
Generalists vs. Specialists: Evaluating LLMs on
Highly-Constrained Biophysical Sequence Optimization Tasks

Angelica Chen * 1 2 Samuel D. Stanton * 2 Frances Ding 3 Robert G. Alberstein 3 Andrew M. Watkins 3

Richard Bonneau 2 Vladimir Gligorijević 2 Kyunghyun Cho 2 Nathan C. Frey 2

Abstract

Although large language models (LLMs) have
shown promise in biomolecule optimization prob-
lems, they incur heavy computational costs and
struggle to satisfy precise constraints. On the
other hand, specialized solvers like LaMBO-2
offer efficiency and fine-grained control but re-
quire more domain expertise. Comparing these
approaches is challenging due to expensive labo-
ratory validation and inadequate synthetic bench-
marks. We address this by introducing Ehrlich
functions, a synthetic test suite that captures the
geometric structure of biophysical sequence op-
timization problems. With prompting alone, off-
the-shelf LLMs struggle to optimize Ehrlich func-
tions. In response, we propose LLOME (Lan-
guage Model Optimization with Margin Expec-
tation), a bilevel optimization routine for on-
line black-box optimization. When combined
with a novel preference learning loss, we find
LLOME can not only learn to solve some Ehrlich
functions, but can even perform as well as or
better than LaMBO-2 on moderately difficult
Ehrlich variants. However, LLMs also exhibit
some likelihood-reward miscalibration and strug-
gle without explicit rewards. Our results indicate
LLMs can occasionally provide significant ben-
efits, but specialized solvers are still competitive
and incur less overhead.

Work done at Genentech 1Center for Data Science, New
York University, New York City, U.S.A. 2Prescient Design,
Genentech, New York City, U.S.A. 3Prescient Design, Genen-
tech, San Francisco, U.S.A.. Correspondence to: Angel-
ica Chen <angelica.chen@nyu.edu>, Samuel Stanton <stan-
ton.samuel@gene.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1: The space of all possible polypeptide sequences
is vast, but only a tiny fraction forms stable, folded (i.e. fea-
sible) proteins. Different protein families (alpha, beta, and
mixed alpha/beta) generally occupy distinct regions of se-
quence space, but disordered proteins and remote homologs
with conserved structure and low sequence identity illustrate
the complexity of the protein design landscape.

1. Introduction
Despite their remarkable abilities, large language models
(LLMs) often fail at tasks with fine-grained constraints —
recent work has shown that even state-of-the-art models
struggle to reliably generate text with a fixed number of
words or to incorporate specific keywords or constraints
(Garbacea & Mei, 2022; Sun et al., 2023; Yuan et al., 2024;
Chen et al., 2024c). This limitation becomes especially criti-
cal in black-box biomolecule optimization problems (Figure
1), where even minor violations of biophysical constraints
like protein stability or solubility can render a solution im-
possible to synthesize, purify, and assay (Hie et al., 2024;
Ismail et al., 2024). While specialized solvers like LaMBO-
2 address these constraints through careful modeling choices
and architectural design (Gruver et al., 2024), adapting such
solvers to new domains requires significant domain exper-
tise and engineering effort. Recent work suggests that the

1



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Input 
Sequences

0.82

0.77

0.65

Lo
ss

LLM refinementLLM rankingSequence pool

Optimized 
Sequences

LLM Outer Loop

LLM 
Training

LLM Inner Loop
Oracle Scoring

Figure 2: An overview of Large language model optimization with Margin Expectation (LLOME). LLOME alternates
between two optimization loops: (1) the outer loop trains the LLM on oracle-labeled data, and (2) the inner loop generates
candidate sequences through iterative refinement without oracle access. At each outer loop iteration, the highest-ranked
candidates are evaluated by the oracle to generate training data for the next iteration. LLOME enables effective optimization
while minimizing expensive oracle queries through its bi-level structure.

capabilities of LLMs may be attainable at a far lower cost
than previously thought (Zhu et al., 2024; Guo et al., 2025),
and a deeper question remains: can improved preference
learning methods help these models combine human-like
flexibility with precise constraint satisfaction?

A fundamental challenge obstructing the development of
LLMs as black-box optimization (BBO) solvers is evalu-
ation. Unlike typical machine learning (ML) benchmarks
for supervised and unsupervised models, optimization algo-
rithms cannot be evaluated with a static dataset unless the
search space is small enough to be exhaustively enumerated
and annotated with the test function. Existing synthetic
test functions commonly used in BBO research (Molga &
Smutnicki, 2005) have very well-documented structure and
solutions, making train-test leakage into pretrained LLM
weights almost certain. Real-world black-box objectives by
definition do not have formally characterized structure or
solutions and are usually expensive to query. For instance,
biomolecule optimization tasks require wet lab experiments
for verification and chatbot systems require online user feed-
back, which is unsuitable for rapid development.

It is clear that test functions that are both more accessible
and more difficult are needed for early-stage research and
validation. We propose Ehrlich functions1 as an idealized
model of real biomolecule BBO tasks like antibody affinity
maturation, building on principles from structural biology
and biomolecular engineering experience. Ehrlich functions
have adjustable difficulty and are always provably solvable;
easy instances can be solved quickly by a genetic algorithm
and used for debugging, but the same algorithm fails to
solve harder instances after consuming over 500M function
evaluations. These results can be reproduced in minutes on a
single GPU. Importantly, Ehrlich functions are procedurally
generated and not yet compromised by train-test leakage to
pretrained LLMs. State-of-the-art LLM chatbots struggle
to solve Ehrlich functions to optimality by prompting alone,

1Named after Paul Ehrlich, an early pioneer of immunology.

even when the prompt reveals the entire test function. We
show that LLMs nevertheless can be taught to solve some
Ehrlich functions when used to drive a bilevel optimization
loop with online feedback, and are particularly effective
when paired with a novel preference learning loss. Finally, a
non-trivial closed-form objective allows us to deeply study
preference learning itself, leading to new insights. In sum-
mary, our findings and contributions are as follows:

1. Novel Test Functions for BBO and Preference Learn-
ing: Ehrlich functions are accessible to all researchers,
difficult for state-of-the-art solvers, and well-motivated
by real biomolecule optimization problems.

2. LLOME (Large Language Model Optimization with
Margin Expectation) We propose a bilevel optimization
algorithm that allows LLMs to explore and learn new
capabilities from online feedback when prompting fails.

3. Margin-Aligned Expection (MargE) Loss: Our ex-
periments on Ehrlich test functions motivate us to pro-
pose MargE, a novel training objective that maintains
the simplicity of supervised fine-tuning (SFT) and direct
preference optimization (DPO), yet outperforms them.

4. New Insights into Preference Learning: We find that
preference-tuned LLM likelihoods do not necessarily
correlate with the true objective. Furthermore, iterative
preference tuning with ground-truth rewards outperforms
training on preference pairs alone, and DPO in particular
suffers from mode collapse and over-optimization.

5. Comparisons between LLMs and specialized solvers:
We compare LLOME to LAMBO-2, a solver purpose-
built for constrained discrete BBO. We find that LLOME
can outperform or perform as well as LAMBO-2 on
medium difficulty test functions, and is comparable on
easier and harder variants, indicating that specialized
models remain competitive after accounting for compute
cost.

2



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

2. Background
We focus on pre-trained autoregressive large language mod-
els πθ(x) parameterized by θ. πθ defines a probability dis-
tribution over discrete tokens x ∈ V for vocabulary V . We
can also define the likelihood of sequences x ∈ V∗ as
πθ(x) =

∏|x|
t=1 πθ(xt|x<t), where V∗ is the set of all con-

catenations of tokens in V .

Supervised Finetuning (SFT) After pre-training, LLMs
are typically finetuned on some task-specific dataset D =
{(xi,yi)}ni=1 consisting of pairs of input x and target y se-
quences. During SFT, πθ is trained to minimize the negative
conditional log likelihood of examples from D:

LSFT(θ) := E
x,y∼D

− log πθ(y|x)

Preference Learning In some settings, LLMs are further
trained to align their output distributions to a reward distribu-
tion, typically encoded with a reward model r(x) : V∗ → R.
This is frequently accomplished with reinforcement learn-
ing, where the LLM is trained via a policy gradient method
to maximize the expected rewards Ex∼D,y∼πθ(·|x)r(x,y).
The reward model is trained from a dataset of human prefer-
ences consisting of triples (x,yw,yl), where x is a prompt
obtained from some offline dataset X and yw and yl are
sampled from the current policy. The initial model is re-
ferred to as the reference policy πRef and yw,yl are assigned
such that yw is more preferred by human raters than yl.
More recently, practitioners have added a KL regularizer
to prevent the LLM from quickly over-optimizing, yield-
ing a family of learning algorithms known as reinforcement
learning from human feedback (RLHF; Ziegler et al., 2019;
Stiennon et al., 2020), sharing a common objective:

LRLHF(θ) := E
x∼X

y∼πθ(·|x)

− r(x,y) + βKL(πθ∥πRef)

RLHF is commonly trained using Proximal Policy Opti-
mization (PPO; Schulman et al., 2017), which involves con-
siderable engineering complexity due to the need to train
and coordinate four models (πθ, πRef, a reward model, and
a critic model). Furthermore, RLHF-PPO is particularly
sensitive to hyperparameter values and prone to training
instabilities (Zheng et al., 2023b). To address some of these
issues, Rafailov et al. (2023) proposed an offline version
of RLHF known as Direct Preference Optimization (DPO).
DPO skips reward modeling and directly trains on the pref-
erence triples with contrastive objective LDPO(θ):

E
x,yw,yl∼D

− logσ

(
β log

πθ(yw|x)
πRef(yw|x)

− β log
πθ(yl|x)
πRef(yl|x)

)
,

where σ is the sigmoid function. DPO often produces mod-
els with similar generative quality as RLHF-PPO, but in-
volves notable tradeoffs such as faster over-optimization

(Rafailov et al., 2024a) and a distribution mismatch between
the training dataset and policy outputs (Chen et al., 2024b;
Tang et al., 2024). Nevertheless, DPO has become one
of the most prevalent algorithms for offline alignment of
LLMs. We provide further background on past work related
to LLMs for optimization in Sec. 3.

3. Related Work
Our work combines insights from multiple areas of research,
including discrete sequence black-box optimization, con-
trollable text generation, and LLMs for optimization and
scientific discovery. See Appendix A.1 for further discus-
sion on related work.

Discrete Sequence Black-Box Optimization Many algo-
rithms for discrete sequence optimization take inspiration
from directed evolution (Arnold, 1998), a combination of
random mutagenesis (a means to generate variants of the cur-
rent solution) and high throughput screening (discriminative
selection pressure). Researchers have explored many types
of variant generators, including genetic algorithms (Back,
1996; Sinai et al., 2020), reinforcement learning (Anger-
mueller et al., 2020), denoising with explicit discriminative
guidance (Stanton et al., 2022; Maus et al., 2022; Gruver
et al., 2024), and denoising with implicit discriminative
guidance (Tagasovska et al., 2024). While these algorithms
are all very general in principle, in practice a substantial
amount of effort is required to actually implement these al-
gorithms for new tasks due to changes in the problem setup.
Our work investigates whether LLMs can provide a more
generalizable approach that extends readily to new problem
domains while maintaining competitive performance.

LLMs for Optimization and Scientific Discovery Prior
work on LLMs for optimization has largely followed two
approaches. The first uses LLMs to translate natural lan-
guage descriptions into formal mathematical representations
that can be solved by traditional optimizers (Ramamonji-
son et al., 2022; Ahmed & Choudhury, 2024). The second
approach leverages LLMs directly as optimizers, often by
embedding them within evolutionary algorithms (Romera-
Paredes et al., 2023; Chen et al., 2024a) or using them for
prompt-based optimization (Yang et al., 2024). Most closely
related to our work is Ma et al. (2024), which also employs
LLMs in a bilevel optimization loop. However, while they
assume access to gradients through differentiable simula-
tions, our method operates in the more challenging setting
where only black-box evaluations are available. We also
provide novel insights into how LLMs can improve their
optimization capabilities through specialized training objec-
tives, even without access to ground-truth rewards during
the inner optimization loop.

Controllable Text Generation (CTG) CTG represents

3



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

a specialized case of optimization where the objective is
to generate sequences with specific attribute values rather
than maximizing a general objective function. While
LLM prompting can effectively control high-level attributes
(Brown et al., 2020), precise control remains challenging
(Carlsson et al., 2022). Two primary approaches have
emerged: control codes prepended during training (Keskar
et al., 2019; Padmakumar et al., 2023; Raffel et al., 2020;
Madani et al., 2023) and inference-time guidance using
auxiliary models (Dathathri et al., 2020; Liu et al., 2021;
Deng & Raffel, 2023; Dekoninck et al., 2024). Our work
bridges CTG and optimization by viewing sequence con-
straints as part of the optimization problem, demonstrating
that LLMs can learn to generate sequences satisfying precise
constraints through our bilevel optimization framework.

4. Method
The goal of any optimization procedure is to find a max-
imizer x∗ ∈ argmaxx∈F f(x) of an objective function
f : X → R over a feasible set F ⊂ X . In the black-box
optimization (BBO) setting, we only have access to zero-
order information about f . We can query f at different
inputs, but we get no other information (e.g., derivative in-
formation). With an infinite query budget, we could find x∗

by brute force. In practice, limited resources usually con-
strain both human and artificial intelligences to strategies
that iteratively refine a current solution xi. This local, itera-
tive approach aligns with the decision-theoretic concept of
satisficing —seeking a “good enough” improvement rather
than an exhaustive global optimum (Simon, 1956; Wilson,
2024). Furthermore, in many real high-dimensional search
spaces, such iterative local optimization is surprisingly ef-
fective (Wu et al., 2023). The success of gradient-based
training for neural networks, which finds solutions through
iterative local updates, itself underscores the power of local
optimization strategies.

4.1. The LLOME Algorithm

To adapt LLMs for the aforementioned BBO setting, we
propose LLOME, which employs a bi-level optimization
strategy for iteratively refining an LLM policy πθ(y|x) to
generate improved sequences. This process alternates be-
tween improving the policy based on current data (the outer
loop) and using the updated policy to generate and select
new, high-potential candidates for black-box evaluation (the
inner loop). The bi-level process unfolds as follows:

1. Policy Improvement (Outer Loop). At each it-
eration i, given the cumulative dataset D(i) (con-
taining all previously evaluated sequences and their
scores), the outer loop tunes the policy parameters
θi = argminθ Ltrain(θ;D(i), πref). In our primary ap-

Algorithm 1 LLOME, an approach for bilevel optimization
of highly constrained sequence optimization problems with
LLMs. We use n0 = 10, j = 2000, and T = 10.
Input: Scoring function f ; pretrained LLM πθ0 parameter-
ized by initial weights θ0; initial seed sequence x0 ∈ F ; j
number of test function evaluations per round; T number of
LLOME rounds.
S ← {(x0, f(x0))}
X0 ← GENETICALGORITHM(x0, n0) ▷ Seed with n0

rounds of evolution.
S0 ← {(x, f(x)) | x ∈ X0} ▷ Score the initial candidates.
S ← S ∪ S0

i← 0
while i < T ▷ Outer Loop
do
Di ← DATASETFORMATTING(Si)
θi+1 ← TRAIN(θi,Di)
Xi+1 ← ITERATIVEREFINEMENT(πθi+1 , Si) ▷ Inner Loop
Xi+1 ← FILTER(Xi+1, j) ▷ Filter Xi+1 down to j samples.
Si+1 ← {(x, f(x)) | x ∈ Xi+1} ▷ Oracle labeling.
S ← S ∪ Si+1

i← i+ 1
end
Output: argmax(x,f(x))∈S f(x)

proach, Ltrain is the MargE loss (Sec. 4.2), however
other preference-based or supervised training objec-
tives can also be used.

2. Policy Execution (Inner Loop). Using the updated
policy πθi from the outer loop, the inner loop generates
and selects a new batch of candidate sequences for
evaluation. This phase operates without direct calls to
the black-box oracle f .

• Input prompts X
(i)
seeds are selected from the top-

scoring historical sequences in D(i).
• The policy πθi generates new candidate output

sequences {y(i)
1 , . . . ,y

(i)
j } from these seeds via

multiple sampling from πθi . Heuristics such as ad-
justing sampling temperature are used to manage
diversity and avoid premature collapse.

• A subset Y (i) ⊆ {y(i)
1 , . . . ,y

(i)
j } is chosen by

ranking with the policy likelihood πθi(y|x).

3. Data Collection: The selected candidates Y (i) are
evaluated by the oracle f to yield a new batch of
labeled data D(i+1)

batch = {(y, f(y)) | y ∈ Y (i)}.
This new data is added to the cumulative dataset:
D(i+1) = D(i) ∪ D(i+1)

batch . The process then returns
to the outer loop (Step 1) with the augmented dataset.

Algorithm 1 provides a high-level outline of LLOME. We
collect an initial data package D(0) from the history of a
pre-solver (in our case, n0 iterations of a genetic algorithm,
details in Appendix A.6.3). In real applications, this data
package may be provided to the user from historical records.

4



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A key technique employed during policy improvement is
dataset matching, an augmentation strategy proposed by
Tagasovska et al. (2024). For all xk ∈ D(i), we search D(i)

for other sequences y′
m in its local neighborhood (up to a

distance cutoff ∆match) that represent known improvements
(i.e., f(y′

m) > f(xk)). See Appendix A.6 for detailed sub-
routine descriptions. The modularity of the policy training
objectiveLtrain in the outer loop enables us to benchmark dif-
ferent LLM fine-tuning strategies within the LLOME frame-
work. In our experiments, we compare LLOME-MARGE
against variants such as LLOME-SFT and LLOME-DPO.

4.2. Theoretical Motivation for MargE

Having described the higher-level overview of LLOME, we
now motivate the design of our LLM training objective,
MargE, from first principles.

To emulate an iterative refinement strategy with an LLM,
we pose the task as learning a policy πθ(y|x) that responds
with a refined solution y ∈ X given a current prompt so-
lution x ∈ X , aiming to maximize some measure of local
improvement r : X × X → R. Given a finite dataset of
triplets {(xi,yi, ri)}ni=1 generated through such an iterative
process, we seek to learn the optimal policy for selecting
improvements. Ideally, we would want to select y to deter-
ministically maximize r(x,y). However, acknowledging
our bounded compute resources (i.e., fixed model archi-
tecture and training budget) and incomplete information
(finite training data), we invoke the principle of maximum
entropy (Jaynes, 1957) as our guide for choosing the form
of the optimal stochastic policy π∗. This principle leads us
to the Boltzmann distribution π∗(y|x) ∝ exp(β · r(x,y)),
where β > 0 is the rationality parameter controlling the
explore-exploit tradeoff. The Boltzmann distribution is
known to maximize policy entropy subject to the constraint
of achieving a certain expected reward (Ortega & Braun,
2013; Jeon et al., 2020), and is mathematically equivalent
to the Bradley-Terry preference model (Luce et al., 1959).

