
 062 assumes that similarity correlates uniformly with correctness across all prompts and their embeddings.
 063 However, two prompts may be close in embedding space yet require different responses. Figure 3
 064 illustrates that correct and incorrect cache hits have highly overlapping similarity distributions,
 065 suggesting that fixed thresholds are either unreliable or must be set extremely high to avoid errors,
 066 making them suboptimal. Another significant limitation of existing semantic caches is the lack of
 067 error-rate guarantees. While the latency benefits of caching are appealing, the risk of returning
 068 incorrect responses can outweigh those advantages. For widespread adoption, semantic caches must
 069 adhere to user-defined error rate tolerances.

070 We propose vCache, the first verified semantic cache with theoretical correctness guarantees. vCache
 071 learns a separate threshold (Figure 1) for each embedding in the cache, capturing the threshold
 072 variability observed in Figure 3. It requires no upfront training, is agnostic to the underlying
 073 embedding model, and dynamically adapts its thresholds to the data distribution it encounters. As
 074 a consequence, vCache is robust to out-of-distribution inputs. To our knowledge, no prior work in
 075 semantic caching 1) learns thresholds in an online manner and 2) guarantees their correctness.

076 We adopt a probabilistic framework to bound the error rate conditioned on a learned per-embedding
 077 threshold. When deploying vCache, the user specifies a maximum error rate bound δ , and the system
 078 maximizes the cache hit rate subject to this correctness constraint (Figure 2). Let $vCache(x)$ denote
 079 the response returned by vCache. Let τ denote the exploration probability—a value monotonically
 080 decreasing in the likelihood of being correct—and calibrated such that the overall error rate remains
 081 below the user-specified bound (Section 4). The decision rule modeling the probability of being
 082 correct for whether to exploit the cached response or explore an LLM inference is given by:

$$vCache(x) = \begin{cases} r(nn(x)) & \text{Uniform}(0, 1) > \tau, \\ LLM(x) & \text{otherwise.} \end{cases} \quad (1)$$

085 An illustrative overview of the vCache workflow and system architecture is provided in Appendix B.

086 We evaluate the effectiveness of vCache in terms of correctness guarantees and overall performance.
 087 To assess generalizability, we compare vCache across three embedding models, two LLMs, and
 088 five datasets. We find that vCache consistently meets the error-rate bounds and outperforms static
 089 threshold baselines, even when using fine-tuned embeddings. Specifically, it achieves up to **12.5×**
 090 **higher cache hit rates and reduces error rates by up to 26×**. Our main contributions are as follows:
 091

- 092 1. We propose **vCache**, the first semantic cache that enforces a **user-defined correctness guarantee**
 093 by bounding the error rate.
- 094 2. We introduce an **online threshold learning algorithm** that requires no prior supervised training,
 095 adapts to the observed data distribution, and is agnostic to the choice of embedding model.
- 096 3. We demonstrate that **embedding-specific, dynamic thresholds** improve decision quality. By
 097 learning a separate threshold per cached embedding, vCache achieves equal or better performance
 098 compared to both static thresholding and fine-tuned embeddings.
- 099 4. We **introduce four benchmarks**, derived from five real-world datasets, that capture common
 100 semantic cache use cases: classification tasks, search queries, and open-ended prompt distributions.
- 101 5. We **release the vCache implementation**¹ and **three benchmarks**² to support future research.

102 2 RELATED WORK

103 Existing semantic caches, such as GPTCache (Bang, 2023) and industry variants (Razi et al., 2024;
 104 Dan Lepow, 2025; lit, 2025; Dasgupta et al., 2025; Li et al., 2024), use a global similarity threshold

1¹<https://anonymous.4open.science/r/vCache-FB5E/README.md>

2²<https://huggingface.co/vCache>

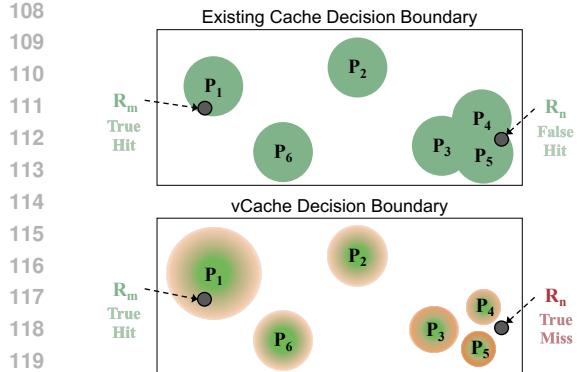


Figure 1: The static threshold in existing semantic caches enforces naive decision boundaries, resulting in either low cache hit or high error rates. vCache’s embedding-specific and dynamic thresholds learn decision boundaries to guarantee a user-defined maximum error rate. Gradient shading reflects decreasing confidence in correctness as similarity to the cached embedding decreases.

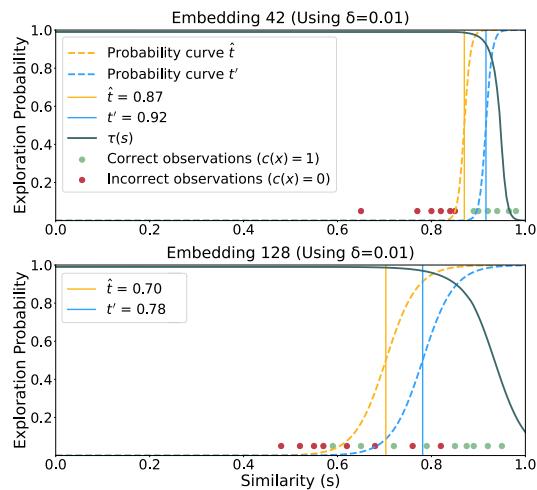


Figure 2: Exploration probability for emb_{42} and emb_{128} . Top: Observations are perfectly separable. Bottom: Observations are overlapping. vCache selects the optimal \hat{t} and adjusts the exploration probability based on the user-defined $\delta = 0.01$.

to make cache hit decisions. This assumes a uniform correlation between similarity and correctness across all prompts and embeddings. However, as illustrated in Figure 3, similarity distributions vary widely, making fixed thresholds unreliable. Further details are provided in Appendix D.9.

Semantic Cache Optimization. The threshold dilemma illustrated in Figure 3 can be addressed via two approaches: optimizing the embedding space or learning more effective thresholding strategies.

Embedding Fine-tuning: Zhu et al. (2024) propose a distillation-based method that fine-tunes embeddings for semantic caching, improving alignment between semantically equivalent prompts and their responses. A related challenge arises in image retrieval, where systems must determine whether a nearest neighbor corresponds to the correct target class. Zhang et al. (2023a) address this by introducing the Threshold-Consistent Margin loss, which enforces tighter intra-class cohesion and clearer inter-class separation by selectively penalizing negative pairs. However, they require supervised training, are limited to open-source embedding models, and can fail to generalize to out-of-distribution data at inference time (Hajipour et al., 2024). vCache’s online learning algorithm does not require training, is model-agnostic, and generalizes to out-of-distribution data (see Appendix F.1).

Threshold Optimization: Threshold optimization learns a decision boundary over existing embeddings without modifying the embedding model itself (Zhang et al., 2023b). To our knowledge, no prior work in semantic caching learns thresholds online at inference time. Yet, as shown in Figure 3, the optimal similarity threshold varies significantly across embeddings, motivating embedding-specific and online threshold estimation. Related ideas have been explored in incremental learning. For example, Rudd et al. (2017) propose the Extreme Value Machine (EVM), which models class boundaries using extreme value theory to support generalization to unseen categories. However, these methods do not guarantee user-defined error rates. In contrast, we introduce the first online algorithm that estimates per-embedding thresholds for semantic caches while satisfying a user-defined error bound.

Semantic Cache Guarantees. Even with high-quality embeddings and a presumably carefully tuned threshold, semantic caches remain inherently approximate. Unless a threshold of 1.0 is used (effectively restricting cache hits to exact prompt matches), there is always a risk of returning incorrect responses (Razi et al., 2024; Jim Allen Wallace, 2024). Despite this, existing semantic caching systems rely on fixed thresholds to decide whether to return a cached response (Dasgupta et al., 2025; Li et al., 2024; Dan Lepow, 2025; Razi et al., 2024; lit, 2025; Bang, 2023). As a result, they offer no formal guarantees on accuracy or error rates, making it difficult to justify their reliability in production environments. To address this, we propose vCache, the first semantic caching system that combines competitive performance with a user-defined correctness guarantee.

162

3 OVERVIEW OF SEMANTIC CACHING

164 Let $\{x_1, x_2, \dots, x_n\}$ be the set of all prompts inserted into the cache, in that order. Note that this set
 165 excludes prompts for which a cache hit was found and served. Let \mathcal{D} denote all the data stored in
 166 the cache. For each prompt x inserted into the cache, we store its vector embedding $\mathcal{E}(x) \in \mathbb{R}^d$, the
 167 true response $r(x) = \text{LLM}(x)$ produced by the LLM, and optional additional metadata $\mathcal{O}(x)$. Given
 168 $\mathcal{E}(x)$, the cache retrieves the most similar prompt from the vector database with an approximate
 169 nearest neighbor search (Arya et al., 1998), where

$$170 \quad \text{nn}(x) = \arg \max_{y \in \mathcal{C}} \text{sim}(\mathcal{E}(x), \mathcal{E}(y)). \quad (2)$$

172 In vCache, for a prompt x_i , the metadata $\mathcal{O}(x_i)$ stores similarity and response match information
 173 for all future prompts x_j (with $j > i$) such that $\text{nn}(x_j) = x_i$. The exact workings of vCache are
 174 presented in Algorithm 1. The sets \mathcal{D} and \mathcal{O} can be represented as follows:

$$176 \quad \mathcal{D} = \left\{ (\mathcal{E}(x_i), r(x_i), \mathcal{O}(x_i)) \right\}_{i=0}^n \quad \mathcal{O}(x_i) = \left\{ (s(x_j), c(x_j)) \mid \text{nn}(x_j) = x_i \right\}_{j=i+1}^n \quad (3)$$

178 where $s(x) \in [0, 1]$ is the similarity between x and its nearest neighbor $\text{nn}(x)$ and $c(x)$ indicates if
 179 the cached response of $\text{nn}(x)$, $r(\text{nn}(x))$, matches the true response $r(x)$.

$$181 \quad s(x) = \text{sim}(\mathcal{E}(x), \mathcal{E}(\text{nn}(x))) \quad c(x) = \begin{cases} 1 & \text{if } r(\text{nn}(x)) = r(x), \\ 0 & \text{otherwise.} \end{cases} \quad (4)$$

183 **Algorithm.** Given a prompt, say x , we first compute the embedding $\mathcal{E}(x)$ and find its nearest
 184 neighbor $\text{nn}(x)$. The caching policy \mathcal{P} then determines whether we should use the cached response
 185 for this prompt (exploit) or run the LLM inference (explore). In case we decide to exploit, $r(\text{nn}(x))$
 186 is returned. Otherwise, we run $r(x) = \text{LLM}(x)$, compute $s(x)$ and $c(x)$, update the observations
 187 $\mathcal{O}(\text{nn}(x))$ and add x to the database \mathcal{D} using,

$$188 \quad \mathcal{O}(\text{nn}(x)) = \mathcal{O}(\text{nn}(x)) \cup \{s(x), c(x)\}, \quad \mathcal{D} = \mathcal{D} \cup \{(\mathcal{E}(x), r(x), \emptyset)\}. \quad (5)$$

190 The key challenge lies in designing a decision policy $\mathcal{P}(\dots)$, as it directly impacts both the cache hit
 191 rate and the overall error rate.

192 **Policy of existing systems** ($\mathcal{P}_{\text{gptCache}}(\mathbf{s}(\mathbf{x}))$). In existing semantic caching systems, the decision
 193 function is implemented as a fixed threshold rule. Given a user-defined threshold t , the cache exploits
 194 if $s(x) \geq t$ by returning the cached response $r(\text{nn}(x))$. Otherwise, it explores by invoking the model
 195 for a response. As discussed in Section 2, this approach lacks formal guarantees and does not adapt
 196 to variation in similarity value distributions.

197 **Policy of vCache** ($\mathcal{P}_{\text{vCache}}(\mathbf{s}(\mathbf{x}), \mathcal{O}(\text{nn}(\mathbf{x})), \delta)$). vCache replaces static thresholding with an
 198 embedding-specific decision function that respects a user-defined error bound δ . If the function returns
 199 exploit, the cache is sufficiently confident and outputs the cached response $r(\text{nn}(x))$ (Algorithm 1,
 200 L5). Otherwise, it returns explore by inferring the LLM. Section 4 provides further details.

201 **Scope of definitions.** All quantities such as $\text{nn}(x)$, $s(x)$, and $c(x)$, are evaluated at a fixed (but
 202 arbitrary) point in time. Since the analysis is performed online, these definitions apply consistently
 203 across time steps. Policy discussion always refers to a specific embedding in the cache, with all
 204 parameters and estimates interpreted as conditional on it.

