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ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved significant advances in
integrating visual and linguistic information, yet their ability to reason about complex and
real-world scenarios remains limited. Existing benchmarks are usually constructed in a
task-oriented manner, without a guarantee that different task samples come from the same
data distribution. Therefore, they often fall short in evaluating the synergistic effects of
lower-level perceptual capabilities on higher-order reasoning. To lift this limitation, we
contribute Lens, a multi-level evaluation benchmark of multimodal reasoning with 3.4K
contemporary images and 60K+ human-authored questions covering eight tasks and 12
daily scenarios, forming three progressive task tiers, i.e., perception, understanding, and
reasoning. One feature is that each image is equipped with rich annotations for all tasks.
Thus, this data set intrinsically supports evaluating MLLMs to handle image-invariable
prompts, from basic perception to compositional reasoning. In addition, our images have
been collected manually from social media, with 53% published after Jan. 2025. We
evaluate 15+ frontier MLLMs such as Qwen2.5-VL, InternVL3, GPT-4o and two reasoning
models QVQ-Max and Kimi-VL. Most models were released in 2025, and none of them
achieve an accuracy beyond 60% in the reasoning tasks. Furthermore, we propose the Self-
Driven Multi-Expert Collaborative Framework (SMEC), a framework designed for MLLMs
that simulates a panel of experts discussing and exchanging viewpoints via self-generated
role-specific prompts. The experimental results confirm the existence of synergistic effects
in a hierarchical task structure, where low-level tasks facilitate the reasoning of MLLMs on
more complex, high-level tasks. Statistical analysis and ablation studies further demonstrate
the comprehensiveness of our dataset and the superiority of our methodology. Our dataset
and code will be released upon acceptance.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have emerged as a rapidly advancing field in artificial
intelligence, demonstrating substantial improvements in visual content recognition and multimodal reasoning
(Zhu et al., 2025; Bai et al., 2025; Wu et al., 2024; Team et al., 2024; 2025a). Despite their promising
capabilities, MLLMs continue to face significant challenges in interpreting complex and real-world visual
environments that are inherently dynamic, diverse, and grounded in physicality. However, existing benchmarks
remain limited in their ability to evaluate multi-level reasoning.

Early evaluations were largely based on classical computer vision tasks (Everingham et al., 2010; Lin
et al., 2014; Yu et al., 2016) and their integration with natural language. The real-world knowledge was
often superficial, resulting in weak alignment between visual input and linguistic output. Secondly, these
benchmarks are typically constructed under closed-world assumptions, lacking the inter-task consistency
needed to assess reasoning across modalities (Fu et al., 2024; Li et al., 2024a). As a result, the absence of
quantitative multi-level evaluation hinders meaningful comparison across MLLMs.
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Figure 1: Illustration of the task split in Lens.

More recent benchmarks have begun to shift toward
open-world evaluation and multimodal reasoning tasks
(Wu & Xie, 2024; Zang et al., 2025). While this repre-
sents progress, current benchmarks do not adequately
assess the nuanced performance necessary to evaluate
MLLMs’ progression towards human-like intelligence in
real-world settings. They require largely primary visual
comprehension and fall short of measuring higher-order
reasoning and spatial understanding (Yue et al., 2024;
Liu et al., 2024c). Furthermore, data distributions of-
ten differed between tasks, so that high performance in
perceptual tasks did not necessarily translate into strong
inference capabilities in more complex integrated mul-
timodal tasks (Fan et al., 2025). As a result, they ignore
the synergistic effect of the combinations of lower-order
perceptual abilities on higher-order reasoning and are hard to provide a fine-grained assessment.

In this study, we propose a hierarchical and comprehensive evaluation framework Lens specifically designed
to assess the multimodal capabilities in real-world scenarios. Our benchmark focuses on both isolated tasks
and the integration of perception, understanding, and reasoning—three core tiers essential for intelligent
multimodal systems. As shown in Figure 1, Lens encompasses eight tasks, systematically organized into
three hierarchical tiers with eight subtasks, and it comprises 3.4K real-world photographs and 60K+ human-
authored questions, in 12 diverse scenarios—including streets, stations, schools, homes, and more, which can
be roughly divided into three themes: “Home”, “Education”, and “City”, and we visualize the high-frequency
words under different themes in Figure 2. 53% of the images are from 2025 and more than 80% of the images
are from after September 2024, ensuring the content reflects contemporary environments.

For task design, Lens adopts an open-set configuration, allowing queries to be posed in natural language and
grounded in authentic photographic content. This design enables evaluation of model performance in complex,
ambiguous, and information-rich settings, better aligning with real-time human demands. Moreover, our
benchmark introduces multi-level tasks, which are unified by shared visual contexts, making Lenswell-suited
for assessing the synergistic effects of lower-level perceptual abilities (e.g., object detection, localization)
on higher-order reasoning tasks. To succeed in Lens, models must jointly process multimodal input, recall
domain knowledge, and conduct multi-step reasoning to arrive at valid conclusions. Our experimental results
confirm that current state-of-the-art MLLMs still struggle with these reasoning-heavy tasks, revealing a
significant gap between perception and functional understanding.

To bridge this gap, we propose the Self-Driven Multi-Expert Collaborative Framework (SMEC), a novel
reasoning framework that leverages the MLLM itself as a set of specialized experts instantiated through
self-generated prompts. Unlike tool-calling approaches (Wang et al., 2025; Gao et al., 2025; Liu et al.,
2025b; Zhang et al., 2024b) that rely on external modules, SMEC treats the base MLLM as a versatile
reasoning engine: it simulates diverse expert perspectives (e.g., spatial analyst, text interpreter, commonsense
reasoner) via role-specific prompts and composes their insights into coherent final answers. This collaborative
mechanism encourages the model to extract, expand, and integrate rich, task-relevant information. Our
experiments demonstrate that SMEC significantly boosts performance on reasoning tasks within Lens,
validating its potential as a general-purpose, language-native method for enhancing multimodal reasoning.

In sum, we make the following contributions:

• Realistic and Up-to-Date Evaluation. By leveraging a newly collected set of high-resolution,
naturalistic images, our benchmark evaluates the latest multimodal reasoning models in settings that
closely reflect real-world complexity.
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Scenarios HomeCity Education

Figure 2: Three core themes, “Education”, “City”, and “Home”, along with their word clouds of the scenario
distributions by name size.

• Multi-Level Evaluation. It supports fine-grained and interpretable evaluation across three core
dimensions—perception, understanding, and reasoning—providing a comprehensive view of a
model’s multimodal competence.

• Synergistic Capability Evaluation. Unlike existing benchmarks that often assess tasks in isolation,
our framework emphasizes the synergistic effects of lower-level perceptual abilities on higher-order
reasoning tasks. The experimental results also confirm that low-level tasks facilitate the reasoning of
MLLMs on more complex, high-level tasks (e.g., Scene Knowledge Inference).

• Towards Generalizable Intelligence. By capturing both perceptual and reasoning performance in
integrated tasks, our benchmark helps identify the gaps between current model capabilities and the
requirements of human-aligned reasoning systems and measure the shortcomings of current models.

• Self-driven Reasoning Enhancement. We introduce SMEC, a self-driven multi-expert collaborative
framework that simulates specialized experts within a single MLLM through self-generated prompts.
Unlike tool-calling approaches, SMEC enables modular, multi-perspective reasoning natively,
leading to significant gains on complex reasoning tasks.

Comparison with existing benchmarks. Compared with existing multimodal benchmarks (Liu et al., 2024c;
Yue et al., 2024; Li et al., 2024b), Lens provides more contemporary, diverse, and densely annotated visual
content. Our benchmark is constructed from contemporary social-media images, ensuring strong timeliness
and significantly reducing the risk of contamination from pre-training corpora. In contrast to task-specific
datasets (Liu et al., 2024d;a; Wei et al., 2024), our benchmark provides rich, multi-task annotations with
the same visual content, across perception, understanding, and reasoning, enabling controlled analysis of
cross-task synergies within a unified distribution. Additionally, Lens offers the detailed thought process in
real-world reasoning tasks for potential future research. Appendix A.1 further discusses related work.

2 LENS DATASET AND BENCHMARK

2.1 DATA COLLECTION

The image data collection in our benchmark focuses on real-world scenes to ensure diversity, representa-
tiveness, and practicality for visual perception, understanding, and reasoning tasks. To this end, we first
defined a set of common real-life scenarios that are highly relevant to typical human visual experiences. The
selection principle was that each visual scene should contain distinguishable and representative semantic
content. For example, street scenes are usually populated with cars, pedestrians, and storefronts, while indoor
environments like classrooms often involve students, teachers, and educational materials. To avoid regional
or cultural bias and ensure a broad distribution of content, we collected images from multiple social media
platforms, including X (formerly Twitter), Instagram, Weibo, and RedNote. These platforms were chosen due
to their global user bases and diverse content coverage across regions and lifestyles. During the collection
process, we strictly complied with the copyright and licensing regulations of each platform, ensuring that
data was collected only from publicly accessible posts and that no images were downloaded from sources

3
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Figure 3: Lens consists of eight tasks at three levels. Perception tasks focus on recognizing object attribute
and counting. Understanding tasks emphasizes localization and inter-object relationships with textual
information. Reasoning tasks demand the use of external knowledge beyond the visual input and involve
multi-step, complex reasoning processes to arrive at the correct answer.

Table 1: Comparison with other recently released multimodal benchmarks.