To ensure stable learning and ground our policy, we reg-
ularize πθ towards a prior policy πref (e.g., a base pre-
trained LLM). Our theoretical policy objective is an in-
stance of the generalized variational Bayes (GVB) frame-
work (Knoblauch et al., 2019). We call our specific instan-
tiation the Forward-Reverse KL (FReKL) loss, which we
define as follows:

LFReKL(θ) := DKL(πθ ∥ π∗) + λDKL(πref ∥ πθ). (1)

This objective is designed to achieve several key desiderata.
First, the data term DKL(πθ ∥ π∗) pushes the learned policy
πθ towards the optimal target policy π∗. Second, this for-
mulation satisfies the Strong Interpolation Criteria (SIC; Hu
et al., 2024), ensuring a smooth tradeoff between π∗ and the
reference policy πref as governed by λ ∈ [0,+∞) (proof

in Appendix A.3). For the regularization term, we employ
a mass-covering reverse KL divergence, λDKL(πref ∥ πθ).
This choice encourages πθ to retain broad coverage over re-
gions where πref assigns probability, which helps avoid pre-
mature policy collapse by maintaining exploratory breadth.
Furthermore, the reverse KL does not heavily penalize πθ

for placing mass on optimal responses in the tails of πref

and is naturally suited for training with off-policy data, as
its expectation is taken with respect to πref . In contrast, ob-
jectives regularized by a forward KL (e.g., DKL(πθ ∥ πref)
as in Steinberg et al. (2024)) may also satisfy SIC; however,
they are prior mode-seeking and better suited for on-policy
sample estimation. In the next section, we discuss a compu-
tationally tractable form of Eq. (1) and our specific choice
of improvement measure r(x,y).

4.3. Computing the FReKL Loss

Direct optimization of Eq. (1) is challenging due to the
KL terms involving the intractable partition function of π∗.
To arrive at a computationally tractable form suitable for
training with off-policy data, we expand the KL divergence
terms and apply importance sampling, using samples from
the reference policy πref , yielding the following expression
for LFReKL(θ):

E
x∼Dx,

y∼πRef(·|x)

[
ρxyθ − λ

|y|
log πθ(y|x)− ρxyθ · βr(x,y)

]
, (2)

where Dx is the distribution of input prompts, ρxyθ :=
πθ(y|x)/πRef(y|x) is the importance weight likelihood ra-
tio, and |y| normalizes the policy log-likelihood by the
length of the response. The full derivation, along with a
discussion of its design principles in comparison to DPO
and RLHF, can be found in Appendix A.4.

4.4. The Margin Reward Function

Thus far we have worked with the FReKL loss in general
form for an arbitrary reward function r(x,y). For iterative
refinement behavior, we propose a specific reward struc-
ture that directly quantifies the notion of improvement. We
define the margin reward as:

rmargin(x,y) :=

{
f(y)− f(x) if f(y) > f(x),

0 otherwise,
(3)

where f(xv) is the objective value of the prompt and f(y)
is the value of the response. Typically if x /∈ F (the feasible
set) f(x) is defined to be −∞, however we set f(x) = 0
for all infeasible x to avoid infinite rewards.

The specific form of rmargin(x,y), particularly the clipping
at zero, is important. While simply using f(y) − f(x) as
the reward might seem intuitive, it can lead to unintended

5



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

policy behavior due to the translation-invariance property
of Boltzmann distributions. Specifically, an unclipped re-
ward implies π(y|x) = π(y|x′) for all pairs x,x′ ∈ X ,
meaning the preference for any response y is independent
of the prompt and depends only on f(y) (see Appendix A.1
for details). Such prompt-independent responses would not
satisfy our goal of local refinement. Clipping the reward at
0 when f(y) ≤ f(x) resolves this issue and interestingly
resembles a margin loss. Margin-based rewards are popular
in the Bayesian Optimization literature; however, improve-
ments are usually calculated against a fixed baseline, e.g.
the best-observed value (Močkus, 1975; Jones et al., 1998).

To avoid ambiguity, when the FReKL loss (Eq. 2) is
combined with the margin reward function (Eq. 3), we
will call the resulting policy objective the Margin-Aligned
Expectation (MargE) loss in the remainder of this work.

5. Evaluation
We now introduce Ehrlich functions, a class of closed-form
test functions that capture the geometric structure of bio-
physical sequence optimization problems while enabling
fast evaluation and reproducible benchmarking. These func-
tions maintain key characteristics of real fitness landscapes,
non-additive mutational effects, while avoiding the fidelity-
latency tradeoffs inherent in simulation-based approaches
(Kellogg et al., 2011; Hummer et al., 2023).

5.1. Defining an Ehrlich Function

We provide a complete description of Ehrlich functions
in Appendix A.2. In brief, given a token vocabulary V
and the set of sequences VL formed of concatenations of
L tokens in V , we first define F ⊂ VL, the set of feasi-
ble sequences. F is defined as the support of a discrete
Markov process (DMP), more details of which are given
in Appendix A.2. We also define a set of c spaced motifs
that represent biophysical constraints in specific regions
of a sequence. These motifs are expressed as pairs of
vectors {(m(1), s(1)), · · · , (m(c), s(c))} where m(i) ∈ Vk,
s(i) ∈ Zk

+, and k ≤ L//c. An Ehrlich function f then
describes the degree to which a sequence x ∈ VL is feasible
and possesses all motifs, modulated by a response function
g. For q ∈ [1, k] bits of precision, f is expressed as:

f(x) =

{∏c
i=1 g ◦ hq(x,m

(i), s(i)) if x ∈ F ,
−∞ otherwise.

(4)

The function hq defines the degree to which x fulfills a given
constraint (m, s), and is defined as follows:

hq(x,m, s) =
1

q

(
max
ℓ<L

k∑
j=1

1
[
xℓ+sj = mj

]
//

k

q

)
.

Setting q = k corresponds to a dense signal which incre-
ments hq(x,m

(i), s(i)) whenever an additional element of
any motif has been fulfilled. We provide additional details in
Appendix A.2 about how to ensure that all motifs are jointly
satisfiable and that there exists at least one feasible solution
that attains the optimal value of 1.0. We also provide further
evidence in Appendix A.2 that f is difficult to optimize with
a GA, even with small L, k, and c values.

5.2. Experimental Setup

We evaluate LLOME, LAMBO-2, and the GA on four
Ehrlich functions with varying parameters and difficulties.
To avoid potential confusion between different test functions,
we propose the following naming convention: Ehr(|V|, L)-
c-k-q. The test functions we consider are as follows:

• f1: Ehr(8, 128)-8-8-8 (easy)
• f2: Ehr(32, 32)-4-4-4 (medium)
• f3: Ehr(32, 128)-4-4-4 (medium)
• f4: Ehr(32, 128)-8-8-8 (difficult)

We tune hyperparameters for only a single test function (f2)
and carry the best configuration across to all functions (more
details provided in A.7 and A.8). See the Appendix (Fig.
12) for results on a test function with q < k.

LLOME Details We compare the performance of three dif-
ferent variants of LLOME (LLOME-SFT, LLOME-MARGE,
LLOME-DPO) against that of a GA. The details of the ge-
netic algorithm are given in Appendix A.6.3 and the training
details for SFT, DPO, and MargE are given in Appendix A.7.
Each LLOME variant is seeded with data from 10 rounds of
the GA (i.e., n0 = 10). For LLOME-MARGE and LLOME-
DPO, one round of SFT is trained before continuing with
MargE and DPO training in future iterations. All three vari-
ants use the pre-trained model PYTHIA 2.8B (Biderman
et al., 2023) as the base model. During the TRAIN step of
each iteration of LLOME (step 1 of Alg. 1), we train the
current checkpoint for one epoch. Lastly, we use j = 2000
test function evaluations per iteration of LLOME.

LAMBO-2 Details We also compare the performance of
LLOME against LAMBO-2. LaMBO-2 is a black box op-
timization algorithm tailored to protein sequence design
with wet lab validation in real antibody lead optimization
settings (Gruver et al., 2024). We instantiate LaMBO-2 to
jointly train an encoder shared between a generative discrete
diffusion head and discriminative heads, which guide gener-
ation via their predictions of the reward of a sequence and
whether it satisfies the problem constraints. We use a CNN
architecture and train the model from random initialization
(for hyperparameter details see Appendix A.8). In the ex-
periments presented below, the LaMBO-2 model has a total
of 314K parameters. To compare directly with LLOME, we
seed LaMBO-2 with the same 10 rounds of GA designs and

6



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

(a) Ehr(8, 128)-8-8-8 i.e. f1 (b) Ehr(32, 32)-4-4-4 i.e. f2 (c) Ehr(32, 128)-4-4-4 i.e. f3 (d) Ehr(32, 128)-8-8-8 i.e. f4

Figure 3: On medium-difficulty tasks, LLOME-MARGE and LAMBO-2 outperform other methods. On very easy or
difficult tasks, all methods perform comparably. We show minimum simple regret achieved as a function of the number
of test function evaluations for Ehrlich functions f1, f2, f3, and f4. Some lines end early due to early convergence to an
optimum or generator collapse. The first 10K test function evaluations of every method correspond to the solutions produced
by the GA pre-solver.

Figure 4: LAMBO-2 produces the most diverse and feasible solutions but LLOME-MARGE balances diversity with
accuracy. The percentage of generated sequences for f2 that are unique or feasible. Although LAMBO-2 achieves the most
diverse and feasible solutions, LLOME-MARGE balances diversity with regret (Fig. 3b). The lines for LLOME-MARGE and
LAMBO-2 end early because both discover the optimal solution early.

use j = 2000 test function evaluations per iteration.

Metrics We assess performance on Ehrlich function bench-
marks with the simple regret metric: regret(x) = 1− f(x).
We primarily show results on minimum simple regret over
all optimization iterates, i.e. mini regret(xi), and the aver-
age regret of sequences in a given round. When applicable,
we also evaluate each method’s reward (Eq. 3), i.e., how
much the model’s output improves over the input.

6. Results
6.1. Solver Benchmark Results

State-of-the-art LLMs struggle to solve Ehrlich func-
tions even with full problem specification. As an initial
test, we prompted OpenAI’s o1 (accessed on Jan. 28, 2025)
and Google’s Gemini 2 Flash Thinking (named ‘Gemini 2.0
Flash Thinking Experimental 01-21’ in Google AI Studio)
models with a description of f2, including the full transi-
tion matrix, all constraints, and a few in-context examples.
(See prompt in A.5.) With only 8 samples, o1 and Gemini
Flash achieve minimum regrets of 0.9375 and 0, respec-
tively. However, most outputs were either infeasible or had
regret close to 1, indicating that this is still a challenging

problem for the LLMs, even full problem specification. In
the rest of our experiments, we provide models only with
pairs of sequence x and score f(x).

LLOME-MARGE can perform better than or compara-
ble to specialized models in designing sequences under
oracle label budget constraints. In Figure 3, we plot the
minimum regret achieved by each method as a function of
the number of test function evaluations, under four differ-
ent Ehrlich test functions with varying difficulty. First, we
find that test function difficulty is essential for highlighting
statistically significant differences between methods. On
easy (f1) or difficult (f4) tasks, all methods achieve compa-
rable performance, either finding the optimal solution very
quickly or making virtually no progress. In contrast, on
the medium difficulty test functions f2 and f3, performance
is more differentiated. On f2 LLOME-MARGE performs
the best, whereas LAMBO-2 performs the best on f3. The
other methods – LLOME-SFT, LLOME-DPO, LAMBO-2,
and the baseline GA – lag behind. Among the LLOME
variants, LLOME-SFT and LLOME-MARGE achieve signif-
icantly higher rewards than LLOME-DPO (Figs. 14a, 14b).
Test function f2 (Figure 3) is particularly interesting as a
case study, since the different methods have well-separated

7



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

regret curves. We thus focus on f2 for further analysis.

How do specialized models compare with generalist mod-
els? At first glance, Figure 3 seems to show that generalist
models like LLMs can outperform specialized models like
LAMBO-2. However, one factor hidden in these plots
is the computational cost of different methods. For rela-
tively easy optimization problems, since the performance
of various methods is similar, using a specialized model
with 0.01% of the parameters of an LLM may be more
practical. In addition, LAMBO-2 offers precise control
over the sequence design space (through specifying num-
ber of tokens to mutate and the desired maximum edit dis-
tance). This allows domain experts to tune the algorithm
with appropriate hyperparameters. Nonetheless, LAMBO-2
is sensitive to hyperparameter choice and requires custom
tuning for each test function, whereas LLOME performs
well across multiple functions without custom tuning. In
Figs. 4 and 13 we plot the diversity and the feasibility of
each method’s designs over the course of optimization. We
see that LLOME-MARGE strikes a careful balance of explo-
ration and exploitation without custom tuning. However,
LAMBO-2 proposes more diverse and feasible designs than
LLOME-MARGE, but requires custom tuning for each test
function.

SFT- and MargE-trained LLMs generate unique and fea-
sible sequences, but DPO-trained LLMs struggle. Suc-
cessfully solving a highly-constrained optimization problem
requires that the model be able to generate a diverse array
of feasible sequences. Compared to the GA, Figures 4 and
13 show that LAMBO-2, LLOME-MARGE, and LLOME-
SFT produce significantly higher proportions of unique
sequences. However, these three methods also experience
an initial dip in the percentage of feasible outputs before
learning to satisfy their constraints. In contrast, LLOME-
DPO does not improve either the diversity or the feasibility
of its outputs even when provided with more oracle labels.
In some of our experiments, the LLOME-DPO pipeline
ends prematurely due to producing an insufficient number
of unique sequences to seed the next round. Like other past
works (Pal et al., 2024; Rafailov et al., 2024b; Feng et al.,
2024; Pang et al., 2024), we observe that the likelihood
assigned by the DPO-trained LLM to both yw and yl con-
tinuously declines throughout training, implying that prob-
ability mass is moved to sequences outside of the training
distribution. Since the percentage of infeasible sequences
generated by LLOME-DPO increases over multiple itera-
tions, it is likely that DPO moves some probability mass to
infeasible regions of the sample space. As such, DPO may
be ill-suited for training solvers for constrained problems.

Although LLMs are capable of generating new feasible
sequences, we also find that they suffer from the classic
explore versus exploit tradeoff. When the LLM makes a

larger edit to the input sequence, the output is less likely to
be feasible (Fig. 15). For both LLOME-SFT and LLOME-
MARGE, an edit larger than 0.3 Hamming distance away
from the input is less than 20% likely to be feasible. Since
the ∆x threshold we set for the PropEn dataset formatting
algorithm (Alg. 2) is 0.25, this is unsurprising. The LLM is
never been trained on edits of larger than 0.25 Hamming dis-
tance. Overall, LLOME-MARGE exhibits the best tradeoff
of all methods, producing the largest proportion of unique
and feasible sequences for the smallest budget of test func-
tion evaluations and for moderately sized edits of Hamming
distance ≤ 0.3 (Fig. 15).

6.2. Understanding/Ablating LLOME

Here we summarize various aspects of LLOME’s perfor-
mance, deferring sections on LLOME’s test-time extrapola-
tion abilities and sensitivity to changes in hyperparameters,
evaluation budget, and presolver to App. A.9.

LLMs are moderately effective at ranking their own
outputs. The iterative refinement process requires that the
LLM rank and filter its own outputs (Alg. 4), but we have
not yet considered how effective the LLM is at selecting
the best candidates. When compared to oracle selection
(i.e. using the ground-truth score to select candidates), we
find that the likelihood method often selects high-scoring
but not the highest scoring candidates (Fig. 18). To better
understand this gap between likelihood and oracle selection,
we plot the calibration curve of regret versus model likeli-
hood in Figure 5a. A perfectly-calibrated model would show
a steep linear trend. The LLOME-DPO calibration curve
monotonically decreases with regret, but also fails to gen-
eralize, producing the fewest sequences with regret outside
of the training distribution. In contrast, LLOME-MARGE
and LLOME-SFT assign higher likelihoods to lower regret
sequences, but also exhibit some degree of overconfidence.
Indeed, Fig. 17 shows that the likelihood and reward of
SFT- and MargE-generated sequences are inversely corre-
lated for high likelihoods exceeding 0.7. We hypothesize
that LLMs may become increasingly miscalibrated as their
outputs extend beyond the training distribution.

When is explicit reward information required during
training? Since we have observed that LLOME-SFT and
LLOME-MARGE perform similarly up to a certain point
(Fig. 3), we might hypothesize that incorporating explicit
reward values into the training objective is only necessary
once the LLM is closer to the optimum. Since MargE re-
quires a larger memory footprint than SFT (due to the need
to store and compute likelihoods with both πθ and πRef) and
collecting ground truth rewards may be expensive, train-
ing the LLM with further rounds of SFT before switching
to MargE would be more efficient than relying mostly on
MargE training. We test this hypothesis via a multi-stage

8



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

(a) Likelihood vs. regret. (b) Combining SFT with MargE. (c) MargE vs. REINFORCE.

Figure 5: We examine the design principles behind MargE, including calibration of likelihood vs. regret (5a), the importance
of ground truth rewards (5b), and the difference between MARGE and policy gradient methods like REINFORCE (5c).

pipeline, where early rounds of LLOME use SFT training,
and later rounds use MargE. We keep the total number
of LLM training rounds constant at 10 (unless the LLM
finds the optimal solution earlier), evaluate on test function
f2, and vary the proportion of rounds that use SFT versus
MargE, as shown in Fig. 5b. We refer to the pipeline with
i rounds of SFT training followed by j rounds of MargE
training as LLOME-SFTi-MARGEj . We find that LLOME-
SFT1-MARGE9 not only is the sole pipeline to find the
optimal solution (Fig. 5b), but also achieves the best cal-
ibration curve (Fig. 19). In contrast, switching from SFT
to MargE training at an intermediate point results in the
worst performance. It appears that SFT and MargE may
have conflicting loss landscapes – if we first train for a few
rounds with the SFT loss, subsequently switching to MargE
training impedes the LLM’s progress.

Does fulfilling the Strong Interpolation Criteria (SIC)
matter for LLM training? The drawbacks of SFT, DPO,
and RLHF (as discussed in Sections 2 and A.1) motivated
the design of MargE as a training objective that (1) uses
the ground truth reward, (2) is less complex than RLHF, (3)
reinforces the probability of high-reward outputs, (4) does
not continuously increase output lengths, and (5) fulfills SIC
(Hu et al., 2024). While criteria (1)-(4) have been discussed
in prior sections, it remains to be seen whether (5) is indeed
integral for training an LLM to optimize well.

To evaluate the impact of the SIC criteria on LLM training,
we compare MARGE with REINFORCE (Williams, 1992),
a policy gradient method that directly optimizes for maximal
reward but does not fulfill SIC. We choose REINFORCE
because it is similar in principle to MargE and has been
shown to perform comparably (Ahmadian et al., 2024) to
RLHF (Stiennon et al., 2020; Ziegler et al., 2019) and RL-
free variants such as DPO (Rafailov et al., 2023) and RAFT
(Dong et al., 2023). The effect of SIC is such that MargE
smoothly interpolates between π∗ and πRef, whereas the KL-
regularized REINFORCE algorithm interpolates between
πδ (a degenerate reward-maximizing distribution) and πRef,
thereby violating SIC. In theory, moving the policy towards
πδ encourages collapse, which is undesirable in an online

optimization setting with finite data, where future rounds
may require further exploration. We apply the same impor-
tance sampling and self-normalization from the MargE loss
to the KL-regularized REINFORCE loss:

E
x∼Dx,

y∼πRef(·|x)

[
− πθ(y|x)
πRef(y|x)

r(x,y) log πθ(y|x)−λ
log πθ(y|x)
|y|

]

Fig. 5c shows that although LLOME-REINFORCE de-
creases the regret to some degree, it plateaus early and does
not reach optimality, suggesting that the SIC criteria has
meaningful influence on the LLM’s optimization abilities.