206 For ease of reference, a glossary of all symbols and functions is provided in Appendix A.

208

4 VCACHE

210 Given a user-defined maximum error rate δ , vCache maximizes the cache hit rate while ensuring the
 211 probability of correctness remains above $1 - \delta$. Instead of relying on an unreliable static threshold or
 212 fine-tuned embeddings, vCache models probability distributions to make cache hit or miss decisions.
 213 The distributions are specific to each embedding in the cache and model the probability of correct
 214 cache hits for a given similarity value. To remain dataset agnostic and avoid costly offline training,
 215 vCache estimates these distributions online by selectively generating labels for uncertain similarity
 values. Since generating a label requires an LLM inference, equivalent in cost to not using a cache,

```

216
217 Algorithm 1 vCache Workflow
218
219 1:  $e_x \leftarrow \mathcal{E}(x)$ 
220 2:  $y \leftarrow \text{nn}(x)$ 
221 3:  $s(x) \leftarrow \text{sim}(e_x, \mathcal{E}(y))$ 
222 4: if  $\mathcal{P}(s, \mathcal{O}(y), \delta) = \text{exploit}$  then
223 5:   return  $r(y)$ 
224 6: else
225 7:    $r(x) \leftarrow \text{LLM}(x)$ 
226 8:    $c(x) = \mathbf{1}(r(x) = r(y))$ 
227 9:    $\mathcal{O}(y) \leftarrow \mathcal{O}(y) \cup \{(s(x), c(x))\}$ 
228 10:  if  $\neg c(x)$  then
229 11:     $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathcal{E}(x), r(x), \emptyset)\}$ 
230 12:  end if
231 13:  return  $r(x)$ 
232 14: end if

```

232
233 vCache workflow for deciding whether to ex-
234 ploit a cached response (cache hit) or explore
235 an LLM inference (cache miss). The decision
236 relies on the $\mathcal{P}_{\text{vCache}}$ policy (Section 4) and
237 guarantees a user-defined error rate bound δ .
238

239 vCache minimizes such inferences. We refer to such inferences as explore and classify them as a
240 cache miss. For a given prompt x , the cached response $r(\text{nn}(x))$ is considered uncertain when the
241 observations $\mathcal{O}(\text{nn}(x))$ do not provide sufficient evidence to determine whether the cached response
242 is correct ($c(x) = 1$). In contrast, if $\mathcal{O}(\text{nn}(x))$ provides sufficient evidence, vCache proceeds with
243 exploit by returning the cached response $r(\text{nn}(x))$ without an LLM inference. The rest of this section
244 formalizes these ideas and provides a detailed explanation of the vCache policy, $\mathcal{P}_{\text{vCache}}$.
245

4.1 USER GUARANTEE

247 One of the key features of vCache is that it takes a user-defined maximum error rate, δ , and ensures
248 that the overall performance of the cache remains within this error bound. Let $\text{vCache}(x)$ denote
249 the response returned by vCache, regardless of whether the decision was to explore or exploit. Then,
250 an error rate guarantee of δ implies:

251 **Definition 4.1** (user-guarantee). *An error-rate guarantee of δ for vCache implies that the marginal
252 probability of vCache returning the correct answer, given any arbitrary prompt x , is lower bounded
253 by $(1 - \delta)$. In other words,*

$$\Pr(\text{vCache}(x) = r(x)) \geq (1 - \delta). \quad (6)$$

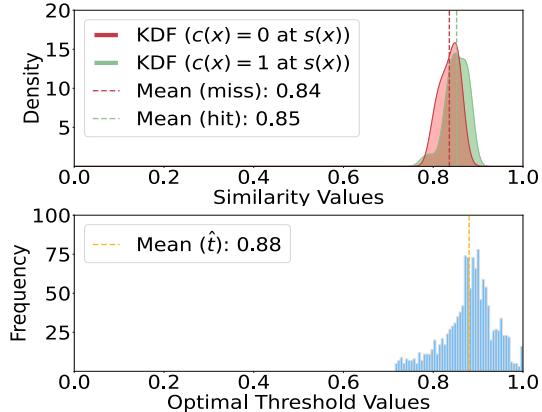
256 To achieve the error guarantee, vCache probabilistically decides when to explore and when to exploit.
257 Let $\Pr_{\text{explore}}(x|\mathcal{D})$ be the probability that, given a prompt x and having accumulated data \mathcal{D} , vCache
258 decides to explore. Then, we can decompose the probability that vCache is correct as,
259

$$\Pr(\text{vCache}(x) = r(x)) = \Pr(\text{explore}|x, \mathcal{D}) + (1 - \Pr(\text{explore}|x, \mathcal{D}))\Pr(c(x) = 1|x, \mathcal{D}). \quad (7)$$

261 This expression reflects two disjoint events. First, vCache decides to explore with probability
262 $\Pr(\text{explore}|x, \mathcal{D})$, and in this case, the output $\text{vCache}(x)$ is same as $\text{LLM}(x)$ by design. In the
263 second case, the vCache decides to exploit with probability $(1 - \Pr(\text{explore}|x, \mathcal{D}))$ and in this case,
264 the probability of vCache being correct is represented as $\Pr(c(x) = 1|x, \mathcal{D})$ using notation from the
265 previous section. To ensure error guarantees are maintained, we should have,

$$\Pr(\text{explore}|x, \mathcal{D}) \geq \frac{(1 - \delta) - \Pr(c(x) = 1|x, \mathcal{D})}{1 - \Pr(c(x) = 1|x, \mathcal{D})} = \tau_{\text{nn}(x)}(s(x)). \quad (8)$$

266 To meet the guarantees, vCache models the $\Pr(c(x) = 1|x, \mathcal{D})$. This inequality provides an
267 actionable constraint: if the estimated probability of correctness from the cache is high, the system
268



269 Figure 3: Results from 45k samples in the Sem-
270 CacheClassification benchmark. Motivates the
271 need for dynamic, embedding-specific thresholds.
272 Top: Similarity values of correct and incorrect ex-
273 plorations exhibit highly overlapping distributions.
274 Bottom: Optimal per-embedding thresholds vary
275 substantially, indicating that no single threshold
276 can suffice across embeddings (see Appendix D.9).

270 may exploit; if the estimate is low, the system must explore. As long as $\Pr(\text{explore}|x, D)$ is larger
 271 than the $\tau_{\text{nn}(x)}(s(x))$, the guarantees are achieved. Notation of τ is chosen to emphasize that it is a
 272 function over similarities and is specific to each embedding in the cache.

273 Since vCache can only estimate $\Pr(c(x) = 1 | x, \mathcal{D})$ based on a limited number of samples, it
 274 accounts for the uncertainty in the estimation by considering the confidence band of $\Pr(c(x) = 1 |$
 275 $x, \mathcal{D})$. The modeling details and the vCache policy are presented in the following subsection.

277 4.2 vCACHE MODELING

279 vCache imposes a sigmoid parametric model on the relationship between similarity and correctness.
 280 Specifically, for an arbitrary prompt x , the probability of correct cache hit is defined as

$$282 \quad 283 \quad \Pr(c(x) = 1 | x, \mathcal{D}) = \mathcal{L}(s(x), t, \gamma) = \frac{1}{1 + e^{-\gamma(s(x)-t)}}, \quad (9)$$

284 where $s(x) \in [0, 1]$ is the similarity of x with its near neighbour. $t \in [0, 1]$ is an embedding-specific
 285 decision boundary parameter, and $\gamma > 0$ is a parameter controlling the steepness of the function. The
 286 sigmoid form is well-suited for this task: it induces a smooth and monotonic relationship between
 287 similarity and correctness probability and enables efficient maximum-likelihood estimation (MLE) of
 288 the threshold t from labeled data (justification in Appendix H). By fitting a continuous likelihood
 289 function rather than enforcing a hard threshold, vCache generalizes better from limited observations.

290 The MLE estimates for the parameters, say $\hat{t}_{\text{nn}(x)}$ and $\hat{\gamma}_{\text{nn}(x)}$, using all the meta-data $\mathcal{O}_{\text{nn}(x)}$ solves
 291 the binary cross entropy loss,

$$293 \quad 294 \quad \hat{t}_{\text{nn}(x)}, \hat{\gamma}_{\text{nn}(x)} = \arg \min_{t, \gamma} \mathbb{E}_{(s, c) \in \mathcal{O}_{\text{nn}(x)}} \left[\left(c \cdot \log(\mathcal{L}(s, t, \gamma)) \right) + \left((1-c) \cdot \log(1 - \mathcal{L}(s, t, \gamma)) \right) \right] \quad (10)$$

295 Note that these parameters belong to a specific embedding in the cache (specifically $\text{nn}(x)$).

297 Since these estimates are based on a limited number of samples, estimating the true $\Pr(c(x)=1|x, \mathcal{D})$,
 298 and thus the correct $\tau_{\text{nn}(x)}(s(x))$ is not possible. To ensure we still achieve guarantees, vCache,
 299 instead computes a upper bound, say $\hat{\tau}$ for $\tau_{\text{nn}(x)}(s(x))$ using pessimistic values for t, γ from the
 300 $(1 - \epsilon)$ confidence band for these points for some $\epsilon \in (0, 1)$. Let these estimates be $t'(\epsilon), \gamma'(\epsilon)$. We
 301 compute $\hat{\tau}$ using,

$$302 \quad 303 \quad \hat{\tau} = \min_{\epsilon \in (0, 1)} \frac{(1 - \delta) - (1 - \epsilon)\mathcal{L}(s(x), t'(\epsilon), \gamma'(\epsilon))}{1 - (1 - \epsilon)\mathcal{L}(s(x), t'(\epsilon), \gamma'(\epsilon))} \geq \tau_{\text{nn}(x)}(s(x)). \quad (11)$$

305 The details of why $\hat{\tau} \geq \tau_{\text{nn}(x)}(s(x))$ and how to obtain confidence bands for t and γ are explained in
 306 Appendix C. Once we have $\hat{\tau}$, we have to ensure that the probability of exploration is above this value
 307 (see Eq 8). This is achieved by sampling a uniform random variable $u \sim \text{Uniform}(0, 1)$. If $u \leq \hat{\tau}$,
 308 the vCache explores, i.e., runs the LLM model to obtain the correct response. Otherwise, it exploits
 309 the cache by returning $r(\text{nn}(x))$. This randomized policy ensures that, in expectation, the system
 310 explores sufficiently often to meet the correctness guarantee while maximizing cache usage when
 311 reliability is high. The exact algorithm of how explore and exploit decisions are made is presented
 312 in Algorithm 2. Figure 2 illustrates the vCache modeling, where each subplot shows one cached
 313 embedding. Green and red points indicate correct and incorrect responses to observed similarities.
 314 The yellow dashed curve is the sigmoid model, with threshold \hat{t} obtained by MLE. The blue dashed
 315 curve represents the sigmoid fit based on confidence bounds, with threshold t' selected to meet the
 316 user-defined error bound δ . The dark green curve $\tau(s)$ denotes the exploration probability, where for
 317 a given similarity s , vCache explores with probability $\tau(s)$ and exploits the cache otherwise.

318 4.3 vCACHE ALGORITHM

320 To summarize, the final vCache algorithm works as follows. First, for each incoming prompt x , it
 321 retrieves its nearest cached embedding $y = \text{nn}(x)$ and fits a logistic decision boundary $\hat{t}(y)$ using
 322 all labeled examples observed for y . It then computes the $\hat{\tau}$ using Eq 11 by iterating over different
 323 values of confidence ϵ . Then we use a uniform random variable $u \sim \text{Uniform}[0, 1]$ and explore if
 $u \leq \tau$ and exploit otherwise.

324 **Algorithm 2** vCache Policy $\mathcal{P}_{vCache}(s(x), \mathcal{O}(\text{nn}(x)), \delta)$

1: function $\mathcal{P}_{vCache}(s(x), \mathcal{O}(\text{nn}(x)), \delta)$ 2: $\hat{t}, \hat{\gamma} \leftarrow \arg \min_{t, \gamma} \text{LogisticLoss}(t, \gamma, \mathcal{O})$ 3: ▷ i.e solve Eq 10 4: $\tau \leftarrow \min_{\epsilon \in [0, 1]} \mathcal{G}_\tau(x, \hat{t}, \delta, \epsilon)$ 5: $u \sim \text{Uniform}(0, 1)$ 6: if $u \leq \tau$ then 7: return explore 8: else 9: return exploit 10: end if 11: end function	1: function $\mathcal{G}_\tau(s, \hat{t}, \hat{\gamma}, \delta, \epsilon)$ 2: $t', \gamma' \leftarrow \phi^{-1}(\hat{t}, \hat{\gamma}, 1 - \epsilon)$ 3: $\alpha \leftarrow (1 - \epsilon) \mathcal{L}(x, t', \gamma')$ 4: $\tau \leftarrow \frac{(1 - \delta) - \alpha}{1 - \alpha}$ 5: return τ 6: end function
--	--

337 vCache makes two assumptions. First, the data \mathcal{D} received by the cache is independently and
338 identically drawn from the underlying distribution. Second, the true probability of correctness of
339 response match given similarity, i.e. $\Pr(c(x) = 1 | \mathcal{D}, x)$ is well represented by the sigmoid family of
340 functions (Eq 9).. Under these assumptions, the vCache policy can provide user-defined error-rate
341 guarantees, as summarized in the following theorem.

342 **Theorem 4.1.** *Let $\delta \in (0, 1)$ be the user-provided maximum error tolerance. Let $\mathcal{D}, |\mathcal{D}| = n$ be the
343 set of prompts seen by vCache at an arbitrary point in time. Then under the assumptions that prompts
344 \mathcal{D} are drawn i.i.d. from underlying distribution and sigmoid family of functions (defined in Eq 9)
345 correctly model the true likelihood of correctness for each embedding, the probability of correct
346 response from vCache for any arbitrary prompt x , executed in an online manner in accordance with
347 Algorithm 2, is guaranteed to be greater than $1 - \delta$. i.e.*

$$\Pr(\text{vCache}(x) = r(x) | \mathcal{D}) \geq (1 - \delta) \forall x, n \quad (12)$$

350 **5 EVALUATION**

352 For our experiments, we use three popular embedding models (GteLargeENv1-5 (Zhang et al., 2024),
353 E5-large-v2 (Wang et al., 2022), and OpenAI text-embedding-3-small (ope, 2025)), and two LLMs
354 (Llama-3-8B-Instruct (Dubey et al., 2024) and GPT-4o-mini (gpt, 2024)), representing both high-
355 quality proprietary models and efficient open alternatives. We use the HNSW vector database (Malkov
356 & Yashunin, 2018) with cosine similarity, a standard metric for comparing vector embeddings in
357 semantic caching systems (Bang, 2023; Li et al., 2024; Dasgupta et al., 2025). All experiments are
358 conducted on a machine running Ubuntu 24.04.2 LTS, with an Intel Xeon Platinum 8570 CPU and an
359 NVIDIA Blackwell with 192 GB of memory.