Benchmarks Venue Att. Cnt Loc Rel Reasoning Interleaved
Image-Text Image Source

V* (Wu & Xie, 2024) CVPR’24 ✘ ✘ ✔ ✔ ✔ ✘ SA-1B (Kirillov et al., 2023)
SPEC (Peng et al., 2024) CVPR’24 ✔ ✔ ✔ ✘ ✘ ✘ Synthesize

MMVP (Tong et al., 2024) CVPR’24 ✔ ✘ ✘ ✘ ✘ ✘ ImageNet (Russakovsky et al., 2015), LAION-5B (Schuhmann et al., 2022)
HaloQuest (Wang et al., 2024b) ECCV’24 ✔ ✘ ✘ ✔ ✔ ✘ Open Images (Kuznetsova et al., 2020)

AS-V2 (Wang et al., 2024a) ECCV’24 ✔ ✔ ✔ ✘ ✔ ✘ COCO (Caesar et al., 2018)
MMBench (Liu et al., 2024c) ECCV’24 ✔ ✔ ✔ ✔ ✔ ✘ Internet images

HC-RefLoCo (Wei et al., 2024) NeurIPS’24 ✘ ✘ ✔ ✔ ✔ ✘ Multiple existing datasets
Visual CoT (Shao et al., 2024) NeurIPS’24 ✔ ✘ ✘ ✘ ✔ ✘ Multiple existing datasets

MC-Bench (Xu et al., 2024) arXiv’24 ✘ ✘ ✔ ✘ ✔ ✔ Multiple existing datasets, Internet
CODE (Zang et al., 2025) IJCV’25 ✔ ✔ ✔ ✘ ✘ ✘ Flickr30k series (Young et al., 2014; Plummer et al., 2015)

ChatterBox (Tian et al., 2025) AAAI’25 ✔ ✔ ✔ ✘ ✔ ✘ Visual Genome (Krishna et al., 2017)

Lens - ✔ ✔ ✔ ✔ ✔ ✔
Collect manually from social media
53% published later than Jan. 2025

“Att.”: Attribute; “Cnt”: Count; “Loc”: Localization; “Rel”: Relation

explicitly prohibiting data reuse or redistribution. Moreover, to facilitate the evaluation of multiple subtasks
within the same image (e.g., detection, OCR, scene knowledge inference), we curated images that exhibit rich
semantic content while maintaining scene clarity. Complex or ambiguous images were manually filtered out
to avoid introducing noise that could hinder benchmarking or evaluation consistency. Please note that we
manually collect these data that are completely open to the Internet and have complied with the developer
agreement of the relevant platform (e.g., Developer Policy of X 1 and Meta 2), ensuring non-commercial use,
erasing geographic information, user personal information, etc. from the original data. Images containing
sensitive personal information were either excluded or processed to blur or mask sensitive regions, to mitigate
privacy risks. For further details, please refer to the appendix A.4.

1https://developer.x.com/en/use-cases/do-research/academic-research
2https://developers.facebook.com/docs/instagram-platform
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(a) Alluvial diagram of scene and collection 
time distribution of images.

(b) Distribution of image collection time.

(d) Size distribution of the bounding box annotations. 

(c) The distribution of the image sizes in the dataset.

(e) Number of Q&A entries for different tasks.

Education

City

Home

Street

Station

Airport

Restaurant

Scenic spot

Living room

Bedroom

Kitchen

Classroom

Library

Bathroom

Playground

After 2025

2024.09-2024.12

Before 2024.09

Figure 4: Statistical analysis of our dataset. We visualize the temporal distribution of the images for different
scenarios, size distribution of images and bounding box annotations, and number of QA entries for different
tasks, demonstrating the timeliness and diversity of our data.

2.2 TASK DESIGN AND ANNOTATION PROCESS

To construct a comprehensive and diverse benchmark, we recruited over 50 undergraduate and graduate
students (including authors) as human annotators to assist in the process of question collection and task
annotation and paid the corresponding salary. These annotators were carefully trained to ensure high
annotation quality and consistency. As shown in Figure 3, the generated questions were divided into three
major categories: Perception, Understanding, and Reasoning. For Perception and Understanding, they
primarily target the model’s ability to perceive visual objects and align them accurately with natural language
descriptions. They emphasize fine-grained visual grounding and object recognition rather than abstract
reasoning. At last, reasoning-based questions aim to evaluate the model’s ability to understand user intent and
reason based on external knowledge, commonsense, physical laws, or background information beyond the
purely visual content of the image. Based on these assessment dimensions, we compare Lens with related
multimodal benchmarks in Table 1 and formulate our challenging open-ended, language-driven tasks: Object
Counting (OC), Object Detection (OD), Object Existence Determination (OE), Relation Extraction (RE),
Visual Grounding (VG), Region-wise OCR (OCR), Spatial Relationship Comprehension (SRC), and Scene
Knowledge Inference (SKI). We provide a more detailed introduction of these tasks in Appendix A.2.

2.3 DATA ANALYSIS

We aim to construct a dataset that is not only comprehensive and dynamic but also emphasizes reasoning
ability practices. In the following analysis, we demonstrate the strengths of our benchmark in terms of
diversity of images and annotations. The quantitative results are visualized in Figure 4.

First, our benchmark incorporates scene-aware content and real-time data. As shown in Figure 4, more than
50% of the images in our dataset were collected in 2025, and approximately 70% were collected in November
2024 and beyond, which avoids potential data leakage. Many images reflect dynamic scenes (e.g., crowded
streets, interactive environments) captured at different times and locations, aligning with real-world scenarios.
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Question: What is 
the address where 
the picture was 
taken? Please answer 
North America, 
South America or 
unable to determine.

Stage 1: Original model outputs the initial answer.

Unkown. It is not possible to determine the 
following reasons:
1. The image shows the interior of a train 

station, and there are not enough geographic 
markers or other clear geographic clues to 
determine its exact location. 

2. Although “Jamaica” (Jamaica) is an island 
country located in North America, the 
symbol may be only part of the station's 
name and does not represent the geographic 
location of the entire area.

Stage 2: Build an expert team based on the questions    
           and initial answers.

Stage 3: Expert screening model retains 
           the most reliable experts.

Scene understanding  
expert

Cultural analysis 
expert

Geospatial analysis 
expert

Region perception 
expert

Original 
model 

Initial Answer

Given the significant overlap 
between Scene understanding and 

Geospatial analysis expert, as well as the 
greater suitability of geographic analysis 

experts for geolocation tasks-related tasks, 
experts in scene understanding have been 

excluded from consideration.

North America. This conclusion is robustly supported by the collective expertise of the 
Geospatial analysis expert, region perception expert, and cultural analyst, who all 
independently identified key indicators consistent with North American, particularly New 
York City, urban planning and transportation infrastructure.

Stage 4: Integrate to obtain the final answer.

Remove the Scene 
understanding expert.

Final 
Answer

Expert
construction 

model 

Expert 
screening 

model

Figure 5: SMEC is a step-wise reasoning framework for answering complex visual questions using the
Multi-Expert Collaboration. Starting from an initial model response, SMEC constructs a specialized expert
team, to re-evaluate and refine the answer. Through expert screening and integration, unreliable and duplicated
experts are filtered out, and a consensus-based final answer is produced, demonstrating the advantages of
modular, expert-driven collaboration in visual reasoning tasks.

Second, in our dataset, the coverage of a wide range of object categories, scene types, and bounding box
annotations further supports diverse downstream tasks from detection to high-level semantic inference and
interleaved image-text understanding. As illustrated in Figure 4 (c), the high resolution of the images in
our dataset makes it challenging for fine-grained understanding of the model and supports evaluation across
varying input sizes. Additionally, as shown in Figure 4 (d), the various objects are labeled with different sizes
of bounding boxes to meet the needs of multi-scale object detection and region-wise OCR evaluation.

Furthermore, beyond perception, our dataset facilitates reasoning-oriented research by supporting tasks
that require: Spatial reasoning (e.g., understanding object layouts and geometric relationships). Relational
inference (e.g., extracting interactions between objects). Commonsense knowledge application (e.g., inferring
the feasibility of a behavior or scene functionalities). Cross-modal alignment (e.g., grounding free-form
language to specific visual content). We also analyze the question-answer pairs distribution of these tasks
and Figure 4 (e) shows that over 60% of the questions in the dataset go beyond simple recognition, explicitly
encouraging models to reason about the scene, context, and user intent. Please refer to the Appendix A.5 for
more low-level visual analysis.

3 SELF-DRIVEN MULTI-EXPERT COLLABORATIVE FRAMEWORK

We propose a Self-Driven Multi-Expert Collaborative Framework to tackle complex visual reasoning tasks
that require diverse domain expertise and multi-level inference. Built on an instruction-tuned MLLM, our
framework dynamically assembles a set of self-generated experts, each embodying a distinct reasoning
perspective, as shown in Figure 5.

Expert Generation via Prompted Role Construction. Given a query q, the base model θ first produces a
coarse initial answer a0. To enrich the reasoning space, a Meta Generation Prompt pg is used to iteratively
generate expert role descriptions dtq , simulating specialized agents (e.g., geospatial analyst, cultural analyst).
Each valid description yields a new expert response at, which is added to the answer set A. This loop
continues until either a diversity criterion is violated or a maximum number of iterations Nt is reached.

Prompt Adaptation and Redundancy Filtering. To avoid degenerate expert generation, the framework
dynamically updates pg when semantically redundant descriptions emerge. This adaptation encourages

6
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exploration of novel expert roles. Implicit expert screening is performed by discarding repetitive or low-
information descriptions, ensuring a concise yet diverse expert team with minimal computational overhead.

Consensus-Driven Answer Integration. The final stage aggregates the expert responses via a Collaboration
Prompt pc, prompting θ to synthesize a unified answer afinal through deliberative reasoning. This mimics
human expert panels that reconcile differing views to reach a robust consensus.

We detail a formal description of the process in Appendix A.10. By this way, our framework instantiates
modular experts purely via prompt-based self-conditioning. Unlike fixed-rule multi-agent systems and
tool-calling methods, our framework leverages the generative flexibility of MLLM to dynamically instantiate
and evolve its behaviors, without requiring external task-specific supervision.

4 EXPERIMENTS

4.1 EVALUATION MODELS

To illustrate the difficulty of our benchmark and evaluate the latest advances in current research, we evaluate
various MLLMs belonging to three major categories: Closed-source generalist MLLMs, such as GPT-4o
(Achiam et al., 2023) and Gemini2.5 Pro (Team et al., 2024). Open-source generalist MLLMs like Qwen2.5-
VL (Bai et al., 2025), Deepseek-VL2 (Wu et al., 2024), Gemma3 (Team et al., 2025a), InternVL3 (Zhu et al.,
2025). Multimodal reasoning models QvQ-Max, Kimi-VL-thinking (Team et al., 2025b) and GLM-4.1V-
Thinking (Hong et al., 2025), focusing on advanced reasoning capabilities. The release dates of these models
are distributed from Dec. 2024 to Apr. 2025.