7. Conclusions
Our work is a response to the lack of both non-trivial syn-
thetic benchmarks for biophysical sequence optimizers and
rigorous analyses of how LLMs perform on these highly-
constrained optimization tasks in realistic settings. Our pro-
posed test functions bear significant geometric similarities
to real biophysical sequence optimization tasks and allow
for rapid iteration cycles. In addition, although a wealth
of work exists that adapts LLMs for biophysical tasks, few
have studied the abilities of LLMs to adhere to hard con-
straints in realistic bi-level optimization settings. To that
end, we propose and analyze LLOME, a framework for in-
corporating LLMs in bilevel optimization algorithms for
highly constrained discrete sequence optimization problems.
We show that in some settings, LLOME discovers lower-
regret solutions than LAMBO-2 and a GA, even with very
few test function evaluations. When combined with MargE
training, LLOME is significantly more sample efficient than
LLOME-SFT or LLOME-DPO, demonstrating its potential
to be useful in data-sparse lab settings. However, in very
easy or difficult tasks, specialized models have the advan-
tage – they offer comparable regret for greater steerability
and significantly lower computational cost. Our findings
also highlight that LLMs can robustly extrapolate beyond
their training data, but are occasionally miscalibrated and
benefit from training with ground truth rewards.

9



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
We thank Natasa Tagasovska and the Prescient Design
LLM team for valuable discussions and feedback during
the development of this project. We additionally thank
Miguel González-Duque for support with incorporating
the LaMBO-2 method into the poli-baselines reposi-
tory and for continued maintenance of poli-baselines.
The authors also thank the Prescient Design Engineering
team for providing HPC and consultation resources that con-
tributed to the research results reported within this paper.

References
Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M., Kreutzer,

J., Pietquin, O., Üstün, A., and Hooker, S. Back to basics:
Revisiting REINFORCE-style optimization for learning
from human feedback in LLMs. In Ku, L.-W., Martins,
A., and Srikumar, V. (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 12248–12267,
Bangkok, Thailand, August 2024. Association for Com-
putational Linguistics. doi: 10.18653/v1/2024.acl-long.
662. URL https://aclanthology.org/2024.
acl-long.662.

AhmadiTeshnizi, A., Gao, W., and Udell, M. Optimus:
Scalable optimization modeling with (mi) lp solvers and
large language models. arXiv preprint arXiv:2402.10172,
2024.

Ahmed, T. and Choudhury, S. Lm4opt: Unveiling the po-
tential of large language models in formulating math-
ematical optimization problems, 2024. URL https:
//arxiv.org/abs/2403.01342.

Amin, S. and Neumann, G. T2NER: Transformers based
transfer learning framework for named entity recogni-
tion. In Gkatzia, D. and Seddah, D. (eds.), Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
System Demonstrations, pp. 212–220, Online, April
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.eacl-demos.25. URL https://
aclanthology.org/2021.eacl-demos.25.

Angermueller, C., Belanger, D., Gane, A., Mariet, Z.,
Dohan, D., Murphy, K., Colwell, L., and Sculley, D.
Population-based black-box optimization for biological

sequence design. In International conference on machine
learning, pp. 324–334. PMLR, 2020.

Arkhipov, M., Trofimova, M., Kuratov, Y., and Sorokin, A.
Tuning multilingual transformers for language-specific
named entity recognition. In Erjavec, T., Marcińczuk, M.,
Nakov, P., Piskorski, J., Pivovarova, L., Šnajder, J., Stein-
berger, J., and Yangarber, R. (eds.), Proceedings of the 7th
Workshop on Balto-Slavic Natural Language Processing,
pp. 89–93, Florence, Italy, August 2019. Association for
Computational Linguistics. doi: 10.18653/v1/W19-3712.
URL https://aclanthology.org/W19-3712.

Arnold, F. H. Design by directed evolution. Accounts of
chemical research, 31(3):125–131, 1998.

Back, T. Evolutionary algorithms in theory and practice:
evolution strategies, evolutionary programming, genetic
algorithms. Oxford university press, 1996.

Barlow, K. A., O Conchuir, S., Thompson, S., Suresh, P.,
Lucas, J. E., Heinonen, M., and Kortemme, T. Flex ddg:
Rosetta ensemble-based estimation of changes in protein–
protein binding affinity upon mutation. The Journal of
Physical Chemistry B, 122(21):5389–5399, 2018.

Barrera, L. A., Vedenko, A., Kurland, J. V., Rogers, J. M.,
Gisselbrecht, S. S., Rossin, E. J., Woodard, J., Mari-
ani, L., Kock, K. H., Inukai, S., Siggers, T., Shokri,
L., Gordân, R., Sahni, N., Cotsapas, C., Hao, T., Yi,
S., Kellis, M., Daly, M. J., Vidal, M., Hill, D. E.,
and Bulyk, M. L. Survey of variation in human tran-
scription factors reveals prevalent dna binding changes.
Science, 351(6280):1450–1454, 2016a. doi: 10.1126/
science.aad2257. URL https://www.science.
org/doi/abs/10.1126/science.aad2257.

Barrera, L. A., Vedenko, A., Kurland, J. V., Rogers, J. M.,
Gisselbrecht, S. S., Rossin, E. J., Woodard, J., Mariani,
L., Kock, K. H., Inukai, S., et al. Survey of variation in
human transcription factors reveals prevalent dna binding
changes. Science, 351(6280):1450–1454, 2016b.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D.,
Castellon, R., Chatterji, N. S., Chen, A. S., Creel, K. A.,
Davis, J., Demszky, D., Donahue, C., Doumbouya, M.,
Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh, K.,
Fei-Fei, L., Finn, C., Gale, T., Gillespie, L. E., Goel, K.,

10

https://github.com/MachineLearningLifeScience/poli-baselines
https://github.com/MachineLearningLifeScience/poli-baselines
https://aclanthology.org/2024.acl-long.662
https://aclanthology.org/2024.acl-long.662
https://arxiv.org/abs/2403.01342
https://arxiv.org/abs/2403.01342
https://aclanthology.org/2021.eacl-demos.25
https://aclanthology.org/2021.eacl-demos.25
https://aclanthology.org/W19-3712
https://www.science.org/doi/abs/10.1126/science.aad2257
https://www.science.org/doi/abs/10.1126/science.aad2257


Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Goodman, N. D., Grossman, S., Guha, N., Hashimoto,
T., Henderson, P., Hewitt, J., Ho, D. E., Hong, J., Hsu,
K., Huang, J., Icard, T. F., Jain, S., Jurafsky, D., Kalluri,
P., Karamcheti, S., Keeling, G., Khani, F., Khattab, O.,
Koh, P. W., Krass, M. S., Krishna, R., Kuditipudi, R.,
Kumar, A., Ladhak, F., Lee, M., Lee, T., Leskovec, J.,
Levent, I., Li, X. L., Li, X., Ma, T., Malik, A., Man-
ning, C. D., Mirchandani, S. P., Mitchell, E., Munyikwa,
Z., Nair, S., Narayan, A., Narayanan, D., Newman, B.,
Nie, A., Niebles, J. C., Nilforoshan, H., Nyarko, J. F.,
Ogut, G., Orr, L., Papadimitriou, I., Park, J. S., Piech,
C., Portelance, E., Potts, C., Raghunathan, A., Reich, R.,
Ren, H., Rong, F., Roohani, Y. H., Ruiz, C., Ryan, J.,
R’e, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih, A.,
Srinivasan, K. P., Tamkin, A., Taori, R., Thomas, A. W.,
Tramèr, F., Wang, R. E., Wang, W., Wu, B., Wu, J., Wu,
Y., Xie, S. M., Yasunaga, M., You, J., Zaharia, M. A.,
Zhang, M., Zhang, T., Zhang, X., Zhang, Y., Zheng,
L., Zhou, K., and Liang, P. On the opportunities and
risks of foundation models. ArXiv, 2021. URL https:
//crfm.stanford.edu/assets/report.pdf.

Brown, N., Fiscato, M., Segler, M. H., and Vaucher, A. C.
Guacamol: benchmarking models for de novo molecular
design. Journal of chemical information and modeling,
59(3):1096–1108, 2019.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Carlsson, F., Öhman, J., Liu, F., Verlinden, S., Nivre, J.,
and Sahlgren, M. Fine-grained controllable text gen-
eration using non-residual prompting. In Muresan, S.,
Nakov, P., and Villavicencio, A. (eds.), Proceedings of
the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 6837–
6857, Dublin, Ireland, May 2022. Association for Com-
putational Linguistics. doi: 10.18653/v1/2022.acl-long.
471. URL https://aclanthology.org/2022.
acl-long.471.

Casper, S., Davies, X., Shi, C., Gilbert, T. K., Scheurer,
J., Rando, J., Freedman, R., Korbak, T., Lindner, D.,

Freire, P., Wang, T., Marks, S., Segerie, C.-R., Carroll,
M., Peng, A., Christoffersen, P., Damani, M., Slocum,
S., Anwar, U., Siththaranjan, A., Nadeau, M., Michaud,
E. J., Pfau, J., Krasheninnikov, D., Chen, X., Langosco,
L., Hase, P., Bıyık, E., Dragan, A., Krueger, D., Sadigh,
D., and Hadfield-Menell, D. Open problems and funda-
mental limitations of reinforcement learning from human
feedback, 2023. URL https://arxiv.org/abs/
2307.15217.

Chan, A., Madani, A., Krause, B., and Naik, N.
Deep extrapolation for attribute-enhanced genera-
tion. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 34, pp. 14084–14096. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
75da5036f659fe64b53f3d9b39412967-Paper.
pdf.

Chaudhury, S., Lyskov, S., and Gray, J. J. Pyrosetta: a script-
based interface for implementing molecular modeling
algorithms using rosetta. Bioinformatics, 26(5):689–691,
2010.

Chen, A., Dohan, D. M., and So, D. R. Evoprompting:
language models for code-level neural architecture search.
In Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS ’23, Red
Hook, NY, USA, 2024a. Curran Associates Inc.

Chen, A., Malladi, S., Zhang, L. H., Chen, X., Zhang, Q.,
Ranganath, R., and Cho, K. Preference learning algo-
rithms do not learn preference rankings. arXiv preprint
arXiv:2405.19534, 2024b. URL https://arxiv.
org/abs/2405.19534.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, X., Liu, T., Zhao, H., Zhou, G., and Zhang, Y.-Q.
Cerberus transformer: Joint semantic, affordance and
attribute parsing. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
19649–19658, 2022a.

Chen, Y., Song, X., Lee, C., Wang, Z., Zhang, R.,
Dohan, D., Kawakami, K., Kochanski, G., Doucet, A.,
Ranzato, M. A., Perel, S., and de Freitas, N. Towards
learning universal hyperparameter optimizers with
transformers. In Koyejo, S., Mohamed, S., Agar-
wal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems,
volume 35, pp. 32053–32068. Curran Associates, Inc.,

11

https://crfm.stanford.edu/assets/report.pdf
https://crfm.stanford.edu/assets/report.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2022.acl-long.471
https://aclanthology.org/2022.acl-long.471
https://arxiv.org/abs/2307.15217
https://arxiv.org/abs/2307.15217
https://proceedings.neurips.cc/paper_files/paper/2021/file/75da5036f659fe64b53f3d9b39412967-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/75da5036f659fe64b53f3d9b39412967-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/75da5036f659fe64b53f3d9b39412967-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/75da5036f659fe64b53f3d9b39412967-Paper.pdf
https://arxiv.org/abs/2405.19534
https://arxiv.org/abs/2405.19534


Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

2022b. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
cf6501108fced72ee5c47e2151c4e153-Paper-Conference.
pdf.

Chen, Y., Xu, B., Wang, Q., Liu, Y., and Mao, Z. Bench-
marking large language models on controllable gener-
ation under diversified instructions. Proceedings of
the AAAI Conference on Artificial Intelligence, 38(16):
17808–17816, Mar. 2024c. doi: 10.1609/aaai.v38i16.
29734. URL https://ojs.aaai.org/index.
php/AAAI/article/view/29734.

Chinery, L., Hummer, A. M., Mehta, B. B., Akbar, R.,
Rawat, P., Slabodkin, A., Le Quy, K., Lund-Johansen,
F., Greiff, V., Jeliazkov, J. R., et al. Baselining the buzz.
trastuzumab-her2 affinity, and beyond! bioRxiv, pp. 2024–
03, 2024.

Cieplinski, T., Danel, T., Podlewska, S., and Jastrzebski,
S. Generative models should at least be able to design
molecules that dock well: A new benchmark. Journal of
Chemical Information and Modeling, 63(11):3238–3247,
2023.

Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E.,
Molino, P., Yosinski, J., and Liu, R. Plug and play
language models: A simple approach to controlled text
generation. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=H1edEyBKDS.

Dekoninck, J., Fischer, M., Beurer-Kellner, L., and Vechev,
M. Controlled text generation via language model
arithmetic. In The Twelfth International Conference
on Learning Representations, 2024. URL https://
openreview.net/forum?id=SLw9fp4yI6.

Deng, H. and Raffel, C. Reward-augmented decoding: Effi-
cient controlled text generation with a unidirectional re-
ward model. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 11781–11791,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
721. URL https://aclanthology.org/2023.
emnlp-main.721.

Doan, X.-D. Vtcc-nlp at nl4opt competition subtask 1:
An ensemble pre-trained language models for named en-
tity recognition, 2022. URL https://arxiv.org/
abs/2212.07219.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W.,
Pan, R., Diao, S., Zhang, J., SHUM, K., and Zhang, T.

RAFT: Reward ranked finetuning for generative founda-
tion model alignment. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=m7p5O7zblY.

Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X.,
Chen, X., Bousquet, O., and Zhou, D. Compositional
semantic parsing with large language models. In The
Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/
forum?id=gJW8hSGBys8.

Du, L., Torroba Hennigen, L., Pimentel, T., Meister, C.,
Eisner, J., and Cotterell, R. A measure-theoretic char-
acterization of tight language models. In Rogers, A.,
Boyd-Graber, J., and Okazaki, N. (eds.), Proceedings of
the 61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 9744–
9770, Toronto, Canada, July 2023. Association for Com-
putational Linguistics. doi: 10.18653/v1/2023.acl-long.
543. URL https://aclanthology.org/2023.
acl-long.543.

Feng, D., Qin, B., Huang, C., Zhang, Z., and Lei, W. To-
wards analyzing and understanding the limitations of
dpo: A theoretical perspective, 2024. URL https:
//arxiv.org/abs/2404.04626.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
Presser, S., and Leahy, C. The Pile: An 800gb dataset
of diverse text for language modeling. arXiv preprint
arXiv:2101.00027, 2020.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y.,
Callan, J., and Neubig, G. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435, 2022.

Garbacea, C. and Mei, Q. Why is constrained neural lan-
guage generation particularly challenging?, 2022.

Gillespie, J. H. Population genetics: a concise guide. JHU
press, 2004.

Gligorijević, V., Berenberg, D., Ra, S., Watkins, A., Kelow,
S., Cho, K., and Bonneau, R. Function-guided protein
design by deep manifold sampling. bioRxiv, pp. 2021–12,
2021.

Graff, D. E., Shakhnovich, E. I., and Coley, C. W. Accelerat-
ing high-throughput virtual screening through molecular
pool-based active learning. Chemical science, 12(22):
7866–7881, 2021.

Gruver, N., Stanton, S., Frey, N., Rudner, T. G., Hotzel,
I., Lafrance-Vanasse, J., Rajpal, A., Cho, K., and Wil-
son, A. G. Protein design with guided discrete diffusion.
Advances in neural information processing systems, 36,
2024.

12

https://proceedings.neurips.cc/paper_files/paper/2022/file/cf6501108fced72ee5c47e2151c4e153-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf6501108fced72ee5c47e2151c4e153-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf6501108fced72ee5c47e2151c4e153-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf6501108fced72ee5c47e2151c4e153-Paper-Conference.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/29734
https://ojs.aaai.org/index.php/AAAI/article/view/29734
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=SLw9fp4yI6
https://openreview.net/forum?id=SLw9fp4yI6
https://aclanthology.org/2023.emnlp-main.721
https://aclanthology.org/2023.emnlp-main.721
https://arxiv.org/abs/2212.07219
https://arxiv.org/abs/2212.07219
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=gJW8hSGBys8
https://openreview.net/forum?id=gJW8hSGBys8
https://aclanthology.org/2023.acl-long.543
https://aclanthology.org/2023.acl-long.543
https://arxiv.org/abs/2404.04626
https://arxiv.org/abs/2404.04626


Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Guo, P.-F., Chen, Y.-H., Tsai, Y.-D., and Lin, S.-
D. Towards optimizing with large language models.
In Fourth Workshop on Knowledge-infused Learning,
2024a. URL https://openreview.net/forum?
id=vIU8LUckb4.

Guo, Q., Wang, R., Guo, J., Li, B., Song, K., Tan, X., Liu,
G., Bian, J., and Yang, Y. Connecting large language
models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Confer-
ence on Learning Representations, 2024b. URL https:
//openreview.net/forum?id=ZG3RaNIsO8.

Guo, Z., Liu, M., Ji, Z., Bai, J., Guo, Y., and Zuo, W. Two
optimizers are better than one: Llm catalyst empowers
gradient-based optimization for prompt tuning, 2024c.
URL https://arxiv.org/abs/2405.19732.

Gupta, S., Shah, R., Mohit, M., Kumar, A., and Lewis, M.
Semantic parsing for task oriented dialog using hierar-
chical representations. arXiv preprint arXiv:1810.07942,
2018.

He, J., N, M., Vignesh, S., Kumar, D., and Uppal, A. Linear
programming word problems formulation using ensem-
blecrf ner labeler and t5 text generator with data aug-
mentations, 2022. URL https://arxiv.org/abs/
2212.14657.

He-Yueya, J., Poesia, G., Wang, R. E., and Goodman,
N. D. Solving math word problems by combining lan-
guage models with symbolic solvers. arXiv preprint
arXiv:2304.09102, 2023.

Hie, B. L., Shanker, V. R., Xu, D., Bruun, T. U., Weiden-
bacher, P. A., Tang, S., Wu, W., Pak, J. E., and Kim,
P. S. Efficient evolution of human antibodies from gen-
eral protein language models. Nature Biotechnology, 42
(2):275–283, 2024.

Hu, X., He, T., and Wipf, D. New desiderata for direct prefer-
ence optimization. In ICML 2024 Workshop on Models of
Human Feedback for AI Alignment, 2024. URL https:
//openreview.net/forum?id=Fgf0iAOb22.

Huang, K., Fu, T., Gao, W., Zhao, Y., Roohani, Y., Leskovec,
J., Coley, C. W., Xiao, C., Sun, J., and Zitnik, M. Ther-
apeutics data commons: Machine learning datasets and
tasks for drug discovery and development. arXiv preprint
arXiv:2102.09548, 2021.

Hummer, A. M., Schneider, C., Chinery, L., and Deane,
C. M. Investigating the volume and diversity of data
needed for generalizable antibody-antigen δδg prediction.
bioRxiv, pp. 2023–05, 2023.

Ismail, A. A., Oikarinen, T., Wang, A., Adebayo, J., Stanton,
S., Joren, T., Kleinhenz, J., Goodman, A., Bravo, H. C.,
Cho, K., et al. Concept bottleneck language models for
protein design. arXiv preprint arXiv:2411.06090, 2024.

Jang, S. Tag embedding and well-defined intermediate
representation improve auto-formulation of problem de-
scription. arXiv preprint arXiv:2212.03575, 2022.

Jaynes, E. T. Information theory and statistical mechanics.
Physical review, 106(4):620, 1957.

Jeon, H. J., Milli, S., and Dragan, A. Reward-rational (im-
plicit) choice: A unifying formalism for reward learning.
Advances in Neural Information Processing Systems, 33:
4415–4426, 2020.