360 **Baselines.** We use the following Cache-settings in our experiments

- **GPTCache (zilliztech):** SOTA using a static threshold for all embeddings (Parameter: threshold).
- **GPTCache + Fine-tuned embedding:** Changing the embedding model in GPTCache. Embedding models are fine-tuned on data and method provided by Zhu et al. (2024) (Parameter: threshold).
- **vCache:** This is our proposed method (Parameter: error-rate bound δ).
- **vCache + Fine-tuned embedding (Zhu et al., 2024):** Same as vCache, but uses a fine-tuned embedding model (Parameter: error-rate bound δ).

367 **Datasets.** To the best of our knowledge, no realistic open-source benchmark currently exists for
368 evaluating semantic caches. We introduce and open-source four diverse benchmarks designed to
369 reflect common caching scenarios. Appendix F provides the complete dataset and benchmark cards.

- **SemCacheLMArena:** A randomly sampled subset of 60,000 queries from the LM-Arena human preference dataset (Chiang et al., 2024), containing open-ended, and user-generated prompts.
- **SemCacheClassification:** A benchmark of 45,000 prompts derived from three classification datasets (Saurabh Shahane, 2023; Talmor et al., 2018; Ni et al., 2019).
- **SemCacheSearchQueries:** A random subset of 150,000 web-search queries from the ORCAS dataset (Craswell et al., 2020). The results are presented in Appendix D.1.
- **SemCacheCombo:** A 27,500-prompt benchmark combining SemCacheSearchQueries and distinct SemCacheLMArena queries to model partial workloads with no cache hits. The results are presented in Appendix D.2.

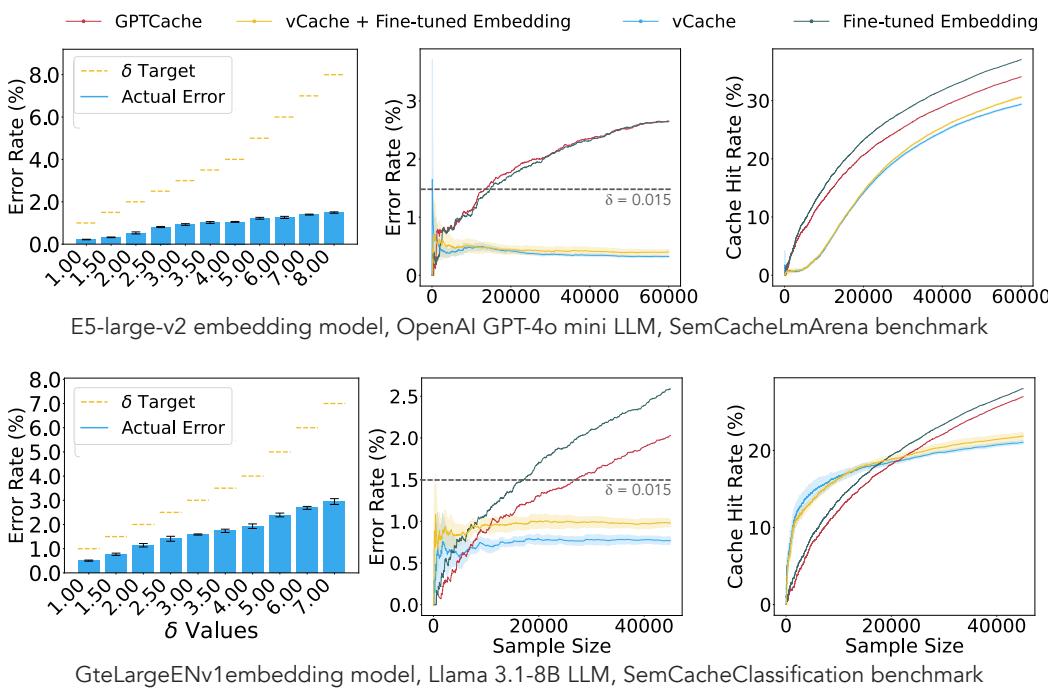


Figure 4: vCache meets the user-defined maximum error rate bound δ with steadily increasing cache hit rates (vCache is learning). GPTCache shows increasing error and hit rates, illustrating the unreliability of static thresholds. Static baselines use fixed thresholds (0.99 top, 0.86 bottom). See Figure 5 for a threshold vs. δ Pareto comparison.

Metrics. We measure the following metrics. (1) *Error Rate*: (Lower is better) defined as FP/n , where FP is the number of false positives and n is the total number of prompts. (2) *Cache hit rate*: (Higher is better) defined as $(TP + FP)/n$ where TP and FP are true positives and false positives, respectively. Together, TP and FP measure the total cache hits. We also show ROC curves Hoo et al. (2017). For the non-deterministic evaluation of vCache (Algorithm 2, Line 5), we compute 95% confidence intervals using Wallis binomial confidence bounds and contingency tests Wallis (2013).

vCache respects user-defined error-rate requirements. We evaluate whether vCache satisfies the user-defined error rate bound δ while maintaining competitive performance. As shown in Figure 4 (left), vCache consistently meets the maximum error rate across δ values, with actual error remaining below the specified bound. The small gap between maximum error rate and observed error stems from the conservative t' estimation, which ensures robustness and can be further refined. Notably, as the error rate stabilizes, vCache continues to increase its cache hit rate (Figure 4, right), demonstrating effective learning over time. In contrast, GPTCache baselines exhibit increasing error rates with sample size, reflecting the inherent limitations of fixed thresholds despite improving hit rates.

Dynamic and embedding-specific thresholds are superior to static thresholds. We evaluate whether semantic caches benefit from dynamic, embedding-specific thresholds over a single static threshold. To this end, we compare vCache with static-threshold baselines by systematically varying threshold values for GPTCache and the maximum error rate (δ) for vCache across a feasible range. Each point in Figure 5 represents a complete evaluation over the benchmark dataset, enabling direct Pareto comparison between vCache and static-threshold configurations. vCache achieves better ROC curves, higher cache-hit rates at a given error rate, and lower average latency. On SemCacheLMArena (Figure 5, top), it achieves up to 6x lower error, 2x higher hit rates, and reduced latency. On SemCacheClassification (Figure 5, bottom), vCache outperforms all baselines for error bounds above 1.5%, where static methods either violate constraints or underutilize the cache. For bounds below 1.5%, vCache is more conservative, reflecting its strategy of prioritizing correctness by increasing exploration under uncertainty. We note that GPTCache error rates have not fully converged and exhibit an upward trend, suggesting the reported results likely overstate GPTCache performance.

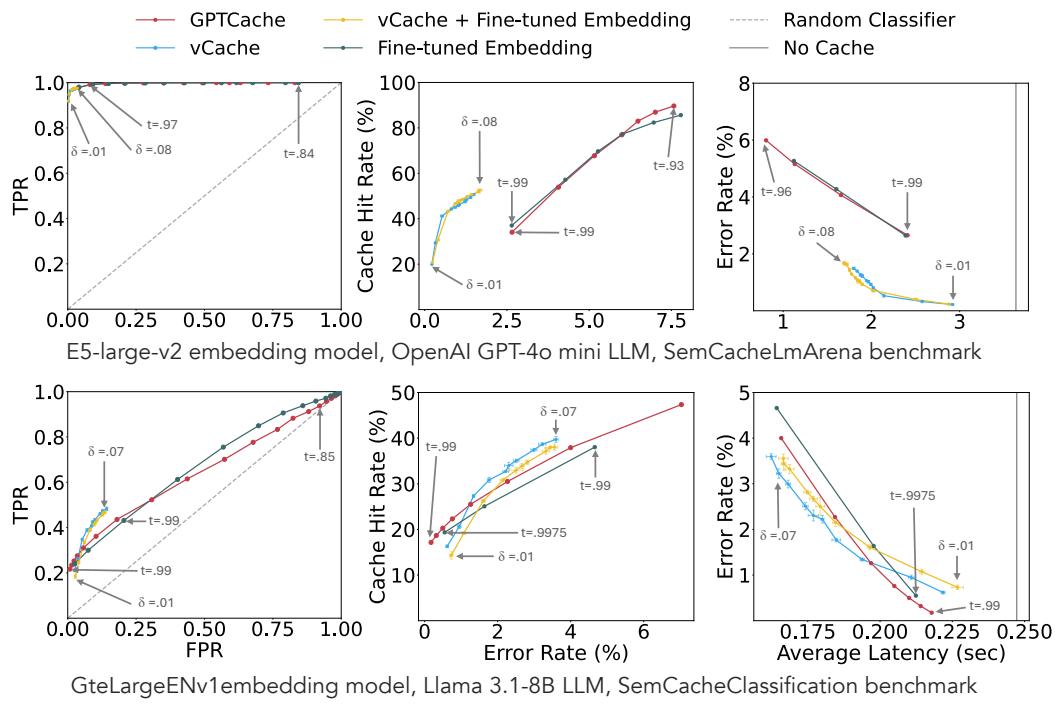


Figure 5: Pareto comparison across a range of thresholds and δ values. Each point represents a full run on 60k (SemCacheLmArena) or 45k (SemCacheClassification) samples. vCache generally outperforms static-threshold baselines. While it may slightly underperform for small δ , its stability under increasing sample sizes (Figure 4) indicates greater long-term reliability than static thresholds.

Latency, vLLM, and Additional Baselines. We report additional experiments on the SemCacheCombo benchmark (Appendix D.2), OpenAI text-embedding-3-small model (Appendix D.3), τ computation (Appendix D.4), embedding generation (Appendix D.5), logistic regression (Appendix D.6), vLLM inference (Appendix D.7), and extended baseline evaluations (Appendix D.8).

6 LIMITATIONS

There are two main limitations of vCache. First, for responses longer than a few words, string matching is insufficient and vCache uses a standard LLM-as-a-judge (Zheng et al., 2023a) approach to assess response equivalence (Algorithm 1, L8), requiring an additional LLM inference. However, this can be executed asynchronously outside the critical path, so it does not impact latency (see vCache implementation). Moreover, since the output is a single token (e.g., "yes" or "no"), the computational overhead is minimal (Leviathan et al., 2023). In SemCacheLmArena and SemCacheSearchQueries, response equivalence is assessed with LLM-as-a-judge, whereas in SemCacheClassification it is determined by string matching. vCache performs reliably under both evaluation regimes. Second, vCache relies on the assumptions of independent and identically distributed (i.i.d.) data and a sigmoid function family to represent the probability of correctness. If these assumptions are violated, the analysis may not hold. Nonetheless, both assumptions are natural and appear to model most use cases well, as supported by our experimental results.

7 CONCLUSION

We introduced vCache, a semantic cache that provides correctness guarantees by learning an optimal similarity threshold for each cached embedding online. This approach addresses the limitations of static thresholds and embedding fine-tuning in the semantic caching domain, ensuring that the error rate remains below a user-specified bound. Our experiments demonstrate that vCache consistently satisfies this guarantee while outperforming existing methods. These results suggest that reliable, interpretable caching for LLMs is both practical and deployable.

486 8 ETHICS STATEMENT
487488 This work contributes to the advancement of machine learning by improving the efficiency of
489 large language model (LLM) inference. By reducing both computational cost and latency, our
490 approach makes LLM-based systems more accessible to organizations and individuals with limited
491 computational resources, thereby lowering the barrier to adoption. In addition, by decreasing the
492 frequency of full LLM invocations, our method reduces overall compute demand and, consequently,
493 the environmental impact associated with training and operating large-scale AI infrastructure.
494495 9 REPRODUCIBILITY STATEMENT
496497 We have taken several steps to ensure reproducibility of our work. The full implementation of
498 vCache, including all algorithms and experiments, is publicly available in an anonymous repository³.
499 The three semantic caching benchmarks introduced in this paper are released on HuggingFace⁴,
500 and Appendix F describes their construction and preprocessing in detail. All experimental settings,
501 including hardware, software, and model configurations, are specified in Section 5. Theoretical
502 assumptions and complete proofs of our correctness guarantees are provided in Appendix C. Together,
503 these resources ensure that our results can be verified and extended by future work.
504505 REFERENCES
506507 gpt, 2024. URL <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>. [Accessed 11-11-2024].
508509 Cache LLM Responses, 11 2025. URL <https://docs.litellm.ai/docs/proxy/caching>. [Accessed 02-05-2025].
510512 text-embedding-3-small., 2025. URL <https://platform.openai.com/docs/models/text-embedding-3-small>. [Accessed 11-11-2025].
513515 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
516 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
517 *arXiv preprint arXiv:2303.08774*, 2023.
518519 Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y Wu. An optimal
520 algorithm for approximate nearest neighbor searching fixed dimensions. *Journal of the ACM (JACM)*,
521 45(6):891–923, 1998.522 Fu Bang. Gptcache: An open-source semantic cache for llm applications enabling faster answers and
523 cost savings. In *Proceedings of the 3rd Workshop for Natural Language Processing Open Source*
524 *Software (NLP-OSS 2023)*, pp. 212–218, 2023.
525526 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
527 Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open
528 platform for evaluating llms by human preference. In *Forty-first International Conference on*
529 *Machine Learning*, 2024.530 Nick Craswell, Daniel Campos, Bhaskar Mitra, Emine Yilmaz, and Bodo Billerbeck. Orcas: 18
531 million clicked query-document pairs for analyzing search. In *Proceedings of the 29th ACM*
532 *International Conference on Information & Knowledge Management*, pp. 2983–2989, 2020.
533534 Robby Millsap Dan Lepow, Arie Heinrich. Enable semantic caching for Azure OpenAI APIs in
535 Azure API Management, 01 2025. URL <https://learn.microsoft.com/en-us/azure/api-management/azure-openai-enable-semantic-caching>. [Accessed
536 22-01-2025].
537538
539 ³<https://anonymous.4open.science/r/vCache-FB5E/README.md>⁴<https://huggingface.co/vCache>

540 Soumik Dasgupta, Anurag Wagh, Lalitdutt Parsai, Binay Gupta, Geet Vudata, Shally Sangal, Sohom
 541 Majumdar, Hema Rajesh, Kunal Banerjee, and Anirban Chatterjee. wallmartcache: A distributed,
 542 multi-tenant and enhanced semantic caching system for llms. In *International Conference on
 543 Pattern Recognition*, pp. 232–248. Springer, 2025.

