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Abstract

Existing theoretical results (such as (Woodworth et al., 2020a)) predict that the performance
of federated averaging (FedAvg) is exacerbated by high data heterogeneity. However, in
practice, FedAvg converges pretty well on several naturally heterogeneous datasets. In order
to explain this seemingly unreasonable effectiveness of FedAvg that contradicts previous
theoretical predictions, this paper introduces the client consensus hypothesis: the average of
local models updates on clients starting from the optimum is close to zero. We prove that
under this hypothesis, data heterogeneity does not exacerbate the convergence of FedAvg.
Moreover, we show that this hypothesis holds for a linear regression problem and some
naturally heterogeneous datasets such as FEMNIST and StackOverflow. Therefore, we
believe that this hypothesis can better explain the performance of FedAvg in practice.

1 Introduction

Federated learning (FL) is an emerging distributed training paradigm (Kairouz et al., 2019; Wang et al.,
2021), which enables a large number of clients to collaboratively train a powerful machine learning model
without the need of uploading any raw training data. One of the most popular FL algorithms is Federated
Averaging (FedAvg), proposed by McMahan et al. (2017). In each round of FedAvg, a small subset of
clients are randomly selected to perform local model training. Then, the local model changes from clients
are aggregated at the server to update the global model. This general local-update framework only requires
infrequent communication between server and clients, and thus, is especially suitable for FL settings where
the communication cost is a major bottleneck.

Due to its simplicity and empirical effectiveness, FedAvg has become the basis of almost all subsequent
FL optimization algorithms. Nonetheless, its convergence behavior – especially when the clients have
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heterogeneous data – has not been fully understood yet. Existing theoretical results such as Woodworth
et al. (2020a); Glasgow et al. (2021) predict that FedAvg’s convergence is greatly affected by the data
heterogeneity. In particular, when the local gradients on clients become more different from each other
(i.e., more data heterogeneity), FedAvg may require much more communication rounds to converge. These
theoretical predictions match with the observations on some datasets with artificially partitioned or synthetic
non-IID data (Hsu et al., 2019; Li et al., 2020a; Zhao et al., 2018). However, on many real-world FL training
tasks, FedAvg actually performs extremely well (McMahan et al., 2017; Charles et al., 2021), which appears
to be unreasonable based on the existing theory. In fact, many advanced methods aimed at mitigating the
negative effects of data heterogeneity performs similar to FedAvg in real-world FL training tasks. For
example, Scaffold (Karimireddy et al., 2020b) needs much fewer communication rounds to converge than
FedAvg in theory and when run on a synthetic dataset. However, Scaffold and FedAvg are reported to
have roughly identical empirical performance on many realistic federated datasets, see the results in (Reddi
et al., 2021; Wu et al., 2023; Li et al., 2021).

The above gap between threotical results and practical observations motivates us to think about whether
the current theoretical analyses are too pessimistic about FedAvg, since most of them only focus on the
worst cases. It remains as an open problem whether the data heterogeneity modeled by theory and simulated
via artificially constructed non-IID datasets matches the heterogeneity in real-world applications. Is it
possible that the data heterogeneity in practice has some special properties that allow FedAvg to enjoy
good convergence? The answers to the above questions will serve as important guidelines for the design and
evaluation of future federated algorithms.

Main Contributions. In this paper, we take the first step towards explaining the practical effectiveness
of FedAvg under a special but realistic hypothesis. In particular, our contributions are as follows.

• By performing experiments on naturally heterogeneous federated datasets, we show that previous
theoretical predictions do not align well with practice. FedAvg can have nearly identical performance
on both IID and non-IID versions of these datasets. Thus, previous worst-case analyses may be
too pessimistic for such datasets. This is likely because the heterogeneity metric used by existing
analyses may be too loose for naturally heterogeneous datasets.

• In order to explain the practical effectiveness of FedAvg, we propose a client consensus hypothesis:
the average of local model updates starting from the optimum is close to zero. For smooth and
strongly-convex functions, we prove that under this hypothesis, there is no negative impact on the
convergence of FedAvg even with unbounded gradient dissimilarity.

• We further validate that the client consensus hypothesis can hold in many scenarios. We firstly
consider a linear regression problem where all the clients have the same conditional probability of
label given data, and show that the client consensus hypothesis holds. Besides, we empirically show
that natural federated datatsets such as FEMNIST and StackOverflow satisfy this hypothesis. Indeed,
data heterogeneity has very limited impact on these datasets.

We would like to clarify that we are not trying to provide any practical approach/criterion to predict which
datasets FedAvg will converge on. We are just diving deep into the notion of heterogeneity and trying to
provide some insights on which notion seems to be more aligned with the behavior of FedAvg in practice.

2 Preliminaries and Related Work

Problem Formulation. We consider a FL setting with total M clients, where each client c has a local
objective function Fc(w) defined on its local dataset Dc. The goal of FL training is to minimize a global
objective function, defined as a weighted average over all clients:

F (w) =
M∑
c=1

pcFc(w) = Ec[Fc(w)], (1)
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where pc is the relative weight for client c. For the ease of writing, in the rest of this paper, we will use
Ec[ac] =

∑M
c=1 pcac to represent the weighted average over clients.

Update Rule of FedAvg. FedAvg (McMahan et al., 2017) is a popular algorithm to minimize (1) without
the need of uploading raw training data. In round t of FedAvg, client c performs H steps of SGD from the
current global model w(t) to a local model w

(t,H)
c with a local learning rate η. Then, at the server, the local

model changes are aggregated to update the global model as follows:

w(t+1) = w(t) − αEc[w(t) −w(t,H)
c ]. (2)

Here α denotes the server learning rate. Our results in this paper are for the full-device participation case,
i.e., when all the clients participate in each round. We discuss how our results can be extended to the
partial-device participation case at the end of Section 4.2.

Theoretical Analysis of FedAvg. When clients have homogeneous data, many works have provided error
upper bounds to guarantee the convergence of FedAvg (also called Local SGD) (Stich, 2019; Yu et al., 2019b;
Wang & Joshi, 2018; Zhou & Cong, 2018; Khaled et al., 2020; Li et al., 2019). In these papers, FedAvg was
treated as a method to reduce the communication cost in distributed training. It has been shown that in the
stochastic setting, using a proper H > 1 in FedAvg will not negatively influence the dominant convergence
rate. Hence FedAvg can save communication rounds compared to the algorithm with H = 1. Later in
Woodworth et al. (2020b), the authors compared FedAvg with the mini-batch SGD baseline, and showed
that in certain regimes, FedAvg provably improves over mini-batch SGD. These upper bounds on FedAvg
was later proved by Glasgow et al. (2021) to be tight and not improvable for general convex functions.