4.2 EVALUATION STRATEGY

To ensure a fair and efficient assessment of model performance across our benchmark, we adopt two evaluation
strategies for main results. For perception and understanding tasks, models were evaluated based on their
direct outputs without additional inference-time computations. For complex reasoning tasks, which require
deeper multi-step inference, we allow models to generate multiple candidate responses per question and
the final prediction is then selected via majority voting (Liu et al., 2025a). For qualitative judgment, we
follow prior work (Wang et al., 2023) and employ a large language model (e.g., GLM4-flash (GLM et al.,
2024)) as an automatic evaluator. The LLM is prompted to produce multiple pieces of evaluation evidence for
calibration, comparing the model-generated responses against human-annotated answers, aiming to offer a
consistent framework for evaluating model performance across diverse tasks.

4.3 EVALUATION RESULTS

We evaluate a suite of state-of-the-art Multimodal Large Language Models on our benchmark, which spans
three tiers and eight tasks. Results, as shown in Table 2, reveal insights into model scaling, inter-task
dependencies, and capability gaps in current MLLMs.

Model Scaling and General Trends. We observe a consistent performance gain with increased model size
in both closed- and open-source models. For example, Qwen2.5-VL improves steadily from 3B to 72B,
achieving top performance on reasoning tasks. InternVL3 shows similar gains in OD, rising from 18.39%
(2B) to 47.44% (78B), though performance saturates at higher scales. These trends confirm that scaling
remains a key driver for multimodal reasoning, albeit with diminishing returns in some subtasks.

Perception: Foundation for Higher Cognition. Perception-level tasks form the backbone of visual reasoning.
Closed-source models like Gemini2.5-Pro and GPT-4o excel at OE (86.59% and 85.09%, respectively),
although OD support is lacking. Among open-source models, Deepseek-VL2 and Qwen2.5-VL-72B deliver

7
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Table 2: Comparison of state-of-the-art methods on Lens. We evaluate object detection (OD) performance
using AP50 (Lin et al., 2014), visual grounding (VG) performance with ACC@0.5 (Xiao et al., 2024), and use
accuracy for other tasks. Task abbreviations follow the definitions provided in Section 2.2. “MoE 1B/3B”
denotes 3B Mixture of Experts model with 1B parameters activated. “N/A” denotes the official documentation
does not confirm that the model is applicable for the task. Best performing models are shaded in red .

Methods Model
size

Perception Understanding Reasoning

OC OD OE RE VG OCR SRC SKI

MLLM (closed source)

GPT-4o - 54.32 N/A 85.09 72.77 N/A 42.86 51.14 55.20
Gemini2.5-Pro - 60.18 47.40 86.59 76.52 25.61 61.95 56.20 59.31

Open source

Deepseek-VL2-tiny MoE 1B/3B 56.22 21.12 72.11 58.73 16.09 44.01 38.97 45.12
Deepseek-VL2 MoE 4.5B/27B 61.41 46.08 77.68 69.18 42.47 48.76 44.58 49.50

Gemma3 4B 38.85 N/A 71.88 62.98 N/A 27.03 39.53 45.18
Gemma3 12B 44.65 N/A 73.21 62.78 N/A 33.98 43.33 48.56
InternVL3 2B 55.81 18.39 71.96 64.49 15.22 45.51 40.56 48.59
InternVL3 9B 55.63 25.79 77.49 67.18 18.18 48.79 44.69 51.32
InternVL3 38B 62.78 43.44 81.60 71.37 24.98 51.72 47.18 51.85
InternVL3 78B 61.38 47.44 84.87 74.93 27.24 54.21 49.39 55.17
Qwen2.5-VL 3B 58.76 35.16 74.01 66.52 39.44 52.43 40.33 46.50
Qwen2.5-VL 7B 58.35 37.75 83.75 71.58 40.11 61.65 46.28 48.87
Qwen2.5-VL 32B 62.25 39.93 83.60 74.57 41.15 65.64 51.66 51.54
Qwen2.5-VL 72B 59.75 43.48 85.67 75.98 44.98 68.51 53.65 54.79

Reasoning model

QVQ-Max 72B 49.95 N/A 85.37 74.01 N/A 58.67 50.80 58.86
Kimi-VL-thinking MoE 2.8B/16B 46.87 N/A 72.77 48.16 N/A 30.21 29.40 36.44

competitive OD and OC performance. Notably, models with stronger perception capabilities tend to exhibit
superior reasoning performance, highlighting the foundational role of low-level visual understanding.

Understanding: Progress and Bottlenecks. Understanding tasks assess models’ ability to interpret struc-
tured visual semantics with textual information. Gemini2.5-Pro leads in RE (76.52%) and OCR (61.95%),
showcasing robust relational and textual grounding. However, VG remains a bottleneck even for large-scale
models like InternVL3-78B (27.24%) and Qwen2.5-VL-72B (44.98%), suggesting persistent challenges in
fine-grained spatial-semantic alignment.

Reasoning: High-Level Generalization. Reasoning tasks are the most demanding. Closed-source models
such as GPT-4o and Gemini2.5-Pro achieve strong results (51.14%/56.20% on SRC and 55.20%/59.31%
on SKI). Among open-source models, Qwen2.5-VL-72B leads, while the reasoning-specialized QVQ-Max
approaches closed-source performance (58.86% on SKI) despite lacking OD and VG capabilities. This
suggests that explicit reasoning models can partially compensate for perceptual limitations, likely relying on
test-time scaling rather than grounded perception.

4.4 SYNERGISTIC EFFECTS ANALYSIS

To analyze the cross-task performance patterns of different models, we perform a statistical analysis of the
synergies between different tasks and visualized the results as in Figure 6. We compute the Pearson correlation
coefficients between Perception and Understanding tasks and observe notable interdependencies. OC and RE
exhibit a strong positive correlation of 0.73, while OE and OCR show a similarly significant correlation of
0.67. These results indicate that effective performance in perception directly contributes to understanding,
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(a) Perception, understanding, and reasoning correlation matrix

(b) Scatter plots between perception, 
understanding, and reasoning

(d) The feature importance analysis of regression coefficients

(c) Linear regression analyses 
on reasoning tasks

Figure 6: Statistical analysis of model accuracy and synergies between different tasks.

which in turn underpins downstream reasoning. Scatter plot visualizations further confirm these links, OCR,
in particular, correlates strongly with both SRC and SKI, underscoring its central role in enabling semantic
reasoning. Linear regression analyses reinforce these findings: OE and OCR are strong predictors of SRC,
while OC and RE significantly influence SKI, highlighting how object-level detection and relational reasoning
jointly support high-level inference. Finally, we apply second-order polynomial regression and the feature
importance analysis of regression coefficients reveals task-specific contributions. These insights collectively
demonstrate the layered structure of visual reasoning pipelines, where perception and understanding stages
must be well-aligned to support robust inference. For further analysis, please refer to the appendix A.7.

4.5 EFFECTIVENESS OF SMEC

Table 3: Accuracy comparison with different settings.

Methods Model Iterations Performance

Direct Qwen2.5VL-7b - 39.80
Majority voting Qwen2.5VL-7b - 40.66
Self-Refine Qwen2.5VL-7b - 40.51 (+0.71)
SMEC Qwen2.5VL-7b 1 41.35 (+1.55)
SMEC Qwen2.5VL-7b 2 42.97 (+3.17)
SMEC Qwen2.5VL-7b 3 43.24 (+3.44)

Direct Qwen2.5VL-32b - 49.17
SMEC Qwen2.5VL-32b 3 52.44 (+3.27)

Direct (Full data) Qwen2.5VL-32b - 51.54
SMEC (Full data) Qwen2.5VL-32b 3 54.66 (+3.12)

To further evaluate the effectiveness of our proposed
SMEC framework, we conduct experiments on the
Scene Knowledge Inference (SKI) task using both a
sampled subset of 3,500 question–answer pairs and
the full test set (Table 3). Compared to the direct in-
ference baseline, SMEC consistently improves per-
formance across both model scales and different
iteration depths. For Qwen2.5VL-7B, accuracy in-
creases from 39.80% to 43.24% as the number of
iterations Nt grows from 1 to 3, demonstrating the
benefits of multi-step expert collaboration. Notably,
SMEC also outperforms Self-Refine (Madaan et al.,
2023) and Majority voting (Chen et al., 2024b) under
the same setting. A similar trend appears at larger scales. With Qwen2.5VL-32B, SMEC improves accuracy
from 49.17% to 52.44% with three iterations, confirming that the benefits of iterative expert collaboration
scale with model capacity. Importantly, when evaluated on the full test set rather than the 3,500-sample subset,
SMEC continues to provide consistent improvements (+3.12%). This indicates that SMEC’s gains are not
distribution-specific and remain stable under more comprehensive evaluation conditions.
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5 CONCLUSION

We contribute Lens, a multi-level benchmark designed to evaluate Multimodal Large Language Models
(MLLMs) across perception, understanding, and reasoning. Unlike prior benchmarks, Lens aligns all tasks
to the same set of realistic, contemporary images, enabling fine-grained analysis of how low-level visual
capabilities support higher-order reasoning. The evaluation of recent MLLMs further reveals a consistent
performance gap in reasoning tasks, highlighting the limitations of current models in integrating perception
and cognition. To address this, we proposed SMEC, a self-driven multi-expert collaborative framework
that prompts the MLLM to simulate a panel of specialized agents. Together, Lens and SMEC offer a new
paradigm for evaluating and enhancing reasoning intelligence in MLLMs, paving the way to more robust,
human-aligned multimodal intelligence.

6 ETHICS STATEMENT

Data Collection and Privacy. All images in the Lens dataset were collected manually from publicly
available posts on social media platforms, including X (formerly Twitter), Instagram, Weibo, and RedNote.
We strictly complied with the developer agreements and copyright/licensing regulations of these platforms.
No private or restricted data was accessed, and all collection adhered to academic research policies.

Human Annotation. The dataset was constructed with the assistance of more than 50 undergraduate and
graduate student annotators, who were trained to ensure annotation quality and consistency. All annota-
tors were fairly compensated for their work. The annotation process involved only task-related labeling
(e.g., bounding boxes, question-answer generation) and did not involve collection of personal or sensitive
information about the annotators.