544 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 545 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 546 *arXiv preprint arXiv:2407.21783*, 2024.

547 Kai Franz, Samuel Arch, Denis Hirn, Torsten Grust, Todd C. Mowry, and Andrew Pavlo. Dear
 548 user-defined functions, inlining isn't working out so great for us. let's try batching to make our
 549 relationship work. sincerely, sql. In *Conference on Innovative Data Systems Research*, 2024. URL
 550 <https://api.semanticscholar.org/CorpusID:266738256>.

551 Hossein Hajipour, Ning Yu, Cristian-Alexandru Staicu, and Mario Fritz. SimSCOOD: Systematic
 552 analysis of out-of-distribution generalization in fine-tuned source code models. In Kevin
 553 Duh, Helena Gomez, and Steven Bethard (eds.), *Findings of the Association for Computational
 554 Linguistics: NAACL 2024*, pp. 1400–1416, Mexico City, Mexico, June 2024. Association
 555 for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.90. URL
 556 <https://aclanthology.org/2024.findings-naacl.90/>.

557 Zhe Hui Hoo, Jane Candlish, and Dawn Teare. What is an roc curve?, 2017.

558 Jim Allen Wallace. Semantic caching for faster, smarter LLM apps, 7 2024. URL <https://redis.io/blog/what-is-semantic-caching/>. [Accessed 05-04-2025].

559 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 560 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 561 serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems
 562 Principles*, pp. 611–626, 2023.

563 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 564 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.

565 Jiaxing Li, Chi Xu, Feng Wang, Isaac M von Riedemann, Cong Zhang, and Jiangchuan Liu. Scalm:
 566 Towards semantic caching for automated chat services with large language models. *arXiv preprint
 567 arXiv:2406.00025*, 2024.

568 Lin Liu, Jiajun Meng, and Yongliang Yang. Llm technologies and information search. *Journal of
 569 Economy and Technology*, 2:269–277, 2024a.

570 Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo, Shiyi Cao, Joseph E Gonzalez, Ion Stoica, and
 571 Matei Zaharia. Optimizing llm queries in relational workloads. *arXiv preprint arXiv:2403.05821*,
 572 2024b.

573 Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search using
 574 hierarchical navigable small world graphs. *IEEE transactions on pattern analysis and machine
 575 intelligence*, 42(4):824–836, 2018.

576 Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
 577 reviews and fine-grained aspects. In *Proceedings of the 2019 conference on empirical methods
 578 in natural language processing and the 9th international joint conference on natural language
 579 processing (EMNLP-IJCNLP)*, pp. 188–197, 2019.

580 James Jie Pan, Jianguo Wang, and Guoliang Li. Survey of vector database management systems. *The
 581 VLDB Journal*, 33(5):1591–1615, 2024.

582 Kamran Razi, Anila Joshi, Sungmin Hong, and Yash Shah. Build a read-through semantic cache with
 583 Amazon OpenSearch Serverless and Amazon Bedrock, 11 2024. URL <https://aws.amazon.com/blogs/machine-learning/build-a-read-through-semantic-cache-with-amazon-opensearch-serverless-and-amazon-bedrock/>. [Accessed
 584 17-01-2025].

594 Navid Rekabsaz, Mihai Lupu, and Allan Hanbury. Exploration of a threshold for similarity based on
 595 uncertainty in word embedding. In *Advances in Information Retrieval: 39th European Conference
 596 on IR Research, ECIR 2017, Aberdeen, UK, April 8-13, 2017, Proceedings 39*, pp. 396–409.
 597 Springer, 2017.

598 Ethan M Rudd, Lalit P Jain, Walter J Scheirer, and Terrance E Boult. The extreme value machine.
 599 *IEEE transactions on pattern analysis and machine intelligence*, 40(3):762–768, 2017.

600 Saurabh Shahane. Ecommerce text classification, 10 2023. URL <https://www.kaggle.com/datasets/saurabhshahane/ecommerce-text-classification>. [Accessed
 601 12-11-2024].

602 Tomshapland Sudarsan and MasayaNishimaki. Optimize azure openai applications with semantic
 603 caching, Apr 2024. URL <https://techcommunity.microsoft.com/blog/azure-architectureblog/optimize-azure-openai-applications-with-semantic-c-caching/4106867>. [Accessed 12-11-2024].

604 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 605 answering challenge targeting commonsense knowledge. *arXiv preprint arXiv:1811.00937*, 2018.

606 Sean Wallis. Binomial confidence intervals and contingency tests: Mathematical fundamentals and
 607 the evaluation of alternative methods. *Journal of Quantitative Linguistics*, 20(3):178–208, 2013.
 608 doi: 10.1080/09296174.2013.799918.

609 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Majumder,
 610 and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv preprint
 611 arXiv:2212.03533*, 2022.

612 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Large
 613 search model: Redefining search stack in the era of llms. In *ACM SIGIR Forum*, volume 57, pp.
 614 1–16. ACM New York, NY, USA, 2024.

615 Haoyi Xiong, Jiang Bian, Yuchen Li, Xuhong Li, Mengnan Du, Shuaiqiang Wang, Dawei Yin, and
 616 Sumi Helal. When search engine services meet large language models: visions and challenges.
 617 *IEEE Transactions on Services Computing*, 2024.

618 Qin Zhang, Linghan Xu, Qingming Tang, Jun Fang, Ying Nian Wu, Joe Tighe, and Yifan
 619 Xing. Threshold-consistent margin loss for open-world deep metric learning. *arXiv preprint
 620 arXiv:2307.04047*, 2023a.

621 Qinghua Zhang, Chengying Wu, Shuyin Xia, Fan Zhao, Man Gao, Yunlong Cheng, and Guoyin Wang.
 622 Incremental learning based on granular ball rough sets for classification in dynamic mixed-type
 623 decision system. *IEEE Transactions on Knowledge and Data Engineering*, 35(9):9319–9332,
 2023b.

624 Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong
 625 Yang, Pengjun Xie, Fei Huang, et al. mgte: Generalized long-context text representation and
 626 reranking models for multilingual text retrieval. *arXiv preprint arXiv:2407.19669*, 2024.

627 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 628 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv
 629 preprint arXiv:2303.18223*, 1(2), 2023.

630 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 631 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 632 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023a.

633 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao,
 634 Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Efficiently programming large language
 635 models using sclang. *arXiv e-prints*, pp. arXiv–2312, 2023b.

636 Hanlin Zhu, Banghua Zhu, and Jiantao Jiao. Efficient prompt caching via embedding similarity.
 637 *arXiv preprint arXiv:2402.01173*, 2024.

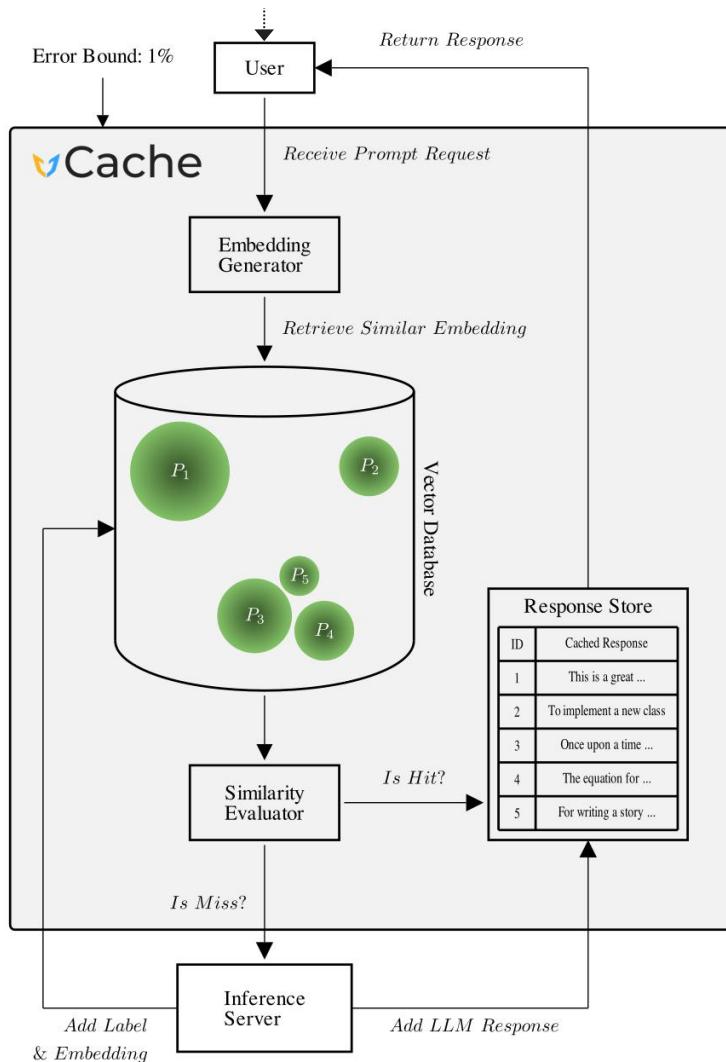
638 zilliztech. GPTCache : A Library for Creating Semantic Cache for LLM Queries. URL <https://github.com/zilliztech/GPTCache>. [Accessed 23-01-2025].

648 **A NOTATION GLOSSARY**
649650
651
652
653 For clarity, we summarize the key symbols and functions used throughout the paper in Table 1. The
654 glossary covers cache contents, decision policies, probability functions, and modeling parameters.
655 Each entry is accompanied by a short explanation and, where applicable, references to the defining
656 equations, algorithms, or sections.
657658 Table 1: A glossary of notations used in the paper and their explanations
659
660

664 Notation	665 Explanation
666 $r(x)$	667 Response produced by the LLM for prompt x .
668 $\mathcal{E}(x)$	669 Vector embedding of prompt x .
670 $\text{nn}(x)$	671 Current nearest neighbor of x in the cache; may change as the 672 cache grows (see Equation 2).
673 $s(x)$	674 Similarity between prompt x and $\text{nn}(x)$ (see Equation 4).
675 $c(x)$	676 Correctness: 1 if $r(\text{nn}(x)) = r(x)$, else 0 (see Equation 4).
677 \mathcal{D}	678 Cache contents: $(\mathcal{E}(x_i), r(x_i), \mathcal{O}(x_i))_{i=1}^n$ (see Equation 3).
679 $\mathcal{O}(x_i)$	680 Metadata for cached prompt x_i : all observed $(s(x_j), c(x_j))$ with 681 $\text{nn}(x_j) = x_i$ (see Equation 3).
682 $\mathcal{P}_{\text{gptCache}}(s(x))$	683 Static-threshold policy used by existing systems.
684 $\mathcal{P}_{\text{vCache}}(s(x), \mathcal{O}(\text{nn}(x)), \delta)$	685 vCache policy using embedding-specific modeling under a user- 686 defined error bound δ (Section 4).
687 δ	688 User-defined maximum error tolerance (see Section 4.1).
689 $\Pr(\text{vCache}(x) = r(x))$	690 Probability that vCache returns the correct response (see Equation 8).
691 $\tau_{\text{nn}(x)}(s(x))$	692 Required exploration probability to satisfy the guarantee (see Equation 8).
693 $\hat{\tau}$	694 Upper bound used for exploration probability (see Equation 11).
695 $u \sim \text{Uniform}(0, 1)$	696 Random draw used to realize the exploration decision (see Algo- 697 rithm 2).
698 $\mathcal{L}(s(x), t, \gamma)$	699 Sigmoid likelihood modeling $\Pr(c(x) = 1 \mid x, \mathcal{D})$ (see Equa- 700 tion 9).
701 t, γ	702 True threshold (t) and slope (γ) parameters of \mathcal{L} (see Equation 9).
$\hat{t}, \hat{\gamma}$	703 MLE estimates of t and γ based on $\mathcal{O}(\text{nn}(x))$ (see Equation 10).
t', γ'	704 Conservative estimates of the logistic parameters t, γ , selected 705 from the confidence band of the MLE estimates. These values are 706 used to compute $\hat{\tau}$ and ensure that vCache respects the user-defined 707 error bound δ (see Equation 11).