When clients have heterogeneous data, in order to analyze the convergence of FedAvg, it is common to make
the following assumption to bound the difference among local gradients.
Assumption 1 (Bounded Gradient Dissimilarity). There exists a positive constant ζ such that ∀ w ∈ Rd,
the difference between local and global gradients are uniformly bounded:

Ec ‖∇Fc(w)−∇F (w)‖2 ≤ ζ2. (3)

This assumption first appeared in decentralized optimization literature (Lian et al., 2017; Yuan et al., 2016;
Assran et al., 2018; Koloskova et al., 2020; Wang et al., 2022), and has been subsequently used in the analysis
of FedAvg and related algorithms (Yu et al., 2019a; Khaled et al., 2020; Karimireddy et al., 2020b; Reddi
et al., 2020; Wang et al., 2020a;b; Haddadpour & Mahdavi, 2019; Karimireddy et al., 2020a; Das et al., 2022;
Zindari et al., 2023; Crawshaw et al., 2024). Under the bounded gradient dissimilarity assumption, FedAvg
cannot outperform the simple mini-batch SGD baseline unless ζ is extremely small (ζ < 1/T where T is the
total communication rounds) (Woodworth et al., 2020a); the deterministic version of FedAvg (i.e., Local
GD) has even slower convergence rate than vanilla GD (Khaled et al., 2020). Again, these upper bounds
match a lower bound constructed in Glasgow et al. (2021) for general convex functions, suggesting that they
are tight in the worst case. In this paper, we do not aim to improve these bounds, which are already tight.
Instead, we argue that since the existing analyses only consider the worst case, they may be too pessimistic
for practical applications. The data heterogeneity induced by the bounded gradient dissimilarity assumption
may be different from the real-world heterogeneity.

Finally, we note that there is another line of works, namely, Malinovskiy et al. (2020); Charles & Konečnỳ
(2021); Charles & Rush (2022), using a different analysis technique from the above literature. They showed
that FedAvg (with full client participation) is equivalent to performing gradient descent on a surrogate loss
function. However, so far this technique still has some limitations. It can only be applied to deterministic
settings with quadratic (or a very special class of) loss functions. Additionally, Wang et al. (2023a) propose a
heterogeneity-driven Lipschitz assumption to better capture the effect of local steps, and derive a convergence
result for FedAvg with this assumption. Gu et al. (2023) discuss the reasons why FedAvg can have better
generalization than mini-batch SGD.

Comparisons of Data Heterogeneity Assumptions. In Table 1, we summarize some commonly used
data heterogeneity assumptions in literature. It is worth highlighting that previous literature, no matter
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which heterogeneity measures they used, suggested that only when all local functions are the same or share
the same optimum, there are no additional error terms (i.e., ζ = 0) caused by data heterogeneity. However,
in our paper, we show that even if local functions are heterogeneous and have different local optima, data
heterogeneity can have no negative impact in some regimes (which likely happen in practice). This new result
helps us gain a deeper understanding of the great performance of FedAvg observed in practice and cannot be
obtained from previous works.

Among all these heterogeneity measures, gradient dissimilarity (at optimum) is considered as the most general
one and widely used in literature (Wang et al., 2021). But as we will discuss in the paper, it can be pessimistic
in practice. Besides, the gradient diversity assumption used in (Li et al., 2020a; Haddadpour & Mahdavi,
2019) implicitly forces all local functions share the same optimum. So it is much more restrictive than the
gradient dissimilarity.

Table 1: Summary of data heterogeneity measures/assumptions used in literature. The above table is adapted
from Table 6 in the survey (Kairouz et al., 2019). In the above works, their error upper bounds have the
same dependency on ζ, though ζ’s definition is different.

Name Definition Example usage
grad. dissimilarity Ec‖∇Fc(w)−∇F (w)‖ ≤ ζ2 Woodworth et al. (2020a)

grad. dissimilarity at opt. Ec‖∇Fc(w∗)‖2 ≤ ζ2 Khaled et al. (2020); Koloskova et al. (2020)
grad. diversity Ec‖∇Fc(w)‖2 ≤ λ2‖∇F (w)‖2 Li et al. (2020a); Haddadpour & Mahdavi (2019)

general grad. diversity Ec‖∇Fc(w)‖2 ≤ λ2‖∇F (w)‖2 + ζ2 Wang et al. (2020a); Karimireddy et al. (2020b)
grad. norm ‖∇Fc(w)‖2 ≤ ζ2 Yu et al. (2019b); Li et al. (2020b)

opt. diff ‖Ecw∗c −w∗‖2 ≤ ζ2 Wang et al. (2023b)

3 Mismatch Between Theory and Practice on FedAvg

In this section, we will introduce the existing convergence analysis in detail and compare the theory with
experimental results. We shall show that there is a gap between the theory and practice of FedAvg.

3.1 Existing Theoretical Analysis of FedAvg

Besides the bounded gradient dissimilarity assumption (3), the analysis of FedAvg relies on the following
common assumptions.
Assumption 2 (Lipschitz Smoothness). There exists a constant L such that, ∀w,u ∈ Rd,∀c,

‖∇Fc(w)−∇Fc(u)‖2 ≤ L‖w − u‖2 (4)

Assumption 3 (Local Unbiased Gradient). Local stochastic gradient on each client c is unbiased with
expectation ∇Fc(w) and bounded variance σ2.

Using the above assumptions, previous works derived an upper bound for the optimization error with
non-convex objective functions. We take the following theorem from (Jhunjhunwala et al., 2022) as an
example.
Theorem 1. Under Assumptions 1 to 3, if FedAvg’s learning rates satisfy η ≤ 1/8LH,α ≤ 1/24LH, then
the global gradient norm mint E‖∇F (w(t))‖2 can be upper bounded by

O
(
F (w(0))− F ∗

αηHT

)
+O

(
αηLσ2

M
+ η2L2Hσ2

)
+O

(
η2L2H2ζ2) . (5)

Theorem 1 shows that when the learning rates α, η are fixed and the communication round T is limited, data
heterogeneity always introduces an addition term O(ζ2) to the optimization error bound. It is worth noting
that, with an optimized learning rate, the above upper bound matches a lower bound constructed in Glasgow
et al. (2021) for general convex functions, suggesting that it is tight. In the worst case, the convergence of
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FedAvg will become worse compared to the homogeneous setting. Although some papers argued that the
data heterogeneity only influences the higher order terms when using optimized learning rates (Yu et al.,
2019a; Khaled et al., 2020), this conclusion only holds asymptotically w.r.t. T . Also, in some special cases,
FedAvg’s convergence rate with data heterogeneity can be substantially slower. For instance, when there is
no stochastic noise σ = 0, FedAvg in homogeneous setting can achieve a rate of T−1 but with heterogeneous
data, the rate degrades to T−2/3 (Woodworth et al., 2020a; Wang et al., 2021; Jhunjhunwala et al., 2022).

3.2 Empirical Observations on FedAvg

Results on Artificial Non-IID Datasets. In order to corroborate the above theoretical results, most of
previous works constructed datasets with artificially high data heterogeneity. Given a common benchmark
classification dataset (such as MNIST, CIFAR-10/100), researchers simulated the data heterogeneity by
assigning different class distributions to clients. For example, each client may only hold one or very few
classes of data (Zhao et al., 2018), or has data for all classes but the amount of each class is randomly drawn
from a Dirichlet distribution (Hsu et al., 2019). On these datasets, the empirical convergence of FedAvg is
greatly impacted and its final accuracy is much lower than the one in the centralized training setting. As
shown in Zhao et al. (2018), FedAvg’s final test accuracy on non-IID versions of CIFAR-10 can be 10− 40%
lower than its on the standard IID version.

Results on Natural Non-IID Datasets. While the negative results on artificial non-IID datasets are
widely cited to claim FedAvg suffers due to data heterogeneity, we doubt whether the results are representative
and general enough to cover all practical applications. Is it possible that there are some scenarios where
the data heterogeneity has benign effects and has different characteristics from the heterogeneity simulated
through these originally IID datasets?