Bias, Fairness, and Representation. Although images were sourced from global platforms to ensure diversity
of cultural and regional content, dataset bias may still exist due to platform-level demographic imbalances
and uneven scenario representation. We acknowledge that these limitations may influence model evaluation
results, and we encourage future work to further broaden geographic and cultural coverage.

Research Integrity and Transparency. This study follows established standards of research integrity. We
provide detailed dataset descriptions, evaluation protocols, and implementation details. We have no conflicts
of interest or external sponsorship that might bias the study.

7 REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our results. A complete description of the
Lens dataset, including data collection principles, filtering steps, and annotation procedures, is provided in
Section 2 and Appendix. Details of the evaluation tasks, metrics, and benchmark comparisons are reported in
Section 4, with additional analyses in Appendix. The implementation of our proposed Self-Driven Multi-
Expert Collaborative Framework (SMEC), including the expert construction, screening, and integration
process, is fully described in Section 3 and formalized in Appendix A.9. Hyperparameter settings, model
configurations, and ablation experiments are included in the appendix to facilitate replication of results.
Together, these resources ensure that both dataset construction and methodological contributions can be
faithfully reproduced by the research community.
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A APPENDIX

A.1 RELATED WORK

A.1.1 BENCHMARKS FOR VISUAL CAPABILITY OF MLLMS

The capability of Visual Perception, Understanding and Reasoning is a foundational aspect of understanding
benchmarks, which involves the ability to recognize and localize multiple objects, interpret various visual
elements with complex emotional or implicit cues and summarize visual information for feedback and
decision making (Li et al., 2024b). Specifically, Perception in MLLMs involves the classification, detection of
basic visual objects (e.g., dog, cat) and attributes (e.g., color, lighting). These low-level perceptual capabilities
are crucial for various applications, including recognition systems (Zhao et al., 2024) and visual quality
enhancement (Zhang et al., 2024c). Understanding represents a sophisticated level of image understanding
that focuses on the detailed and nuanced aspects of visual content. It includes recognizing and interpreting
the visual-linguistic concepts, such as text recognition (OCRBench (Liu et al., 2024d)), Visual Grounding
(RefCOCO (Yu et al., 2016), FineCops-Ref (Liu et al., 2024a), HC-RefLoCo (Wei et al., 2024)) and Referring
Expression Generation (Visual Genome) (Krishna et al., 2017), which refers to the model’s ability to accurately
link visual elements with corresponding textual descriptions. Although tasks at this level begin to involve
visual and textual alignment, they still do not require reasoning or external knowledge. For higher-order
capability, reasoning in MLLMs involves advanced event understanding and deep meaning extraction from
multimodal data. These capabilities include interpreting and responding to complex emotional cues across
multiple modalities (Cheng et al., 2024), deriving subtle implicit meanings from visual and contextual
information (Liu et al., 2023a), and a range of other competencies, including knowledge acquisition, language
generation, spatial awareness, and cultural context integration (Rachabatuni et al., 2024).

A.1.2 REASONING CAPABILITY OF MLLMS

MLLMs have demonstrated remarkable reasoning capabilities, largely facilitated by test-time scaling (Dong
et al., 2022; Wei et al., 2022), which allows feeding prompted samples and context. This capability has been
further enhanced by chain-of-thought (CoT) prompting (Wei et al., 2022), which enables LLMs to generate
coherent intermediate reasoning steps toward the final answer. Previous studies have shown that LLMs benefit
from manually written demonstrations as well as zero-shot prompting outputs. However, due to the domain
gap between various modalities, the current reasoning capability of MLLMs in the complex real-world
environment is still limited. To address this limitation, researchers have focused on enhancing the reasoning
capability of MLLMs in both the training and prompting paradigms. Flamingo (Alayrac et al., 2022) bridges
the gap between these two modalities by pre-training on interleaved visual and textual data. Some other
works, such as Shikra (Chen et al., 2023b) and Ferret (You et al., 2023), leverage visual grounding data (Xiao
et al., 2024; Yao et al., 2024) to achieve fine-grained vision-language alignment. Furthermore, recent studies
have also demonstrated that augmenting computing resources during the testing phase (test-time scaling) can
enhance the reasoning capabilities of LLMs (Jaech et al., 2024). More specifically, Prompt-based Reasoning
Meta-Systems (PRMS) can be employed to guide LLMs in evaluating and filtering intermediate “thinking”
processes (Snell et al., 2024). This encourages the generation of more sophisticated reasoning steps during
testing, ultimately leading to improved reasoning accuracy. Beyond that, some methods employ the external
knowledge to focus on important visual details, like V* (Wu & Xie, 2024), Marvel (Jiang et al., 2024), and
ICAL (Sarch et al., 2024), collecting a series of visual reasoning steps as training data. More recently, with
the emergence of DeepSeek-R1 (Guo et al., 2025) demonstrating strong potential in LLM reasoning, research
efforts have begun to explore reasoning-centric models and R1-style reinforcement learning strategies for
understanding complex visual scenes and tasks. These studies (Huang et al., 2025; Shen et al., 2025a; Liu
et al., 2025c) particularly emphasize the long-chain reasoning capabilities within MLLMs, aiming to enhance
their performance in handling intricate visual-linguistic reasoning challenges.
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A.1.3 LLM-BASED AGENTIC REASONING

The rapid progress of large language models (Achiam et al., 2023; Bai et al., 2025) has sparked significant
interest in building autonomous agents capable of solving complex, multi-step reasoning tasks. Leveraging
the strong chain-of-thought (CoT) abilities of modern LLMs (Wei et al., 2022), these systems typically
decompose a complex problem into a sequence of structured subtasks, invoke intermediate deliberation, and
integrate the resulting insights to produce a final answer (Gupta & Kembhavi, 2023; Chen et al., 2023a).
Recent developments in LLM-based autonomous agents highlight the importance of planning (Huang et al.,
2024; Zhang et al., 2024a), tool usage (Yuan et al., 2025), memory (Zhang et al., 2025c), and persona
(Chen et al., 2024a). In parallel, multi-agent frameworks such as MetaGPT (Hong et al., 2023), AgentVerse
(Chen et al., 2023c), etc., demonstrate strong performance by orchestrating multiple interacting agents, often
instantiated as distinct roles with specialized responsibilities. Despite their success, these systems rely heavily
on manually designed personas, fixed role hierarchies, or hand-crafted coordination rules, which limits their
flexibility and generalization across tasks and domains. Moreover, the dependence on external scaffolding
or pre-specified agent behaviors often restricts the model’s ability to adaptively adjust its internal reasoning
pathway. To address these limitations, SMEC introduces a self-driven agentic reasoning mechanism that
automatically generates diverse experts, elicits their reasoning, filters redundant experts, and synthesizes their
perspectives into a final consensus, all within the model’s own language-native inference loop.

A.2 SPECIFIC DEFINATION OF DIFFERENT TASKS

Object Counting (OC): Estimating the number of object instances described by a free-form expression,
often under complex conditions like occlusion, scale variation, or clutter.

Object Detection (OD): Localizing objects within an image by generating bounding boxes paired with
corresponding class labels. In order to better match the real-life scenarios and practical applications, we
construct more than 500 fine-grained object categories based on natural language.

Object Existence Determination (OE): Determining whether a particular object, which described by a
detailed expression, exists in the image without requiring spatial localization.

Relation Extraction (RE): Identifying semantic relationships (e.g., “holding”, “next to”, “wearing”) between
pairs of objects to facilitate structured scene understanding. And we added questions about the objects that do
not exist in the images to evaluate model’s ability to suppress hallucinations.

Visual Grounding (VG): Localizing an image region that corresponds to a natural language expression,
linking linguistic references to fine-grained visual content.

Region-wise OCR (OCR): Recognizing and transcribing text within a region, which specified by coordinates
or description, facilitating fine-grained interleaved image-text understanding.

Spatial Relationship Comprehension (SRC): Understanding geometric relationships (e.g., “above” and “to
the left front to”) between objects within diverse 3D views, supporting visual-spatial reasoning. Compared to
some rudimentary or synthetic spatial understanding datasets (Johnson et al., 2017; Li et al., 2023; Liu et al.,
2023b), our data is more realistic in emphasizing spatial location understanding under real-world scenarios as
well as 2D images acquired by cameras or cell phones.

Scene Knowledge Inference (SKI): Inferring high-level semantic and functional information about the scene
or making decision based on the visual contents, incorporating context, commonsense knowledge, and visual
cues beyond explicit visual entities. Compared to the regular visual reasoning dataset, Lens additionally
distinguish between “thought paths” and “final answers”, differentiated by the < think > token, aiming to
provide richer and finer-grained information for potential test-time scaling tests and R1-style reinforcement
learning.
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Q: How many white cars 
with green license plates 
can be seen in the picture?

A: One w h ite car w i th
green license plates can be
seen in the picture. It‘s on
the left side of the frame,
near the crosswalk.

Q: How many ‘gate ’
words are there in
the picture? Please
output numbers.

Object description: “The kid in the white coat.”
VG points: [[254.41, 579.32], [318.81, 686.10]]

Object description: “The man in the red sweater.”
VG points: [[442.54, 625.08], [601.86, 821.69]]

Object description: “A woman with glasses.”
VG points: [[296.78, 623.39], [425.59, 743.73]]

Object description: “The girl in the purple sweater.”
VG points: [[269.66, 699.66], [418.81, 860.68]]

Object description: “Man in black coat.”
VG points: [[313.73, 596.27], [432.37, 708.14]]

Object description: “The blue plane located in the center.”
VG points: [[61.10, 189.40], [950.70, 558.20]]

Object description: “The red plane located between the two planes.”
VG points: [[349.90, 197.40], [874.70, 367.80]]

Object description: “The red plane located at the farthest distance.”
VG points: [[525.10, 210.2], [868.30, 321.40]]

Object description: “The person located on the far left.”
VG points: [[113.90, 466.20], [136.30, 523.80]]

Object description: “The person wearing a green reflective suit.”
VG points: [[237.10, 499.80], [262.70, 547.80]]

Object Detection & Visual Grounding

Object Counting Object Existence Determination Relation Extraction

Q: How many children can
be seen in the picture?
Please output numbers.