Johnston, K. E., Almhjell, P. J., Watkins-Dulaney, E. J.,
Liu, G., Porter, N. J., Yang, J., and Arnold, F. H. A
combinatorially complete epistatic fitness landscape in an
enzyme active site. Proceedings of the National Academy
of Sciences, 121(32):e2400439121, 2024. doi: 10.1073/
pnas.2400439121. URL https://www.pnas.org/
doi/abs/10.1073/pnas.2400439121.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global
optimization of expensive black-box functions. Journal
of Global optimization, 13:455–492, 1998.

Kellogg, E. H., Leaver-Fay, A., and Baker, D. Role of
conformational sampling in computing mutation-induced
changes in protein structure and stability. Proteins: Struc-
ture, Function, and Bioinformatics, 79(3):830–838, 2011.

Keskar, N. S., McCann, B., Varshney, L., Xiong, C., and
Socher, R. CTRL - A Conditional Transformer Lan-
guage Model for Controllable Generation. arXiv preprint
arXiv:1909.05858, 2019.

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z., San-
thanam, K., A, S. V., Haq, S., Sharma, A., Joshi, T. T.,
Moazam, H., Miller, H., Zaharia, M., and Potts, C. DSPy:
Compiling declarative language model calls into state-of-
the-art pipelines. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=sY5N0zY5Od.

Kirk, R., Mediratta, I., Nalmpantis, C., Luketina, J., Ham-
bro, E., Grefenstette, E., and Raileanu, R. Understanding
the effects of RLHF on LLM generalisation and diver-
sity. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=PXD3FAVHJT.

13

https://openreview.net/forum?id=vIU8LUckb4
https://openreview.net/forum?id=vIU8LUckb4
https://openreview.net/forum?id=ZG3RaNIsO8
https://openreview.net/forum?id=ZG3RaNIsO8
https://arxiv.org/abs/2405.19732
https://arxiv.org/abs/2212.14657
https://arxiv.org/abs/2212.14657
https://openreview.net/forum?id=Fgf0iAOb22
https://openreview.net/forum?id=Fgf0iAOb22
https://www.pnas.org/doi/abs/10.1073/pnas.2400439121
https://www.pnas.org/doi/abs/10.1073/pnas.2400439121
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=PXD3FAVHJT
https://openreview.net/forum?id=PXD3FAVHJT


Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Knoblauch, J., Jewson, J., and Damoulas, T. Generalized
variational inference: Three arguments for deriving new
posteriors. arXiv preprint arXiv:1904.02063, 2019.

Korbak, T., Elsahar, H., Kruszewski, G., and Dymetman,
M. On reward maximization and distribution matching
for fine-tuning language models, 2022a. URL https:
//openreview.net/forum?id=8f95ajHrIFc.

Korbak, T., Perez, E., and Buckley, C. L. Rl with kl penal-
ties is better viewed as bayesian inference, 2022b. URL
https://arxiv.org/abs/2205.11275.

Lange, R., Tian, Y., and Tang, Y. Large language mod-
els as evolution strategies. In Proceedings of the Ge-
netic and Evolutionary Computation Conference Com-
panion, GECCO ’24 Companion, pp. 579–582, New
York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400704956. doi: 10.1145/
3638530.3654238. URL https://doi.org/10.
1145/3638530.3654238.

Lehman, J., Gordon, J., Jain, S., Ndousse, K., Yeh, C.,
and Stanley, K. O. Evolution through large models. In
Handbook of Evolutionary Machine Learning, pp. 331–
366. Springer, 2023.

Li, H., Ma, Y., Zhang, Y., Ye, C., and Chen, J. Exploring
mathematical extrapolation of large language models with
synthetic data. In Ku, L.-W., Martins, A., and Srikumar, V.
(eds.), Findings of the Association for Computational Lin-
guistics ACL 2024, pp. 936–946, Bangkok, Thailand and
virtual meeting, August 2024. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2024.findings-acl.
55. URL https://aclanthology.org/2024.
findings-acl.55.

Liu, A., Sap, M., Lu, X., Swayamdipta, S., Bhagavatula,
C., Smith, N. A., and Choi, Y. DExperts: Decoding-
time controlled text generation with experts and anti-
experts. In Zong, C., Xia, F., Li, W., and Navigli, R.
(eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 6691–6706, Online,
August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.522. URL https:
//aclanthology.org/2021.acl-long.522.

Liu, S., Chen, C., Qu, X., Tang, K., and Ong, Y.-S. Large
language models as evolutionary optimizers. In 2024
IEEE Congress on Evolutionary Computation (CEC), pp.
1–8, 2024a. doi: 10.1109/CEC60901.2024.10611913.

Liu, T., Astorga, N., Seedat, N., and van der Schaar, M.
Large language models to enhance bayesian optimization.
arXiv preprint arXiv:2402.03921, 2024b.

Luce, R. D. et al. Individual choice behavior, volume 4.
Wiley New York, 1959.

Ma, P., Wang, T.-H., Guo, M., Sun, Z., Tenenbaum, J. B.,
Rus, D., Gan, C., and Matusik, W. LLM and sim-
ulation as bilevel optimizers: A new paradigm to ad-
vance physical scientific discovery. In Salakhutdinov,
R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett,
J., and Berkenkamp, F. (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, pp.
33940–33962. PMLR, 21–27 Jul 2024. URL https://
proceedings.mlr.press/v235/ma24m.html.

Madani, A., Krause, B., Greene, E. R., Subramanian,
S., Mohr, B. P., Holton, J. M., Olmos, J. L., Xiong,
C., Sun, Z. Z., Socher, R., Fraser, J. S., and Naik, N.
Large language models generate functional protein se-
quences across diverse families. Nature Biotechnology,
41(8):1099–1106, January 2023. ISSN 1546-1696. doi:
10.1038/s41587-022-01618-2. URL http://dx.doi.
org/10.1038/s41587-022-01618-2.

Malladi, S. The hidden infinity in preference
learning, July 2024. URL https://www.cs.
princeton.edu/˜smalladi/blog/2024/06/
27/dpo-infinity/.

Mason, D. M., Friedensohn, S., Weber, C. R., Jordi, C., Wag-
ner, B., Meng, S. M., Ehling, R. A., Bonati, L., Dahinden,
J., Gainza, P., et al. Optimization of therapeutic antibodies
by predicting antigen specificity from antibody sequence
via deep learning. Nature Biomedical Engineering, 5(6):
600–612, 2021.

Maus, N., Jones, H., Moore, J., Kusner, M. J., Bradshaw, J.,
and Gardner, J. Local latent space bayesian optimization
over structured inputs. Advances in neural information
processing systems, 35:34505–34518, 2022.

Meng, Y., Xia, M., and Chen, D. SimPO: Simple preference
optimization with a reference-free reward. arXiv preprint
arXiv:2405.14734, 2024.

Meyerson, E., Nelson, M. J., Bradley, H., Gaier, A.,
Moradi, A., Hoover, A. K., and Lehman, J. Language
model crossover: Variation through few-shot prompt-
ing. ACM Trans. Evol. Learn. Optim., September 2024.
doi: 10.1145/3694791. URL https://doi.org/10.
1145/3694791. Just Accepted.

Mittal, C., Kartik, K., Mausam, and Singla, P. Puz-
zlebench: Can llms solve challenging first-order com-
binatorial reasoning problems?, 2024. URL https:
//arxiv.org/abs/2402.02611.

14

https://openreview.net/forum?id=8f95ajHrIFc
https://openreview.net/forum?id=8f95ajHrIFc
https://arxiv.org/abs/2205.11275
https://doi.org/10.1145/3638530.3654238
https://doi.org/10.1145/3638530.3654238
https://aclanthology.org/2024.findings-acl.55
https://aclanthology.org/2024.findings-acl.55
https://aclanthology.org/2021.acl-long.522
https://aclanthology.org/2021.acl-long.522
https://proceedings.mlr.press/v235/ma24m.html
https://proceedings.mlr.press/v235/ma24m.html
http://dx.doi.org/10.1038/s41587-022-01618-2
http://dx.doi.org/10.1038/s41587-022-01618-2
https://www.cs.princeton.edu/~smalladi/blog/2024/06/27/dpo-infinity/
https://www.cs.princeton.edu/~smalladi/blog/2024/06/27/dpo-infinity/
https://www.cs.princeton.edu/~smalladi/blog/2024/06/27/dpo-infinity/
https://doi.org/10.1145/3694791
https://doi.org/10.1145/3694791
https://arxiv.org/abs/2402.02611
https://arxiv.org/abs/2402.02611


Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Močkus, J. On bayesian methods for seeking the extremum.
In Optimization Techniques IFIP Technical Conference
Novosibirsk, July 1–7, 1974 6, pp. 400–404. Springer,
1975.

Molga, M. and Smutnicki, C. Test functions for optimization
needs. Test functions for optimization needs, 101:48,
2005.

Nasir, M. U., Earle, S., Togelius, J., James, S., and Cleghorn,
C. Llmatic: neural architecture search via large language
models and quality diversity optimization. In Proceedings
of the Genetic and Evolutionary Computation Conference,
pp. 1110–1118, 2024.

Neidhart, J., Szendro, I. G., and Krug, J. Adapta-
tion in tunably rugged fitness landscapes: The rough
mount fuji model. Genetics, 198(2):699–721, August
2014. ISSN 1943-2631. doi: 10.1534/genetics.114.
167668. URL http://dx.doi.org/10.1534/
genetics.114.167668.

Nie, A., Cheng, C.-A., Kolobov, A., and Swaminathan,
A. Importance of directional feedback for LLM-based
optimizers. In NeurIPS 2023 Foundation Models for
Decision Making Workshop, 2023. URL https://
openreview.net/forum?id=QW4eGh5GT3.

Nijkamp, E., Hayashi, H., Xiong, C., Savarese, S., and Zhou,
Y. Codegen2: Lessons for training llms on programming
and natural languages. ICLR, 2023a.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou,
Y., Savarese, S., and Xiong, C. Codegen: An open large
language model for code with multi-turn program synthe-
sis. ICLR, 2023b.

Ning, Y., Liu, J., Qin, L., Xiao, T., Xue, S., Huang, Z.,
Liu, Q., Chen, E., and Wu, J. A novel approach for auto-
formulation of optimization problems. arXiv preprint
arXiv:2302.04643, 2023.

Notin, P., Kollasch, A., Ritter, D., van Niekerk, L., Paul, S.,
Spinner, H., Rollins, N., Shaw, A., Orenbuch, R., Weitz-
man, R., Frazer, J., Dias, M., Franceschi, D., Gal, Y., and
Marks, D. Proteingym: Large-scale benchmarks for pro-
tein fitness prediction and design. In Oh, A., Neumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 64331–64379. Curran Associates,
Inc., 2023.

Ogden, P. J., Kelsic, E. D., Sinai, S., and Church, G. M.
Comprehensive aav capsid fitness landscape reveals a
viral gene and enables machine-guided design. Science,
366(6469):1139–1143, 2019.

Ortega, P. A. and Braun, D. A. Thermodynamics as a
theory of decision-making with information-processing
costs. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 469(2153):20120683,
2013.

Owen, A. B. Monte Carlo theory, methods and examples.
https://artowen.su.domains/mc/, 2013.

Padmakumar, V. and He, H. Does writing with language
models reduce content diversity?, 2024. URL https:
//arxiv.org/abs/2309.05196.

Padmakumar, V., Pang, R. Y., He, H., and Parikh, A. P.
Extrapolative controlled sequence generation via iterative
refinement. In International Conference on Machine
Learning, pp. 26792–26808. PMLR, 2023.

Pal, A., Karkhanis, D., Dooley, S., Roberts, M., Naidu, S.,
and White, C. Smaug: Fixing failure modes of preference
optimisation with dpo-positive, 2024. URL https://
arxiv.org/abs/2402.13228.

Pang, R. Y., Yuan, W., Cho, K., He, H., Sukhbaatar, S.,
and Weston, J. Iterative reasoning preference optimiza-
tion, 2024. URL https://arxiv.org/abs/2404.
19733.

Papkou, A., Garcia-Pastor, L., Escudero, J. A., and Wag-
ner, A. A rugged yet easily navigable fitness land-
scape. Science, 382(6673):eadh3860, 2023. doi: 10.1126/
science.adh3860. URL https://www.science.
org/doi/abs/10.1126/science.adh3860.

Pascual, D., Egressy, B., Meister, C., Cotterell, R., and
Wattenhofer, R. A plug-and-play method for con-
trolled text generation. In Moens, M.-F., Huang, X.,
Specia, L., and Yih, S. W.-t. (eds.), Findings of the
Association for Computational Linguistics: EMNLP
2021, pp. 3973–3997, Punta Cana, Dominican Repub-
lic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.findings-emnlp.
334. URL https://aclanthology.org/2021.
findings-emnlp.334.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Poesia, G., Polozov, A., Le, V., Tiwari, A., Soares, G.,
Meek, C., and Gulwani, S. Synchromesh: Reliable
code generation from pre-trained language models. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=KmtVD97J43e.

15

http://dx.doi.org/10.1534/genetics.114.167668
http://dx.doi.org/10.1534/genetics.114.167668
https://openreview.net/forum?id=QW4eGh5GT3
https://openreview.net/forum?id=QW4eGh5GT3
https://artowen.su.domains/mc/
https://arxiv.org/abs/2309.05196
https://arxiv.org/abs/2309.05196
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2404.19733
https://www.science.org/doi/abs/10.1126/science.adh3860
https://www.science.org/doi/abs/10.1126/science.adh3860
https://aclanthology.org/2021.findings-emnlp.334
https://aclanthology.org/2021.findings-emnlp.334
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e


Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Press, O., Smith, N., and Lewis, M. Train short, test long:
Attention with linear biases enables input length extrapo-
lation. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/
forum?id=R8sQPpGCv0.

Pryzant, R., Iter, D., Li, J., Lee, Y., Zhu, C., and Zeng,
M. Automatic prompt optimization with “gradient de-
scent” and beam search. In Bouamor, H., Pino, J., and
Bali, K. (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
pp. 7957–7968, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.494. URL https://aclanthology.
org/2023.emnlp-main.494.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,
Ermon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=HPuSIXJaa9.

Rafailov, R., Chittepu, Y., Park, R., Sikchi, H., Hejna, J.,
Knox, B., Finn, C., and Niekum, S. Scaling laws for
reward model overoptimization in direct alignment al-
gorithms, 2024a. URL https://arxiv.org/abs/
2406.02900.

Rafailov, R., Hejna, J., Park, R., and Finn, C. From
$r$ to $qˆ*$: Your language model is secretly a q-
function. In First Conference on Language Modeling,
2024b. URL https://openreview.net/forum?
id=kEVcNxtqXk.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), January 2020.
ISSN 1532-4435.

Ramamonjison, R., Yu, T., Li, R., Li, H., Carenini, G., Ghad-
dar, B., He, S., Mostajabdaveh, M., Banitalebi-Dehkordi,
A., Zhou, Z., and Zhang, Y. Nl4opt competition: For-
mulating optimization problems based on their natural
language descriptions. In Ciccone, M., Stolovitzky, G.,
and Albrecht, J. (eds.), Proceedings of the NeurIPS 2022
Competitions Track, volume 220 of Proceedings of Ma-
chine Learning Research, pp. 189–203. PMLR, 28 Nov–
09 Dec 2022. URL https://proceedings.mlr.
press/v220/ramamonjison23a.html.

Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen,
X., Canny, J., Abbeel, P., and Song, Y. S. Evaluating
protein transfer learning with tape. In Advances in Neural
Information Processing Systems, 2019.

Romera-Paredes, B., Barekatain, M., Novikov, A., Ba-
log, M., Kumar, M. P., Dupont, E., Ruiz, F. J. R.,
Ellenberg, J. S., Wang, P., Fawzi, O., Kohli, P., and
Fawzi, A. Mathematical discoveries from program
search with large language models. Nature, 625(7995):
468–475, December 2023. ISSN 1476-4687. doi:
10.1038/s41586-023-06924-6. URL http://dx.doi.
org/10.1038/s41586-023-06924-6.

Rongali, S., Soldaini, L., Monti, E., and Hamza, W. Don’t
parse, generate! a sequence to sequence architecture for
task-oriented semantic parsing. In Proceedings of the
web conference 2020, pp. 2962–2968, 2020.

Sarkisyan, K. S., Bolotin, D. A., Meer, M. V., Usmanova,
D. R., Mishin, A. S., Sharonov, G. V., Ivankov, D. N.,
Bozhanova, N. G., Baranov, M. S., Soylemez, O., et al.
Local fitness landscape of the green fluorescent protein.
Nature, 533(7603):397–401, 2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,
and Klimov, O. Proximal policy optimization algo-
rithms, 2017. URL https://arxiv.org/abs/
1707.06347.

Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau,
F., and Serrano, L. The foldx web server: an online force
field. Nucleic acids research, 33(suppl 2):W382–W388,
2005.

Shao, B., Gong, Y., Qi, W., Cao, G., Ji, J., and Lin, X. Graph-
based transformer with cross-candidate verification for
semantic parsing. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 8807–8814,
2020.

Shaw, P., Massey, P., Chen, A., Piccinno, F., and Altun,
Y. Generating logical forms from graph representations
of text and entities. In Korhonen, A., Traum, D., and
Màrquez, L. (eds.), Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp.
95–106, Florence, Italy, July 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/P19-1010. URL
https://aclanthology.org/P19-1010.

Shi, P., Ng, P., Wang, Z., Zhu, H., Li, A. H., Wang, J.,
dos Santos, C. N., and Xiang, B. Learning contextual
representations for semantic parsing with generation-
augmented pre-training. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 13806–
13814, 2021.

16

https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://aclanthology.org/2023.emnlp-main.494
https://aclanthology.org/2023.emnlp-main.494
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2406.02900
https://arxiv.org/abs/2406.02900
https://openreview.net/forum?id=kEVcNxtqXk
https://openreview.net/forum?id=kEVcNxtqXk
https://proceedings.mlr.press/v220/ramamonjison23a.html
https://proceedings.mlr.press/v220/ramamonjison23a.html
http://dx.doi.org/10.1038/s41586-023-06924-6
http://dx.doi.org/10.1038/s41586-023-06924-6
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://aclanthology.org/P19-1010


Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Simon, H. A. Rational choice and the structure of the
environment. Psychological review, 63(2):129, 1956.

Sinai, S., Wang, R., Whatley, A., Slocum, S., Locane, E.,
and Kelsic, E. D. Adalead: A simple and robust adap-
tive greedy search algorithm for sequence design. arXiv
preprint arXiv:2010.02141, 2020.

Singhal, P., Goyal, T., Xu, J., and Durrett, G. A long
way to go: Investigating length correlations in RLHF,
2024. URL https://openreview.net/forum?
id=sNtDKdcI1f.

Song, X., Tian, Y., Lange, R. T., Lee, C., Tang, Y., and
Chen, Y. Position: Leverage foundational models for
black-box optimization. In Forty-first International Con-
ference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=ea2MgKn3sV.

Stanton, S., Maddox, W., Gruver, N., Maffettone, P., De-
laney, E., Greenside, P., and Wilson, A. G. Accelerating
bayesian optimization for biological sequence design with
denoising autoencoders. In International Conference on
Machine Learning, pp. 20459–20478. PMLR, 2022.

Steinberg, D. M., Oliveira, R., Ong, C. S., and Bonilla,
E. V. Variational search distributions. arXiv preprint
arXiv:2409.06142, 2024.

Stengel-Eskin, E., Murray, K., Zhang, S., White, A. S., and
Van Durme, B. Joint universal syntactic and semantic
parsing. Transactions of the Association for Computa-
tional Linguistics, 9:756–773, 2021.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe,
R., Voss, C., Radford, A., Amodei, D., and Chris-
tiano, P. F. Learning to summarize with human
feedback. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 33, pp. 3008–3021. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1f89885d556929e98d3ef9b86448f951-Paper.
pdf.