We conduct some experiments on StackOverflow, a naturally non-IID split dataset for next-word prediction.
Each client in the dataset corresponds to a unique user on the Stack Overflow site. The data of each client
consists of questions and answers written by the corresponding user. More details about the experimental
setup, such as optimizer and learning rate choices, can be found in the Appendix. From the naturally
heterogeneous StackOverflow dataset, we create its IID version by aggregating and shuffling the data from all
clients, and then re-assigning the IID data back to clients. Surprisingly, the results in Figure 1 show that the
convergence of FedAvg is nearly identical (with limited communication rounds) on the new IID dataset and
its original non-IID version. This observation contradicts the conventional wisdom that data heterogeneity
always adds an additional error to the optimization procedure, as well as the empirical results on artificial
non-IID datasets. There is indeed a gap between the theory and practice of FedAvg.
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Figure 1: Results on the naturally non-IID dataset StackOverflow. The IID version of StackOverflow
is created via aggregating and shuffling all the data from clients. We observe that FedAvg achieves roughly
the same convergence in both IID and non-IID settings.

Experimental results from some previous papers serve as additional evidence to support our claim. For
instance, FedAvg converges significantly faster than FedSGD on Shakespeare and StackOverflow datasets
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Figure 2: Comparison between client drift and client consensus. (Left) Previous works focus on the worst
case where the average of clients’ local updates (or drifts) drives the global model away from the optimum;
(Right) Our client consensus hypothesis states that the average local drifts at the optimum is very small or
close to zero. This structured heterogeneity does not impact the convergence of FedAvg.

even with strong heterogeneity (McMahan et al., 2017; Charles et al., 2021). Even though a more sophisticated
method like Scaffold does better on artificial datasets like EMNIST, it does not outperform FedAvg on
many naturally heterogeneous datasets like FEMNIST, StackOverflow, etc., as shown in (Reddi et al., 2021;
Wu et al., 2023; Li et al., 2021). Explanations to these observations still remain mysteries.

4 Client Consensus Hypothesis

In previous sections, we saw that there is a gap between the theory and practice of FedAvg. While theory
predicts that FedAvg performs worse in the presence of data heterogeneity, we did not observe this on
naturally non-IID datasets. Also, many advanced methods designed to tackle data heterogeneity problem do
not outperform FedAvg. In order to explain the above phenomenon, in this section, we propose the client
consensus hypothesis. Many realistic federated datasets may satisfy this special property such that data
heterogeneity has very limited impacts on the convergence of FedAvg.

4.1 Key Insights

FedAvg is commonly viewed as a perturbed version of vanilla SGD. To see this, we can consider the
accumulated local updates on each client as a pseudo-gradient, which is an approximation of the batch client
gradient. When clients have heterogeneous data, the average of the pseudo-gradients across all clients can be
very different from the original global gradient. Especially, when the global model approaches the optimum
(or a stationary point) with a constant learning rate, since the average of pseudo-gradients is not zero, the
global model cannot stay and may drift away towards a different point. This is referred to as client drift
problem in literature (Karimireddy et al., 2020b). An illustration is provided in Figure 2.

The above insight is true in the worst case. But it is possible that real-world FL datasets are far away from
this worst case. In this paper, we make a hypothesis about a special class of data heterogeneity. In particular,
clients can still have drastically different data distributions and local minima. But, at the global optimum (or
stationary point), clients’ local updates (i.e., pseudo-gradients) cancel out with each other and hence, the
average pseudo-gradient at the optimum is or close to zero. As a consequence, when the global model reach
the global optimum, it can stay there and will not drift away. That is, clients reach some kind of consensus
at the optimum. For this reason, we name the hypothesis as client consensus hypothesis. We will show it in
Section 4.2 that this special class of non-IIDness has no negative impacts on the convergence of FedAvg.
Therefore, the hypothesis can serve as a possible explanation of the effectiveness of FedAvg.

More formally, we define the deterministic pseudo-gradient for client c as follows:

Gc(w) , 1
ηH

(w −w
(H)
c,GD) (6)
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where w
(H)
c,GD denotes the locally trained model at client c after performing H steps of GD from w using a

local learning rate η. Given this definition, the client consensus hypothesis is formally stated below.
Assumption 4 (Client Consensus Hypothesis). On real-world federated datasets, for the values of η,H
used in FedAvg, the average pseudo-gradient at the optimum (i.e., average client model drift at the optimum)

ρ ,
∥∥∥Ec[Gc(w∗)]∥∥∥

is very small or close to zero, where w∗ is the global optimum or stationary point of the global objective (1).

Note that the Client Consensus Hypothesis is satisfied whenever FedAvg converges with a constant learning
rate. Thus, in a sense, it is the minimal assumption under which one can expect to prove improved convergence
rates for FedAvg. ρ can be interpreted as the average drift at optimum; this quantity is akin to a heterogeneity
metric and our theoretical results will be in terms of it.

Connections to Existing Analysis with Bounded Gradient Dissimilarity. Here, we discuss the
connections between client consensus hypothesis and previous convergence analysis with bounded gradient
dissimilarity assumption. As we mentioned before, FedAvg can be viewed as a perturbed version of vanilla
SGD. This alternative view is also critical in the convergence analysis. A key step in previous FedAvg
analysis is to bound the perturbations, i.e., the difference between the average pseudo-gradient Ec[Gc] and
the batch global gradient ∇F (w) = Ec[∇Fc(w)]. Previous works always upper bound this difference using
Jensen’s inequality as follows:

‖Ec[Gc(w)−∇Fc(w)]‖2 ≤ Ec‖Gc(w)−∇Fc(w)‖2. (7)

Then, the right-hand-side (RHS) can be further bounded using the gradient dissimilarity assumption. However,
we note that the above upper bound omits the correlations among different clients. While the RHS (i.e.,
average of squared `2 differences) can be large or unbounded, the LHS (i.e., squared `2 norm of the average
difference) can be small or just zero, especially at the optimum w∗. Therefore, using (7) in the analysis may
result in a pessimistic estimate.

Instead, in this paper, the client consensus hypothesis states that the LHS of (7) at the optimum is close to,
if not, zero. Using the hypothesis and our new analysis, we no longer need to provide an upper bound of the
RHS of (7) for all points. As a consequence, the new analysis does not require the gradient dissimilarity to
be bounded.

4.2 Convergence of FedAvg under Client Consensus Hypothesis

In this subsection, we will provide a convergence analysis for FedAvg under the client consensus hypothesis
(Assumption 4) for strongly-convex loss functions. In particular, we show that when ρ = 0 in Assumption 4,
data heterogeneity has no negative impact on the convergence of FedAvg.

Besides the pseudo-gradient defined in (6), we need to define its stochastic version:

Ĝc(w) , 1
ηH

(w −w(H)
c ) (8)

where w
(H)
c denotes the locally trained model at client c using H steps of SGD with learning rate η, starting

from w. Let us define G := Ec[Gc] and Ĝ := Ec[Ĝc]. Then, we have the following result.
Theorem 2. Under Assumptions 2 to 4, when each local objective function is µ-strongly convex and the
learning rates satisfy α ≤ 1/4, η ≤ min{1/L, 1/µH}, after T rounds of FedAvg, we have

E
∥∥∥w(T ) −w∗

∥∥∥2
≤ (1− 1

2αηHµ)T
∥∥∥w(0) −w∗

∥∥∥2
+ 2αηH

µ
max

w
Var[Ĝ(w)]

+ 20
µ2 max

w
Ec ‖δc(w)‖2 + 20ρ2

µ2 (9)

where E[·],Var[·] are taken with respect to random noise in stochastic local updates, and δc(w) = (w(H)
c,GD −

E[w(H)
c ])/(ηH) denotes the iterate bias between local GD and local SGD on client c.