A: One.

A: Two. The phrase 
"Gates" appears twice 
on the overhead 
signboard at the top 
center of the image.

Q: Are there any boys 
wearing glasses in the 
picture? Please output yes 
or no.

A: Yes.

Q: Is there anyone in black 
in the picture? Please 
output yes or no.

A: Yes.

Q: Is there an Asus 
laptop in the picture? 

A: Exists. 
The picture shows 
two Asus laptops, 
one black and the 
other silver.

Q: If the cutting board in 
the picture is upright 
against the wall, please 
answer yes or no.

A: Yes.

Q: Answer yes or no to 
whether the tray is full of 
plates in the picture.

A: No.

Q: Does the woman in the sweater have 
a hamburger in her hand?

A: Yes. 
The woman in the striped sweater is 
holding a bun-shaped object near her 
mouth with both hands. Given its 
appearance and the Five Guys burger 
restaurant setting, it is reasonable to 
conclude she is holding a hamburger.

Region-wise OCR Spatial Relationship Comprehension

Q: What's the text 
on the ceiling of 
the bus stop?

A: Focus on the 
ceiling panel of the 
bus stop near the 
front, where there's 
a green rectangular 
sign. The text on the 
sign reads clearly as 
"Yio Chu Kang Road 
B29" despite slight 
distortion.

Q: Suppose you are sitting in the driver’s seat of a white car. 
In which direction is the person wearing red located relative to 
you? Please choose one of the following options: directly in 
front, directly behind, front left, back left, front right, back 
right, directly left, or directly right.

A: Front right. 
If you are sitting in the driver's seat of a white car, the person 
in red is right in front of you. 

Q: Suppose you are driving 
the white car that is 
farther away from us. In 
that case, where is the 
closer white car located 
relative to you? Please 
choose one of the following 
directions: directly in front, 
directly behind, front left, 
back left, front right, back 
right, directly left, or 
directly right.

A: Directly in front. 
If you are driving the white 
car that is farther away from 
us, then the closer white car 
is directly in front of you.

Q: In which 
direction is the 
electronic 
display in the 
picture from the 
person with the 
backpack? Front, 
back, left, right, 
please?

A: Front. 
The electronic 
display in the 
picture is in front 
of the person in 
the backpack.

Scene Knowledge Inference 

Q: If I want to take a Chongqing Airlines flight for my trip, should I choose the blue-and-
white plane or the red-and-white one?

Think：In the image, a blue-and-white plane can be seen with the words “CHONGQING 
AIRLINES 空航庆重” on the fuselage, indicating that it belongs to Chongqing Airlines. The 
red-and-white plane, on the other hand, belongs to Hainan Airlines and is not related to 
Chongqing Airlines. If you're unsure which airline is Chongqing Airlines, you can check the 
logo and text on the plane or contact the airline directly to confirm.
A: If you want to fly with Chongqing Airlines, you should choose the blue-and-white plane.

Q: I ordered one jin of steamed sweet potatoes and one basket of buns at this cafeteria. 
How much do I need to pay?

Think：According to the menu in the image: The price of steamed sweet potatoes is 0.65 
yuan per liang. The price of a basket of buns is 4.5 yuan per basket.
One jin equals ten liang, so the price for one jin of steamed sweet potatoes is:
0.65 yuan/liang × 10 = 6.50 yuan.
Therefore, the total cost for one jin of steamed sweet potatoes and one basket of buns is:
6.50 yuan + 4.50 yuan = 11.00 yuan.
A: 11.00 yuan.

Q: In which province was the 
picture taken? Please choose 
from Hubei, Sichuan and Hunan.

Think: The display board in the 
image reads “成都双流国际机场”, 
which translates to Chengdu 
Shuangliu International Airport. 
Chengdu is the capital city of 
Sichuan Province, and Shuangliu 
is one of its administrative 
districts where the airport is 
located. 
Therefore, based on the clearly 
identified airport name and 
location, it is conclusive that 
the picture was taken in 
Sichuan Province.
A: The picture was taken in 
Sichuan province.

Q: From left to 
right, what is the 
name of the second 
shop?

A: From left to 
right, the sign of 
the second shop 
says "Fried meat 
with chili”.

Q: What are the words on the 
yellow warning sign in the picture?

A: The words on the yellow 
warning sign in the picture are 
"Slide carefully."

Figure 7: Lens covers a wide range of images and annotations, from fine-grained recognition and spatial
localization to complex reasoning over extended thought processes. Notably, each image is annotated with
labels corresponding to all subtasks concurrently, enabling comprehensive evaluation.

20



940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

A.3 QUALITY CONTROL PROCESS

In addition to the annotations, diversified measures were taken to enrich the content of data samples and
ensure their quality. Specifically, we implemented a multi-faceted quality control process. Beyond a two-step
data cleaning protocol, we also enriched each image with supplementary metadata to facilitate traceability
and contextual analysis.

First, we manually performed a two-stage data cleaning process. In the initial stage, we reviewed and
eliminated suspected duplicate images. The second stage involved distributing the problems among co-
authors for meticulous format and typo checking, ensuring all annotations adhered to a standardized format.

To further validate the quality and consistency of our annotations, we performed an additional two-step
verification process. This included both manual and machine-assisted checks. The entire dataset was cross-
verified by both an independent team of annotators and the Qwen2.5-VL 72B open-source model. For
machine validation, we input the original image, question, and answer into the MLLM. Cases flagged as
invalid by the model were isolated for manual re-evaluation by a separate team of annotators. For object
detection and visual grounding tasks, we directly visualized the annotations on the images, enabling human
evaluators to assess the validity of the bounding boxes.

Additionally, we enriched each image with supplementary metadata. We included a pseudonymized Annotator
ID to allow for annotator-specific quality tracking while preserving privacy. The Time of Online Publication
and Scene Category were also labeled to facilitate temporal studies, filter outdated content, and organize
the dataset by scene. Finally, ambiguous images that consistently resulted in low inter-annotator agreement
were manually filtered out to ensure a high-quality final dataset. Some cleaned representative examples are
visualized in Figure 7.

A.4 DATA PRIVACY PROTECTION AND COPYRIGHT STATEMENT

Our protocol for handling potentially sensitive information was a multi-stage process designed to be as
thorough as possible:

Automated Pre-screening: As an initial step, we used automated tools (e.g., face detection models 3 , docTR
4) to perform a preliminary scan of the collected images. This scan was configured to flag images with a high
probability of containing human faces or dense blocks of text that might constitute personally identifiable
information.

Comprehensive Manual Review: Every image, including those not flagged by the automated scan, was
then subjected to a thorough manual review by our team of over 20 trained human annotators. Annotators
received specific training and a detailed guide on identifying a wide range of sensitive data, including but not
limited to: Visible and recognizable faces; Full names, usernames, or contact information; License plates,
street addresses, or other specific location markers; Private documents or screens displaying personal data.

Sensitive Information Exclusion: Based on the manual review, if an image contained sensitive information,
one of two actions was taken as mentioned in the paper:

• Processing: If the sensitive information was incidental to the image’s main content, we applied
irreversible blurring or masking to the specific region.

• Exclusion: If the sensitive information was central to the image and could not be adequately
anonymized without destroying the scene’s context, the image was entirely excluded from the final
dataset.

3https://github.com/timesler/facenet-pytorch
4https://github.com/mindee/doctr
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Light Contrast Colorfulness Blur Si

Figure 8: The normalized probability distributions of low-level attributes from different scenes. Scenes with
flat peaks show more diversity, while those with sharp peaks have similar features.

Final Verification: To ensure consistency and quality, a final audit was conducted by a subset of the
paper’s authors. This team reviewed a random sample of the approved images and 100% of the processed
(blurred/masked) images to verify that our privacy protocol was correctly and consistently applied.

This multi-stage, human-centric approach ensures that the images in the Lens dataset comply with platform
policies and respect individual privacy.

A.5 LOW-LEVEL FEATURE ANALYSIS OF IMAGES FROM DIFFERENT SCENES

We counted five low-level visual attributes, including lighting, contrast, color, blur, and spatial information
(SI), to assess the statistical difference between different scenes. As shown in Figure 8, the normalized
probability density curves of low-level visual attributes across different scenes are consistent with human
perceptual preferences. Scenes with regulated lighting conditions (e.g., classrooms, airports, and stations)
demonstrate sharp peaks near x ≈ 0 in the illumination curves (density > 0.5), indicating constrained
variations in brightness. In contrast, domestic environments (e.g., living rooms, bedrooms, and kitchens)
display broader illumination distributions, suggesting more diverse and adaptive light sources. Furthermore,
functional scenes such as bedrooms, bathrooms, and kitchens exhibit sharp, concentrated peaks in color
distributions (peak density ≈ 0.5), implying greater structural regularity in specific visual attributes.

A.6 FINE-GRAINED EVALUATION OF VG

We conducted a fine-grained evaluation of a diverse set of models on the Visual Grounding (VG) task,
categorizing them into two groups: traditional predictive multimodal models and generative multimodal large
language models (MLLMs). The results, summarized in Table 4, reveal several key insights into the current
state of visual grounding capabilities.
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A.6.1 COMPARISON OF MODEL CATEGORIES

The results clearly indicate a significant performance gap between the two model categories. The top-
performing MLLMs, specifically Qwen2.5-VL-7B and Qwen2.5-VL-32B, demonstrate superior performance
across all metrics, with an accuracy of 46.94% and 48.47% at IoU@0.5, respectively. This performance
is substantially higher than the top predictive model, G-DINO, which achieves 37.05% at the same metric.
This finding suggests that the generative and in-context learning capabilities of modern MLLMs provide
a substantial advantage in the complex VG task, enabling them to better understand nuanced linguistic
instructions and ground them accurately in the visual space.

A.6.2 PERFORMANCE ON DIFFERENT SCALES

A multi-scale analysis, measured by accuracy on small (ACCs), medium (ACCm), and large (ACCl) objects,
provides a more granular view of each model’s strengths and weaknesses. Both traditional and generative
models exhibit a similar trend: performance consistently improves with the size of the target object. This
is a common challenge in visual grounding and object detection, as localizing and grounding small objects
remains difficult.

