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ABSTRACT

Generative classifiers, which leverage conditional generative models for classi-
fication, have recently demonstrated desirable properties such as robustness to
distribution shifts. However, recent progress in this area has been largely driven
by diffusion-based models, whose substantial computational cost limits their scal-
ability in practice. To address the efficiency concern, we investigate generative
classifier built upon recent advances in visual autoregressive (VAR) modeling.
Owing to their tractable likelihood, VAR-based generative classifier enable signif-
icantly more efficient inference compared to diffusion-based counterparts. Build-
ing on this foundation, we introduce the Adaptive VAR Classifier+ (A-VARC+),
which further improves accuracy while reducing computational cost, substantially
enhancing practical usability. Beyond efficiency, we also study several proper-
ties of VAR-based generative classifiers that distinguish them from conventional
discriminative models. In particular, the tractable likelihood facilitates visual ex-
plainability via token-wise mutual information, and the model naturally adapts to
class-incremental learning without requiring additional replay data.

1 INTRODUCTION

Generative models are trained to directly capture the underlying data distribution of a given dataset,
which enables a wide range of applications such as image generation (Han et al., 2025), image
editing (Mu et al., 2025), and data augmentation (Trabucco et al., 2023). Given this expressive capa-
bility, a natural question arises: Can we leverage these powerful generative models for classifica-
tion? This question has motivated a line of research on the “Generative Classifier.” In this paradigm,
class-conditional generative models are employed to estimate the likelihood p(x|y), where y denotes
the class label and x the input data. The posterior distribution p(y|x) can then be derived via Bayes’
theorem, given the prior p(y). This stands in contrast to conventional discriminative classifiers,
which directly model the conditional probability p(y|x). Although generative classifiers are less
commonly adopted due to the inherent difficulty of accurately modeling p(x|y)—a substantially
harder task than modeling p(y|x)—prior work has shown that they exhibit several advantageous
properties distinct from discriminative classifiers.

Early work on generative classifiers (Schott et al., 2019) employed VAE (Kingma & Welling, 2013)
to model the likelihood p(x|y) and demonstrated that such classifiers exhibit greater robustness
against adversarial attacks compared to discriminative models on the MNIST dataset (Deng, 2012),
a finding further supported by Li et al. (2019). In addition, Van De Ven et al. (2021) showed that
such generative classifiers achieve superior performance in class-incremental learning. Building on
these successes, subsequent studies explored normalizing flows (Ardizzone et al., 2020; Mackowiak
et al., 2021) and score-based models (Zimmermann et al., 2021) for estimating class-conditional
likelihoods, achieving classification performance comparable to discriminative counterparts. More
recent work adapted pre-trained text-to-image diffusion models as zero-shot generative classifiers by
approximating likelihood through the evidence lower bound (ELBO), revealing desirable properties
such as out-of-distribution robustness (Li et al., 2023), attribute binding (Clark & Jaini, 2023), shape
bias, and human-like error consistency (Jaini et al., 2023). Further studies have shown that diffusion-
based generative classifiers can achieve certifiable robustness (Chen et al., 2024a) and are robust to
subpopulation shifts (Li et al., 2024), underscoring their promising advantages.
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Despite these advances, research on generative classifiers for image classification remains relatively
underexplored. The recent emphasis on diffusion-based generative classifiers introduces two limi-
tations. The first and most critical challenge is scalability. By design, generative classifiers suffer
from efficiency issues, as their computational complexity grows linearly with the number of classes,
which severely limits applicability to large-scale datasets such as ImageNet with 1,000 classes. This
issue is further exacerbated by the lack of tractable likelihoods in diffusion models. Specifically,
the diffusion-based method adopts ELBO as an approximation of likelihood (Li et al., 2023), which
involves multiple forward passes. To obtain reliable approximations for classification, diffusion-
based methods typically require dozens to hundreds of function evaluations, creating a significant
barrier to practical deployment. The second limitation is the narrow perspective that arises from the
recent exclusive focus on diffusion-based approaches. It is unclear whether the desirable properties
reported in diffusion-based studies are shared across different generative classifiers.

Recent advances in visual autoregressive (VAR) modeling (Tian et al., 2024) present a promising
and efficient backbone for generative classifiers. However, a naive implementation of a VAR classi-
fier (VARC) yields suboptimal performance. To address this, we propose the Adaptive VAR Clas-
sifier (A-VARC), a framework designed to improve accuracy while reducing computational cost.
A-VARC integrates two techniques: (i) likelihood smoothing, which enhances accuracy by produc-
ing more robust likelihood estimates, and (ii) partial-scale candidate pruning, which accelerates
inference by exploiting the model’s multi-scale architecture for candidate pruning. Together, these
components form a flexible and efficient generative classifier that outperforms the naive VARC base-
line. In addition, we introduce A-VARC+, an enhanced variant finetuned using the recently proposed
Condition Contrastive Alignment (CCA) method (Chen et al., 2024b). With these improvements,
A-VARC+ achieves accuracy comparable to the DiT-based (Peebles & Xie, 2023) diffusion clas-
sifier on ImageNet-100—incurring less than a 1% drop—while requiring 89× less computational
cost. This dramatically reduces the computational burden of generative classifiers and significantly
improves their practical feasibility.