702 B vCACHE SEMANTIC CACHE ARCHITECTURE

703
 704
 705
 706 Figure 6 illustrates the vCache architecture. When a new prompt gets processed, it is first embedded
 707 into a vector representation and queried against the vector database to retrieve the nearest cached
 708 prompt. The similarity score and metadata of the retrieved embedding are passed to the similarity
 709 evaluator, which compares the correctness estimate against the user-defined error bound δ (see vCache
 710 decision policy in Section 4.2). If the policy returns exploit, the cached response is retrieved from the
 711 response store and served immediately. If the policy returns explore, the system performs an LLM
 712 inference to generate the true response, determines the correctness of the cached response with respect
 713 to the newly generated one, updates the metadata of the nearest neighbor, adds the new embedding to
 714 the vector database, adds the generated response to the response store, and returns it to the user (see
 715 Algorithm 1). In the vector database, the green balls represent the confidence bounds specific to the
 716 currently processed prompt. Larger balls indicate lower thresholds (more conservative exploitation).
 717 In comparison, smaller balls correspond to higher thresholds (more conservative exploration).



753 Figure 6: Workflow of the vCache architecture. Prompts are embedded, nearest neighbors retrieved,
 754 and the decision policy selects between exploiting a cached response or exploring via an LLM
 755 inference while ensuring the user-defined error bound δ .

756 C vCACHE MODELING PROOF
757758 We provide the proof for Theorem 4.1 in this section.
759760 Recall we use the following notation in the paper,
761

- 762 • x : prompt under consideration
- 763 • \mathcal{D} : data inserted into the cache
- 764 • $\tau_{\text{nn}(x)}(s(x))$: minimum probability of exploration associated with embedding $\text{nn}(x)$ at
765 similarity value $s(x)$
- 766 • $\Pr_c = 1 - \delta$

767 Computing the exact probability $\Pr(c(x) = 1 | \mathcal{D}, x)$ is expensive, so we derive a simpler upper
768 bound. If we have an upper bound, then computing an upper bound for $\tau_{\text{nn}(x)}(s(x))$ is straightforward.
769770 **Lemma C.1** (Upper-Bounding τ). *if $\Pr(c(x) = 1 | \mathcal{D}, x) \geq \alpha$, then,*
771

772
$$\tau_{\text{nn}(x)}(s(x)) \leq 1 - \frac{\delta}{1 - \alpha}$$

773

774 *Proof.* Rewrite τ to isolate the unknown probability:
775

776
777
$$\begin{aligned} \tau_{\text{nn}(x)}(s(x)) &= \frac{(1 - \delta) - \Pr(c(x) = 1 | \mathcal{D}, x)}{1 - \Pr(c(x) = 1 | \mathcal{D}, x)} \\ 778 &= 1 - \frac{\delta}{1 - \Pr(c(x) = 1 | \mathcal{D}, x)} \end{aligned} \tag{13}$$

779

780 Next, suppose we have a known lower bound
781

782
$$\Pr(c(x) = 1 | \mathcal{D}, x) \geq \alpha.$$

783

784 Then
785

786
$$1 - \Pr(c(x) = 1 | \mathcal{D}, x) \leq 1 - \alpha,$$

787

788 and since $\delta > 0$, it follows that
789

790
$$\frac{\delta}{1 - \Pr(c(x) = 1 | \mathcal{D}, x)} \geq \frac{\delta}{1 - \alpha}. \tag{14}$$

791

792 \square
793794 Hence, to guarantee the exploration probability meets τ , it suffices to ensure
795

796
$$\Pr_{\text{explore}}(x, \mathcal{D}_n) \geq \tau' = 1 - \frac{\delta}{1 - \alpha} \geq \tau_{\text{nn}(x)}(s(x)). \tag{15}$$

797

798 **Lemma C.2** (Lower-Bounding Cache-Correctness Probability). *Given \mathcal{D} , let $\hat{t}_{\text{nn}(x)}$ and $\hat{\gamma}_{\text{nn}(x)}$ be
799 the MLE estimates computed as,*
800

801
$$\hat{t}_{\text{nn}(x)}, \hat{\gamma}_{\text{nn}(x)} = \arg \min_{t, \gamma} \mathbb{E}_{(s, c) \in \mathcal{O}_{\text{nn}(x)}} \left[\left(c \cdot \log(\mathcal{L}(s, t, \gamma)) \right) + \left((1 - c) \cdot \log(1 - \mathcal{L}(s, t, \gamma)) \right) \right] \tag{16}$$

802

803 *Let t^* and γ^* be the true parameters such that $\mathcal{L}(s(x), t^*, \gamma^*)$ is the true probability of correct cache
804 hits. Consider an arbitrary $\epsilon \in (0, 1)$. Let t', γ' be such that,*
805

806
$$\Pr(t^* > t' | \gamma^* < \gamma') < \epsilon \tag{17}$$

807

808 *Then,*
809

$$\Pr(c(x) = 1 | \mathcal{D}, x) \geq (1 - \epsilon) \mathcal{L}(s(x), t', \gamma') \tag{18}$$

810 *Proof.* By the law of total probability:
 811

$$\begin{aligned}
 & \mathbf{Pr}(c(x) = 1 | \mathcal{D}, x) \\
 &= \mathbf{Pr}(t^* > t' | \gamma^* < \gamma') \cdot \mathbf{Pr}(c(x) = 1 | \mathcal{D}, x, (t^* > t' | \gamma^* < \gamma')) \\
 &\quad + \mathbf{Pr}(\neg(t^* > t' | \gamma^* < \gamma')) \cdot \mathbf{Pr}(c(x) = 1 | \mathcal{D}, x, t^* \leq t', \gamma^* \geq \gamma') \\
 &\geq \mathbf{Pr}(\neg(t^* > t' | \gamma^* < \gamma')) \cdot \mathbf{Pr}(c(x) = 1 | \mathcal{D}, x, t^* \leq t', \gamma^* \geq \gamma') \\
 &\geq (1 - \epsilon) \cdot \mathbf{Pr}(c(x) = 1 | \mathcal{D}, x, t^* \leq t', \gamma^* \geq \gamma'). \tag{19}
 \end{aligned}$$

$$\begin{aligned}
 & (1 - \epsilon) \cdot \mathbf{Pr}(c(x) = 1 | \mathcal{D}, x, t^* \leq t', \gamma^* \geq \gamma'), \\
 &\geq (1 - \epsilon) \int_0^{t'} \int_{\gamma'}^{\infty} \mathbf{Pr}(t^* = t, \gamma^* = \gamma | t \leq t', \gamma \geq \gamma') \mathbf{Pr}(c(x) = 1 | \mathcal{D}, x, t^* = t, \gamma^* = \gamma) dt d\gamma \\
 &\geq (1 - \epsilon) \left(\int_0^{t'} \int_{\gamma'}^{\infty} \mathbf{Pr}(t^* = t, \gamma^* = \gamma | t \leq t', \gamma \geq \gamma') dt d\gamma \right) \cdot \inf_{t \leq t', \gamma \geq \gamma'} \mathbf{Pr}(c(x) = 1 | \mathcal{D}, x, t) \\
 &= (1 - \epsilon) \inf_{t \leq t', \gamma \geq \gamma'} \mathbf{Pr}(c(x) = 1 | \mathcal{D}, x, t) \\
 &= (1 - \epsilon) \inf_{t \leq t', \gamma \geq \gamma'} \mathcal{L}(x, t, \gamma) \\
 &= (1 - \epsilon) \cdot \mathcal{L}(x, t', \gamma') \tag{20}
 \end{aligned}$$

832 since, $\mathcal{L}(x, t_1, \gamma) < \mathcal{L}(x, t_2, \gamma)$, $\forall x. t_1 > t_2$ and $\mathcal{L}(x, t, \gamma_1) < \mathcal{L}(x, t, \gamma_2)$, $\forall x. \gamma_1 < \gamma_2$ \square
 833

834 Combining these results lets us set
 835

$$\alpha = (1 - \epsilon) \cdot \mathcal{L}(x, t', \gamma') \implies \tau'(\epsilon) = 1 - \frac{\delta}{1 - \alpha}, \tag{21}$$

836 and then use τ' . To find the best τ' closest to the actual lower bound of exploration probability, we
 837 search for the minimum τ' over the entire range of $\epsilon \in (0, 1)$ Thus,
 838

$$\tau' = \min_{\epsilon \in (0, 1)} \left[1 - \frac{\delta}{1 - (1 - \epsilon)\mathcal{L}(x, t', \gamma')} \right] \tag{22}$$

839 **Confidence Bound on Optimal Threshold** To find t', γ' from the estimated $\hat{t}, \hat{\gamma}$, we can use the
 840 confidence intervals by assuming a uniform prior on t^* and γ^* . Since, under uniform prior the
 841 distributions of $\mathbf{Pr}(t^* | \hat{t})$ and $\mathbf{Pr}(\hat{t}, t^*)$ are the same,
 842

$$\begin{aligned}
 \mathbf{Pr}(t^* | \hat{t}) &= \frac{\mathbf{Pr}(\hat{t} | t^*) \mathbf{Pr}(t^*)}{\mathbf{Pr}(\hat{t})} \\
 \mathbf{Pr}(t^* | \hat{t}) &\propto \mathbf{Pr}(\hat{t} | t^*) \\
 \mathbf{Pr}(t^* | \hat{t}) &= \mathbf{Pr}(\hat{t} | t^*) \tag{23}
 \end{aligned}$$

843 Thus we can obtain t', γ' using CDF of $\mathbf{Pr}(\hat{t}, \gamma | t^*, \gamma^*)$
 844

845 In our experiments, we only use confidence intervals for t , i.e., we use the t' parameter to adjust the
 846 likelihood. We estimate and use the point estimate $\hat{\gamma}$ for γ .
 847

848 D EVALUATION RESULTS

849 D.1 SEMCACHESEARCHQUERIES BENCHMARK

850 We discuss the SemCacheSearchQueries benchmark, focusing on understanding the limitations of
 851 static-threshold caching. We highlight why fixed thresholds fail to maintain reliable error guarantees
 852 at scale and how vCache addresses this issue through dynamic, embedding-specific thresholding.
 853

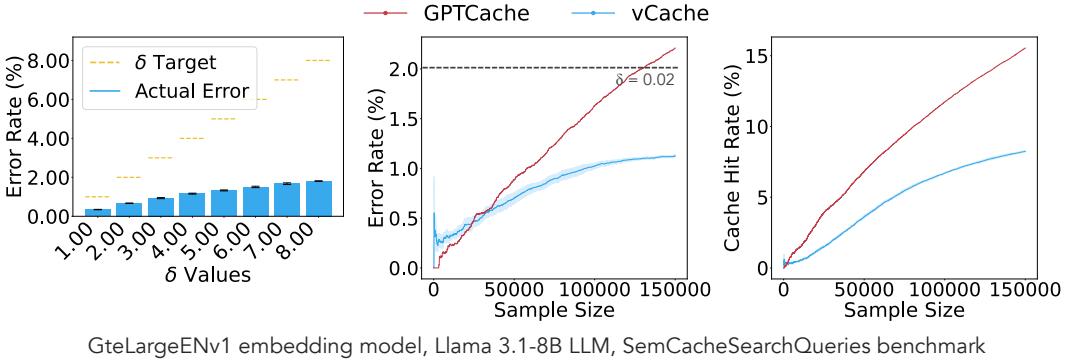


Figure 7: vCache meets the user-defined maximum error rate bound δ with steadily increasing cache hit rates (vCache is learning). GPTCache shows increasing error and hit rates, illustrating the unreliability of static thresholds. The static baseline uses a fixed threshold of 0.985. See Figure 8 for a threshold vs. δ Pareto comparison.

vCache respects user-defined error-rate requirements We evaluate whether vCache satisfies the user-defined error rate δ while maintaining competitive performance. As shown in Figure 7 (left), vCache consistently remains below the specified error bound across all tested δ values. Moreover, as the error rate stabilizes, vCache continues to improve its cache hit rate (Figure 4, right). In contrast, GPTCache exhibits increasing error rates as the sample size grows, despite improved hit rates. This trend reflects a fundamental limitation of static thresholds: maintaining a bounded error rate requires continuously increasing the threshold. Over time, no static threshold below 1.0 may suffice to satisfy a strict error constraint, making such systems difficult to tune and unreliable at scale.

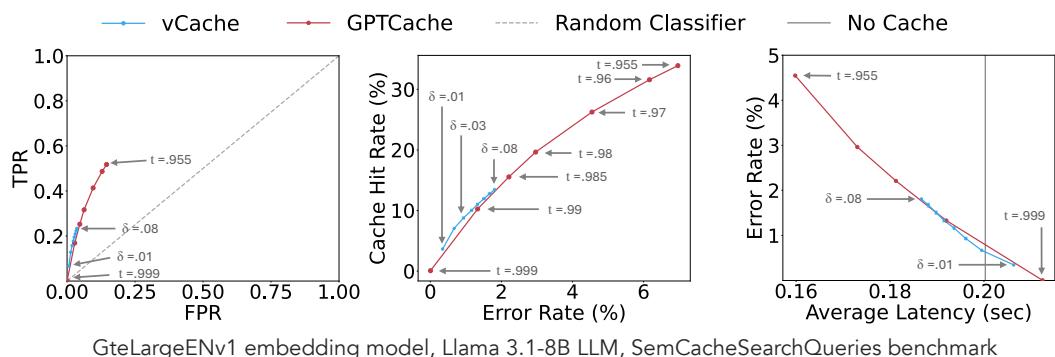


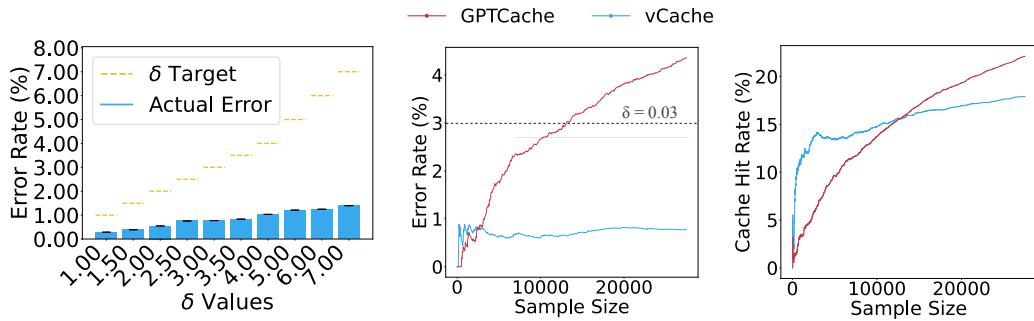
Figure 8: Pareto comparison across a range of thresholds and δ values on 150k samples from the SemCacheSearchQueries benchmark. While vCache outperforms static baselines its error rate remains bounded. In contrast, static-threshold methods like GPTCache require increasing thresholds to maintain low error (i.e., a threshold of 0.99 for a 1.7% error rate after 150k samples), shifting the Pareto curve upward over time. This highlights the limitations of static thresholds in sustaining error-rate guarantees as sample size grows.

