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Abstract

Reaction-diffusion coupling presents a pathway for producing nanomaterials that
are precisely distributed in a reaction medium, with controlled gradients of chem-
istry, crystallography, and morphology. In this study, we use an automated lab-
oratory to investigate the precipitation patterns of copper hydroxide via reaction
diffusion (RD) coupling in a solution-gel system. Depending on the initial con-
ditions, the products form continuous precipitates or oscillatory patterns typical
of the “Liesegang” phenomenon. The band structures are characterized using
empirical spacing metrics, which convert the complex patterns into scalar values
and can thus be used for supervised machine learning in an active learning loop.
The machine learning algorithm serves dual roles, providing correlation between
reaction conditions and resulting precipitation patterns, which are often beyond the
physics-based models, as well as dynamically evaluating the most significant areas
of the parameter space. Our goal is to develop an autonomous platform wherein
the user can pre-select a target product pattern, and the system converges to it with
closed loop feedback. We have demonstrated a complete cycle of this process using
the Liesegang precipitation of Cu(OH)2 as a test case.

1 Introduction

Over the past few decades, advances in nanomaterials science have enabled the synthesis of a broad
library of products, including defect-free crystals, nanoparticles with tunable sizes and structures, sur-
faces with tailored chemistries, and atomically precise thin films.1–4 Examples include the crystalline
silicon, synthetic gems, highly emissive quantum dots, magnetic storage media, and thin-film-based
solar cells. A common feature in these materials is that they are typically grown at near-equilibrium
conditions to facilitate the synthesis process. For instance, mixing reactants in a beaker produces a
uniform supersaturation condition throughout the reaction medium that can be reproduced experi-
mentally and described using relatively simple models. In contrast, nature uses a radically different
paradigm. By leveraging far-from-equilibrium pathways, nature can create hierarchical materials
with advanced functionalities from ordinary building blocks.5,6 For instance, biominerals consist
of calcium carbonate or phosphate nanoparticles that organize into complex architectures which
result unexpected physical and structural properties.7,8 Far from being synthesized in mixed beakers,
biominerals form in complex chemical environments governed by gradients of pH, ion concentrations,
and spatially confined media.
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Figure 1: A basic feedback loop describing ML-informed automated synthesis for nanomaterials
discovery using reaction-diffusion coupling. ML serves dual roles of characterizing material outcomes
as well as informing optimal exploration of parameter space.

An example of a synthetic analogue to biomineralization is periodic precipitation, wherein two react-
ing components are initially separated and cross-diffuse to create local zones of supersaturation.9,10
In the basic setup, an aqueous solution of the reactants (metal ions) is placed in a cylindrical tube on
top of a hydrogel layer loaded with the corresponding counter-reactants (precipitating anions such as
hydroxide or carbonate). As cross-diffusion of the reacting species occurs, the precipitating material
begins to nucleate in locales where the supersaturation condition has been achieved. Subsequently,
nucleation and growth deplete the reactants in the surrounding medium, resulting in the formation of
a localized precipitation band. As diffusive supply replenishes the reactants, nucleation events occur
at further defined distances from the first precipitation band. The result is a pattern of precipitates
known as “Liesegang precipitation rings”. More intricate setups based on this principle can leverage
reaction-diffusion coupling to create nanoscale patterns of the desired materials.11

Using this approach, recent studies have demonstrated the synthesis of inorganic materials,12 forma-
tion of metastable polymorphs, the organization of nanorods into hierarchical structures,13 and the
selective extraction of high-purity minerals from recycled batteries.14 However, a predictive under-
standing of the pathways in these systems remains lacking, in part because traditional descriptors
such as supersaturation and phase diagrams are not equipped to handle steep chemical gradients
under complex spatiotemporal conditions.15,16 Here the challenge with physics-based modelling is
two-fold: Continuum reaction-diffusion models ignore key molecular details that are necessary for
capturing the free energy landscapes, while atomistic models have limited timescales and lengthscales,
falling short of predicting emergent materials properties at the mesoscale and beyond. Bridging this
knowledge gap with data-based modelling promises a new paradigm in materials manufacturing,
charting far-from-equilibrium reaction pathways to form products that are typically inaccessible
under ambient conditions of conventional synthesis methods.5,17