7



Published in Transactions on Machine Learning Research (06/2024)

From Theorem 2, we observe that the stochastic noise during local updates influences the second and the
third terms on the right-hand-side of (9). The upper bounds of these two terms only depend on the dynamics
of SGD, which has been well understood in literature. Specifically, in Khaled et al. (2020), the authors show
that E‖w(H) − E[w(H)]‖2 ≤ 2η2Hσ2. As a consequence, we directly obtain that

Var[Ĝ(w)] =
E
∥∥∥w

(H)
c − E[w(H)

c ]
∥∥∥2

η2H2M
≤ 2σ2

MH
. (10)

As for the iterate bias, one can obtain

Ec ‖δc(w)‖2 ≤ η2L2σ2(H − 1), (11)

the proof of which is provided in the Appendix. After substituting (10) and (11) into (9) and optimizing the
learning rates, we can obtain the following convergence rate for FedAvg.
Corollary 1 (Convergence Rate for Strongly Convex Functions). In the same setting as Theorem 2,
when α = 1/4, η = O(1/µHT ), the convergence rate of FedAvg is1

E
∥∥∥w(T ) −w∗

∥∥∥2
= Õ

(
σ2

MHT
+ σ2

HT 2 + ρ2
)
. (12)

If clients perform local GD instead of local SGD, then when η = min{1/L, 1/(µH)}, we have∥∥∥w(T ) −w∗
∥∥∥2

= O
(

exp
(
− T

16κ min{κ,H}
)

+ ρ2
)

(13)

where κ = L/µ denotes the condition number.

Effects of Data Heterogeneity. In the special regime of ρ ≈ 0, i.e., when the client consensus hypothesis
holds, Theorem 2 and Corollary 1 state that data heterogeneity does not have any negative impact on the
convergence of FedAvg. However, in previous works based on gradient dissimilarity, even if ρ = 0, there is
an additional error caused by the positive gradient dissimilarity. Compared to the centralized setting where
M = 1, (12) suggests that FedAvg can provide linear speedup due to the usage of multiple workers.

Extensions. The above analysis can be extended to various settings. Below we provide several examples.

(1) Client Sampling: If we consider client sampling in FedAvg, then only the variance term in (9) will
change while the other terms will be unaffected. One can obtain new convergence guarantees by analyzing
the variance of different sampling schemes and then simply substituting them into (9). Standard techniques
to analyze client sampling (Yang et al., 2020) can be directly applied.

(2) Third-order Smoothness: When the local objective functions satisfy third-order smoothness
(
∥∥∇2Fc(w)−∇2Fc(u)

∥∥ ≤ Q ‖w − u‖), the bound of the iterate bias δ(w) can be further improved while all
other terms remain unchanged. According to Glasgow et al. (2021), one can obtain ‖δ(w)‖ ≤ 1

4η
2HQσ2. In

the special case when local objective functions are quadratic, we have Q = 0. That is, there is no iterate bias.
As a consequence, the convergence rate of FedAvg can be significantly improved.

Moreover, a result for the general convex case is provided in the Appendix. Analysis for non-convex functions
requires a different framework and is non-trivial. So we leave it for future work.

Comparison with Previous Works. In Table 2, we summarize the convergence rates of FedAvg in
different papers. All previous results depend on the gradient dissimilarity upper bound ζ, which is generally
large for heterogeneous data settings. However, in our result, under client consensus hypothesis, we show
that the effects of data heterogeneity can be measured by average drift at optimum ρ, which can be close to
zero even in presence of strong data heterogeneity, as we showed in the quadratic example and experiments
on FEMNIST and StackOverflow. When the average drift at optimum is zero, we can get an improved
convergence rate compared to existing results.

1Õ(.) hides log factors.
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Table 2: Comparison with existing results for strongly convex objectives functions with deterministic local
updates. In the table, the error is measured by the distance to the optimum ‖w −w∗‖2, and κ = L/µ is the
condition number. Also, we omit logarithmic factors. Compared to previous results, we show that in the
considered setting: (i) FedAvg enjoys linear convergence to the global optimum, and (ii) the multiple local
steps of FedAvg mitigate the impact of of ill-conditioning (high condition number).

Algorithm Worst-case error Comm. rounds to attain ε error when ρ = 0
GD exp(−T/κ) O(κ log(1/ε))
FedAvg (Koloskova et al., 2020) ζ2/T 2 O(1/ε2)
FedAvg (Woodworth et al., 2020a) 1/(HT +H2T 2) + ζ2/T 2 O(1/ε2)
FedAvg (Ours) exp(−T min{1, H/κ}) + ρ2 O(max{1, κ/H} log(1/ε))

5 Validating the Client Consensus Hypothesis

Here we will present some evidence to show that the client consensus hypothesis is realistic and practical; we
do so (a) theoretically, in a linear regression setting, and (b) empirically, on some naturally split datasets
such as FEMNIST and StackOverflow.

5.1 Linear Regression Example

Intuition on When Client Consensus Hypothesis Holds. One of the key insights of the client consensus
hypothesis is that clients do reach some consensus and a single global model can work reasonably well for
all clients though they have heterogeneous data. Inspired by this, we assume that all clients have the same
conditional probability of the label given data, i.e., pc(y|x) = p(y|x),∀c, where x, y denote the input data
and its label, respectively. In this case, clients still have heterogeneous data distributions, as they may have
drastically different pc(x) and pc(x, y). However, the client’s updates should not conflict with each other, as
the learning algorithms tend to learn the same p(y|x) on all clients.

Let us study a concrete linear regression setting satisfying the above property. Specifically, we assume that
the label of the ith data sample on client c is generated as follows:

yc,i = 〈w∗,xc,i〉+ εc,i, (14)

where w∗ ∈ Rd denotes the optimal model, and εc,i ∼ Pε is a zero-mean random noise and independent from
xc,i (this is a common assumption in statistical learning). We also assume that all ‖xc,i‖ have bounded
variance. Note that both w∗ and Pε are the same across all the clients, i.e., all clients have the same label
generation process and hence, the same conditional probability p(y|x). Our goal is to find the optimal
model w∗ given a large amount of clients with finite data samples (which is a common cross-device FL
setting (Kairouz et al., 2019)). We use the squared loss function which makes our objective function quadratic;
specifically, it is:

Fc(w) = 1
n

n∑
i=1

1
2
(
yc,i −w>xc,i

)2

= 1
2(w −w∗)Ac(w −w∗)− b>c (w −w∗) + const., (15)

where Ac =
∑n
i=1 xc,ix

>
c,i/n, bc =

∑n
i=1 εc,ixc,i/n. The minimizer of local objective Fc(w) is w∗c =

w∗ + A−1
c bc, which is different from the global minimizer w∗ as bc 6= 0.