Dynamic and embedding-specific thresholds are superior to static thresholds We evaluate whether dynamic, embedding-specific thresholds yield better long-term performance than static thresholding. To this end, we compare vCache against GPTCache by varying static similarity thresholds and vCache’s maximum error rate bound δ . Each point in Figure 8 reflects a complete evaluation over the SemCacheSearchQueries benchmark, enabling a direct Pareto comparison. Static-threshold configurations achieve lower cache hit rates and higher error rates than vCache under equivalent evaluation settings. As shown in Figure 7, GPTCache has an increasing error rate as the sample size grows because the threshold remains fixed (both cache hit rate and error rate rise together). As a result, the GPTCache curve in the middle plot (cache hit vs. error rate) is expected to shift up and to the right, while the curve in the right plot (error rate vs. latency) shifts up and to the left. This trend suggests that no static threshold below 1.0 can maintain a bounded error rate as

918 prompt diversity increases (see the threshold of 0.99, which yields an error rate of 1.7% after 150k
 919 samples). In contrast, vCache learns its threshold online and per embedding, allowing it to enforce
 920 the error constraint while gradually improving cache hit rate.
 921

922 D.2 SEMCACHECOMBO BENCHMARK

924 **vCache respects user-defined error-rate requirements on SemCacheCombo** Figure 9 evaluates
 925 whether vCache satisfies the user-defined error rate δ on the SemCacheCombo benchmark. Across
 926 all tested δ values, the realized error of vCache remains below the requested bound, confirming that
 927 the learned thresholds reliably enforce the target error rate. As more samples are processed, vCache
 928 maintains its empirical error while steadily increasing cache hit rate, indicating ongoing learning
 929 from additional data. In contrast, GPTCache with a fixed similarity threshold of 0.83 exhibits growth
 930 in both error rate and hit rate as the sample size increases.
 931



942 GteLargeENv1 embedding model, Llama 3.1-8B LLM, SemCacheCombo benchmark
 943

944 Figure 9: vCache meets the user-defined maximum error rate bound δ with steadily increasing
 945 cache hit rates (vCache is learning). GPTCache shows increasing error and hit rates, illustrating the
 946 unreliability of static thresholds. The static baseline uses a fixed threshold of 0.83. Comparison on
 947 27,5k samples from the SemCacheCombo bechmark. See Figure 10 for a threshold vs. δ Pareto
 948 comparison.
 949

950 **Dynamic, embedding-specific thresholds yield better trade-offs than static thresholds on Sem-
 951 CacheCombo** Figure 9 summarizes the resulting trade-offs by varying vCache’s error bound δ
 952 and GPTCache’s static similarity threshold. Each point corresponds to a full evaluation on Sem-
 953 CacheCombo, enabling a direct Pareto comparison. vCache traces a strictly better frontier: it achieves
 954 higher cache hit rates at the same error level, and lower error for comparable hit rates and latency. For
 955 example, vCache attains up to $12.5\times$ higher cache hit rates than the best static-threshold configuration
 956 while still satisfying the user-defined error bound. At matched average latency, vCache consistently
 957 delivers lower error than GPTCache. These results show that dynamic, embedding-specific thresholds
 958 provide superior accuracy–efficiency trade-offs to static thresholds.
 959

960 D.3 SEMCACHELMARENA WITH OPENAI EMBEDDINGS

961 **vCache respects user-defined error-rate requirements on SemCacheLMArena** Figure 11 eval-
 962 uates whether vCache satisfies the user-defined error rate δ on the SemCacheLMArena benchmark.
 963 Across all tested δ values, the realized error rate of vCache remains below the user-defined target,
 964 confirming that the learned thresholds enforce the desired bound. As the sample size grows, vCache
 965 further reduces its empirical error while steadily increasing cache hit rate, indicating that it continues
 966 to learn from additional data. In contrast, GPTCache with a fixed similarity threshold of 0.98 exhibits
 967 growth in both error rate and hit rate as more prompts arrive. Figure 12 outlines a Pareto comparison
 968 across all feasible thresholds.
 969

970 **Dynamic, embedding-specific thresholds yield better trade-offs than static thresholds** Figure 12
 971 summarizes the overall accuracy–efficiency trade-offs on SemCacheLMArena by varying vCache’s
 972 error bound δ and GPTCache’s static similarity threshold. Each point represents a complete evalua-
 973 tion

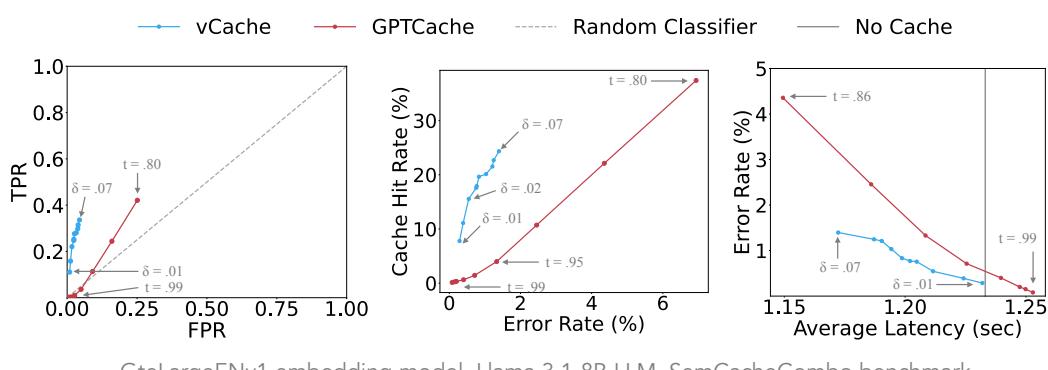


Figure 10: Pareto comparison across a range of thresholds and δ values on 27,5k samples from the SemCacheCombo benchmark. vCache outperforms the state-of-the-art GPTCache baselines with up to 12.5x higher cache hit rates while satisfying the user-defined error rate bound.

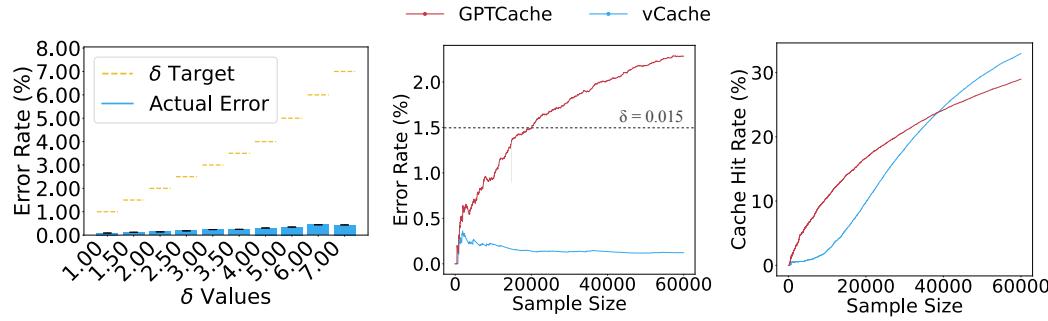


Figure 11: vCache meets the user-defined maximum error rate bound δ with steadily increasing cache hit rates and decreasing error rates (vCache is learning). GPTCache shows increasing error and hit rates, illustrating the unreliability of static thresholds. The static baseline uses a fixed threshold of 0.98. See Figure 12 for a threshold vs. δ Pareto comparison.

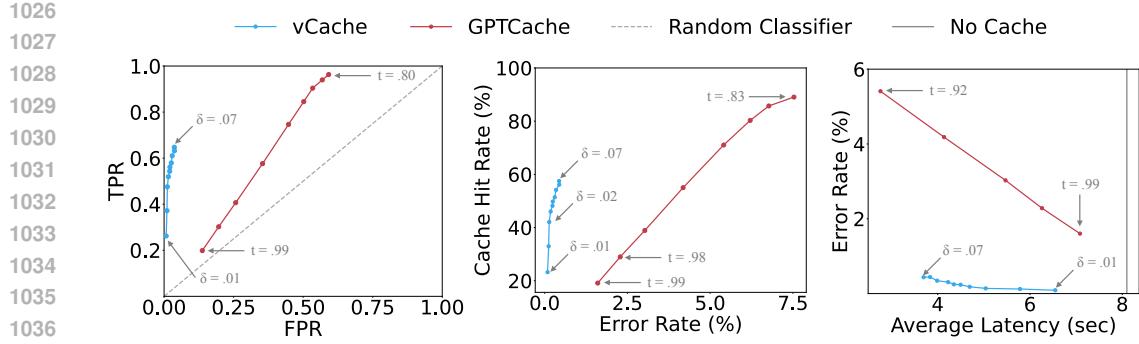
run, enabling a direct Pareto comparison. vCache traces out a strictly better frontier: it achieves substantially higher cache hit rates at the same error level and much lower error for comparable hit rates and latency. For example, vCache reaches a cache hit rate of 57% while keeping the error rate below 0.5%, whereas GPTCache requires an order-of-magnitude higher error to obtain similar hit rates. At matched latency, vCache achieves up to 26 \times lower error than the best static configuration. These outcomes demonstrate that dynamic, embedding-specific thresholds are better suited than static thresholds for maintaining strict error guarantees while exploiting semantic redundancy.

D.4 τ COMPUTATION OVERHEAD

Figure 13 reports the latency of computing τ (Algorithm 1) on the SemCacheLMArena benchmark as a function of the current sample size. Each point corresponds to one update step, and the solid red line is a linear regression fit. The points form a tight horizontal band and the regression slope is effectively zero ($\approx 5.5 \times 10^{-10}$ sec per sample), indicating that τ can be computed in constant time. Across all sample sizes, the latency remains below 1.5 ms, indicating that the overhead of computing τ is negligible.

D.5 EMBEDDING GENERATION OVERHEAD

Semantic caches incur additional latency due to embedding computation, which must be evaluated in relation to the cost of LLM inference. To quantify this overhead, we compare the embedding latencies of four models to the inference latency of Llama3.1-8B.



OpenAI text-embedding-3-small model, OpenAI GPT 4.1-nano LLM, SemCacheLMArena benchmark

Figure 12: Pareto comparison across a range of thresholds and δ values on 60k samples from the SemCacheLMArena benchmark. Noticeably, vCache achieves a cache hit rate of 57% while maintaining an error rate of less than 0.5%. vCache outperforms the state-of-the-art GPTCache baselines with up to 26x lower error rates while satisfying the user-defined error rate bound.

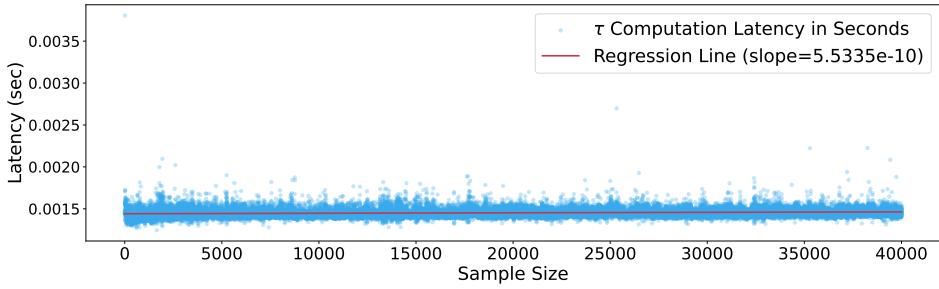


Figure 13: Empirical latency of computing τ in Algorithm 1 as a function of sample size. The fitted regression line ($\text{slope} \approx 5.5 \times 10^{-10}$) shows that the cost is effectively constant, adding at most ≈ 1.5 ms (< 0.0015 s) per update.