In this context, far-from-equilibrium materials synthesis is conducive for both autonomous research
as well as machine learning (ML) driven analytical methods. While synthetic conditions and
materials properties are both readily measurable, the rapid breakdown of physics-based models
makes traditional iterative lab approaches difficult. By comparison, an automated and unsupervised
ML-driven approach offers several benefits (Scheme 1). High throughput as well as high repeatability
of automation are ideal for exploring large parameter spaces, particularly for reaction-diffusion
systems that are highly non-linear and susceptible to minor perturbations. Moreover, ML serves dual
purposes in this application. Using ML feedback in the experimental design loop potentially offers a
highly efficient approach as supervised algorithms naturally provide feedback on the most important
or fastest changing areas of the design parameter space. Secondly, a method which is agnostic but
still capable of capturing the observed phenomenais highly desirable especially when the underlying
physics is extremely complex, particularly beyond simple, highly controlled conditions. Applying
ML to this problem is robust and more tractable solution than trying to add complexity to known
models.
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Figure 2: a. Relevant feature length scales expected for a given timescale and a typical diffusion
coefficient of 10-5 cm2/s. These relatively slow phenomena provide sufficient latency for real-time
computational processing. b. Time-resolved band formation over 48 h.

2 Experimental methods

These experiments were performed using an Unchained brand lab automation platform. Reaction-
diffusion experiments were performed in NMR tubes loaded with 600 µL of 0.5% agarose gel prepared
by heating to 75 °C with 5-35 mM NaOH for 30 m and setting for 1 h. Various concentrations of
salt are prepared and dispensed by the robotic system. The initial parameter space varied this as
well as addition of 300 µL CuCl2 varied from 0.1-0.4 M. Up to 96 parallel reaction conditions were
explored with experiments allowed to run for 48 h with imaging of each sample taken every 1 h
yielding time-resolved band formation and diffusion data.

3 Results and discussion

As a model system we investigate the self-organization of copper hydroxide precipitation patterns via
RD coupling. Specifically, a solution of copper chloride is placed on top of an agarose gel that is
loaded with sodium hydroxide during preparation. Initially, [NaOH] is at least an order of magnitude
larger than [CuCl2 ], such that the ion flux is primarily from the solution into the gel medium. The
system is thus supersaturated with respect to copper hydroxide and a precipitate begins to form near
the solution-gel interface. The precipitate locally depletes the reactants, preventing further growth
until the ions are replenished by diffusion. This interplay between reaction kinetics and diffusion
can result in continuous precipitates, oscillatory patterns, or more complex spatial distribution of the
product in the reaction medium. Note that the underlying physics of this phenomenon are complicated
by the atomistic details of nucleation and growth across concentration gradients which evolve over
time, producing generally low crystallinity products with multiple candidate polymorphs.

The formation of precipitate bands, also known as Liesegang patterns, suggests that RD coupling can
be used to synthesize products with a precise spatial distribution in the reaction medium. Specifically,
the banded patterns obey multiple empirical laws that determine band spacing, thickness, and rate of
growth, which show non-linear dependence on the initial conditions. An additional feature of this
system is the synthesis timescale, which is limited by the diffusivity of ions in aqueous media (Figure
2). Since the precipitation patterns develop over an approximately 48-hour window there is sufficient
time to operate many samples in parallel while also fully processing and training in real time. Image
analysis can thus be deployed in real-time to precisely quantify Liesegang bands which can then be
directly processed by ML-informed algorithms (Figure 3).

As an initial optimization run, we were primarily interested in targeting the band spacing metric of
the reaction. In the literature, the band spacing this is often empirically reduced to an exponential
scaling law, with typical scaling of approximately k = 1.069,18 for many systems. Image data were
scalarized using a script requiring no human post-processing or intervention to extract this parameter
for supervised ML.

cn+1

cn
= k (1)
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Figure 3: Schematic of the active learning loop used to efficiently search the RD synthesis parameter
space specifically to optimize the Liesegang band precipitation and pattern. Experiments are scalarized
and processed using active ML to determine the highest value area of the domain space. The loop is
then closed when the automated platform performs those experiments.

We established an initial design space investigating the reaction-diffusion precipitation of Cu(OH)2
using 5-35 mM NaOH and 0.1-0.4M CuCl2. The stoichiometric imbalance of precipitating agent as
outer electrolyte versus inner electrolyte has been observed in many Liesegang systems,19 but the
exact optimal conditions were not known. To investigate this, the images acquired were automatically
processed using a script to determine band positions to an resolution of 9 um/px. the observed data for
band formation was fit to equation 1 and the band spacing metric was used as a target for supervised
ML. A summary of the extracted data as well as alternate candidate scalarizations are available in the
supplementary information. The results of this analysis are shown in figure 4.