Beyond efficiency, we also investigate additional properties of VAR-based generative classifiers.
Although we do not observe the same level of distribution-shift robustness reported for diffusion-
based approaches, our analysis uncovers other distinctive advantages. In particular, the tractable
likelihood enables visual explanations via token-wise mutual information, capturing the relevance
of individual tokens to the target label. Moreover, unlike discriminative classifiers that typically suf-
fer from catastrophic forgetting in class-incremental learning, VAR-based models, trained to model
class-conditional likelihoods independently, naturally adapt to such tasks without requiring replay
data. Collectively, these findings highlight new and complementary research directions for genera-
tive classifiers.

The main contributions of our paper are summarized as follows:

• We investigate VAR-based generative classifiers and introduce A-VARC+, which further
improves both performance and efficiency. Notably, A-VARC+ achieves accuracy compa-
rable to the DiT-based diffusion classifier while requiring 89× less computational cost.

• We conduct a comprehensive evaluation of generative classifiers across multiple model
families and datasets under a well-controlled setup, providing a clearer understanding of
their strengths and limitations.

• We show that the tractable likelihood of VAR-based generative classifiers enables visual
explainability and allows the model to naturally adapt to class-incremental learning without
the need for replay data.

2 RELATED WORK

2.1 GENERATIVE CLASSIFIER

The discussion of generative classifiers can be traced back to Ng & Jordan (2001), who studied
Naive Bayes and showed its superior data efficiency compared to its discriminative counterpart.
Subsequent research has explored generative classifiers built upon different backbone architectures.
Early works (Schott et al., 2019; Li et al., 2019; Ghosh et al., 2019) employed VAEs to model
the likelihood and demonstrated strong adversarial robustness. Van De Ven et al. (2021) further
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showed that such classifiers achieve superior performance in class-incremental learning. Follow-up
studies investigated normalizing flows. Fetaya et al. (2020) highlighted a key limitation of con-
ditional likelihood–based generative classifiers, noting that class-conditional information may be
underutilized when trained with a maximum-likelihood objective. Ardizzone et al. (2020) showed
that this issue can be alleviated by introducing a reweighted discriminative term, and Mackowiak
et al. (2021) demonstrated that such a design enables additional features such as explainability and
out-of-distribution detection.

More recently, the rapid progress of diffusion models has motivated their adoption for generative
classification. Zimmermann et al. (2021) derived class-conditional likelihoods via reverse SDE,
showing improved performance on CIFAR-10 (Krizhevsky et al., 2009). Alternatively, Li et al.
(2023) employed the ELBO as a proxy for likelihood estimation, demonstrating robustness to distri-
bution shifts. Follow-up works (Clark & Jaini, 2023; Jaini et al., 2023) further highlighted intrigu-
ing properties such as human-like shape bias and error consistency with human judgments. Recent
studies extended these findings by showing that ELBO-based diffusion classifiers can achieve sub-
stantial improvements in certified robustness (Chen et al., 2024a) and mitigate shortcut learning
caused by spurious correlations (Li et al., 2024). While some studies have explored autoregressive
generative classifiers in NLP tasks (Li et al., 2024; Kasa et al., 2025), the recent investigation of
autoregressive-based generative classifiers for image classification remains limited, with Jaini et al.
(2023) providing only preliminary results. In this work, we study VAR-based generative classifiers,
which provide a new perspective on the development of generative classifiers.

2.2 IMAGE AUTOREGRESSIVE MODEL

For image generation, autoregressive models transform the intractable problem of modeling all pixel
dependencies simultaneously into a tractable sequence of prediction tasks. Larochelle & Murray
(2011) demonstrated the feasibility of building neural autoregressive models for image generation.
Follow-up works (Van Den Oord et al., 2016; Van den Oord et al., 2016; Salimans et al., 2017) intro-
duced architectural improvements and performed next-pixel prediction in a raster-scan manner. The
development of VQ-VAE (Van Den Oord et al., 2017) further enabled encoding images into shorter
sequences of discrete tokens, greatly improving scalability. Subsequent works (Razavi et al., 2019;
Ramesh et al., 2021; Esser et al., 2021; Sun et al., 2024) demonstrated the outstanding generative
capability of such models. Moving beyond conventional next-token prediction, Tian et al. (2024)
proposed visual autoregressive (VAR) modeling with next-scale prediction, which generates im-
ages in a multi-scale, coarse-to-fine order and achieves performance superior to earlier approaches.
Building upon this advance, we show that, with its tractable likelihood and next-scale prediction, the
VAR model can also serve as an efficient and explainable generative classifier.