Client Consensus Hypothesis. In this problem, we can show that client consensus hypothesis holds. In
particular, one can show that the average pseudo-gradient at the optimum ρ is

Ec[Gc(w∗)] = Ec

[
1
H

H−1∑
h=0

[
I − (I − η∇2Ac)h

]
bc

]
. (16)
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Due to the independence of εc,i and xc,i, for any choice of H, ρ = ‖Ec[Gc(w∗)]‖ → 0 almost surely when the
number of clients M →∞.

Unbounded Gradient Dissimilarity. In contrast, if we check the gradient dissimilarity, we have:

Ec ‖∇Fc(w∗)−∇F (w∗)‖2 = Ec ‖bc‖2
. (17)

Observe that ε can have extremely large variance such that the gradient dissimilarity bound ζ is arbitrarily
large. As a result, existing analyses, which rely on the bounded gradient dissimilarity, may predict that
FedAvg is much worse than its non-local counterparts. However, by simple manipulations on the update
rule of FedAvg, one can prove the following theorem.
Theorem 3. Suppose that the weighting of the clients is uniform, and each client has a small finite amount of
data. For the above linear regression setting, the iterates of Local GD (i.e., deterministic version of FedAvg)
satisfy the following equation almost surely as the number of clients goes to infinity:

w(T ) −w∗ =
[
Ec
[
(I − ηAc)H

]]T
(w(0) −w∗). (18)

The proof is relegated to the Appendix. From Theorem 3, it is clear that if the learning rate η is properly set
such that (I − ηAc) is positive definite, then performing more local updates (larger H) will lead to faster
linear convergence rate O(exp(−T )) to the global optimum w∗. That is, local GD is strictly better than
vanilla GD. However, previous papers based on gradient dissimilarity will get a substantially slower rate of
O(1/T 2). In this example, while gradient dissimilarity can be arbitrarily large, data heterogeneity does not
have any negative impacts on FedAvg as the client consensus hypothesis holds.

5.2 Experiments on Naturally Non-IID Datasets

In this subsection, we empirically show that the proposed client consensus hypothesis approximately holds
across multiple practical training tasks.

In Figure 3, we first run mini-batch SGD on Federated EMNIST (FEMNIST) (McMahan et al., 2017) and
StackOverflow Next Word Prediction datasets (Reddi et al., 2019) to obtain an approximation for the optimal
model w∗. Then we evaluate the average drift at optimum ρ = ‖EcBc(w∗)‖ and its upper bound as given in
(7) on these datasets. We summarize the important observations below.

• As shown in Figures 3a and 3b, the average drift (or pseudo-gradient) at the optimum, i.e. ρ, is
very close to zero on naturally non-IID datasets FEMNIST and StackOverflow. The proposed client
consensus hypothesis is true on these two realistic datasets.

• From Figures 3a and 3b, we also observe that there is a large gap betweeen ρ and its upper bound as
given in (7). This suggests that previous analyses using this upper bound can be loose.

• We run the same set of experiments on a non-IID CIFAR-100 dataset. Figure 3c shows that on this
artificial dataset, the client consensus hypothesis no longer holds. The average drfit at optimum ρ is
pretty close to its upper bound and far from zero. This is the scenario where FedAvg fails with
heterogeneous data and faces the client drift problem.

The drastically different observations on FEMNIST, StackOverflow and artificial CIFAR-100 highlight that
there are various kinds of data heterogeneity. For the heterogeneity satisfying client consensus hypothesis, it
may have very limited impacts on the convergence of FedAvg.

Furthermore, we run FedAvg on FEMNIST dataset following the same setup as (Reddi et al., 2021) and check
the difference between the average of pseudo-gradient and the true batch gradient at several intermediate
points on the optimization trajectory. For each point, we let clients perform local GD with the same local
learning rate for multiple steps. As shown in Figure 4, we observe a significant gap between the norm of
average differences (red lines) and its upper bound (7) (i.e., the average of `2 difference, blue lines). Especially,
at the 50th and 100th rounds, the upper bound is about 10 times larger. These observations suggest that the
upper bounds based on the gradient dissimilarity are loose in practice.
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Figure 3: Difference between the average pseudo-gradient and the global gradient at the optimal point w∗ on
three different datasets. We observe that the norm of the average gradient differences at w∗ (red line) nearly
remain zero on all natrual non-IID datasets but its upper bound used in previous analyses (7) (blue lines)
slowly become larger when H increases. On a artificial non-IID CIFAR-100 dataset, these two values are
pretty close to each other.
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Figure 4: Difference between the average pseudo-gradient and the global gradient on a FedAvg’s optimization
trajectory. There is a significant gap between the average gradient differences (red line) and its upper bound
(blue lines). Both of them increase and then saturate when increasing H.

6 Conclusions

In this paper, we aim to bridge the gap between theory and practice of the popular FedAvg algorithm. We
found that previous analyses based on the bounded gradient dissimilarity assumption can be too pessimistic
for practical applications. On some natural federated datasets, FedAvg may have identical performance on
both IID and non-IID settings. In order to explain this phenomenon, we introduced the client consensus
hypothesis and formally proved that under this hypothesis, data heterogeneity does not exacerbate the
convergence of FedAvg. More importantly, we show that this hypothesis holds for a linear regression problem
and many practical federated datasets, including FEMNIST and StackOverflow. So the proposed hypothesis
is realistic and can better explain the empirical success of FedAvg.

Given the above contributions, several future directions are ripe for exploration. Our client consensus
hypothesis is expressed in terms of a quantity (ρ) that is akin to a heterogeneity metric; it would be interesting
to come up with a formal metric that applies to all settings and can replace the existing loose gradient
dissimilarity metric. Perhaps such metrics could also be helpful in guiding the design principles for FL
algorithms. Besides, it may be also worthwhile to design a more practical criterion to check whether a dataset
satisfies the client consensus hypothesis.
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A Experimental Details

On FEMNIST, StackOverflow, and CIFAR-100 datasets, we strictly follow the training setup given in Reddi
et al. (2020). Both models are neural networks and hence the objective functions are non-convex. In Figure 3,
we used a trained model (obtained after training with mini-batch SGD) as an approximation of the global
optimum. Then, a large set of clients are selected to perform local model training from the optimum to
calculate the gradient bias. Details on the local training can be found in the following table.

Table 3: Details on local training in Figure 3.

Dataset Model Loss function # of clients Local optimizer Local learning rate
FEMNIST ConvNet Cross-Entropy 500 GD 0.1

StackOverflow LSTM Cross-Entropy 1000 GD 0.5
CIFAR-100 ConvNet Cross-Entropy 200 GD 0.5

B Proof of Theorem 2

B.1 Preliminaries

In this subsection, we will first introduce several useful lemmas, which relate to the properties of the
deterministic pseudo-gradients. Before diving into the proof details, we would like to first introduce a lemma,
which will be frequently used in the subsequent sections.
Lemma 1 (Mean Value Theorem). Suppose function F is twice differentiable, then

∇Fc(w)−∇Fc(u) = Ac(w,u) · (w − u) (19)

where Ac(w,u) =
∫ 1

0 ∇
2Fc(u + s(w − u))ds. If µ � ∇2Fc � L, then it follows that µ � Ac(w,u) � L for

any w,u.
Lemma 2 (Convexity, Smoothness & Co-coercivity). When each local objective function Fc is L-
Lipschitz smooth and µ-strongly convex, for any w,u ∈ Rd, we have

µ̃ ‖w − u‖2 ≤〈G(w)− G(u),w − u〉 ≤ L̃ ‖w − u‖2
, (20)

‖G(w)− G(u)‖2 ≤L̃ 〈G(w)− G(u),w − u〉 , (21)

where µ̃ = [1− (1− ηµ)H ]/(ηH) and L̃ = [1 + (1− ηµ)H ]/(ηH).