Figure 4: A diagram of the scalarization value k of eq. 1 as a function of the two-parameter input
space of CuCl2. and NaOH concentrations. Samples with fewer than two bands are left blank and
were considered as sparse points for ML.
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Next, we have developed an active learning framework with several probabilistic ML models, based
on either Bayesian neural networks (BNNs) or Bayesian Gaussian processes (BGPs), trained to predict
the average spacing ratio and other scalarized descriptors from the CuCl2 and NaOH concentrations.
Probabilistic models offer many advantages over deterministic models, especially when data is scarce,
domain knowledge is limited, and/or experimental noise is unknown. BNNs in particular i) offer
all the benefits of neural networks with the ability to provide prediction uncertainties, and ii) can
handle data that contain discontinuities and non-stationarities, which are common in physical science
problems. Within this loop, we can toggle between explorative and exploitive active learning, where
the former is used to efficiently sample the parameter space and improve model performance and the
latter is used to target specific band pattern features.

Up to this point, we have operated in the explorative regime, where we have selected the next set of
parameters by focusing on regions of the input parameter space in which the ML models are most
uncertain. This uncertainty is shown is shown as σpred in fig 5a. From the uncertainties we choose
pairs of [CuCl2] and [NaOH] that maximize the total ML prediction uncertainty of all scalarized
descriptors, as shown in Figure 5b. This new set of parameters forms the basis of the next iteration
of the design loop, wherein we can continue converge the ML model’s predictive ability towards
the Liesegang band formation. For example, because the uncertainties were highest in the low
concentration NaOH regime the parameters of the next experimental cycle are weighted towards
lower concentration NaOH.

Figure 5: a. Plot of the total ML prediction uncertainty σpred, summed over all target predictions,
over the input parameter space. b. Parameter set selected from regions of high uncertainty in 5a
displayed as the ratio of starting reagent concentrations.
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4 Conclusion and outlook

We have demonstrated the workflow for combining automated materials synthesis with a machine
learning analytical approach, which could eventually enable fully autonomous experimentation.
We investigated the complex pattern formation RD precipitation of Cu(OH)2. Using supervised
probabilistic machine learning, this workflow dynamically processes the reduced dataset and identifies
candidate areas of parameter space for further iterative study, as well as towards the synthesis of the
target material with the desired spatial distribution in the reaction medium.

Through the incorporation of these probabilistic ML models in an active learning framework, we are
able to i) efficiently sample the RD synthesis parameter space by prioritizing experiments in regions
of high ML prediction uncertainty, ii) gain insight into the relationship between these parameters and
Liesegang band patterns, and iii) control and tune the band pattern via choice of synthesis parameters.

Future steps will aim to refine this approach to be an increasingly agile tool for materials synthesis and
discovery. By adding temporal components to the experiment design and adapting the ML model, we
will move towards intra-experimental parameter modification. Dynamic observation of synthetic and
material properties would allow for more rapid design as well as expand the landscape of potential
far-from-equilibrium pathways across the full parameter space.
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Supplementary Information

SI 1. Extracted band spacing data for 96 grid of paramters. Green dots represent band edge position
and blue lines represent fits to eq 2.

Figure 6: Bands extracted via automated script. Left: example image with band tops and bottoms
drawn in as extracted.

SI 2. Alternatively an exponential relationship can be used as a scalarization metric yielding 3 scalar
values per sample set:

d = AxB + C (2)

Where d is the band distance and x represents the x’th band.

SI 3. Scalar fit for A of eq 2

Figure 7:

SI 4. Scalar fit for B of eq 2
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Figure 8:

SI 5. Scalar fit for C of eq 2

Figure 9:
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper covers all points discussed in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes this is discussed in choice of system and scope of the goals.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No Theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Procedure is explained in the methods as well as discussion sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: No proprietary code is used. Any additional data available on request
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The procedure for scalarization used was discussed thoroughly. The rest of the
computation was very trivial/standard.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Does not seem applicable to the experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: Did not require compute
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes we agree with the code and are in line.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Does not seem applicable.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Does not use any of these things.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: I am the original owner of everything presented.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No such assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No such subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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