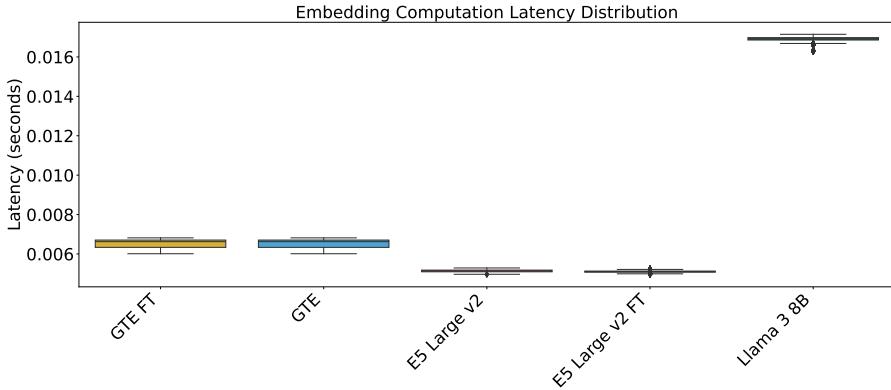


Figure 14: Embedding computation latency distributions across models, shown as 95th percentile whisker plots. GTE_FT = GteLargeEnv1-5 (Zhang et al., 2024) fine-tuned (Zhu et al., 2024). E5 Large v2 FT = E5-large-v2 (Wang et al., 2022) fine-tuned (Zhu et al., 2024)

All experiments are conducted on a system with an Intel Xeon Platinum 8570 CPU and an NVIDIA Blackwell GPU with 192 GB of memory. The results show that embedding computation is significantly faster than model inference, confirming its applicability in caching pipelines.

1080
1081

D.6 LOGISTIC REGRESSION LATENCY OVERHEAD

1082
1083
1084
1085
1086

Since vCache performs threshold estimation online for every request, the efficiency of logistic regression directly impacts scalability. In our experiments, we use `sklearn.linear_model` on CPU, yielding an average latency of 0.0017 seconds on the `SemBenchmarkArena`. Its negligible latency ensures that online modeling does not introduce noticeable overhead and can scale to large caches.

1087
1088

D.7 vCACHE IN COMBINATION WITH vLLM

1089
1090
1091
1092
1093
1094
1095

vCache is orthogonal to inference optimization systems, as semantic prompt caching reuses responses for semantically similar prompts rather than accelerating inference itself. When a cache miss occurs, vCache directly benefits from systems such as vLLM (Kwon et al., 2023) or SGLang (Zheng et al., 2023b), which reduce model latency. To validate this, we hosted LLaMa 3.1 70B with vLLM on two NVIDIA Blackwell GPUs and compared inference latency with and without vCache. For vCache, we additionally ran the GteLargeEnv1_5 embedding model on the same machine. Evaluation was conducted on 45k samples from the `SemCacheClassification` benchmark.

1096
1097
1098
1099

Table 2: A comparison of overall runtime, latency, cache hit rate, and error rate with and without vCache under different error tolerances

Baseline	Config	Overall Duration	Avg. LLM Inference Latency	Avg. Emb. Latency	Cache Hit Rate	Error Rate
vLLM	–	240 min	0.32 sec	–	0.0%	0.0%
vLLM	$\delta = 0.01$	214 min	0.32 sec	0.018 sec	18.1%	0.4%
+ vCache	$\delta = 0.02$	170 min	0.32 sec	0.018 sec	35.5%	1.2%
+ vCache	$\delta = 0.03$	160 min	0.32 sec	0.018 sec	40.2%	1.4%

1100
1101
1102

Despite the additional embedding overhead, vCache substantially reduces end-to-end latency by avoiding repeated LLM inferences. This demonstrates that vCache is complementary to inference optimization systems such as vLLM.

1103
1104
1105
1106
1107

D.8 ADDITIONAL BASELINE EVALUATIONS

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

vCache is the first adaptive, probabilistic, and Bayesian method for semantic caching. The most competitive alternatives are static threshold methods, which we extend with several additional baselines for completeness. The landscape of approaches can be ordered from naive to advanced as follows:

1120
1121

GS: Global and Static threshold (i.e., GPTCache).

1122
1123

GD: Global and Dynamic threshold (vCache with global threshold).

1124
1125

LS: Per-embedding (Local) and Static threshold.

1126
1127

LD: Per-embedding (Local) and Dynamic threshold:

1128
1129

LD1: Logistic regression to compute the threshold (\hat{t}).

1130
1131
1132
1133

LD2: Logistic regression sigmoid fit to model correctness probability.

LD3: Logistic regression sigmoid fit with confidence intervals and guarantees (vCache).

We implement all baselines and perform ablations on the E5-large-v2 embedding model, OpenAI GPT-4o mini LLM, and the `SemCacheLmArena` benchmark. For non-adaptive baselines (LD1 and LD2), we select the threshold or δ values that produced error rates closest to their observed performance. Results are shown in Table 3.

1134 Table 3: A comparison of error rate, cache hit rate, and qualitative observations across baselines
1135
1136

1137 Baseline	1138 Threshold/ Delta	1139 Error Rate	1140 Cache hit Rate	1141 Comments and Observations
1140 GS	0.99	2.5%	37%	No guarantee and worst trade-off.
	0.98	4.1%	53%	
	0.97	5.2%	67%	
1143 GD	0.02	1.3%	14%	Due to the large overlap between incorrect and correct samples at a given similarity (see 3), the optimal threshold converges to 1.0, yielding low cache hits.
	0.03	2.5%	26%	
	0.05	4.3%	45%	
1148 LS	–	–	–	Impossible to compute a threshold for every embedding a priori.
1151 LD1	–	2.6%	70%	No guarantees and no error-rate fine-tuning.
1152 LD2	–	2.1%	68%	No guarantees and no error-rate fine-tuning.
1153 LD3	0.02	0.5%	41%	Guarantees and beats both SOTA and GD baselines.
	0.03	1.1%	46%	
	0.05	2.0%	54%	

1157

1158

1159 This ablation underlines that (1) semantic caches benefit from embedding-specific thresholds, and
1160 (2) probabilistic modeling is required to satisfy user-defined error bounds and ensure predictability.
1161 Notably, only vCache provides guarantees. The importance of guarantees cannot be overstated, as in
1162 practice, the absence of correctness guarantees has been a primary reason for the failure of semantic
1163 caching deployments in industry.

1164

1165

D.9 THRESHOLD DILEMMA

1166

1167 To analyze the relationship between similarity scores $s(x)$ and cache correctness $c(x)$, we conduct an
1168 experiment on the 45,000 entries of the *SemCacheClassification* benchmark using an error tolerance
1169 of $\delta = 0.02$ (2%). For each cached embedding x_i , we record the observations $\mathcal{O}(x_i)$ and the
1170 empirically estimated optimal threshold \hat{t}_{x_i} .

1171

1172 In the top plot of Figure 3, we separate all observations into two sets: one where $c(x) = 1$ (correct
1173 cache hit) and another where $c(x) = 0$ (incorrect hit). We plot the kernel density functions (KDF),
1174 also known as kernel density estimations (KDE), to visualize the distribution of correct and incorrect
1175 observations. The result shows that correct and incorrect observations are nearly indistinguishable in
1176 similarity space, with substantial overlap and similar means (0.84 vs. 0.85). This illustrates that one
1177 single similarity threshold is not a reliable decision boundary.

1178

1179 The bottom plot shows a histogram of the optimal threshold values \hat{t} computed per embedding. The
1180 thresholds span a range, from 0.71 to 1.0, indicating that no single similarity threshold can suffice
1181 across embeddings. A threshold set too low increases the risk of incorrect cache hits; a threshold
1182 set too high limits cache hits. Together, these results motivate the need for embedding-specific and
1183 dynamically learned thresholds to ensure interpretable and reliable performance.

1184

1185

E HYPERPARAMETER GUIDANCE

1186

1187

1188 vCache is designed to be simple to configure, with the error rate bound δ as its primary hyperparameter.
1189 We recommend setting this bound based on the desired trade-off between accuracy and cost. For
1190 high-accuracy applications (e.g., customer support or safety-critical systems), a conservative value
1191 such as 0.5% can be appropriate. For use cases with higher tolerance for occasional errors and

1188 stronger cost or latency constraints (e.g., search or summarization), values around 2–3% may be
 1189 reasonable. Ultimately, the choice depends on application-specific requirements.
 1190

1191 F BENCHMARK CREATION

1192 To the best of our knowledge, no open-source benchmarks currently exist for evaluating the performance
 1193 and applicability of semantic caching systems. To address this gap, we construct and release
 1194 three diverse benchmarks⁵, each designed to reflect a distinct real-world use case: classification tasks,
 1195 conversational chatbots, and search engines. This section describes the motivation and construction
 1196 process behind each benchmark.
 1197

1198 F.1 SEMCACHECLASSIFICATION BENCHMARK

1199 The *SemCacheClassification* benchmark is designed to evaluate semantic caching in structured
 1200 classification settings, such as those found in modern database environments (Liu et al., 2024b).
 1201 Several database systems, including Databricks, Snowflake, and AWS, have introduced LLM-based
 1202 extensions to SQL via User-Defined Functions (UDFs), enabling capabilities beyond traditional
 1203 SQL semantics (Liu et al., 2024b). However, LLM-based UDFs are inherently non-deterministic,
 1204 execute row by row, and pose integration challenges for parallelization and query optimization (Franz
 1205 et al., 2024). When table rows contain semantically similar values, semantic caching can reduce the
 1206 frequency of LLM invocations, thereby improving both latency and cost. This benchmark captures
 1207 such use cases, where slight variations in phrasing should not require repeated inference.
 1208

1209 The benchmark consists of 45,000 short-form prompts with a fixed output label space. Each example
 1210 follows a prompt–response format, where the prompt expresses a classification query and the ex-
 1211 pected response is a one-word label. The benchmark combines three diverse classification datasets:
 1212 *CommonsenseQA* (Talmor et al., 2018), *Ecommerce Categorization* (Saurabh Shahane, 2023), and
 1213 *Amazon Instant Video Review* (Ni et al., 2019). This dataset composition models out-of-distribution
 1214 data because the three sources differ significantly in domain, style, and vocabulary, forcing semantic
 1215 caching methods to generalize beyond a single homogeneous dataset. Sample prompts and response
 1216 formats from each dataset are shown below, and Table 4 summarizes label distributions across the
 1217 benchmark.
 1218

1219 A sample entry from the Ecommerce Categorization (Saurabh Shahane, 2023) dataset:

```
1220 {  

1221   "prompt": "Which category does the text belong to? Text: <text  

1222   > ",  

1223   "output_format": "Answer with 'Books', 'Electronics', '  

1224   Household', or 'Clothing & Accessories' only"  

1225 }
```

1226 A sample entry from the Commonsense QA Talmor et al. (2018) dataset:

```
1227 {  

1228   "prompt": "What is the main subject of the following question?  

1229   Question: <question> ",  

1230   "output_format": "Answer with only one of the words of this set  

1231   : ['people', 'potato', 'competing', 'snake', 'lizard', 'food'  

1232   , 'car', 'water', 'student', 'crab', 'children', 'killing', '  

1233   animals', 'ficus', 'horse', 'fox', 'cat', 'weasel', 'shark', '  

1234   person', 'human'] "  

1235 }
```

1236 A sample entry from the Amazon Instant Video Review Ni et al. (2019) dataset:

```
1237 {  

1238   "prompt": "Is this review friendly? Review: <review> ",  

1239 }
```

⁵<https://huggingface.co/vCache>

```

1242     "output_format": "Answer with 'yes' or 'no' only"
1243 }
1244

```

1245 The benchmark enables controlled evaluation of semantic caching strategies, especially in cases
 1246 where small changes in input phrasing must still map to the same output class. Its fixed label format
 1247 makes it particularly useful for evaluating systems like vCache, which rely on correctness guarantees
 1248 under threshold uncertainty. Table 4 summarizes the label distributions for the three subtasks in the
 1249 SemCacheClassification benchmark.

1250	Response	Count
1251	person	2,806
1252	people	625
1253	human	400
1254	competing	272
1255	animals	225
1256	food	202
1257	car	125
1258	water	100
1259	student	79
1260	children	32
1261	killing	27
1262	horse	24
1263	lizard	13
1264	potato	13
1265	fox	11
1266	cat	10
1267	ficus	10
1268	weasel	8
1269	shark	8
1270	crab	7
1271	snake	3

1272 (a) Commonsense QA.
 1273

1250	Response	Count
1251	Books	6,000
1252	Clothing	6,000
1253	Electronics	6,000
1254	Household	2,000

1255 (b) Ecommerce.

1250	Response	Count
1251	yes	10,000
1252	no	10,000

1253 (c) Amazon Instant Video.

1274 Table 4: Response distribution across three datasets that form the SemCacheClassification benchmark.
 1275

1276 F.2 SEMCACHELMARENA BENCHMARK

1277 The *SemCacheLMArena* benchmark is designed to evaluate semantic caching in chatbot environments,
 1278 where users may issue semantically similar prompts with different phrasing. In such settings, caches
 1279 must generalize across diverse surface forms while maintaining response correctness. This benchmark
 1280 addresses these challenges by grouping semantically similar user inputs and testing whether caching
 1281 systems can accurately reuse responses.

1282 To construct the benchmark, we use the LM-Arena human preference dataset (Zheng et al., 2023a),
 1283 which contains 100,000 real-world user queries. We randomly sample 3,500 distinct prompts, each
 1284 of which defines a class. For each class, we generate between 1 and 23 semantically similar variants
 1285 using GPT-4.1-nano, resulting in a total of 60,000 prompts. A class ID is assigned to each prompt to
 1286 evaluate caching correctness: a cache hit is considered correct if the retrieved response belongs to the
 1287 same class as the query. Figure 15 shows the distribution of class sizes (number of prompts belonging
 1288 to a class), confirming broad variability in prompt paraphrasing. To support model-agnostic evaluation,
 1289 we generate responses for all prompts using GPT-4.1-nano and GPT-4o-mini. The corresponding
 1290 response length distributions are shown in Figure 16.