Sun, J., Tian, Y., Zhou, W., Xu, N., Hu, Q., Gupta, R.,
Wieting, J., Peng, N., and Ma, X. Evaluating large lan-
guage models on controlled generation tasks. In Bouamor,
H., Pino, J., and Bali, K. (eds.), Proceedings of the
2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3155–3168, Singapore, December
2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.190. URL https://
aclanthology.org/2023.emnlp-main.190.

Tagasovska, N., Gligorijević, V., Cho, K., and Loukas, A.
Implicitly guided design with propen: Match your data
to follow the gradient, 2024. URL https://arxiv.
org/abs/2405.18075.

Tang, Y., Guo, D. Z., Zheng, Z., Calandriello, D., Cao,
Y., Tarassov, E., Munos, R., Ávila Pires, B., Valko, M.,
Cheng, Y., and Dabney, W. Understanding the per-
formance gap between online and offline alignment al-
gorithms, 2024. URL https://arxiv.org/abs/
2405.08448.

Tripp, A., Simm, G. N. C., and Hernández-Lobato, J. M.
A fresh look at de novo molecular design bench-
marks. In NeurIPS 2021 AI for Science Workshop,
2021. URL https://openreview.net/forum?
id=gS3XMun4cl_.

Ushio, A. and Camacho-Collados, J. T-NER: An all-round
python library for transformer-based named entity recog-
nition. In Gkatzia, D. and Seddah, D. (eds.), Proceed-
ings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: System
Demonstrations, pp. 53–62, Online, April 2021. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
2021.eacl-demos.7. URL https://aclanthology.
org/2021.eacl-demos.7.

Verkuil, R., Kabeli, O., Du, Y., Wicky, B. I., Milles, L. F.,
Dauparas, J., Baker, D., Ovchinnikov, S., Sercu, T., and
Rives, A. Language models generalize beyond natural
proteins. bioRxiv, pp. 2022–12, 2022.

Wang, B., Zheng, R., Chen, L., Liu, Y., Dou, S., Huang,
C., Shen, W., Jin, S., Zhou, E., Shi, C., Gao, S., Xu,
N., Zhou, Y., Fan, X., Xi, Z., Zhao, J., Wang, X., Ji, T.,
Yan, H., Shen, L., Chen, Z., Gui, T., Zhang, Q., Qiu, X.,
Huang, X., Wu, Z., and Jiang, Y.-G. Secrets of rlhf in
large language models part ii: Reward modeling, 2024.
URL https://arxiv.org/abs/2401.06080.

Wang, J., Lisanza, S., Juergens, D., Tischer, D., Watson,
J. L., Castro, K. M., Ragotte, R., Saragovi, A., Milles,
L. F., Baek, M., et al. Scaffolding protein functional sites
using deep learning. Science, 377(6604):387–394, 2022.

Wang, K., Chen, Z., and Zheng, J. Opd@nl4opt: An en-
semble approach for the ner task of the optimization
problem, 2023a. URL https://arxiv.org/abs/
2301.02459.

Wang, S., Sun, X., Li, X., Ouyang, R., Wu, F., Zhang, T., Li,
J., and Wang, G. Gpt-ner: Named entity recognition via
large language models, 2023b. URL https://arxiv.
org/abs/2304.10428.

17

https://openreview.net/forum?id=sNtDKdcI1f
https://openreview.net/forum?id=sNtDKdcI1f
https://openreview.net/forum?id=ea2MgKn3sV
https://openreview.net/forum?id=ea2MgKn3sV
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://aclanthology.org/2023.emnlp-main.190
https://aclanthology.org/2023.emnlp-main.190
https://arxiv.org/abs/2405.18075
https://arxiv.org/abs/2405.18075
https://arxiv.org/abs/2405.08448
https://arxiv.org/abs/2405.08448
https://openreview.net/forum?id=gS3XMun4cl_
https://openreview.net/forum?id=gS3XMun4cl_
https://aclanthology.org/2021.eacl-demos.7
https://aclanthology.org/2021.eacl-demos.7
https://arxiv.org/abs/2401.06080
https://arxiv.org/abs/2301.02459
https://arxiv.org/abs/2301.02459
https://arxiv.org/abs/2304.10428
https://arxiv.org/abs/2304.10428


Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Welleck, S., Kulikov, I., Kim, J., Pang, R. Y., and Cho, K.
Consistency of a recurrent language model with respect
to incomplete decoding. In Webber, B., Cohn, T., He,
Y., and Liu, Y. (eds.), Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 5553–5568, Online, November
2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.448. URL https://
aclanthology.org/2020.emnlp-main.448.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Ma-
chine Learning, 8(3–4):229–256, May 1992. ISSN
1573-0565. doi: 10.1007/bf00992696. URL http:
//dx.doi.org/10.1007/BF00992696.

Wilson, J. Stopping bayesian optimization with probabilistic
regret bounds. Advances in Neural Information Process-
ing Systems, 37:98264–98296, 2024.

Wu, K., Kim, K., Garnett, R., and Gardner, J. The be-
havior and convergence of local bayesian optimization.
Advances in neural information processing systems, 36:
73497–73523, 2023.

Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O., and
Sun, R. Adaptation in protein fitness landscapes is facili-
tated by indirect paths. Elife, 5:e16965, 2016.

Xu, M., Zhang, Z., Lu, J., Zhu, Z., Zhang, Y., Chang, M.,
Liu, R., and Tang, J. Peer: a comprehensive and multi-
task benchmark for protein sequence understanding. Ad-
vances in Neural Information Processing Systems, 35:
35156–35173, 2022.

Yan, H., Deng, B., Li, X., and Qiu, X. Tener: Adapting
transformer encoder for named entity recognition, 2019.
URL https://arxiv.org/abs/1911.04474.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and
Chen, X. Large language models as optimizers. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=Bb4VGOWELI.

Yuan, W., Kulikov, I., Yu, P., Cho, K., Sukhbaatar, S., We-
ston, J., and Xu, J. Following length constraints in in-
structions, 2024. URL https://arxiv.org/abs/
2406.17744.

Zhang, M., Desai, N., Bae, J., Lorraine, J., and Ba, J. Using
large language models for hyperparameter optimization.
In NeurIPS 2023 Foundation Models for Decision Mak-
ing Workshop, 2023a. URL https://openreview.
net/forum?id=FUdZ6HEOre.

Zhang, S., Chen, Z., Shen, Y., Ding, M., Tenenbaum, J. B.,
and Gan, C. Planning with large language models for code
generation. In The Eleventh International Conference
on Learning Representations, 2023b. URL https://
openreview.net/forum?id=Lr8cOOtYbfL.

Zheng, R., Dou, S., Gao, S., Hua, Y., Shen, W., Wang,
B., Liu, Y., Jin, S., Liu, Q., Zhou, Y., Xiong, L., Chen,
L., Xi, Z., Xu, N., Lai, W., Zhu, M., Chang, C., Yin,
Z., Weng, R., Cheng, W., Huang, H., Sun, T., Yan, H.,
Gui, T., Zhang, Q., Qiu, X., and Huang, X. Secrets of
rlhf in large language models part i: Ppo, 2023a. URL
https://arxiv.org/abs/2307.04964.

Zheng, R., Dou, S., Gao, S., Shen, W., Wang, B., Liu, Y.,
Jin, S., Liu, Q., Xiong, L., Chen, L., Xi, Z., Zhou, Y., Xu,
N., Lai, W., Zhu, M., Weng, R., Cheng, W., Chang, C.,
Yin, Z., Hua, Y., Huang, H., Sun, T., Yan, H., Gui, T.,
Zhang, Q., Qiu, X., and Huang, X. Secrets of rlhf in large
language models part i: Ppo. 2023b.

Zheng, X., Lin, H., Han, X., and Sun, L. Toward uni-
fied controllable text generation via regular expression
instruction. In Park, J. C., Arase, Y., Hu, B., Lu, W.,
Wijaya, D., Purwarianti, A., and Krisnadhi, A. A. (eds.),
Proceedings of the 13th International Joint Conference
on Natural Language Processing and the 3rd Confer-
ence of the Asia-Pacific Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers),
pp. 1–14, Nusa Dua, Bali, November 2023c. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/
2023.ijcnlp-main.1. URL https://aclanthology.
org/2023.ijcnlp-main.1.

Zhou, J., Ji, J., Dai, J., and Yang, Y. Sequence to se-
quence reward modeling: Improving rlhf by language
feedback, 2024. URL https://arxiv.org/abs/
2409.00162.

Zhou, W., Jiang, Y. E., Wilcox, E., Cotterell, R., and Sachan,
M. Controlled text generation with natural language
instructions. In Krause, A., Brunskill, E., Cho, K.,
Engelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 42602–42613. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/zhou23g.html.

Zhu, X., Li, J., Liu, Y., Ma, C., and Wang, W. Distilling
mathematical reasoning capabilities into small language
models. Neural Networks, 179:106594, 2024.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

18

https://aclanthology.org/2020.emnlp-main.448
https://aclanthology.org/2020.emnlp-main.448
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1007/BF00992696
https://arxiv.org/abs/1911.04474
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=Bb4VGOWELI
https://arxiv.org/abs/2406.17744
https://arxiv.org/abs/2406.17744
https://openreview.net/forum?id=FUdZ6HEOre
https://openreview.net/forum?id=FUdZ6HEOre
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL
https://arxiv.org/abs/2307.04964
https://aclanthology.org/2023.ijcnlp-main.1
https://aclanthology.org/2023.ijcnlp-main.1
https://arxiv.org/abs/2409.00162
https://arxiv.org/abs/2409.00162
https://proceedings.mlr.press/v202/zhou23g.html
https://proceedings.mlr.press/v202/zhou23g.html


Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A. Appendix
A.1. Extended Related Work

LLMs for Optimization and Scientific Discovery Much of the work on LLMs for optimization has been inspired by
the design of classic black-box optimizers (BBO) such as genetic algorithms, bayesian optimizers, and random search
methods. BBOs are characterized by a lack of information about the true objective function. Instead, only inputs and
their corresponding objective values are provided to the optimizer, with no gradient or priors about the objective. Since
these optimization problems are often expressible in formal mathematical, logical, or symbolic terms, many initial attempts
at LLMs for optimization used the LLMs to first translate a natural language description of the problem into code or a
modeling language, prior to passing this formalization into an auxiliary solver (Ramamonjison et al., 2022; Ahmed &
Choudhury, 2024; Mittal et al., 2024; AhmadiTeshnizi et al., 2024). This approach was often quite effective, as it utilized
the wealth of past work on LLMs for named entity recognition (Amin & Neumann, 2021; Ushio & Camacho-Collados,
2021; Wang et al., 2023b; Yan et al., 2019; Arkhipov et al., 2019, ; NER), semantic parsing (Drozdov et al., 2023; Gupta
et al., 2018; Shaw et al., 2019; Shao et al., 2020; Rongali et al., 2020; Shi et al., 2021; Chen et al., 2022a; Stengel-Eskin
et al., 2021), and code generation (Chen et al., 2021; Nijkamp et al., 2023b;a; Zhang et al., 2023b; Poesia et al., 2022). The
NL4OPT competition (Ramamonjison et al., 2022), for example, decomposed LLMs-for-BBO into two subtasks: (1) the
translation of a natural language description into a graph of entities and relations between the entities, and (2) a formalization
of the optimization problem into a canonical logical reperesentation that could be solved by many commercial solvers.
Winning approaches often employed ensemble learning (He et al., 2022; Wang et al., 2023a; Ning et al., 2023; Doan, 2022),
adversarial learning (Wang et al., 2023a; Ning et al., 2023), and careful data pre-/post-processing and augmentation (He
et al., 2022; Ning et al., 2023; Jang, 2022). Later work demonstrated that pre-trained LLMs like GPT-4 could achieve
competitive performance on NLP4OPT without the NER stage (Ahmed & Choudhury, 2024), though the F1 score still
trailed behind the state-of-the-art translation+NER approaches from the winning NL4OPT entries. Outside of NL4OPT,
Gao et al. (2022), He-Yueya et al. (2023), AhmadiTeshnizi et al. (2024), and Mittal et al. (2024) use an LLM to formalize
math, mixed integer linear programming, and combinatorial reasoning problems from a natural language description before
offloading the solving to a Python interpreter or symbolic solver. Each work notes that the LLM performs better in this
decomposed framework than through prompting alone.

Yet other approaches tackle LLMs-for-optimization directly with the LLM, without additional solvers. As Song et al.
(2024) argues, LLMs offer both powerful in-context learning abilities and a flexible natural-language interface capable of
expressing a wide variety of problems. Many techniques embed the LLM in an evolutionary algorithm, using the LLM
as a mutation or crossover operator (Chen et al., 2024a; Guo et al., 2024b; Meyerson et al., 2024; Lehman et al., 2023;
Nasir et al., 2024; Liu et al., 2024a; Lange et al., 2024; Liu et al., 2024b; Romera-Paredes et al., 2023). In this setting,
the LLM provides a diversity of samples while the evolutionary algorithm guides the search towards high-fitness regions.
This strategy is a form of bi-level optimization, in which two nested optimization problems (one nested within the other)
are solved in alternation. It is common for the outer loop to optimize the model’s parameters, and for the inner loop to
optimize the model’s outputs (Chen et al., 2022b; Guo et al., 2024c). Ma et al. (2024) combine this approach with feedback
from physical simulations in the inner optimization loop to enable LLMs to complete various scientific optimization tasks,
such as constitutive law discovery and designing molecules with specific quantum mechanical properties. Although their
use of an LLM in a bi-level optimization loop is similar to ours, they directly train their parameters using differentiable
simulations whereas we do not assume access to the gradients of the ground truth rewards. Our work also explores various
aspects of LLM training that allow the LLM to improve its optimization abilities despite not having access to ground-truth
rewards in the inner loop. Lastly, other approaches avoid gradient optimization altogether and focus purely on prompt-based
optimization, demonstrating success on diverse tasks such as hill-climbing (Guo et al., 2024a), Newton’s method (Nie et al.,
2023), hyperparameter search (Zhang et al., 2023a), and prompt engineering (Khattab et al., 2024; Pryzant et al., 2023;
Yang et al., 2024).

Controllable Text Generation Controllable text generation (CTG) is a special case of optimization. Rather than searching
for sequences that maximize the objective function, the goal is to produce a sequence with a particular attribute value (e.g.
having a certain number of words, a more positive sentiment than the input, or a particular biological motif). In some aspects,
this may be an easier task – the optimizer need not generate an optimal sequence that is likely outside the distribution of its
training data. In others, this may also be more difficult. Targeting particular attribute values requires precise knowledge of
the shape of the entire objective function, rather than only the neighborhood of the optima. Although LLM prompting is in
itself considered a form of CTG (Radford et al., 2019; Brown et al., 2020), prompting alone tends to offer better control for

19



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

more open-ended, higher level instructions (e.g. “write a story in the style of Shakespeare”) than for fine-grained constraints
(e.g. “rewrite this sentence using only 10 words”) (Carlsson et al., 2022).

One common approach is to use control codes, or unique strings pre-pended in front of a training example that indicates
which attribute is represented in the example’s target (Keskar et al., 2019; Padmakumar et al., 2023; Raffel et al., 2020;
Madani et al., 2023). This approach is typically less generalizable to new attributes or instructions, due to the need to re-train
the model. However, more recent work has shown that LLMs are capable of learning to use these control codes in-context
(Zheng et al., 2023c; Zhou et al., 2023), simplifying the process by which new attributes can be introduced. A popular
alternative technique is inference-time guidance, which uses auxiliary tools (Pascual et al., 2021) or models (Dathathri et al.,
2020; Liu et al., 2021; Deng & Raffel, 2023; Dekoninck et al., 2024) to guide the LLM decoding process.

Existing Benchmarks in Biophysical Domains There are a few notable efforts to improve the state of sequence optimization
benchmarks for biophysical domains.

Small Molecules In the small molecule domain, GuacaMol (Brown et al., 2019) and the Therapeutics Data Commons (TDC)
(Huang et al., 2021) include simulation-based test functions for small molecule generation/optimization benchmarking. As
we discussed in the main text, simulation-based test functions have significant barriers to entry ranging from computational
resource requirements to software engineering concerns such as dependency management. If these simulations were in
fact well-characterized, high-fidelity proxies for real molecule design objectives then these objections could be resolved,
however at the time of writing it is difficult to determine 1) when a simulated task is “solved” and 2) what constraints
are required to prevent ML methods from “hacking” the simulation and 3) to what degree simulation scores correspond
at all to actual experimental feedback. Indeed, one could argue that if real molecule design objectives were sufficiently
well-understood to characterize via simulation then the most effective approach to ML-augmented molecule design would
be to simply approximate and accelerate those simulations rather than directly model experimental feedback.

Large Molecules In the large molecule domain, ProteinGym (Notin et al., 2023) assembles a collection of protein
datasets and model baselines but is primarily targeted at evaluating offline generalization with a fixed dataset. The models
from this benchmark could be used as “deep fitness landscapes” (i.e. an empirical function approximation optimization
benchmark), with the corresponding limitations we discussed in the main text. Our work is most closely related to the
FLEXS benchmarking suite (Sinai et al., 2020).2 To our knowledge, FLEXS is the most comprehensive attempt to date to
assemble a robust suite of benchmarks for large molecule sequence optimization, with benchmarks for DNA, RNA, and
protein sequences from an array of combinatorially complete database lookups, empirical function approximators, and
physics simulators. The Rough Mt. Fuji model (see below) is the only closed-form test function in the FLEXS suite. It is
additive and hence trivial to model and solve. Hence our contribution can be seen as augmenting existing benchmark suites
with test functions that are geometrically similar to real sequence optimization problems and also easy to install and cheap
to evaluate.

Models of Sequence Fitness in Theoretical Biology

Geneticists have proposed theoretical models of biophysical sequence fitness and the geometry induced by random mutation
and selection pressure, notably the mutational landscape model from Gillespie (2004), with more recent variants including
the Rough Mt. Fuji model from Neidhart et al. (2014). These models are interesting objects of study, however those models
assume mutational effects are either independent or additive, which disagrees with the correlated non-additive structure
we observe empirically. These models also do not account for “fitness cliffs” (i.e. expression constraints that are highly
sensitive to local perturbation and determine whether function is possible to observe experimentally). We implemented the
Rough Mt. Fuji model as an additional test function and verified that a genetic algorithm can easily optimize it. Ehrlich
functions can be seen as a constrained, non-additive mutational fitness landscape, and may be interesting objects for further
theoretical analysis.

2https://github.com/samsinai/FLEXS

20

https://github.com/samsinai/FLEXS


Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A.2. Ehrlich Functions

A.2.1. MOTIVATION FOR EHRLICH FUNCTIONS

Rigorous benchmarking is an essential element of good practice in science and engineering, allowing developers to evaluate
new ideas rapidly in a low-stakes environment and thoroughly understand the strengths and weaknesses of their methods
before applying them in costly, consequential settings.

While there has been a surge of investment into ML algorithms for applications like drug discovery, good benchmarks for
those algorithms have proven elusive (Tripp et al., 2021; Stanton et al., 2022). Experimental feedback cycles in the life and
physical sciences require expensive equipment, trained lab technicians, and can take months or even years. ML researchers
require rapid feedback cycles, typically measured in minutes, necessitating proxy measures of success.

This need is particularly acute when evaluating black-box sequence optimization algorithms, which must produce a sequence
of discrete states that optimizes a ground truth function. Unlike typical ML benchmarks for supervised and unsupervised
models, optimization algorithms cannot be evaluated with a static dataset unless the search space is small enough to be
exhaustively enumerated and annotated with the test function. Many researchers turn to simulation or empirical function
approximation to provide test functions for larger, more realistic search spaces, however there is always a compromise
between the highest possible fidelity (which may still be quite imperfect) and acceptable latency for rapid development.