Traditional Models: Among the traditional models, G-DINO demonstrates a more balanced performance
across scales, achieving 24.87% on small objects and 52.32% on large objects. In contrast, models like VLTVG
and SimVG struggle significantly with small objects, with accuracies of 0.00% and 0.01% respectively, but
show strong performance on large objects (29.70% and 45.20%).

Generative MLLMs: While MLLMs also struggle with small objects, their performance is notably better
than most traditional models. Qwen2.5-VL-32B and Qwen2.5-VL-7B achieve high accuracy on medium and
large objects, with their ACCm and ACCl scores reaching 55.04% and 61.48% (for Qwen2.5-VL-32B), and
54.12% and 60.24% (for Qwen2.5-VL-7B) respectively. The strong performance on larger objects may be
attributed to their powerful visual backbones and advanced language understanding capabilities, which help
them better contextualize the target within the scene.

A.6.3 IMPACT OF MODEL ARCHITECTURE AND SIZE

Our results also highlight the importance of model architecture and size. The Qwen2.5-VL family of models,
with its impressive performance, benefits from a powerful visual encoder (FE-ViT) and a sophisticated
Qwen2.5 language backbone. Similarly, the InternVL3 series shows a clear scaling effect, where performance
on most metrics improves as the model size increases from 2B to 14B. The performance of the 38B variant is
slightly lower than the 14B variant due to its different visual backbone. This trend, consistent with findings in
large language models, suggests that scaling up both visual and linguistic components is a promising direction
for future research in visual grounding.

A.7 MORE SYNERGISTIC EFFECTS ANALYSIS

We further notice that Figure 6 (a) shows OC-OCR correlation (0.77) ≫ OC-OE (0.46). This contradicts
intuition—object counting (OC) should align more naturally with existence checks (OE) than OCR. We
attribute this to two factors. First, the Object Existence (OE) task is a simple binary classification: either an
object is present or it is not. It requires a model to make a broad, scene-level assessment. In contrast, Object
Counting (OC) is a more demanding task that requires fine-grained localization of individual objects, followed
by an enumeration step. A model can be highly proficient at a binary existence check without possessing the
precise localization and counting skills needed for the OC task. This fundamental difference in cognitive
demand limits the correlation between the two. Second, the high correlation between Object Counting (OC)
and OCR is not coincidental. Both tasks rely on a critical shared capability: fine-grained localization. To
perform well on the OC task, a model must accurately identify and localize each instance of an object to
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Method Visual Linguistic Accuracy @ IoU Scale-wise Accuracy
Backbone Backbone @0.5 @0.6 @0.7 @0.8 @0.9 ACCs ACCm ACCl

Methods based on predictive multimodal models:

TransVG (Deng et al., 2021) RN101 BERT-B 8.73 7.57 6.29 4.40 1.69 0.01 2.01 23.64
VLTVG (Yang et al., 2022) RN101 BERT-B 11.04 9.60 7.75 5.33 1.99 0.00 2.80 29.70
MMCA (Yao et al., 2024) RN101 BERT-B 10.92 9.45 7.90 5.64 2.22 0.03 2.79 29.31
CLIP-VG (Xiao et al., 2023) CLIP-B CLIP-B 8.73 7.57 6.29 4.40 1.69 0.01 2.01 23.64
EEVG (Chen et al., 2024c) ViT-B/16 BERT-B 9.27 5.78 2.51 0.48 0.05 0.01 0.98 26.12
SimVG (Dai et al., 2024) BEIT-3 BEIT-3 16.46 13.90 11.12 7.44 2.70 0.01 3.10 45.20
G-DINO (Liu et al., 2024b) Swin-L BERT-B 37.05 33.92 29.20 22.57 11.36 24.87 37.54 52.32

Methods based on generative multimodal large language models:

Groma-7B (Ma et al., 2024) DINOv2-L Vicuna 33.59 29.95 25.47 18.73 8.52 11.58 33.91 58.59
Mova-7B (Zong et al., 2024) Multi-expert Vicuna 20.44 13.10 5.98 1.09 0.13 5.06 15.97 40.36
Ferret-7B (You et al., 2024) CLIP-L Vicuna 23.26 18.97 13.95 7.61 1.84 1.85 19.49 54.64
Ferret-13B (You et al., 2024) CLIP-L Vicuna 24.20 19.81 14.41 8.12 2.05 2.26 20.42 56.31
InternVL3-2B (Zhu et al., 2025) InternViT-0.3B Qwen2.5 7.89 5.10 2.85 1.36 0.33 0.61 3.46 19.34
InternVL3-8B (Zhu et al., 2025) InternViT-0.3B Qwen2.5 17.54 13.23 8.89 4.94 1.60 3.23 15.36 35.21
InternVL3-14B (Zhu et al., 2025) InternViT-0.3B Qwen2.5 29.53 23.98 17.25 10.05 3.00 4.58 27.80 57.07
InternVL3-38B (Zhu et al., 2025) InternViT-6B Qwen2.5 27.85 21.42 15.00 8.23 2.37 4.91 25.81 53.56
VLM-R1-3B (Shen et al., 2025a) FE-ViT Qwen2.5 23.79 19.91 15.65 10.53 4.31 8.15 22.84 40.94
Qwen2.5-VL-3B (Bai et al., 2025) FE-ViT Qwen2.5 45.03 37.92 29.33 18.48 6.51 29.14 50.54 57.15
Qwen2.5-VL-7B (Bai et al., 2025) FE-ViT Qwen2.5 46.94 39.39 29.94 18.38 6.26 28.87 54.12 60.24
Qwen2.5-VL-32B (Bai et al., 2025) FE-ViT Qwen2.5 48.47 40.66 30.78 19.15 6.63 30.93 55.04 61.48

Table 4: Multi-scale evaluation results.

count it. Similarly, to perform region-wise OCR, the model must first precisely locate the bounding box of the
text before reading it. The strong correlation suggests that the ability to perform precise object localization
is a dominant factor in a model’s success on both tasks, thus strengthening their relationship despite their
different end goals.

To further test the synergy between different tasks, we conducted a experiment with Qwen2.5-VL-7B on a
sampled subset of Lens. Specifically, when testing the SKI task, we fed the VQA question-answer pairs
of other tasks into the model as context along with the question, and asked it to return the answer (refer to
Appendix A.15 for the prompt template ps, where we provide an example based on the OCR task). The test
results are shown in Table 5 and reveal several noteworthy patterns. First, incorporating OCR information
yields a substantial performance gain (from 39.80% to 41.36%), indicating that understanding scene text
helps the model solve some reasoning tasks. Second, although some tasks—such as OE and OC—exhibit
limited or even negative effects when introduced individually, their combination with OCR consistently
boosts performance. This may indicate that auxiliary perceptual signals, while insufficient on their own, can
enhance reasoning when mediated through textual understanding. Furthermore, the observed synergistic
effects resonate with the design philosophy of our proposed Self-Driven Multi-Expert Collaborative (SMEC)
framework. We argue that complex multimodal reasoning cannot be achieved by isolated competencies alone,
but requires a structured mechanism to coordinate heterogeneous sources of evidence.

OCR - ✔ - - - ✔ ✔ ✔ ✔ ✔ ✔
RE - - ✔ - - ✔ - - ✔ ✔ ✔
OE - - - ✔ - - ✔ - ✔ - ✔
OC - - - - ✔ - - ✔ - ✔ ✔

Performance 39.80 41.36 38.03 39.23 39.52 40.72 41.45 40.73 41.93 40.79 41.90

Table 5: Testing the synergistic effects of different tasks on Scene Knowledge Inference (SKI).
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A.8 ANALYSIS OF INPUT RESOLUTION

Method Visual Linguistic Accuracy @ Input Resolution
Backbone Backbone 640 × 640 960 × 960 1280 × 1280 1600 × 1600

InternVL3-2B (Zhu et al., 2025) InternViT-0.3B Qwen2.5 40.97 41.53 41.90 40.60
InternVL3-9B (Zhu et al., 2025) InternViT-0.3B InternLM3-8B 46.95 46.54 46.65 46.63
InternVL3-14B (Zhu et al., 2025) InternViT-0.3B Qwen2.5 50.28 51.15 51.58 51.17
InternVL3-38B (Zhu et al., 2025) InternViT-6B Qwen2.5 50.88 50.97 49.98 51.08
Qwen2.5-VL-3B (Bai et al., 2025) FE-ViT Qwen2.5 40.08 40.44 40.48 40.58
Qwen2.5-VL-7B (Bai et al., 2025) FE-ViT Qwen2.5 46.52 47.41 48.13 48.11
Qwen2.5-VL-32B (Bai et al., 2025) FE-ViT Qwen2.5 53.72 54.37 54.10 54.09
GLM-4.1V-Base-9B (Hong et al., 2025) AlMv2-Huge GLM-4-0414 42.35 42.86 43.28 43.73
GLM-4.1V-Thinking-9B (Hong et al., 2025) AlMv2-Huge GLM-4-0414 48.77 50.78 51.32 51.13

Table 6: Benchmark results across varying input resolutions.

We conducted a detailed analysis to understand the impact of varying input resolutions on model performance.
The results, summarized in Table 6, reveal several key insights.

General Trend (Performance Improves with Resolution): For most models, performance generally
improves as the input resolution increases. This trend is evident in models such as Qwen2.5-VL-7B, which
shows a steady increase in accuracy from 46.52% at 640×640 to 48.13% at 1280x1280. Similarly, GLM-4.1V-
Thinking-9B improves from 48.77% to 51.32% over the same range. This is expected, as higher resolutions
provide more visual detail, which is particularly beneficial for complex visual grounding and reasoning tasks
that require fine-grained perception.

The Point of Diminishing Returns: However, the results also suggest a point of diminishing returns. For
many models, the performance gain from increasing the resolution beyond 1280x1280 is minimal, and in
some cases, performance slightly decreases. For example, InternVL3-14B peaks at 51.58% at 1280x1280
and then slightly drops to 51.17% at 1600x1600. Similarly, Qwen2.5-VL-7B’s performance plateaus at
1280×1280. This phenomenon could be attributed to several factors, including the model’s architecture,
which may not be fully optimized to handle the extra high-resolution information, or the fact that the added
detail does not contribute meaningfully to solving the task.