1291 F.3 SEMCACHESEARCHQUERIES BENCHMARK

1292 The *SemCacheSearchQueries* benchmark is designed to evaluate semantic caching in open-domain
 1293 search applications. Large-scale search engines, such as Google, increasingly rely on LLMs to

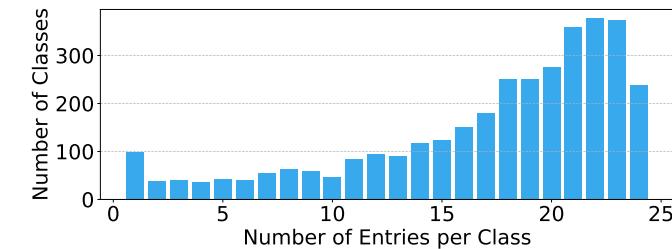


Figure 15: Distribution of class sizes in the SemCacheLMArena benchmark. Each class corresponds to a unique user prompt and contains 2–24 semantically similar variants.

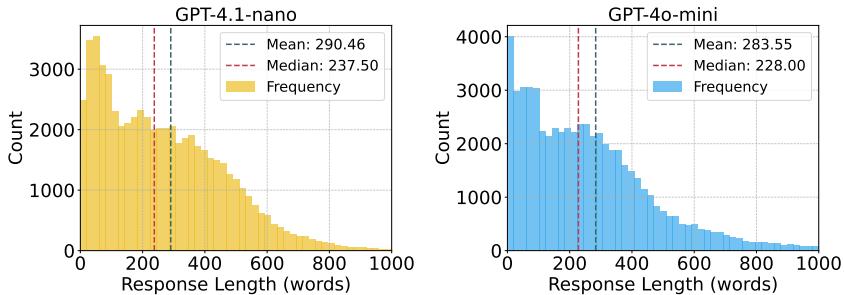


Figure 16: Response length histogram for GPT-4.1-nano and GPT-4o-mini on the SemCacheLMArena benchmark. Median and mean lengths are shown for each model.

generate direct answers to natural language queries (Liu et al., 2024a; Wang et al., 2024). While this improves user experience, it introduces significant latency and cost, particularly at the scale of millions of daily queries. Many queries issued to search engines are paraphrased variations of earlier inputs, making semantic caching a natural fit for reducing redundant LLM inference in this setting.

The benchmark is constructed from a filtered subset of the ORCAS dataset (Craswell et al., 2020), containing real-world search engine queries. We begin by sampling 500,000 queries and embedding each using the gte-large-en-v1.5 embedding model (Zhang et al., 2024). We then apply k -means clustering to group similar queries and retain the largest clusters, resulting in 150,000 entries. Within each cluster, we apply a union-find algorithm guided by an LLM-based judge (GPT-4.1-nano) to determine whether query pairs yield the same response. Sub-clusters identified in this step define the equivalence classes used for caching evaluation. Figure 17 summarizes the benchmark properties, including class size distribution, frequent query terms, and statistics on the number of queries per class.

F.4 SEMCACHECOMBO BENCHMARK

We introduce the SemCacheCombo benchmark to evaluate semantic caching in workloads that contain both reusable responses and unique, non-reusable responses. The dataset is constructed by combining two sources into a single sequence of 27,500 prompts. First, we take the SemCacheLMArena benchmark and select one representative prompt from each of its 3,500 semantic classes. Because each prompt represents a different cluster, these 3,500 queries are pairwise semantically distinct and should not share a reusable response. From the perspective of a semantic cache, every SemCacheLMArena prompt is therefore expected to result in a cache miss; any cache hit on this subset is, by definition, an incorrect reuse. Second, we append 24,000 prompts from the SemCacheClassification benchmark. Correct cache hits may only occur within this set of prompts. Next, we randomly shuffle all 27,500 prompts.

G CONVERGENCE SPEED ESTIMATION

For each cached prompt $y = \text{nn}(x)$, vCache fits the sigmoid model $\mathcal{L}(s(x), t, \gamma)$ to the meta-data $\mathcal{O}(y)$. Under the standard regularity assumptions for logistic regression, the MLE $(\hat{t}_y, \hat{\gamma}_y)$ converges

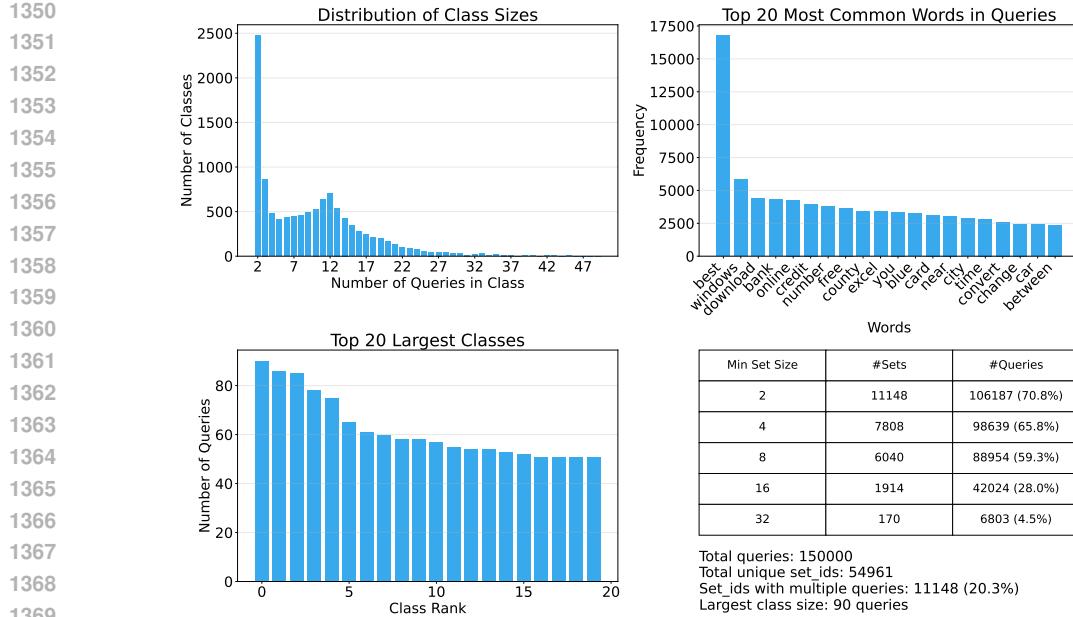


Figure 17: Descriptive statistics for the SemCacheSearchQueries benchmark. Top left: Most classes contain exactly two queries. Top right: The word *best* appears in over 16,000 of the 150,000 queries. Bottom left: The largest class contains 90 semantically equivalent queries. Bottom right: 59.3% of all classes contain more than eight queries, indicating substantial intra-class variability.

to the true embedding-specific parameters (t_y, γ_y) at the usual parametric rate $\mathcal{O}(1/\sqrt{n_y})$, where n_y denotes the number of explored queries whose nearest neighbor is y . Any embedding-specific threshold derived from this model (e.g., the similarity at which $\Pr(c(x) = 1 \mid x, \mathcal{D})$ exceeds $1 - \delta$, or the required exploration probability $\tau_{nn(x)}(s(x))$) is a smooth function of (t_y, γ_y) and therefore inherits the same $\mathcal{O}(1/\sqrt{n_y})$ convergence rate via the delta method. Intuitively, as vCache collects more labels for a given neighbor, the decision boundary t and the corresponding policy $P_{vCache}(s(x), \mathcal{O}(nn(x)), \delta)$ stabilize at this standard parametric speed.

H EMPIRICAL JUSTIFICATION OF THE SIGMOID MODEL

We model, for each cached embedding $nn(x)$, the probability $\Pr(c(x) = 1 \mid x, \mathcal{D})$ as a function of similarity $s(x)$ using the logistic family. We require the following structural properties from $\mathcal{L}(s(x), t, \gamma)$: 1) monotonicity in similarity, 2) boundedness in $[0, 1]$, and 3) a low-dimensional parameterization so that we can obtain tight confidence bands for (t, γ) from the relatively small observation sets $\mathcal{O}_{nn(x)}$. The logistic sigmoid is a canonical choice satisfying these properties and allows efficient MLE.

To empirically validate this choice, we analyze the SemBenchmarkLmArena configuration with text-embedding-3-small and GPT-4.1-nano. We randomly select and evaluation run and for each cached embedding we collect all observed pairs $(s(x), c(x)) \in \mathcal{O}_{nn(x)}$, where $s(x)$ is the similarity between x and $nn(x)$ and $c(x) \in \{0, 1\}$ indicates whether returning the cached response was correct. Figure 18 shows, for the two embeddings with the largest numbers of labeled observations (42 and 33, respectively), a 1D k -NN estimate ($k = 5$) of $\Pr(c = 1 \mid s, nn(x))$ as a function of similarity s . Both curves are monotone and exhibit a S-shaped transition from low to high correctness as similarity increases, which is the behavior that Eq. 9 is designed to capture for each $nn(x)$ and then feed into $\tau_{nn(x)}(s(x))$ and $\hat{\tau}$ in Eq. 9 and Eq. 11.

Figure 19 shows an aggregate view across all cached embeddings in the same configuration. We bin all $(s(x), c(x))$ pairs by similarity and plot the empirical correctness probability $\Pr(c = 1 \mid s)$ per bin. The resulting curve is again monotone and clearly S-shaped, with low correctness at small similarity, a rapid increase in a mid-range similarity region, and saturation near one at high similarity.

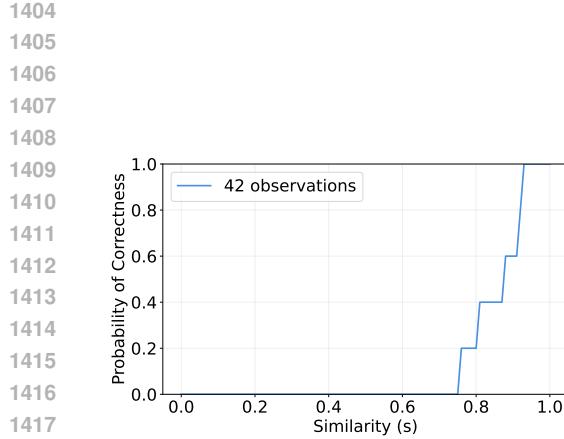


Figure 18: Empirical probability of correctness as a function of similarity s for the two cached embeddings with the largest numbers of labeled observations (42 and 33) in SemBenchmarkLmArena with text-embedding-3-small and GPT-4.1-nano. We estimate $\Pr(c = 1 \mid s, nn(x))$ using a 1D k -NN smoother with $k = 5$. In both cases the curve is monotone and approximately sigmoidal in s , supporting the per-embedding sigmoid model $\mathcal{L}(s(x), t, \gamma)$ in Eq. 9.

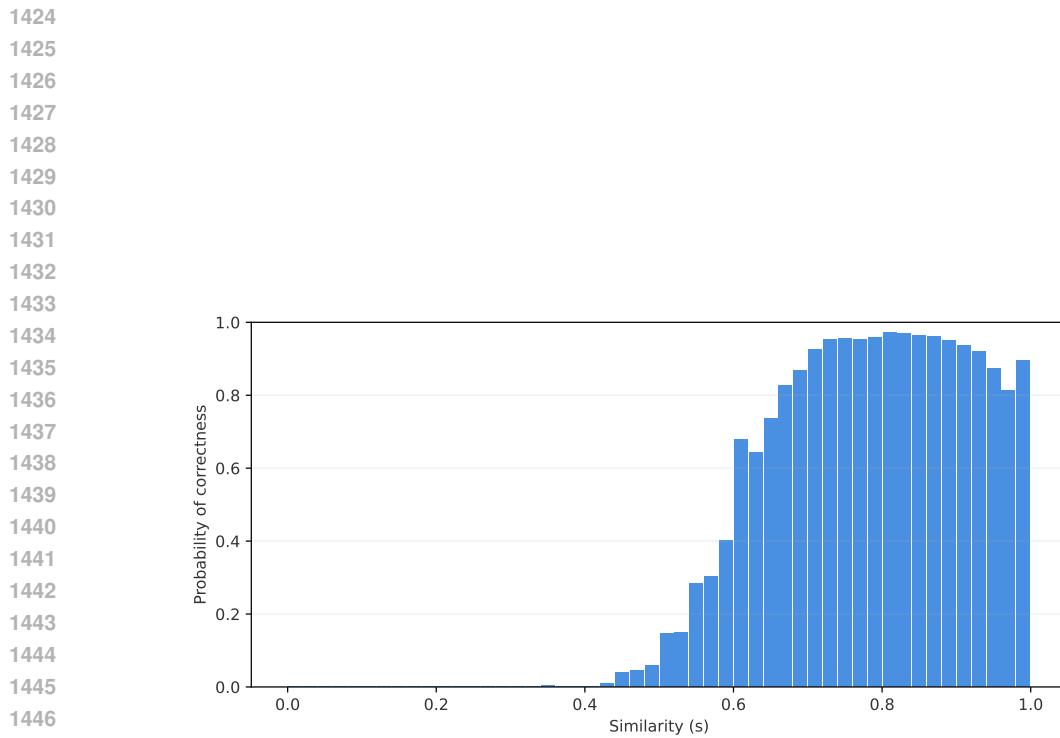


Figure 19: Aggregate empirical correctness probability as a function of similarity s over all cached embeddings in SemBenchmarkLmArena with text-embedding-3-small and GPT-4.1-nano. We bin all $(s(x), c(x))$ pairs by similarity and plot the fraction of correct reuse decisions per bin. The resulting curve is monotone and clearly S-shaped, with low correctness at low similarity, a sharp increase in a mid-similarity region, and saturation at high similarity, which matches the qualitative behavior modeled by the sigmoid family in Eq. 9.