Proof. Let us first focus on the pseudo-gradient on a specific client c. According to the definition of
pseudo-gradient, we have

ηH[Gc(w)− Gc(u)] =w − u− (w(H)
c − u(H)

c ) (22)
=w − u

− [w(H−1)
c − u(H−1)

c − η(∇Fc(w(H−1)
c )−∇Fc(u(H−1)

c ))] (23)
=w − u− (I − ηD(H−1)

c )(w(H−1)
c − u(H−1)

c ) (24)

where (24) follows from Lemma 1 and Dc is a symmetric matrix satisfying µ �Dc � L. Repeating the above
procedure, we can obtain that

ηH[Gc(w)− Gc(u)] =w − u−
H−1∏
k=0

(I − ηD(k)
c )(w − u) (25)

=
[

I −
H−1∏
k=0

(I − ηD(k)
c )
]

(w − u). (26)
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As a consequence, we have

ηH 〈Gc(w)− Gc(u),w − u〉 = ‖w − u‖2 −

〈
H−1∏
k=0

(I − ηD(k)
c )(w − u),w − u

〉
. (27)

Note that, due to Cauchy–Schwarz inequality,∣∣∣∣∣
〈
H−1∏
k=0

(I − ηD(k)
c )(w − u),w − u

〉∣∣∣∣∣ ≤
H−1∏
k=0

∥∥∥I − ηD(k)
c

∥∥∥ ‖w − u‖2 (28)

≤(1− ηµ)H ‖w − u‖2
. (29)

That is,

−(1− ηµ)H ‖w − u‖2 ≤

〈
H−1∏
k=0

(I − ηD(k)
c )(w − u),w − u

〉
≤ (1− ηµ)H ‖w − u‖2

. (30)

It follows that,

1− (1− ηµ)H

ηH
‖w − u‖2 ≤ 〈Gc(w)− Gc(u),w − u〉 ≤ 1 + (1− ηµ)H

ηH
‖w − u‖2

. (31)

Taking the average over all clients, we complete the proof of (20).

Next, we are going to prove (21). Note that∥∥∥w(H)
c − u(H)

c

∥∥∥ =

∥∥∥∥∥
H−1∏
k=0

(I − ηD(k)
c )(w − u)

∥∥∥∥∥ (32)

≤
H−1∏
k=0

∥∥∥I − ηD(k)
c

∥∥∥ ‖w − u‖ (33)

≤(1− ηµ)H ‖w − u‖ . (34)

As a result, we have ∥∥∥w(H) − u(H)
∥∥∥2

=
∥∥∥Ecw(H)

c − Ecu(H)
c

∥∥∥2
≤Ec

∥∥∥w(H)
c − u(H)

c

∥∥∥2
(35)

≤[(1− ηµ)H ]2 ‖w − u‖2
. (36)

Then, according to the definition of pseudo-gradients, one can obtain

η2H2 ‖G(w)− G(u)‖2 =
∥∥∥w − u−w(H) + u(H)

∥∥∥2
(37)

= ‖w − u‖2 +
∥∥∥w(H) − u(H)

∥∥∥2
− 2

〈
w − u,w(H) − u(H)

〉
(38)

≤[1 + (1− ηµ)H ] ‖w − u‖2 − 2
〈

w − u,w(H) − u(H)
〉

− (1− ηµ)H
[
1− (1− ηµ)H

]
‖w − u‖2 (39)

=[1 + (1− ηµ)H ]
[
‖w − u‖2 −

〈
w − u,w(H) − u(H)

〉]
− (1− (1− ηµ)H)

〈
w − u,w(H) − u(H)

〉
− (1− ηµ)H

[
1− (1− ηµ)H

]
‖w − u‖2 (40)

=[1 + (1− ηµ)H ]
[
‖w − u‖2 −

〈
w − u,w(H) − u(H)

〉]
+ (1− (1− ηµ)H)

[
‖w − u‖2 −

〈
w − u,w(H) − u(H)

〉]
−
[
1 + (1− ηµ)H

] [
1− (1− ηµ)H

]
‖w − u‖2 (41)
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Note that ηH 〈w − u,G(w)− G(u)〉 = ‖w − u‖2−
〈
w − u,w(H) − u(H)〉 and ηHL̃ = 1 + (1−ηµ)H , ηHµ̃ =

1− (1− ηµ)H , we have

‖G(w)− G(u)‖2 ≤(L̃+ µ̃) 〈w − u,G(w)− G(u)〉 − L̃µ̃ ‖w − u‖2 (42)

=L̃ 〈w − u,G(w)− G(u)〉

− µ̃
[
L̃ ‖w − u‖2 − 〈w − u,G(w)− G(u)〉

]
(43)

≤L̃ 〈w − u,G(w)− G(u)〉 (44)

where the last inequality is due to the smoothness of the pseudo-gradient (20).

B.2 Main Proof

In the analysis below, we first analyze the training progress within one round. Suppose the current global
model is w and the next round’s global model is w+. Without otherwise stated, the expectation E and
variance Var are conditioned on the current global model w. For the ease of writing, we define effective
learning rate α̃ = αηH.

First, according to the update rule of FedAvg, we have

E
∥∥w+ −w∗

∥∥2 =E
∥∥∥w − α̃Ĝ(w)−w∗

∥∥∥2
(45)

=
∥∥∥w − α̃E[Ĝ(w)]−w∗

∥∥∥2
+ α̃2Var[Ĝ(w)] (46)

= ‖w −w∗‖2 + α̃2
∥∥∥E[Ĝ(w)]

∥∥∥2
− 2α̃

〈
w −w∗,E[Ĝ(w)]

〉
+ α̃2Var[Ĝ(w)] (47)

Also, note that E[Ĝ(w)] = G(w)− G(w∗) + G(w∗) + δ(w). So one can obtain

E
∥∥w+ −w∗

∥∥2 ≤‖w −w∗‖2 + 2α̃2 ‖G(w)− G(w∗)‖2 − 2α̃ 〈w −w∗,G(w)− G(w∗)〉
+ 2α̃2 ‖G(w∗) + δ(w)‖2 − 2α̃ 〈w −w∗,G(w∗) + δ(w)〉+ α̃2Var[Ĝ(w)] (48)
≤(1− α̃µ̃) ‖w −w∗‖2 + 2α̃2 ‖G(w)− G(w∗)‖2 − α̃ 〈w −w∗,G(w)− G(w∗)〉

+ 2α̃2 ‖G(w∗) + δ(w)‖2 − 2α̃ 〈w −w∗,G(w∗) + δ(w)〉+ α̃2Var[Ĝ(w)] (49)

where the first inequality uses the fact ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2, and the second inequality comes from the
strongly-convexity of the pseudo-gradient. Now let us check the value of the following terms:

T1 =2α̃ ‖G(w)− G(w∗)‖2 − 〈w −w∗,G(w)− G(w∗)〉 − 2 〈w −w∗,G(w∗) + δ(w)〉 . (50)

According to the co-coercivity of the pseudo-gradient, we have

T1 ≤
[
2α̃L̃− 1

]
〈w −w∗,G(w)− G(w∗)〉 − 2 〈w −w∗,G(w∗) + δ(w)〉 (51)