Model-Specific Variations: Interestingly, some models, like InternVL3-2B, show less sensitivity to resolution
changes, with its performance remaining relatively stable across all resolutions. In contrast, models such as
GLM-4.1V-Thinking-9B and Qwen2.5-VL-32B demonstrate a more pronounced performance improvement
with higher resolutions, indicating that their architectures are more capable of leveraging the extra visual
information. This suggests that the optimal input resolution is not a one-size-fits-all solution and depends
heavily on the model’s architecture and design.

A.9 QUALITATIVE ERROR ANALYSIS

To better illustrate common failure patterns and the underlying limitations of current Multimodal Large
Language Models, we conduct a qualitative analysis of representative error cases across different task levels.
Following the structure of our benchmark, we group the visualizations into two categories: (1) VQA-style
tasks and (2) Localization tasks, including detection and visual grounding, as shown in Figure 9.

For Perception & Understanding Tasks, they primarily require directly aligning visual content with textual
queries. While modern MLLMs achieve reasonably high accuracy, their errors frequently stem from low-level
perceptual limitations such as small objects, occlusion, distant subjects, and sensitivity to resolution. Several
examples clearly illustrate this issue—for instance, miscounting the number of cyclists in a street scene, or
failing to detect objects like a straw on a desk or a road light partially obscured by signage. For more complex
reasoning tasks, we observe two major classes of systematic errors.
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Right Answer: 6

Q: How many people are riding 
bicycles in the picture?

Wrong Answer (Qwen2.5-VL):
There are four people riding bicycles 
in the picture.

Right Answer: 2

Q: How many people were there in 
the picture, including the 

photographer and his friends? 
Please answer with a number.

Wrong Answer (Qwen2.5-VL): 1

Right Answer: Yes.

Q: Has this image been mirrored?
Please select Yes or No.

Wrong Answer (Qwen2.5-VL): No.

Right Answer: No, the distance 
between them is about 2-3 meters.

Q: Is the distance 
between each pair 
of cyclists greater 

than 5 meters?

Wrong Answer
(Qwen2.5-VL):
The interval is 
longer than the 
length of the blue 
SUV. So the 
distance appears to 
be greater than 5 
meters.

Right Answer: 7.5, two beef buns are 6 yuan and
one scallion roll is 1.5 yuan.

Q: My classmate asked me to bring him 
breakfast. He wants two beef buns and one 

scallion roll. How much money should he transfer 
to me? Please output the number.

Wrong Answer (Qwen2.5-VL):
Based on the menu prices in the image: the beef 
bun costs 2 yuan each. The scallion roll costs 1.5 
yuan. Therefore, the total price of two beef buns 
and one scallion roll is: 2 yuan × 2 + 1.5 yuan = 5.5 
yuan. He should transfer 5.5 yuan to you.

Road light obscured by the 
"contraction" sign A boy with headphonesA straw on the deskThe third bookshelf from 

the left in the distance
The person with the bag 

closest to the subway door

Figure 9: Failure cases for various tasks. Incorrect predictions and labels are indicated by blue and red,
respectively

Correct reasoning, incorrect perception: The model often demonstrates sound logical reasoning but bases
its inference on incorrect or incomplete visual extraction. For example, in a price-computation task, although
the model performs the arithmetic correctly, it misreads the menu price of the beef bun, leading to a wrong
total (5.5 instead of 7.5 yuan). This reveals a persistent bottleneck where high-level reasoning is constrained
by low-level perception, especially OCR and fine-grained attribute recognition. Such cases motivate the need
for agent-based or expert-collaborative pipelines—like our SMEC framework—which can iteratively refine
visual cues or invoke specialized perception experts. They also highlight the importance of dynamic zoom-in
strategies for capturing critical but small textual or visual details. (Wu & Xie, 2024; Zhang et al., 2025a; Shen
et al., 2025b; Shao et al., 2024)

Spatial and physical reasoning deficits: A second recurring failure mode involves questions requiring
geometric or physical commonsense. Models frequently struggle with tasks that implicitly require depth
understanding, object-scale priors, or spatial metric reasoning. For instance, the model incorrectly concludes
that two cyclists are more than 5 meters apart by comparing them to the length of a blue SUV, even though
the correct distance is only about 2–3 meters. Likewise, it fails to judge whether an image is mirrored due to
misunderstanding spatial layout cues. These issues echo recent findings showing that current MLLMs still
lack robust spatial grounding, metric reasoning, and physical commonsense. (Zhang et al., 2025b; Azzolini
et al., 2025)
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A.10 A FORMAL DESCRIPTION OF SMEC

As shown in Algorithm 1. A key advantage of SMEC is that it does not depend on fixed, hand-crafted prompts.
Instead, the prompts and expert descriptions are self-generated by the model based on the given visual input
and question. During each iteration, the model adaptively refines its expert descriptions and updates the
generation process when redundancy or low-quality information is detected. This adaptive design means
that SMEC is not tied to a specific phrasing or a predefined set of experts, but can flexibly adjust to different
problems and question types. As a result, our method is more robust than approaches that rely heavily on
manually designed prompts, since the “experts” in SMEC emerge dynamically from the model itself rather
than being externally imposed.

Algorithm 1 Self-driven Multi-Expert Generation & Collaboration
Initialization: Based Instruction-tuned MLLM θ, Question q, Meta Generation Prompt
pg , Inspection prompt pi, Collaboration Prompt pc, Description Set D = ∅, Maximum
Answer Set A = ∅, Iterations Nt.

1: a0 = θ(q), A = A ∪ a0 # Initial answer for question.
2: for t = 1, 2, . . . , Nt do
3: if t = 1 then
4: d1q = θ(pg, q, A0) # Initial expert description.
5: else
6: dtq = θ(pg, D, q, At) # New description based on existing information.
7: end if
8: if θ(pi, D, dtq) = Retain then
9: D = D ∪ dtq # Checking process.

10: at = θ(q, dtq), A = A ∪ at # New answer from the expert perspective.
11: else
12: pg = θ(q, dtq, pg, D) # Update generation prompt while repeat descriptions.
13: end if
14: end for
15: afinal = θ(q, A, pc, D) # Summarize the final answer.

A.11 HUMAN PREFERENCE

To ensure the verifiability of our evaluation, particularly for open-ended reasoning tasks, we employed a
large language model (LLM) as an automatic grader. To mitigate the concern regarding potential LLM
hallucinations or failure to detect nuanced mistakes, it is noted that the LLM grader (e.g., GLM4-flash) is
used to compare the model-generated responses against our pre-existing, human-annotated answers, ensuring
that the ground truth remains anchored in high-quality human data. We also conducted a human preference
analysis on a representative and complex task SKI with a subset of the dataset, aiming to provide a gold
standard against which to measure the reliability of judgement model. We recruited a separate team of ten
expert annotators who were not involved in the original data collection to manually evaluate the accuracy of
the model’s answers compared to the labeled answers, as shown in Table 7. In this setup, Actual Positive
(AP) and Actual Negative (AN) represent human judgments of correctness and incorrectness, respectively,
while Test Positive and Test Negative indicate the LLM grader’s corresponding evaluations.

The results, shown in Table 7, demonstrate a strong alignment between human preference and LLM-based
judgments across all evaluated models. For instance, in the case of Qwen2.5-VL’s responses, when humans
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Qwen2.5-VL-72B

InternVL3-9B

Qwen2.5-VL-7B

InternVL3-78B

Gemini-2.5-pro Gemini-2.5-pro

InternVL3-78B

Qwen2.5-VL-72B Qwen2.5-VL-7B

Qwen2.5-VL-72B

InternVL3-78B

Gemini-2.5-proQwen2.5-VL-7B

InternVL3-9B InternVL3-9B

After 20252024.09-2024.12Before 2024.09

Figure 10: Model accuracy on SKI task across temporal split.

labeled an answer as correct (AP), the LLM grader also marked it as correct 97.13% of the time. Similarly,
when humans judged an answer as incorrect (AN), the LLM grader agreed 96.14% of the time. Comparable
trends are observed for InternVL3 and Gemini2.5-pro, though with slightly larger gaps in negative cases.
These findings suggest that the LLM grader provides a highly reliable approximation of human judgment,
especially for positive cases. Incorporating human validation thus not only confirms the feasibility of using
LLMs as evaluators but also highlights their potential to scale evaluation consistently across large datasets
while retaining strong alignment with expert human preference.

Method Qwen2.5-VL InternVL3 Gemini2.5-pro
AP AN AP AN AP AN

Test Positive 97.13% 2.87% 94.70% 5.30% 93.65% 6.35%

Test Negative 3.86% 96.14% 7.77% 92.23% 11.41% 88.59%

Table 7: Human evaluation for the models’ responses.

A.12 TEMPORAL GENERALIZATION PERFORMANCE

We visualize the accuracy of the best few models on data from different time periods in Figure 10, including
Qwen2.5-VL (7B/72B), InternVL3 (9B/78B), and Gemini-2.5-Pro. Notably, models released after late 2024,
such as InternVL3-78B and Qwen2.5-VL-72B, consistently outperform Gemini-2.5-pro on contemporary data,
although their overall performance lower than Gemini-2.5-pro. The experimental results further supporting
the observation that newer models tend to generalize better to new data distributions. This trend underscores
the impact of scaling, instruction tuning, and exposure to temporally aligned data in enhancing multimodal
reasoning performance.

A.13 MORE ON SMEC VS. BASELINE METHODS

To further highlight the advantage of our proposed SMEC framework, we provide additional qualitative
comparisons against baseline methods, including direct inference and ChatGPT-style single-pass reasoning.
Figure 11 showcases representative challenging samples drawn from Lens, where baseline models tend to
produce either incomplete or overconfident predictions.

In these cases, ChatGPT and other baselines often failed for two recurring reasons:

28



1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

Over-Reliance on Surface Cues. Baselines typically produced answers anchored on the most salient visual
elements, neglecting contextual or relational signals. For instance, when asked to infer spatial constraints or
traffic rules, ChatGPT tended to extrapolate directly from textual OCR cues, leading to plausible but incorrect
answers.