We posit that well-designed synthetic (i.e. closed-form) test functions present many advantages as biomolecular design
benchmarks, compared to simulations or empirical function approximations. First, we note that synthetic test functions
have been universally used to test continuous optimization algorithms for decades (Molga & Smutnicki, 2005). Second, we
note that optimization algorithms are designed to solve any test function belonging to a certain class. For example, gradient
descent provably converges (under suitable assumptions) to the global optimum of any differentiable convex function. The
key observation is that a test function need not correlate at all with downstream applications as long as there is shared
structure (i.e. geometry). Thus the design principles we adopted to create Ehrlich functions were:

• Low costs/barriers to entry —a good benchmark should be inexpensive and easy to use.

• Well-characterized solutions —It should be easy to tell if a benchmark is “solved”. Incremental progress towards better
solutions should be reflected in the benchmark score.

• Non-trivial difficulty —a good benchmark should be challenging enough to motivate and validate algorithmic improve-
ments. It should not be possible to solve with naı̈ve baselines on a tiny resource budget.

• Similarity to real applications —while benchmarks inevitably require some simplification, a good benchmark should
retain key characteristics of the desired application in a stylized, abstracted sense, otherwise the benchmark will not be
relevant to the research community.

A.2.2. LIMITATIONS OF EXISTING SEQUENCE OPTIMIZATION BENCHMARKS

With these criteria in mind, we categorize existing types of biophysical sequence optimization benchmarks and describe
their limitations.

Database Lookups Database lookup test functions are constructed at substantial cost by exhaustively enumerating a search
space and associating each element with a measurement of some objective, sometimes requiring large interdisciplinary
teams of experimentalists and computationalists (Barrera et al., 2016b; Wu et al., 2016; Ogden et al., 2019; Mason et al.,
2021; Chinery et al., 2024). Unfortunately this approach necessarily restricts the search space, and the correctness of the
database itself cannot be completely verified without repeating the entire experiment.

Empirical Function Approximation Empirical function approximation benchmarks are related to database lookups since
they start from an (incomplete) database of inputs and corresponding measurements. This type of test function returns an
estimate from a statistical model trained to approximate the function that produced the available data (e.g. hidden Markov
model sequence likelihoods, protein structure models, or “deep fitness landscapes”) (Sarkisyan et al., 2016; Rao et al., 2019;
Angermueller et al., 2020; Wang et al., 2022; Verkuil et al., 2022; Xu et al., 2022; Notin et al., 2023; Hie et al., 2024).
Unfortunately empirical approximation is only reliable locally around points in the underlying dataset, and it is difficult
to characterize exactly over which region of the search space the estimates can be trusted. As a result, blindly optimizing

21



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

90°

Molecular interaction
(salt bridge)

Epitope

Arginine
(∈ epitope)

Glutamate
(binding pose 1)

Glutamate
(binding pose 2)

Epitope-specific binders Shared motifa b c d

Target domain
Epitope

Antibody 1
Antibody 2

Y98H

F54H

I53H
F74H

Y98H

F54H

I53H

F74H

Antibody 1
H1N1 spike protein

Antibody 2
H5N1 spike protein

CDRH2: GIIPIFGTTK
CDRH2: GISPIFGSTA

CDRH3: AKHMGYQVRETMDV
CDRH3: ARHGNYYYYSGMDV 

DE loop: ADDFAGTV
DE loop: ADIFSNTA

Target chain 1: ...GMVDGWYGY...KESTQKAIDGVTNKVNSIIDKM...
Target chain 2: ...AQDILEK...SSMPFHN...VLATGLR...

Figure 6: (a) Arginine and glutamate are complementary amino acids because they have a strong salt bridge interaction. (b -
c) Antibodies that bind to a specific region of a target protein (the epitope) have many therapeutic and diagnostic uses. (d)
Antibodies with different sequences can bind to the same epitope on two homologous proteins because they are structurally
similar, which manifests as shared motifs in sequence space. Structures shown have RCSB codes 3gbn and 4fqi.

empirical function approximators often reveals an abundance of spurious optima that are easy to find but not reflective of the
solutions we want for the actual problem (Tripp et al., 2021; Stanton et al., 2022; Gruver et al., 2024).

Physics-Based Simulations Simulations are a very popular style of benchmark, but current options all violate different
requirements of a good benchmark. Most simulations are slow to evaluate, many are difficult to install, some require expert
knowledge to run correctly, and yet still in the end simulations can admit trivial solutions that score well but are not actually
desirable. For example, docking models have been proposed as test functions (Cieplinski et al., 2023), but they do not have
well-characterized solutions and are easy to fit with deep networks (Graff et al., 2021). The primary appeal of simulations is
a resemblance to real applications, however the resemblance can be superficial. ∆∆G simulations (Schymkowitz et al.,
2005; Chaudhury et al., 2010) do not have a low barrier to entry, and yet the correlation of ∆∆G with real objectives (e.g.,
experimental binding affinity) is generally modest or unproven (Kellogg et al., 2011; Barlow et al., 2018; Hummer et al.,
2023). Despite their difficulties, simulation benchmarks can be an important source of validation for mature methods for
which we can justify the effort. However the limitations of simulations makes them especially unsuited for rapid method
development, leading us to explore other alternatives.

Closed-Form Test Functions Closed-form functions have many appealing characteristics, including low cost, arbitrarily
large search spaces, and amenability to analysis, however existing test functions for sequence optimization are so easy to
solve that they are mostly used to catch major bugs. Simply put, designing a functioning protein is much, much harder
than maximizing the count of beta sheet motifs (just one of many types of locally folded secondary structure elements in
proteins) (Gligorijević et al., 2021; Gruver et al., 2024). The beta sheet test function highlights the main difficulty of defining
closed-form benchmarks, namely not oversimplifying the problem to the point the benchmark becomes too detached from
real problems.

A.2.3. EHRLICH FUNCTION DEFINITION AND CONNECTION TO REAL BIOPHYSICAL SEQUENCE DESIGN

Here we introduce Ehrlich functions and explain which specific aspects of real biophysical sequence design problems are
captured by this function class, using antibody affinity maturation as a running example.

Uniform random draws in sequence space are unlikely to satisfy constraints. One of the first challenges encountered
in black-box biophysical sequence optimization is a constraint on which sequences can be successfully measured. For
example, chemical assays first require the reagents to be synthesized, and protein assays require the reagents be expressed
by some expression system such as mammalian ovary cells. Popular algorithms like Bayesian optimization often assume
the search space can be queried uniformly at random to learn the general shape of the function. Sequences of uniformly
random amino acids generally do not fold into a well-defined structure and cannot be purified, meaning that we cannot
measure anything about the objective function (e.g. binding affinity). Unfortunately constraints like protein expression
cannot currently be characterized as a closed-form constraint on the sequence.We simplify and abstract this feature of
biophysical sequences with the notion of a feasible set of sequences F with non-zero probability under a discrete Markov
process (DMP) with transition matrix A ∈ Rv

+ × Rv
+,

F = {x ∈ X | A[xℓ−1, xℓ] > 0 ∀ℓ ≥ 2}, (5)

where X = VL is the set of all sequences of length L ≥ 2 that can be encoded with states V , with |V| = v.

22



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

The binding protein has two loop conformations,
only one can form interactions with the target

Native protein-protein interface

Mutation 1 stabilizes the loop in its binding-
competent conformation, increasing affinity

Mutation 1 (non-interface)

Mutation 2 can form stronger interactions with the
target, but also greatly stabilizes the non-binding

loop conformation, reducing affinity

Mutation 2 (interface)

Double mutant stabilizes binding conformation
and has stronger interactions to the target,

massively increasing affinity

Mutation 1 & 2 combination

Epistasis

a b

c d

Figure 7: Illustration of an epistatic second-order interaction.

Note that if sequences are drawn uniformly at random, then assuming at least one entry of A is zero (i.e. at least one state
transition is infeasible), we have

P[x /∈ F ] ≥
L//2∑
ℓ=1

(
1− 1

v2

)ℓ
1

v2
,

= 1−
(
1− 1

v2

)L//2

,

where // denotes integer division. If we choose L large enough we will see uniform random draws fall outside F with high
probability. See Appendix A.2.4 for further details on our procedure to generate random ergodic transition matrices with
infeasible transitions.

Non-additive, position-dependent sensitivity to perturbation. By construction, any sequence optimization problem
can be written as minimizing the minimum edit distance to some set of optimal solutions X ∗. In the antibody engineering
context X ∗ is not a singleton but a set of solutions that all satisfy a notion of complementarity with the target antigen of
interest (more specifically the target epitope). As a simple example, if the epitope has an arginine residue, then placing a
glutamate residue on the antibody creates the possibility of a salt bridge (see Fig. 6). Furthermore, the formation of a salt
bridge in this example requires that we place the glutamate at specific positions on the antibody sequence that are in contact
with the epitope (i.e. on the paratope). One of the reasons there are many possible solutions to the antibody-antigen binding
problem is the absolute position of an amino acid in sequence space can vary as long as the resulting structure is more or
less the same (i.e. there are two or more structural homologs). The functional effect of changes to the antibody sequence are
not only non-additive, but can exhibit state-dependent higher-order interactions, a phenomenon known as epistasis (Fig. 7).

We abstract these features of biophysical sequence optimization by specifying the objective as the satisfaction of a collection
of c spaced motifs {(m(1), s(1)), . . . , (m(c), s(c))}, where m(i) ∈ Vk and s(i) ∈ Zk

+ for some k ≤ L//c. Given a sequence
x, we can represent the degree to which x satisfies a particular (m(i), s(i)) with q ∈ [1, k] bits of precision as follows:

hq(x,m
(i), s(i)) = max

ℓ<L

 k∑
j=1

1{x
ℓ+s

(i)
j

= m
(i)
j }

 //

(
k

q

)
/q. (6)

The quantization parameter q allows us to control the sparsity of the objective signal (note that q must evenly divide k).
Taking q = k corresponds to a dense signal which increments whenever one additional element of the motif is satisfied.
Taking q = 1 corresponds to a sparse signal that only increments when the whole motif is satisfied. For example, if k = 2

23



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Sequence Length
128 256 512

Motif Count
4 8 16

Motif Length
4 8 10

Objective Quantization
2 4 8

0 20 40 60
Function Evaluations (M)

0.0

0.2

0.4

0.6

0.8

1.0

S
im

pl
e 

R
eg

re
t

0 100 200 300
Function Evaluations (M)

0.0

0.2

0.4

0.6

0.8

1.0

S
im

pl
e 

R
eg

re
t

0 200 400
Function Evaluations (M)

0.0

0.2

0.4

0.6

0.8

1.0

S
im

pl
e 

R
eg

re
t

0 200 400
Function Evaluations (M)

0.2

0.4

0.6

0.8

1.0

S
im

pl
e 

R
eg

re
t

Figure 9: Here we show how the difficulty of the test problem can be controlled by varying Ehrlich function parameters,
keeping the optimizer fixed to the robust GA baseline defined in Sec. A.6.3. Starting from a fixed set of reference parameters
we vary each parameter individually. For this optimizer, the problem difficulty depends most strongly on the quantization
parameter q. The x-axis is defined in millions (M) of Ehrlich function evaluations, demonstrating the difficulty of these
Ehrlich functions, even for a small number of short motifs.

and q = 2 then Eq. equation 6 can assume the values 0, 0.5, or 1. If k = 2 and q = 1 then Eq. equation 6 can only assume
the values 0 or 1.

0.0 0.2 0.4 0.6 0.8 1.0
Motif Satisfaction

0.0

0.2

0.4

0.6

0.8

1.0

Re
sp

on
se

a=0
a=2
a=4

Figure 8: Motif satisfaction response
function g(h) = ah3 − ah2 + h.

The defining characteristic of epistasis is not merely non-additivity (which we
can model via quantization and a product-of-motif-checks parameterization),
but also non-monotonicity as a function of motif satisfaction. In simple terms,
we simply mean that a beneficial mutation in one sequence context can be
deleterious in another. We model non-monotonic mutational effects through
the introduction of a response function g : [0, 1]→ R. In particular we propose
a cubic function g(h) = ah3 − ah2 + h, where a ∈ R+ is the epistasis factor
(see Fig. 8). When a = 0, g(h) = h, corresponding to a linear response. When
a = 4, g(0) = g(0.5), which means satisfying half of the motif scores the
same as satisfying none of it. While a > 4 can be used, one must be careful to
guarantee that the optimal value still holds, i.e. f∗ = 1, and f will no longer
be strictly non-negative. Note this reponse function is symmetric with respect
to all motif elements, as there is no notion of some motif elements being more
“robust” to epistasis than others. While this modeling decision does not entirely
agree with empirical evidence, it greatly simplifies the implementation, and
captures the key non-monotonic behavior we desire. In the experiments for
this paper we took a = 0 for all test functions, as we found the resulting optimization problems already sufficiently difficult
to induce interesting differences in the optimizers, leaving an investigation of the effect of taking a > 0 for future work.

We are now ready to define an Ehrlich function f : VL → (−∞, 1], which quantifies with precision q the degree to which x
simultaneously satifies all (m(i), s(i)) if x is feasible, and is negative infinity otherwise.

f(x) =

{∏c
i=1 g ◦ hq(x,m

(i), s(i)) if x ∈ F
−∞ else

. (7)

Note that we must take some care to ensure that 1) the spaced motifs are jointly satisfiable (i.e. are not mutually exclusive)
and 2) at least one feasible solution under the DMP constraint in Eq. equation 5 attains the global optimal value of 1. See
Appendix A.2.5 for details.

One major advantage of procedurally generating specific instances of Ehrlich functions is we can generate as many distinct
instances of this test problem as we like. In fact it creates the possibility of “train” functions for algorithm development and
hyperparameter tuning and “test” functions for evaluation simply by varying the random seed. These functions can also
be defined with arbitrary levels of difficulty, as shown in Fig. 9. However, defining a random instance that is nevertheless
provably solvable takes some care in the problem setup, which we now explain.

24



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A.2.4. CONSTRUCTING THE TRANSITION MATRIX

Here we describe an algorithm to procedurally generate random ergodic transition matrices A with infeasible transitions.
A finite Markov chain is ergodic if it is aperiodic and irreducible (since every irreducible finite Markov chain is positive
recurrent). Irreducibility means every state can be reached with non-zero probability from every other state by some
sequence of transitions with non-zero probability. We will ensure aperiodicity and irreducibility by requiring the zero entries
of A to have a banded structure. For intuition, consider the transition matrix

0.4 0.3 0 0.3
0.3 0.4 0.3 0
0 0.3 0.4 0.3
0.3 0 0.3 0.4


Recalling that v is the number of states, we can see that every state x communicates with every other state x′ by the sequence
x → (x + 1) mod v → · · · → (x′ − 1) mod v → x′. We also see that the chain is aperiodic since every state x has a
non-zero chance of being repeated.

To make things a little more interesting we will shuffle (i.e. permute) the rows of a banded structured matrix (with bands
that wrap around), but ensure that the diagonal entries are still non-zero. Note that permuting the bands does not break
irreducibility because valid paths between states can be found by applying the same permutation action on valid paths from
the unpermuted matrix. We will also choose the non-zero values randomly, using the shuffled banded matrix only as a binary
mask B as follows:

(banded matrix)
1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 −−−→shuffle


1 0 1 1
1 1 1 0
1 1 0 1
0 1 1 1

 ,

−−−−→
diag=1


1 0 1 1
1 1 1 0
1 1 1 1
0 1 1 1


= B.

Now we draw the transition matrix starting with a random matrix with IID random normal entries, softmaxing with
temperature τ > 0 to make the rows sum to 1, applying the mask B, and renormalizing the rows by dividing by the sum of
the columns after masking.

Z =

(randn matrix)
+1.41 +1.67 −1.52 +0.63
−0.35 +0.45 +0.86 −0.49
+1.42 −1.31 −0.31 +1.43
−0.02 +1.55 −0.26 +1.13

 ,

−−−−→
softmax


0.36 0.46 0.02 0.16
0.13 0.30 0.45 0.12
0.44 0.03 0.08 0.45
0.10 0.49 0.08 0.33

 ,

−−→
⊙B


0.36 0 0.02 0.16
0.13 0.30 0.45 0
0.44 0.03 0.08 0.45
0 0.49 0.08 0.33

 ,

−−−→
norm


0.66 0 0.04 0.30
0.15 0.34 0.51 0
0.44 0.03 0.08 0.45
0 0.55 0.09 0.36

 = A.

25



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

We can also verify that A is ergodic numerically by checking the Perron-Frobenius condition,

(Am)ij > 0, ∀i, j, (8)

where m = (v − 1)2 + 1, A1 = A, and Ab = AAb−1 for all b > 1. In our example, if v = 4 then m = 10 and we verify on
a computer that

A10 =


0.33 0.23 0.17 0.27
0.33 0.23 0.17 0.27
0.33 0.23 0.17 0.27
0.33 0.23 0.17 0.27


A.2.5. CONSTRUCTING JOINTLY SATISFIABLE SPACED MOTIFS

Here we describe how to procedurally generate c spaced motifs of length k such that the existence of a optimal solution x∗

with length L with non-zero probability under a transition matrix A generated by the procedure in Appendix A.2.4 can be
verified by construction. If we simply sampled motifs completely at random from Vk we cannot be sure that a solution
attaining a global optimal value of 1 is actually feasible under the DMP constraint.

First we require that L ≥ c× k. Next to define the motifs, we draw a single sequence of length c× k from the DMP defined
by A (the first element can be chosen arbitrarily). Then we chunk the sequence into c segments of length k, which defines
the motif elements m(i). This ensures that any motif elements immediately next to each other are feasible, and ensures that
one motif can transition to the next if they are placed side by side.

Next we draw random offset vectors s(i). The intuition here is we want to ensure that an optimal solution can be constructed
by placing the spaced motifs end-to-end. If we fix c× k positions to satisfy the motifs, there are L− c× k “slack” positions
that we evenly distribute (in expectation) between the spaces between the elements of each motif. We set the first element of
every spacing vector s(i)1 to 0, then set the remaining elements to the partial sums of a random draw from a discrete simplex
as follows:

w(i) ∼ U
(
{w ∈ Rk−1 |

∑
wi = 1}

)
. (9)

s
(i)
j+1 = s

(i)
j + 1 + ⌊w(i)

j × (L− c× k)//c⌋. (10)

Finally, recall that in Appendix A.2.4 we ensured that self-transitions x→ x always have non-zero probability. This fact
allows us to construct a feasible solution that attains the optimal value by filling in the spaces in the motifs with the previous
motif elements.

As a concrete example, suppose L = 8, c = 2, and k = 2 (hence smax = 3) and we draw the following set of spaced motifs:[
0 3 1 2

]
→

[
0 3
1 2

]
=

[
m(1)

m(2)

]
, (11)[

s(1)

s(2)

]
=

[
0 3
0 3

]
. (12)

(13)

An optimal solution can then be constructed as follows:

x∗ =
[
0 0 0 3 1 1 1 2

]
Note that this solution is only used to verify that the problem can be solved. In practice solutions found by optimizers like a
genetic algorithm will look different. Additionally if L≫ c× k then the spaced motifs can often be feasibly interleaved
without clashes.

A.2.6. DEFINING THE INITIAL SOLUTION

Optimizer performance is generally quite sensitive to the choice of initial solution. In our experiments we fixed the initial
solution to a single sequence of length L drawn from the DMP.