≤
[
2α̃L̃− 1

]
〈w −w∗,G(w)− G(w∗)〉+ ε ‖w −w∗‖2 + 1

ε
‖G(w∗) + δ(w)‖2 (52)

where the last inequality comes from Young’s inequality. When α̃µ̃ ≤ α̃L̃ ≤ 1/4, we have

T1 ≤ −
µ̃

2 ‖w −w∗‖2 + ε ‖w −w∗‖2 + 1
ε
‖G(w∗) + δ(w)‖2 ≤ 2 ‖G(w∗) + δ(w)‖2

µ̃
(53)
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where the last inequality is obtained by setting ε = µ̃/2. Then, substituting (53) into (49) and noting that
α̃µ̃ ≤ α̃L̃ ≤ 1/4 (that is, α̃ ≤ 1/(4µ̃)),

E
∥∥w+ −w∗

∥∥2 ≤(1− α̃µ̃) ‖w −w∗‖2 +
(

2α̃2 + 2α̃
µ̃

)
‖G(w∗) + δ(w)‖2 + α̃2Var[Ĝ(w)] (54)

≤(1− α̃µ̃) ‖w −w∗‖2 + 5α̃
2µ̃ ‖G(w∗) + δ(w)‖2 + α̃2Var[Ĝ(w)] (55)

≤(1− α̃µ̃) ‖w −w∗‖2 + α̃2Var[Ĝ(w)] + 5α̃
µ̃
‖δ(w)‖2 + 5α̃

µ̃
‖G(w∗)‖2 (56)

≤(1− α̃µ̃) ‖w −w∗‖2 + α̃2 max
w

Var[Ĝ(w)]

+ 5α̃
µ̃

max
w
‖δ(w)‖2 + 5α̃

µ̃
‖G(w∗)‖2 (57)

After total T communication rounds and taking the total expectation, we end up with

E
∥∥∥w(T ) −w∗

∥∥∥2
≤(1− α̃µ̃)T

∥∥∥w(0) −w∗
∥∥∥2

+ α̃

µ̃
max

w
Var[Ĝ(w)]

+ 5
µ̃2 max

w
Ec ‖δc(w)‖2 + 5ρ2

µ̃2 . (58)

When ηHµ ≤ 1, one can easily validate that

µ̃ = 1− (1− ηµ)H

ηH
≥ µ

2 . (59)

So it follows that

E
∥∥∥w(T ) −w∗

∥∥∥2
≤(1− 1

2αηHµ)T
∥∥∥w(0) −w∗

∥∥∥2
+ 2αηH

µ
max

w
Var[Ĝ(w)]

+ 20
µ2 max

w
Ec ‖δc(w)‖2 + 20ρ2

µ2 . (60)

At last, in order to satisfy α̃L̃ ≤ 1/4, one can set α ≤ 1/8, such that

α̃L̃ = αηH · 1 + (1− ηµ)H

ηH
= α(1 + (1− ηµ)H) ≤ 2α ≤ 1

4 . (61)

C Bound on Iterate Bias

In this section, we will provide an upper bound for the iterate bias (11). According to the local update rules,
we have ∥∥∥w

(H)
c,GD − E[w(H)

c ]
∥∥∥ =

∥∥∥w
(H−1)
c,GD − E[w(H−1)

c ]− η∇Fc(w(H−1)
c,GD ) + ηE[∇Fc(w(H−1)

c )]
∥∥∥ (62)

≤
∥∥∥w

(H−1)
c,GD − E[w(H−1)

c ]− η∇Fc(w(H−1)
c,GD ) + η∇Fc(E[w(H−1)

c ])
∥∥∥

+ η
∥∥∥E[∇Fc(w(H−1)

c )]−∇Fc(E[w(H−1)
c ])

∥∥∥ (63)

≤(1− ηµ)
∥∥∥w

(H−1)
c,GD − E[w(H−1)

c ]
∥∥∥

+ η
∥∥∥E[∇Fc(w(H−1)

c )]−∇Fc(E[w(H−1)
c ])

∥∥∥ (64)

For the second term, we have∥∥∥E[∇Fc(w(H−1)
c )]−∇Fc(E[w(H−1)

c ])
∥∥∥2
≤E

∥∥∥∇Fc(w(H−1)
c )−∇Fc(E[w(H−1)

c ])
∥∥∥2

(65)

≤L2E
∥∥∥wH−1

c − E[w(H−1)
c ]

∥∥∥2
(66)

≤2η2L2σ2(H − 1) (67)
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where the last inequality comes from previous works Khaled et al. (2020); Glasgow et al. (2021). As a result,
one can obtain ∥∥∥w

(H)
c,GD − E[w(H)

c ]
∥∥∥ ≤(1− ηµ)

∥∥∥w
(H−1)
c,GD − E[w(H−1)

c ]
∥∥∥+
√

2η2Lσ(H − 1) 1
2 (68)

≤
√

2η2Lσ

H−1∑
h=0

(1− ηµ)H−1−hh
1
2 (69)

≤
√

2η2Lσ

[
H−1∑
h=0

(1− ηµ)2(H−1−h)

] 1
2
[
H−1∑
h=0

h

] 1
2

(70)

≤
√

2η2Lσ

[
H−1∑
h=0

(1− ηµ)H−1−h

] 1
2
[
H−1∑
h=0

h

] 1
2

(71)

=
[

1− (1− ηµ)H

ηµH

] 1
2

η2LσH(H − 1) 1
2 . (72)

According to the definition of δ(w), we obtain

Ec ‖δc(w)‖2 ≤ Ec
∥∥∥w

(H)
c,GD − E[w(H)

c ]
∥∥∥2
≤ µ̃η

2L2σ2(H − 1)
µ

≤ η2L2σ2(H − 1) (73)

where the last inequality comes from the fact that µ̃ ≤ µ.

D Proof of Corollary 1

D.1 Deterministic Setting

When clients perform local GD in each round, there is no stochastic noise. So the error upper bound (9) can
be simplified as follows ∥∥∥w(T ) −w∗

∥∥∥2
≤ (1− 1

2αηHµ)T
∥∥∥w(0) −w∗

∥∥∥2
+ 20ρ2

µ2 . (74)

If Hµ ≥ L, then the maximal learning rate is η = 1/Hµ. When α = 1/8, the upper bound becomes

∥∥∥w(T ) −w∗
∥∥∥2
≤
(

1− 1
16

)T ∥∥∥w(0) −w∗
∥∥∥2

+ 20ρ2

µ2 (75)

≤ exp
(
− T16

)∥∥∥w(0) −w∗
∥∥∥2

+ 20ρ2

µ2 . (76)

If Hµ ≤ L, then the maximal learning rate is η = 1/L. When α = 1/8, the upper bound becomes

∥∥∥w(T ) −w∗
∥∥∥2
≤
(

1− Hµ

16L

)T ∥∥∥w(0) −w∗
∥∥∥2

+ 20ρ2

µ2 (77)

≤ exp
(
−µHT16L

)∥∥∥w(0) −w∗
∥∥∥2

+ 20ρ2

µ2 . (78)

We can summarize the above two bounds as follows:∥∥∥w(T ) −w∗
∥∥∥2
≤ exp

(
− T

16κ min{κ,H}
)∥∥∥w(0) −w∗

∥∥∥2
+ 20ρ2

µ2 (79)