Lack of Internal Deliberation. Without multi-perspective reasoning, baselines converged prematurely on a
single hypothesis. This often caused brittle errors in scenarios requiring integration of textual, spatial, and
commonsense evidence.

By contrast, SMEC decomposed the problem into multiple role-specific perspectives, such as a scene analyst,
a spatial reasoner, and a cultural or commonsense expert. These experts generated partially overlapping but
complementary hypotheses, which were then screened for redundancy and synthesized into a consensus. In
the traffic-sign example shown in Figure 11, SMEC correctly filtered out spurious cues and converged on the
right driving instruction, whereas ChatGPT remained uncertain or hallucinated unsupported details. Across
difficult samples, two consistent patterns emerged:

Error Correction through Redundancy Filtering. Even when some experts produced misleading interpre-
tations, SMEC’s screening stage effectively down-weighted unreliable reasoning chains, preventing error
propagation.

Multi-Step Enrichment. Iterative expert collaboration yielded richer reasoning trajectories, allowing the
framework to exploit synergies between visual grounding, OCR, and commonsense inference. This process
systematically improved robustness to ambiguous or noisy inputs.

Taken together, these results suggest that SMEC is not merely a test-time ensemble but a principled framework
that encourages internal debate within a single model. Unlike single-pass inference, SMEC operationalizes a
language-native form of deliberation, enabling models to approximate the dynamics of human expert panels.
As Figure 11 illustrates, this mechanism directly translates into more accurate and interpretable reasoning on
complex multimodal questions.

A.14 LIMITATIONS

While Lens offers broad task coverage and a unified evaluation setting, it currently focuses on static
images and short-form reasoning. Real-world applications may require multimodal reasoning over temporal
sequences or long-form narratives, which are beyond the scope of this version. Additionally, SMEC relies on
prompt-based expert simulation, which, though flexible, may introduce redundancy or sensitivity to prompt
phrasing.

A.15 PROMPTS FOR SYNERGY TESTING

Prompt ps with OCR question-answer pairs as context

{question from SKI}
You can use the following facts to help you answer this question. Please note that they may not be
relevant to the question. Here are some factual questions and answers about this picture:
{question from OCR}: {answer from OCR}
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Q: Is my floor the 2nd floor?

Direct Answer (from Chatgpt):
From the signs in your photo, you are
currently on Level 2.
I can see the directory on the left
which shows:
Level 5: Departure Hall
Level 3: Arrival Hall
Level 2: Bus station, food garden, 
car parks, hotel, etc.
And the purple signage above
indicates “Aras Level 2.”
✅ So yes, your floor is the 2nd
floor (Level 2 / Aras 2).

SMEC Answer:
Based on the information in the image and a detailed analysis of the signage, your current location is indeed 3rd Floor. Here's the complete answer and additional explanation:

1. Analysis of key information in the image:
Signages on the left:
- 5th Floor: Balai Perlepasan (Departure Hall). This is where passengers board their planes.
- 4th Floor: Pejabat Penyelenggara (Airline Offices). This is where airline staff work.
- 3rd Floor: Balai Ketibaan (Arrival Hall). This is where passengers go after deplaning.
- 2nd Floor: Hotel Sama-Sama (Hotel), Medan Kareta C & D (Parking Lot), Medan Sejera (Food Garden). These are areas offering accommodation, parking, and dining options.
- 1st Floor: Hailing (Parking Area) and Free Shuttle to Kuala Lumpur. This is the parking and shuttle service area.

Signage on the Right:
- The sign on the right clearly states "Level 3" and has an arrow pointing in a direction. This immediately indicates that you are on the 3rd Floor.
- The sign on the right also mentions "Stesen Bas - Terminal 2 / Destinasi Lain" (Bus Station - Terminal 2 / Other Destinations), further confirming that you are on the 3rd
Floor, as this area often houses transportation transfers.

Ground Level Signage:
- There are yellow signs on the ground that say "E-HAILING," indicating that this is a taxi or ride-hailing waiting area. These areas are usually located on lower floors (such
as the 1st or 2nd floor), but the signs here are likely to help passengers quickly find the relevant services.

Pedestrians and Luggage:
- The image shows several pedestrians dragging suitcases, further confirming that you are near the Arrival Hall, as this is where passengers go after deplaning.

2. Expert's Additional Information:
The expert also reached the same conclusion based on the signage, stating that your current location is 3rd Floor. The expert's analysis aligns with mine, confirming this.

3. Final Conclusion:
Based on the signage and the on-site environment, your current location is 3rd Floor. Specifically, you are likely in or near the Arrival Hall, as the signage clearly states
"Level 3," and this floor's function is related to the Arrival Hall.

Revised Answer:
Based on the signage in the image and the surrounding information, your current location is 3rd Floor. The following is the specific basis for this:
1. The signage on the left clearly indicates the function of each floor, and 3rd Floor is Balai Ketibaan (Arrival Hall).
2. The sign on the right is directly labeled "Level 3" and has an arrow pointing in a certain direction, further confirming that you are on the 3rd floor.
3. The ground signs and the pedestrians carrying luggage also match the characteristics of being near the Arrivals Hall.
Therefore, your current location is the 3rd floor.

Final answer: \\boxed{3}

Q: Determine which country this 
restaurant is located in.

Direct Answer (from Chatgpt):
Based on the word "KELUAR" on
the exit sign, this restaurant is
likely located in either Malaysia,
Indonesia, Brunei, or Singapore.
"Keluar" means "Exit" in both the
Malay and Indonesian languages.

SMEC Answer:
Based on clues in the image and detailed expert analysis, we can draw the following conclusions:

1. Key Clue Analysis:
- Language Sign: The sign on the door, "KELUAR," means "exit" in Malay. Malay is primarily spoken in Malaysia, Brunei, and parts of Indonesia. However, Malaysia has the
most developed café culture among these countries, and the decor and ambient features in the image are highly consistent with Malaysian café culture.
- Decorative Style: The restaurant's interior features wooden tables and chairs, industrial-style pendant lights, and retro posters, creating a modern and unique yet warm
design. This style is popular in Southeast Asian countries, particularly Malaysia and Singapore, particularly among independent cafés and small restaurants in cities.
- Environmental Features: The restaurant's interior features large windows, allowing for ample natural light and creating a bright and comfortable atmosphere. This design
is common in Southeast Asian countries, particularly Malaysia, due to the warm and humid climates in these regions, where interior design often prioritizes natural light.
Additionally, the restaurant's furniture (such as wooden tables and chairs with wrought iron frames) and air conditioning (wall-mounted) are consistent with Malaysia's
climate and design practices.

2. Eliminating Other Possibilities:
Brunei: Although Brunei also speaks Malay, its smaller land area and sparse population don't allow for a more developed cafe culture than Malaysia. Therefore, Brunei is less
likely. Indonesia: Indonesia's primary official language is Indonesian, not Malay. While Malay may be spoken in some areas, Indonesian cafe culture tends to be more modern
and international, which doesn't align with the retro, industrial-style design in the image.

3. Additional Expert Analysis:
Based on analysis by experts on Southeast Asian cafe culture and design trends, the restaurant's wooden tables and chairs, industrial-style pendant lights, and retro
posters align with cafe design trends in Malaysia and other Southeast Asian countries, particularly Malaysia's multiculturalism and its blend of modern and retro styles.
Spatial Layout and Atmosphere: The restaurant's open layout, ample use of natural light, and spacious design perfectly complement the climate and culture of Southeast
Asia, particularly Malaysia.
Cultural Fusion: The restaurant's design embodies a blend of Eastern and Western elements, while respecting local culture, a typical characteristic of Malaysian cafés.
Comparison with Other Southeast Asian Countries: Singaporean cafés are generally more modern and international in design, while Thai cafés may incorporate Buddhist
elements and tropical themes. This restaurant's style is more closely aligned with Malaysian characteristics.

4. Final Conclusion:
Based on the above analysis, this restaurant is most likely located in Malaysia. The Malay sign "KELUAR" is a key clue, and the restaurant's decor and surroundings are also
highly consistent with Malaysian café culture..

Final answer: \\boxed{Malaysia}

Figure 11: Comparison of our method and ChatGPT on some difficult examples.
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A.16 PROMPTS OF SELF-DRIVEN MULTI-EXPERT COLLABORATIVE FRAMEWORK

Meta Generation Prompt pg

{question}
Here are your answers and those of some experts:
{answer}
Now you can create and work with multiple experts to improve your answer. So, please describe in as
much detail as possible the different skills and focus you need from each expert.
We will provide each expert with the same information and queries. Each expert should have his or
her own specialization covering perception, understanding and reasoning, etc., so you can assign only
one subtask to each expert to ensure a more refined answer. We will relay their responses to you in
turn so that you can reorganize them into better answers. Please note that descriptions should be in
the second person, e.g. You are XXX.
These are the descriptions of the experts you have previously created for this task:
{description}
Therefore, do not create the same experts as above over and over again.
Now you can create a description for the new expert (please note that you can only describe one, not
more than one at the same time):

Inspection Prompt pc

{question}
We hired multiple experts to answer this question. Below is a second person description of the experts
we hired: {existing description}
We are now hiring a new expert to help better provide the information needed for the question as well
as respond to user queries. Here is a second person description of the new expert: {description}
Since there is an additional cost to hiring a new Expert, please evaluate the new Expert based on the
following two criteria to decide whether or not to retain them.
1. based on the new Expert’s description, determine if they can effectively assist in answering the
user’s question or provide the information needed for the question.
2. the new expert is not a duplicate of any existing expert.
The new expert must meet both of these criteria. If either criterion is not met, they should be discarded.
If retaining, please reply ‘Retain’. If discarded, please reply: ‘Discard’.

Collaboration Prompt pc

{question} These are you and some experts’ answer: {answer}
The description of the experts you invited are: {description}
Now, you can refine your answer based on the answer and additional information they provided to
better answer the question. Keep in mind that the experts’ answer and additional information may not
be correct, so decide carefully whether to accept his answer or stick to your original one.
Revised answer:

A.17 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We have not used Large Language Models (LLMs) for our paper writing.
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