26



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A.2.7. EHRLICH BENCHMARK RANK CORRELATION WITH REAL-WORLD DATA BENCHMARKS

To validate the real-world applicability of Ehrlich functions as an optimizer benchmark, we compared the performance of 64
variants of our genetic algorithm on Ehrlich functions versus three well-established lookup-based biological test functions:
TFBind8 (Barrera et al., 2016a), TrpB (Papkou et al., 2023), and DhfR (Johnston et al., 2024). For each benchmark, we
evaluate the median cumulative regret (estimated from 8 trials) of 64 variants of our GA with different hyperparameter
settings. Each hyperparameter variant (pm, pr, α) was an element of the Cartesian product {0.0625, 0.125, 0.25, 0.5} ×
{0.0625, 0.125, 0.25, 0.5}×{0.0625, 0.125, 0.25, 0.5}. We then computed rank correlations between algorithm performance
on these biological benchmarks vs. comparable Ehrlich functions. As shown in Table 1, the strong rank correlations are
evidence supporting the claim that Ehrlich functions effectively capture the structure of real biological sequence optimization
problems.

DhfR TFBind8 TrpB

Ehr(4, 4)-2-2-2 0.75 0.75 0.61
Ehr(20, 8)-2-2-2 0.86 0.89 0.73

Table 1: Spearman correlation coefficients of median regret achieved by our genetic algorithm variants on Ehrlich functions
versus lookup-based biological test functions.

27



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A.3. Proof of Strong Interpolation Criteria for the Policy Objective

The policy objective is defined as:

L(θ) := DKL(πθ ∥ π∗) + λDKL(πref ∥ πθ), (14)

where πθ is the learned policy, π∗ is the optimal target policy (Boltzmann distribution based on rewards), πref is the reference
prior policy, and λ ≥ 0 is the interpolation hyperparameter. We assume that πθ, π∗, and πref are probability distributions
over the same action space Y (conditioned on a state/prompt x, which we omit for brevity in the distributions). We also
assume that the family of policies parameterized by θ is sufficiently flexible to represent both π∗ and πref .

The Strong Interpolation Criteria (SIC) requires:

1. limλ→0+ argminπθ
L(θ) = π∗

2. limλ→∞ argminπθ
L(θ) = πref

3. For λ ∈ (0,∞), the optimal πθ (denoted π
(λ)
θ ) interpolates between π∗ and πref .

A.3.1. PROOF OF SIC CONDITION 1 (λ→ 0+)

As λ→ 0+, the objective function in Eq. (14) becomes:

lim
λ→0+

L(θ) = lim
λ→0+

(DKL(πθ ∥ π∗) + λDKL(πref ∥ πθ))

= DKL(πθ ∥ π∗) + 0 ·DKL(πref ∥ πθ)

= DKL(πθ ∥ π∗).

The Kullback-Leibler divergence DKL(πθ ∥ π∗) is non-negative, i.e., DKL(πθ ∥ π∗) ≥ 0. It achieves its minimum value of
0 if and only if πθ(y) = π∗(y) for almost all y ∈ Y . Therefore,

lim
λ→0+

argmin
πθ

L(θ) = π∗.

This satisfies the first condition of SIC.

A.3.2. PROOF OF SIC CONDITION 2 (λ→∞)

As λ→∞, we analyze the objective function L(θ) = DKL(πθ ∥ π∗) + λDKL(πref ∥ πθ).

Consider the case where πθ = πref . In this scenario, DKL(πref ∥ πθ) = DKL(πref ∥ πref) = 0. The objective function
evaluates to:

L(θ)|πθ=πref
= DKL(πref ∥ π∗) + λ · 0 = DKL(πref ∥ π∗).

This value is a finite constant (assuming πref and π∗ have overlapping support such that the KL divergence is well-defined
and finite).

Now, consider any policy πθ ̸= πref such that DKL(πref ∥ πθ) > 0. As λ→∞, the term λDKL(πref ∥ πθ) will tend to∞,
because DKL(πref ∥ πθ) is a positive constant for this πθ. Thus, for πθ ̸= πref (where DKL(πref ∥ πθ) > 0):

lim
λ→∞

L(θ) = DKL(πθ ∥ π∗) + lim
λ→∞

λDKL(πref ∥ πθ) =∞.

To minimize L(θ) as λ→∞, the policy πθ must be chosen such that the term growing with λ is minimized, which means
DKL(πref ∥ πθ) must be 0. This occurs if and only if πθ(y) = πref(y) for almost all y ∈ Y . Therefore,

lim
λ→∞

argmin
πθ

L(θ) = πref .

This satisfies the second condition of SIC.

28



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A.3.3. PROOF OF SIC CONDITION 3 (INTERPOLATION FOR λ ∈ (0,∞))

For any finite, positive λ, the objective function L(πθ) := DKL(πθ ∥ π∗) + λDKL(πref ∥ πθ) is minimized by a policy π
(λ)
θ .

We established that π∗(y|x) ∝ exp(β · r(x, y)) is a Boltzmann distribution, and πref is the reference policy.

The objective L(πθ) is a sum of two non-negative divergence terms. The first term, DKL(πθ ∥ π∗), pulls πθ towards π∗.
The second term, λDKL(πref ∥ πθ), pulls πθ towards πref (in a mass-covering sense).

If we operate directly in the space of probability distributions (assuming our model family ΠΘ = {πθ} is rich enough to
contain the solutions), L(π) is a strictly convex function of the distribution π ∈ ΠΘ for any λ ≥ 0 (as both KL terms are
convex in π, and the first is strictly convex if π∗ is fixed, and the second is convex in π). Thus, for any λ ≥ 0, there exists a
unique minimizing distribution π(λ) in a suitable convex space of distributions.

The first-order optimality condition for the unconstrained problem (in the space of distributions, subject to
∑

y π(y) = 1)
for L(π) is found by setting the functional derivative with respect to π(y) to zero:

δL(π)
δπ(y)

=

(
log

π(y)

π∗(y)
+ 1

)
+ λ

(
−πref(y)

π(y)

)
+ µ = 0

where µ is the Lagrange multiplier for the normalization constraint. This implies that the optimal distribution π(λ)(y)
satisfies:

log π(λ)(y)− log π∗(y)− λ
πref(y)

π(λ)(y)
+ (1 + µ) = 0

π(λ)(y) ∝ π∗(y) exp

(
λ
πref(y)

π(λ)(y)

)
. (∗)

This equation implicitly defines the unique optimal distribution π(λ)(y). The solution π(λ) to the implicit equation (∗) varies
continuously with λ. This is because the objective function L(π) changes continuously with λ, and the minimizer of a
strictly convex function typically depends continuously on such parameters. Thus, the optimal policy π

(λ)
θ (which is the πθ

in our model family that best approximates π(λ)) smoothly interpolates from π∗ to πref as λ varies from 0+ to∞. This
satisfies the third condition of SIC.

A.4. Derivations

Although DPO has recently become a popular preference learning method due to its relative simplicity and competitive
results, its offline contrastive objective suffers from a number of drawbacks. Firstly, since DPO optimizes for an off-policy
objective, a DPO-trained model rapidly over-optimizes, resulting in generations that decline in quality despite continued
improvements in offline metrics (Rafailov et al., 2024a; Chen et al., 2024b). DPO models also fail at ranking text according
to human preferences (Chen et al., 2024b) and tend to decrease the probability mass assigned to preferred outputs (Pal et al.,
2024; Rafailov et al., 2024b; Feng et al., 2024; Pang et al., 2024). As training continues, DPO generations also increase in
length, even if the quality of the generations does not necessarily improve (Singhal et al., 2024). Additionally, when the
reference model already performs well on a particular subset of the input domain, DPO cannot achieve the optimal policy
without deteriorating performance on that subset (Hu et al., 2024). Lastly, DPO does not make use of absolute reward values
– instead, it simply assumes that r(x, yw) > r(x, yl) for all (x, yw, yl) in the training dataset, but does not use information
about how much better yw is than yl.

RLHF, on the other hand, involves steep technical complexity and frequently exhibits training instabilities (Zheng et al.,
2023a; Wang et al., 2024; Casper et al., 2023). Hu et al. (2024); Korbak et al. (2022b) additionally show that RLHF’s
objective interpolates between πRef and a degenerate distribution πδ that places all probability mass on a single reward-
maximizing sequence, thereby promoting generator collapse. Indeed, much past work (Kirk et al., 2024; Zhou et al., 2024;
Padmakumar & He, 2024) has illustrated the low diversity of RLHF-generated text.

Derivation of the MargE Objective To derive a training objective that fulfills SIC, we follow Hu et al. (2024) and propose
an objective that takes the following general form:

argmin
θ

[KL(π̃θ∥π∗) + λKL(πRef∥π̃θ)] (15)

where π∗ is the target reward distribution and π̃θ is the length-normalized version of πθ.

29



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Since past work has indicated that preference-tuned models often spuriously favor longer generations, we follow Malladi
(2024); Meng et al. (2024) by instead using length-normalized likelihoods. Additionally, it is standard in past literature
(Ziegler et al., 2019; Korbak et al., 2022a) to model π∗ as a Boltzmann function of the reward. That is,

π∗(y | x) = 1

Z(x)
exp(r(x, y))

where Z(x) is the partition function. Although this partition function is not guaranteed to converge due to the observation
that LLMs often place non-zero probability mass on infinite-length sequences (Du et al., 2023; Welleck et al., 2020),
we make the assumption for now that this effect is negligible. This results in a formulation of the optimal policy that is
Bradley-Terry with respect to the rewards. I.e.,

log π∗(y1|x)− log π∗(y2|x) = r(x, y1)− r(x, y2)

Then, the first term of Equation 15 can be expanded as:

argmin
θ

KL(π̃θ∥π∗) = argmin
θ

E
x∼Dx,

y∼π̃θ(·|x)

log

(
π̃θ(y|x)
π∗(y|x)

)

Since we cannot directly sample from π̃θ, we approximate it via an expectation over the un-normalized policy:

≈ argmin
θ

E
x∼Dx,

y∼πθ(·|x)

[
log πθ(y|x)
|y|

− r(x, y) + logZ(x)

]

= argmin
θ

E
x∼Dx,

y∼πθ(·|x)

[
log πθ(y|x)
|y|

− r(x, y)

]

Rather than re-sampling from πθ after every step of training, we approximate this step using importance sampling:

KL(πθ∥π∗) ≈
∑

x∼Dx,
y∼πθ(·|x)

πθ(y|x)
πRef(y|x)

πRef(y|x)
[
log πθ(y|x)
|y|

− r(x, y)

]

≈ E
x∼Dx,

y∼πRef(·|x)

πθ(y|x)
πRef(y|x)

[
log πθ(y|x)
|y|

− r(x, y)

]
(16)

For the second term of Equation 15, we remove terms not depending on θ, resulting in the standard token-averaged
cross-entropy loss:

min
θ

KL(πRef∥πθ) ≡ min
θ

E
x∼Dx,

y∼πRef(·|x)

− log πθ(y|x)
|y|

(17)

Plugging Equations 16 and 17 back into 15, we obtain

LMargE(πθ, πRef;Dx) = E
x∼Dx,

y∼πRef(·|x)

[
πθ(y|x)
πRef(y|x)

(
log πθ(y|x)
|y|

− r(x, y)

)
− λ

log πθ(y|x)
|y|

]
.

Since importance sampling often leads to high variance of the gradient estimates in practice (Owen, 2013), we instead use
the self-normalized version of this objective (Eq. 30).

Lemma A.1. Given a Bradley-Terry model π(y|x) = 1
Z(x) exp(r(x, y)) with partition function Z(x), if reward function

r(x, y) = f(y) − f(x) for some real-valued scoring function f(x) : V∗ → R, then π(y|x) = π(y|z) for any pair
x, z ∈ dom(f).

30



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Proof. Since Z(x) is the normalizing constant for π(y|x), we can write

Z(x) =
∑

y′∈V∗

exp(r(x, y′)) (18)

=
∑

y′∈V∗

exp(f(y′)− f(x)) (19)

=
1

exp(f(x))

∑
y′∈V∗

exp(f(y′)). (20)

It follows that

π(y|x) = exp(f(x))∑
y′∈V∗ exp(f(y′))

exp(r(x, y)) (21)

=
exp(f(x) + f(y)− f(x))∑

y′∈V∗ exp(f(y′))
(22)

=
exp(f(y))∑

y′∈V∗ exp(f(y′))
(23)

=
exp(f(y) + f(z)− f(z))∑

y′∈V∗ exp(f(y′))
(24)

=
exp(f(z)) exp(r(z, y))∑

y′∈V∗ exp(f(y′))
(25)

=
1

Z(y)
exp(r(z, y)) (26)

= π(y|z) (27)

31



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A.5. Prompt

We use this prompt only in our initial prompting experiment with o1 and Gemini Flash (see Section 6.1), with
<TRANSITION MATRIX HERE> replaced by the transition matrix corresponding to f2.

You are given a challenging discrete optimization problem to solve. The problem consists of generating a discrete
integer sequence (with vocabulary consisting of integers from 0 to 31, inclusive) that lies in the support of a discrete
Markov process (DMP) and contains specific spaced motifs. The transition matrix for the DMP is as follows:

<TRANSITION MATRIX HERE>

The motifs are [ 3, 16, 15, 11], [24, 3, 16, 15], [11, 14, 8, 10], [22, 27, 7, 20] and the respective spacings for these
motifs are [0, 2, 4, 5], [0, 3, 5, 6], [0, 1, 4, 6], and [0, 2, 4, 15]. Your solution will be scored based both on whether it
is feasible (i.e. lies in the support of the DMP) and how many motifs it fulfills. That is, if the c motifs and their
spacings are denoted as {(m(1), s(1)), · · · , (m(c), s(c))}, then we score whether sequence x fulfills motif i with
h(x,m(i), s(i)) = maxl<L(

∑k
j=1 1[xl+s

(i)
j

= m
(i)
j ])/4 where L is the length of x (L = 32 in this problem). If the

sequence x is feasible, then the total score is
∏c

i=1 h(x,m
(i), s(i)). Otherwise, the score is 0.

Here are some example sequences and their respective scores:
x1 = [12, 31, 2, 4, 15, 7, 14, 15, 12, 31, 11, 29, 25, 1, 15, 11, 19, 24, 22, 5, 17, 27, 1, 14, 31, 28, 16, 15, 11, 14, 16, 10]
Score of x1: (1/4) ∗ (1/4) ∗ (1/2) ∗ (1/2) = 1/64

x2 = [12, 31, 2, 4, 15, 11, 14, 15, 12, 31, 11, 10, 25, 1, 15, 11, 19, 24, 22, 5, 17, 27, 1, 14, 31, 28, 16, 15, 11, 14, 10, 15]
Score of x2: 0

x3 = [3, 16, 15, 11, 24, 24, 24, 24, 15, 11, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22]
Score of x3: (1/2) ∗ (1/4) ∗ (1/4) ∗ (1/4) = 1/128

x4 = [3, 3, 16, 16, 15, 11, 24, 24, 24, 24, 15, 11, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22]
Score of x4: 1 ∗ (1/4) ∗ (1/4) ∗ (1/4) = 1/64

It is often a good idea to start with a random sequence, perturb it a bit, score it and stay with this perturbed version if
it scores better. You can repeat this process as many times as you want until the score converges to the maximum
value. It is extremely important to check your progress once in a while. If you haven’t made good progress, it would
be a good idea to backtrack what you have done (make sure to mark important steps with special markers so that
you know where to backtrack to) and resume from there on.

Since there could be many isolated solutions, it would be a good idea to try this process from a few different random
initial sequences. Make sure to score the solution of each of these random initial sequences and revisit them at the
end to find the very best sequence.

Everyone’s life depends on finding the best sequence, as this sequence would be a key to finding a medicine for the
future pandemic.

It is important for you to solve this problem directly yourself by thinking about it carefully and iteratively, as you are
not allowed to use the computer, due to safety measures. Please directly output a sequence and not code, as you do
not have access to an environment to execute the code in.

32



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A.6. Algorithms

Algorithm 2 DATASETFORMATTING(S). An algorithm that adapts PropEn (Tagasovska et al., 2024) to create pairs or
triples of data for LLM training. We use kn = 30, ∆x = 0.25, and the fractional Hamming distance as d.
Input: Dataset S = {(x, y)} of particles x and scores y; kn number of nearest neighbors to find; distance function d;
threshold ∆x; dataset type type = (“binary” | “triple”)
if type = “binary” then

D ←

{
(xi, xj)

∣∣∣∣ (xi,yi),(xj ,yj)∈S
xj∈KNEARESTNEIGHBORS(xi,kn)

d(xi,xj)≤∆x

f(xj)>f(xi)

}
else

D ←

{
(xi, xj , xk)

∣∣∣∣ (xi,yi),(xj ,yj),(xk,yk)∈S
xj ,xk∈KNEARESTNEIGHBORS(xi,kn)

d(xi,xj)≤∆x,d(xi,xk)≤∆x

f(xj)>f(xi),f(xi)≥f(xk)

}
end
Output: D

Algorithm 3 ITERATIVEREFINEMENT(πθ;S). πt
θ represents πθ with temperature t scaling. We use ns = 200, ni = 10,

no = 10, and T = [0.6, 0.8, 1.0, 1.2, 1.4, 1.6].
Input: Pretrained LLM πθ; dataset S = {(x, y)} of sequences x and scores y; ns number of seed examples; ni rounds of
iteration per example; no outputs per iteration; T set of temperatures to sample with.
S′ ← {}
X ← {x | (x, y) ∈ TOPK(S, ns)} ▷ Obtain ns seed examples from the top training examples by score.
for x ∈ X do

x0 ← x
i← 0
for i < ni do

xi+1 ← GREEDYDECODING(πθ;xi)
S′ ← S′ ∪ {xi+1}
i← i+ 1

end
for t ∈ T do

i← 0
for i < ni do
Xi ← {xj ∼ πt

θ(· | xi)}no
j=1 ▷ Sample no sequences using temperature t.

S′ ← S′ ∪ Xi

xi+1 ← argmaxx′∈Xi
πθ(x

′ | x) ▷ Select the highest-likelihood sample as the input for the next iteration.
i← i+ 1

end
end

end
S′ ← DEDUPLICATE(S′)
Output: S′

Algorithm 4 FILTER(X , j). An algorithm for filtering a dataset X of sequences down to only j sequences.
Input: LLM πθ that generated the sequences; dataset X = {(x, y)} of sequences x and scores y; likelihood threshold pmin;
maximum proportion of infeasible sequences pmax-infeas; final output size k.
X ← {((x, y), πθ(x)) | (x, y) ∈ X} ▷ Compute likelihoods.
X ← {(x, y) | πθ(x) > pmin, ((x, y), πθ(x)) ∈ X}
Xfeasible ← {(x, y) | y ̸= −∞, (x, y) ∈ X}
Xinfeasible ← {(x, y) | y = −∞, (x, y) ∈ X}
nfeasible ← |Xfeasible|
nmax-infeas. ← nfeasible × pmax-infeas

1−pmax-infeas

X ← Xfeasible ∪ SAMPLE(Xinfeasible, nmax-infeas.) ▷ Downsample infeasible examples.
X ← SAMPLE(X ,min(j, |X |)) ▷ Subsample j examples.
Output: X

33



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A.6.1. DATASET FORMATTING

To format our data, we adapt PropEn (Tagasovska et al., 2024), a technique for matching pairs of examples to implicitly
guide the model towards generating sequences that are close by the input but still improve a particular property. Since
PropEn was originally designed for pairs of data (x, y), we also adapt PropEn to create triples of data (x, yw, yl) for DPO
training. In short, given a dataset D = {(xi, yi)}Ni=1 of input sequences xi and their scores yi, PropEn creates the following
paired dataset:

DPropEn = {(xi, xj) | (xi, yi), (xj , yj) ∈ D, d(xi, xj) ≤ ∆x, f(xj)− f(xi) ∈ (0,∆y]} (28)

for thresholds ∆x and ∆y and distance function d. In all our experiments, we use the Hamming distance as d and modify
the constraint f(x′)− f(x) ∈ (0,∆y) to f(x′) > f(x) since we observed that this looser constraint was more effective in
our experiments. We use DPropEn for both LLOME-SFT and LLOME-MARGE.