=O
(

exp
(
− T

16κ min{κ,H}
)

+ ρ2
)
. (80)
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D.2 Stochastic Setting

Substituting the upper bounds for Var[G(w)] and δ(w) into (57) and setting α = 1/8,

E
∥∥∥w(t+1) −w∗

∥∥∥2
≤(1− α̃µ̃)

∥∥∥w(t) −w∗
∥∥∥2

+ α̃2 2σ2

MH
+ 5α̃3

µ̃

σ2L2(H − 1)
α2H2 + 5α̃

µ̃
‖G(w∗)‖2 (81)

≤(1− α̃µ̃)
∥∥∥w(t) −w∗

∥∥∥2
+ α̃2 2σ2

MH
+ α̃3 320σ2L2

µ̃H
+ α̃

5ρ2

µ̃
. (82)

After minor rearrangement, we can get

E
∥∥∥w(t+1) −w∗

∥∥∥2
− 5ρ2

µ̃2 ≤ (1− α̃µ̃)
[∥∥∥w(t) −w∗

∥∥∥2
− 5ρ2

µ̃2

]
+ α̃2 2σ2

MH
+ α̃3 320σ2L2

µ̃H
. (83)

After total T communication rounds,

E
∥∥∥w(t+1) −w∗

∥∥∥2
− 5ρ2

µ̃2 ≤ (1− α̃µ̃)T
[∥∥∥w(0) −w∗

∥∥∥2
− 5ρ2

µ̃2

]
︸ ︷︷ ︸

r0

+ 2α̃σ2

µ̃MH
+ 320α̃2σ2L2

µ̃2H
. (84)

If we set α̃ = ν
µT , where ν = 2 ln(max{r0µ

2MHT/(8σ2), r0µ
4HT 2/(1280L2σ2)}), then it follows that

E
∥∥∥w(t+1) −w∗

∥∥∥2
− 20ρ2

µ2 ≤ 8σ2ν

µ2MHT
+ 1280σ2L2ν

µ4HT 2 + exp
(
−ν2

)
r0 (85)

≤8σ2(ν + 1)
µ2MHT

+ 1280σ2L2(ν + 1)
µ4HT 2 (86)

=Õ
(

σ2

MHT
+ σ2

HT 2

)
(87)

where Õ hides logarithmic factors.

E Extensions to General Convex Functions

In this section, we are going to extend Theorem 2 to general convex settings for deterministic FedAvg. This
extension can help to show that our conclusion “FedAvg can have identical convergence rate in homogeneous
and heterogeneous settings" is not only constrained to the strongly convex settings.

When the average client drift at optimum is zero and there is no stochastic noise, we have∥∥w+ −w∗
∥∥2 = ‖w −w∗ − αG(w)‖2 (88)

= ‖w −w∗‖2 − 2α 〈w −w∗,G(w)− G(w∗)〉+ α2 ‖G(w)− G(w∗)‖2 (89)

≤(1− αµ̃) ‖w −w∗‖2 − α

L̃
(1− αL̃) ‖G(w)− G(w∗)‖2 (90)

≤(1− αµ̃) ‖w −w∗‖2 − α

2L̃
‖G(w)− G(w∗)‖2 (91)

where the last inequality is due to αL̃ ≤ 1/2. In the general convex setting, we have µ = 0. According to the
definitions of µ̃, L̃ in Lemma 2, it follows that µ̃ = 0 and L̃ = 2/ηH. Substituting these values into (91), we
obtain ∥∥w+ −w∗

∥∥2 ≤ ‖w −w∗‖2 − αηH

4 ‖G(w)− G(w∗)‖2
. (92)

After minor rearrangement, we have

‖G(w)− G(w∗)‖2 ≤ 4
αηH

[
‖w −w∗‖2 −

∥∥w+ −w∗
∥∥2
]
. (93)
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Taking the average from t = 0 to t = T − 1,

1
T

T−1∑
t=0

∥∥∥G(w(t))− G(w∗)
∥∥∥2
≤

4
∥∥w(0) −w∗

∥∥2

αηHT
(94)

If we set α = 1/4, η = 1/L, then

1
T

T−1∑
t=0

∥∥∥G(w(t))− G(w∗)
∥∥∥2
≤

16L
∥∥w(0) −w∗

∥∥2

HT
. (95)

The above rate is the same as GD for general convex functions and data heterogeneity does not have negative
impacts, as ρ = ‖G(w)‖ = 0.

F Proof of Theorem 3

Proof. According to the local update rule, we have

w(t,h+1)
c =w(t,h)

c − η∇Fc(w(t,h)
c ) (96)

=w(t,h)
c − η

[
Ac(w(t,h)

c −w∗)− bc

]
(97)

= (I − ηAc) w(t,h)
c + η (Acw

∗ + bc) . (98)

Subtracting w∗c = w∗ + A−1
c bc on both sides, it follows that

w(t,h+1)
c −w∗c = (I − ηAc)

(
w(t,h)
c −w∗c

)
(99)

= (I − ηAc)h+1
(

w(t) −w∗c

)
. (100)

Setting h = H, we have w
(t,H)
c = (I − ηAc)H(w(t) −w∗c ) + w∗c . Recall the definition of pseudo-gradient (6),

we get

Gc(w(t)) = 1
ηH

(w(t) −w(t,H)) (101)

= 1
ηH

[
I − (I − ηAc)H

]
(w(t) −w∗c ). (102)

According to the global update rule of FedAvg, one can obtain that

w(t+1) =w(t) − αηHEcGc(w(t)) (103)

=w(t) − αEc
[
(I − (I − ηAc)H)

(
w(t) −w∗c

)]
(104)

=w(t) − αEc
[
(I − (I − ηAc)H)

(
w(t) −w∗

)]
− αEc

[
(I − (I − ηAc)H) (w∗ −w∗c )

]
. (105)

Subtracting w∗ on both sides and setting α = 1, we have

w(t+1) −w∗ =Ec
[
(I − ηAc)H

] (
w(t) −w∗

)
− Ec

(I − (I − ηAc)H) (w∗ −w∗c )︸ ︷︷ ︸
ηHGc(w∗)

 (106)

=Ec
[
(I − ηAc)H

] (
w(t) −w∗

)
− ηHG(w∗) (107)

where G(w∗) = EcGc(w∗).
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Now, we prove that G(w∗) = 0 almost surely as M → ∞ on this synthetic problem. According to the
definition of Ac, bc, we obtain that

G(w∗) =Ec
[
(I − (I − ηAc)H)A−1

c bc
]

(108)

=Ec

(I − (I − ηAc)H)A−1
c

1
n

n∑
i=1

xc,iεc,i︸ ︷︷ ︸
ξc

 . (109)

Since the noise εc,· are independent of xc,·, ξc is a zero-mean random variable that depends on client c. Since
we have assumed that all ‖xc,i‖ and εc,i have bounded variance, we know that E[ξ2

c ] <∞. Since we have a
uniform weighting on the M clients, it follows Ec[ξc] = O(1/

√
M) with probability 1−oM (1), and as M →∞,

we have Ec[ξc]→ 0 almost surely.

Hence, from (107), we conclude that

w(t+1) −w∗ =
[
Ec
[
(I − ηAc)H

]]t+1
(w(0) −w∗), (110)

almost surely as M →∞, which proves the desired result.
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