To additionally adapt the PropEn dataset creation process for preference tuning (e.g. DPO), we create preference triples
using the following constraints:

DPropEn-Triples =

{
(xi, xj , xk)

∣∣∣∣ (xi,yi),(xj ,yj),(xk,yk)∈D
d(xi,xj)≤∆x,d(xi,xk)≤∆x

f(xj)>f(xi),f(xi)≥f(xk)

}
(29)

In preference tuning terms, the xi is the prompt or input sequence, and xj and xk are yw and yl, respectively. We use
DPropEn-Triples in LLOME-DPO. We formalize this algorithm in Alg. 2.

For all training algorithms, we format the input as “<inc> [3, 1, · · ·, 5]” where “<inc>” is a control code meant
to indicate to the model that it should edit the sequence to increase the score. Outputs are formatted similarly, but without
the control code.

A.6.2. ITERATIVE REFINEMENT

Our iterative refinement is formalized in Alg. 3. Loosely, we select the best ns training examples from the last round of the
LLOME outer loop, and provide them as seed inputs to the LLM to refine. For each seed input, we use 10 rounds of iterative
generation where the best (highest-likelihood) generation from the previous round is provided as input to the next round. We
repeat this process with both greedy decoding and sampling at various temperatures. In the case of greedy decoding, only
one generation is obtained per iteration. When we sample, we sample no = 10 outputs at once.

Since LLM outputs tend to become less diverse with more rounds of training, we also implement automatic temperature
adjustments after each round of LLOME. The default temperature range is T = [0.6, 0.8, 1.0, 1.2, 1.4, 1.6], but if the average
Hamming distance of generations from the last LLOME round was < 0.075, then we instead use T + 0.6. For average
Hamming distance between 0.075 and 0.1, we use T + 0.4. For averages between 0.1 and 0.1, we use T + 0.2.

A.6.3. GENETIC ALGORITHM

In Algorithms 5, 6, and 7, we provide pseudo-code for our genetic algorithm baseline, which we implement in pure PyTorch
(Paszke et al., 2019), using the torch.optim API.

The GA baseline has only four hyperparameters, the total number of particles n, the survival quantile α ∈ (2/n, 1), the
mutation probability pm, and the recombination probability pr. Generally speaking for best performance one should use the
largest n possible, and tune α (which determines the greediness of the optimizer), pm, and pr.

Our genetic algorithm uses mutation probability pm = 0.005, n = 1000 particles per iteration, survival quantile α = 0.1,
and recombination probability pr = 0.0882.

34



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Algorithm 5 Genetic algorithm pseudo-code

Input: initial solution x̂∗, f̂∗, mutation probability pm, recombination probability pr, survival quantile α, # particles n
Xpop ← mutate({x̂∗}, pm, n)
for t = 1, . . . , T do

v← f(Xpop)

if max vi > f̂∗ then
x̂∗ ← argmax vi
f̂∗ ← max vi

end
τ ← quantile(v, 1− α)
Xtop ← {x ∈ Xpop | f(x) ≥ τ }
n′ ← n− |Xtop|
Xpop ← Xtop ∪ recombine(Xtop, pr, n

′)
Xpop ← mutate(Xpop, pm, 1)

end
Returns: Estimated maximizer x̂∗, f̂∗

Algorithm 6 mutate function
Input: initial set X , mutation probability pm, number of mutants n.
X ′ = ∅
for x ∈ X do

for i = 1, . . . , n do
mask = rand like(x) < pm
sub = randint(0, v − 1,len(x))
x′ = where(mask,sub,x)
X ′ = X ′ ∪ {x′}

end
end
Returns: X ′

Algorithm 7 recombine function
Input: initial set X , recombine probability pr, number of recombinations n.
X ′ = ∅
P(1) = draw w replacement(X , n)
P(2) = draw w replacement(X , n)
for i = 1, . . . , n do

x(1) = P(1)
i

x(2) = P(2)
i

mask = rand like(x(1)) < pr
x′ = where(mask,x(1),x(2))
X ′ = X ′ ∪ {x′}

end
Returns: X ′

35



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A.7. LLM Training Details

We train every model for 1 epoch with PyTorch DDP on two A100 GPUs, using training loops implemented with the
Huggingface datasets, transformers, and trl libraries. We conducted hyperparameter searches for each LLM
training method, using the validation loss from the dataset of the first iteration of LLOME to select the best hyperparameters.
We also check whether the generated outputs are parsable and conform to the correct format (i.e., a list of the correct length
with values in the correct range). If the hyperparameter set-up with the lowest validation loss does not output sequences with
the correct format > 90% of the time, then we select the set-up with the next best validation loss that meets these constraints.
Notably, these format checks were the most important for DPO. Many DPO-trained models achieve low validation loss
despite generating sequences with incorrect format. We use the best hyperparameters tuned from the validation dataset
created during the first iteration of LLOME but do not repeat hyperparameter tuning in future iterations. All search ranges
and final hyperparameter values (in bold) are listed below.

SFT We train the SFT models with the AdamW optimizer, with β1 = 0.9, β2 = 0.999, λ = 0.01, and ϵ = 1× 10−8. We
also search the following hyperparameter ranges:

• Learning rate ∈ {1× 10−7,1× 10−6, 1× 10−5}

• Batch size ∈ {16, 32, 64,128}

DPO We train the DPO models with the RMSprop optimizer, with α = 0.99, λ = µ = 0, and ϵ = 1 × 10−8. Due to
computational constraints, we train with bf16. We also search the following hyperparameter ranges:

• Learning rate ∈ {1× 10−7, 1× 10−6}

• Batch size ∈ {64, 128}

• β ∈ {0.1, 0.2, 0.4, 0.8}

MargE We train the MargE models with the AdamW optimizer, with β1 = 0.9, β2 = 0.999, λ = 0.01, and ϵ = 1× 10−8.
We also search the following hyperparameter ranges:

• Learning rate ∈ {1× 10−7,1× 10−6}

• Batch size ∈ {64, 128}

• λ ∈ {0.2, 0.4, 0.8, 1.0,10.0}

REINFORCE We trained REINFORCE with the same best hyperparameters as MargE.

Self-Normalization For both MargE and REINFORCE, we applied self-normalization to the importance weights. That
is, if B(x, y) is the batch of examples that a particular example (x, y) belongs to, then the self-normalized MargE and
REINFORCE objectives are as follows:

L̃MargE(πθ, πRef;Dx) = E
x∼Dx,

y∼πRef(·|x)

[
w̃(x, y)

(
log πθ(y|x)
|y|

− r(x, y)

)
− λ

log πθ(y|x)
|y|

]
(30)

L̃REINFORCE(πθ, πRef;Dx) = E
x∼Dx,

y∼πRef(·|x)

[
w̃(x, y) (−r(x, y) log πθ(y|x))− λ

log πθ(y|x)
|y|

]
(31)

where

w(x, y) = πθ(y|x)/πRef(y|x), (32)

w̃(x, y) =
w(x, y)∑

(x′,y′)∈B(x,y) w(x
′, y′)

. (33)

Updating πRef During Iterative Training In Algorithm 1, we iteratively train the LLM using outputs generated by the
last round of iterative refinement. In this iterative training process, at iteration i of the outer loop, we always update πRef for
DPO, MargE, and REINFORCE such that πRef := πθi .

36



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A.8. LaMBO-2 Model and Training Details

We built upon the implementations of LaMBO-2 in cortex and poli-baselines. We use a LaMBO-2 architecture with an
encoder that is shared between different output modules: one generative discrete diffusion head, one discriminative head
predicting whether a sequence satisfies the constraints of the problem, and one discriminative head predicting the reward of
a sequence.

Each of these modules is made up of 1D CNN residual blocks, with layer normalization and sinusoidal position embeddings
(except for the generative head, which is a linear layer directly from the shared embeddings to output logits over the
vocabulary). The encoder is composed of 2 residual blocks and the two discriminative heads are composed of 1 residual
block each, all with kernel width 5. Each residual block has 128 channel dimensions and 128 embed dimensions. We applied
diffusion noise and guidance to the encoder embedding, and for each of the discriminative tasks, we trained an ensemble of
8 independently randomly initialized heads.

A.8.1. TRAINING SET REBALANCING

We employ a data rebalancing strategy during the training of LaMBO-2 to enhance continual learning. The objective is to
enable the model to adapt effectively to newly acquired data while preserving knowledge learned from historical data. This
is achieved by a sampling mechanism that effectively gives exponentially greater importance to more recent data during
training.

Partitioning Scheme: Training data is partitioned based on the iteration in which it was collected. This partitioning
follows a geometric scheme:

• Partition 0 contains data from the most recent iteration.

• Partition 1 contains data from the two iterations immediately preceding those in Partition 0.

• Partition 2 contains data from the four iterations immediately preceding those in Partition 1.

• This pattern continues, with Partition k generally containing data from 2k distinct iterations that are older than the data
in Partition k − 1.

Formally, let T be the index of the most recent data collection iteration. Data collected during iteration i (where i ≤ T ) is
assigned to partition p(i) according to:

p(i) =

{
0 if i = T,

k if i ∈ [T − 2k+1 + 2, T − 2k + 1] for k ≥ 1.

Each partition k (for k ≥ 1) thus groups data from 2k consecutive iterations.

Round-Robin Partition Rebalancing Sampling Mechanism: During training, we construct minibatches by sampling
one datapoint from each active partition. Since more recent data is grouped into smaller partitions (e.g., Partition 0 contains
data from only one iteration, while Partition k contains data from 2k iterations), datapoints from recent partitions have a
higher probability of being selected. This sampling strategy naturally creates the desired exponential weighting, prioritizing
recent information.

To prepare data for training:

• Datapoints within each individual partition are randomly shuffled.

• The order in which the partitions themselves are processed for sampling is also randomized. This shuffled order defines
a cycle for drawing samples.

To form a training minibatch of a predefined size:

• We iterate through the partitions according to their current shuffled order.

37

https://github.com/prescient-design/cortex/blob/c318f9e94cd61f3ca625ac3d6f1f32d7d1e63206/cortex/optim/generative/_lambo.py
https://github.com/MachineLearningLifeScience/poli-baselines/tree/main


Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

• From each partition encountered in this cycle, one (randomly selected) datapoint is drawn and added to the current
minibatch.

• This process continues, drawing one datapoint from each subsequent partition in the shuffled order, until the minibatch
reaches its target size.

• If all partitions have been sampled from (i.e., one cycle through the shuffled partition order is complete) and the
minibatch is not yet full, the order of partitions is re-shuffled, and sampling continues from the newly ordered partitions
until the minibatch is filled.

• When any partition is exhausted, the examples in that partition are shuffled and sampling continues.

A.8.2. CONTROLLING DIVERSITY THROUGH CANDIDATE SELECTION

We also introduce a new hyperparameter to LaMBO-2, the “farthest first traversal (FFT) expansion factor”, which provides a
lever to control the diversity of solutions used as starting points for guided diffusion. For applications with a similar number
of ground truth evaluations n per evaluation iteration compared to the total number of iterations (e.g. a 24-well plate of
samples for each of 10 iterations), the best FFT expansion factor α is usually greater than one. In this setting, we retrieve
the top αn solutions seen over the optimizer’s history and use farthest first traversal to select the subset of n solutions
which capture as much sequence diversity as possible among the original αn solutions. The FFT procedure iteratively adds
a solution to the selected subset if it is maximally distant from all the currently selected solutions (See Algorithm 9 for
pseudo-code). In this small n setting, α > 1 prevents generator collapse and trades exploitation for more exploration.

In contrast, when n is very large compared to the number of iterations (such as in the experiments for this paper, with
n = 2000 and only 10 iterations), it is best to set α < 1. In this case, we select the top αn solutions from the optimizer’s
history to seed the next round, repeating them as needed to have exactly n seeds. Since the guided diffusion is not
deterministic, despite seeding multiple generative trajectories from the same starting sequence, the model still generates
solution pools with high diversity. See Algorithm 8 for pseudo-code of our candidate starting point selection strategy,
covering both the α < 1 and α > 1 settings.

Algorithm 8 Get Candidate Starting Points from LaMBO-2 Solution History
Input: History of solutions x, scores y, FFT expansion factor α, number of samples to evaluate this iteration n, edit distance
function edit dist

sorted indices← argsort(y, descending=True)
K ← min(len(x), αn)
candidate points← x[sorted indices[: K]]
if α > 1 then

indices← FarthestFirstTraversal(candidate points,edit dist,candidate scores, n)

else
repeat factor← ⌊1/α⌋+ 1
candidate points← repeat(candidate points,repeat factor)[: n]
indices← arange(len(candidate points))

end
Returns: candidate points[indices]

38



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Algorithm 9 Farthest First Traversal
Input: Library L of N elements, distance function d, ranking scores s, number of elements to select n

R← argsort(s) // Sort indices by scores
S ← [R[0]] // Initialize selected indices with first element
R← R[1 :] // Remove first element from remaining
PQ← ∅ // Initialize priority queue
for i = 0, . . . , |R| − 1 do

dist← −d(L[i], L[S[0]]) // Negative distance for max-heap
PQ.push((dist, s[i], i, 1))

end
for i← 1 to n− 1 do

while True do
(dist, score, idx, checked)← PQ.pop()

if checked < |S| then
min dist← min(d(L[idx], L[S[j]]) for j ∈ [checked, |S|)
min dist← min(min dist,−dist)
PQ.push((−min dist, score, idx, |S|))

else
S.append(idx)
break

end
end

end
Returns: S

A.8.3. TRAINING AND GENERATION HYPERPARAMETER SWEEPS

We trained LaMBO-2 with a batch size of 128, using the Adam optimizer with β1 = 0.9, β2 = 0.99, γ = 0.005 and no
weight decay. We also searched over the following hyperparameter ranges:

• Number of design steps per iteration ∈ {8, 16,32}

• Number of mutations per design step ∈ {2,4, 8, 16}

• Diffusion guidance step size ∈ {0.01,0.05, 0.1, 0.2}

• Training epochs ∈ {8, 16, 50,100}

• Farthest first traversal (FFT) expansion factor ∈ {0.1,0.25, 0.5, 1.0}

39



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

A.9. Additional Results

How sensitive is each method to hyperparameters, test function difficulty, and seed dataset? An important aspect of
an optimization algorithm is how robust it is to hyperparameter settings, problem difficulty, and choice of seed examples. To
explore robustness, we present the Pareto frontiers and corresponding hypervolumes of all methods across all test functions
for evaluation budgets ranging from 1K to 30K in Fig. 10. All three LLOME variants exhibit significantly lower average
hypervolume than both the GA and LAMBO-2.

Figure 10: Pareto frontiers of evaluation budget vs. minimum regret for a variety of LLOME and LAMBO-
2 hyperparameter settings, Ehrlich functions, and seed datasets. The average hypervolume refers to the average
(number of test function evaluations×minimum regret). Lower hypervolume is better. However, the average hypervolume
of LLOME-DPO is artificially deflated due to many DPO experiments ending prematurely as a result of generator collapse.

How sensitive is LLOME to model size? We compare LAMBO-2 against LLOME-MARGE with a smaller LLM ( 226K
params, based on the LLaMA architecture), trained from scratch, since the Pythia model used in our main results (Fig.
3) is much larger in model size (2.8B parameters versus 314K) and has been pre-trained on the Pile (Gao et al., 2020).
Although pre-training should not offer any additional advantages due to the lack of overlap between Ehrlich functions and
the pre-training data, we choose this setting to be similar in model size and training to LaMBO-2. We evaluate on the f2
function (i.e. Ehr(32, 32)-4-4-4). Results are shown in Fig. 11. Although LLOME-MARGE (LLAMA 226K) performs
comparably to LLOME-MARGE (PYTHIA 2.8B) and LAMBO-2 up to 22K test function evaluations, its performance
eventually plateaus, perhaps owing to limited model capacity. Additionally, the 226K model often exhibits significant
training instability, including numerous spikes in both loss and gradient norm. This instability may be due to the lack of
pre-training.

At inference time, LLMs can iteratively extrapolate beyond their training distributions. Extrapolating beyond the
training distribution is a well-known machine learning problem (Bommasani et al., 2021; Press et al., 2022; Li et al., 2024),

40



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Figure 11: Minimum regret achieved by LLOME-MARGE with two LLMs of different sizes, compared against LAMBO-2
on test function f2.

especially without explicit guidance provided at inference time. Although some prior work has shown LLMs to be effective
at iteratively generating sequences that monotonically increase a particular attribute to values beyond the training distribution
(Chan et al., 2021; Padmakumar et al., 2023), much of this work focuses on simpler tasks such as increasing the positive
sentiment of text or decreasing the ∆∆G of a well-studied protein. Since optimizing an Ehrlich function requires satisfying
multiple constraints in addition to generating sequences that lie within a small feasible region, we posit that this evaluation
is a more challenging assessment of LLMs’ inference-time extrapolation capabilities.

We display the iterative refinement results of LLOME’s inner loop in Fig. 16, which suggest that LLMs iteratively produce
edits that significantly reduce regret. However, the first few edits frequently improve the sequence whereas later edits are
less likely to be helpful. This suggests that LLM’s inference-time extrapolative capabilities are limited – without further
training or explicit guidance, LLMs may be unable to continuously improve a given sequence beyond a certain threshold. By
alternating between optimizing the model’s parameters and optimizing the model’s outputs, we provide a sample-efficient
method for iteratively bootstrapping the model’s extrapolative abilities using its own generations.

Figure 12: Minimum regret achieved as a function of the number of test function evaluations, on a test function similar to f2
but with half quantization.

41



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Figure 13: The percentage of generated sequences for f3 that are unique or feasible. The line for LLOME-DPO ends early
due to degeneration of solutions.

(a) Maximum reward achieved. (b) Average reward.

Figure 14: Average and maximum reward achieved by methods that rely upon editing the original sequence. The shaded
regions in (14b) represent the 95% confidence interval. The lines for LLOME-MARGE end early because LLOME-MARGE
discovers the optimal solution early.

In Figure 14, we show the average and maximum reward achieved by each LLOME variant on f2. While all three variants
achieve similar maximum reward throughout all iterations, LLOME-SFT and LLOME-MARGE achieve significantly higher
average reward than LLOME-DPO.

Figure 15: The percentage of feasible LLM-generated sequences, binned by the average Hamming distance (normalized by
length) between the input and output. Shaded regions indicate the 95% confidence interval.

42



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Figure 16: Minimum regret of sequences generated during the LLM inner loop, at each iteration of the iterative refinement
process. The titles reflect the number of oracle labels that each LLM has been trained on. These plots account for all
generations sampled from the LLM inner loop, and not just the samples selected via likelihood selection, as in Alg. 3.

43



Generalists vs. Specialists: Evaluating LLMs on Highly-Constrained Biophysical Sequence Optimization Tasks

Figure 17: Likelihood vs. reward.

Figure 18: Minimum regret of candidates selected by either LLM likelihood or the oracle on the f2 test function. Since the
first 10K test function evaluations are seeds derived from the genetic algorithm, we show only candidates generated after the
first 10K.

Figure 19: Calibration curve of likelihood vs. regret for multi-stage SFT+MargE training.

44