3 PRELIMINARY

3.1 GENERATIVE CLASSIFIER

Given an image–label pair (x, y), the goal of a classifier is to model the conditional probability
p(y|x) for classification. Unlike discriminative classifiers, which directly learn this distribution,
generative models are trained to estimate the class-conditional likelihood p(x|y). Using Bayes’
theorem, the parameterized posterior pθ(y|x) can then be expressed as:

pθ(yi | x) =
pθ(x | yi)p(yi)∑
j pθ(x | yj)p(yj)

(1)

where p(yi) denotes the class prior. A common assumption is that the prior is uniform across all
classes, in which case the prediction of a generative classifier is obtained by:

argmax
yi

pθ(x | yi) (2)

Note that performing classification using Eq. 2 requires the conditional likelihood pθ(x|yi) for every
possible class yi, and thus the computational complexity scales linearly with the number of classes.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 DIFFUSION CLASSIFIER

For diffusion models, the class-conditional likelihood p(x|y) is intractable. To address this, the dif-
fusion classifier Li et al. (2023) employs the evidence lower bound (ELBO) as a surrogate objective.
The classification decision can then be obtained as:

argmin
yi

Et,ϵ

[
∥ϵθ(xt, yi)− ϵ∥2

]
, ϵ ∼ N (0, I) (3)

where ϵθ is the noise prediction model and t is the timestep used for determining the noise level. The
intuition is that with the correct class condition, the noise prediction error will be smaller. However,
obtaining a reliable estimate typically requires dozens to hundreds of Monte Carlo samples, resulting
in substantial computational overhead.

3.3 IMAGE AUTOREGRESSIVE MODEL

Autoregressive models provide a principled way to represent the complex distribution of high-
dimensional data by factorizing it into a product of one-dimensional conditional distributions.
To model the likelihood p(x|y), an image x is first tokenized into a sequence of tokens
(x1, x2, · · · , xL). The class-conditional likelihood can then be expressed as:

p(x | y) = p(x1, x2, · · · , xL | y) =
L∏
l

p(xl | x1, x2, · · · , xl−1, y). (4)

A common tokenization strategy is to use a quantized autoencoder, such as VQ-VAE (Van Den Oord
et al., 2017), which converts an image feature map f ∈ Rh×w×C into discrete tokens q ∈ [V ]h×w,
typically ordered in raster-scan fashion. However, Tian et al. (2024) identifies limitations of raster-
scan ordering, including loss of structural information and inefficiency, and instead proposes next-
scale prediction. In this approach, a feature map f ∈ Rh×w×C is quantized into K multi-scale
token maps (r1, r2, · · · , rK), each with progressively higher resolution hk×wk, culminating in rK ,
which matches the original resolution h × w. Specifically, for a given image x ∈ RC×H×W , the
tokenization process is defined as:

f = E(x), (r1, r2, · · · , rK) = Q(f), (5)

where E(·) denotes the encoder andQ(·) the quantizer. The multi-scale token maps can be projected
back to pixel space as a reconstructed image x̂ through a codebook Z and a decoderD(·) as follows:

f̂ = lookup(Z, (r1, r2, · · · , rK)), x̂ = D(f̂). (6)

where lookup(Z, ·) means taking the corresponding vector in codebook Z. For high-capacity VQ-
VAE models, the difference between x and x̂ is generally negligible. Therefore, the VAR model is
trained on the discrete token set, which is formulated as:

pθ(x | y) = pθ(r1, r2, · · · , rK | y) =
K∏
k

pθ(rk | r1, r2, · · · , rk−1, y), (7)

where each rk ∈ [V ]hk×wk is the token map at scale k, containing hk × wk tokens.

4 ADAPTIVE VAR CLASSIFIER

With the tractable likelihood defined in Eq.7, a VAR model can be directly converted into a VAR
classifier (VARC) using Eq.1. Since the token maps (r1, r2, · · · , rK) are readily available after to-
kenizing a test image with VQ-VAE, the likelihood can be estimated with a single forward pass,
making VARC a more efficient classifier compared to diffusion-based methods. However, this naive
adaptation yields suboptimal performance. To address this, we first introduce the Adaptive VAR
Classifier (A-VARC), which integrates two key techniques: likelihood smoothing and partial-scale
candidate pruning. By design, A-VARC adaptively balances accuracy and efficiency, offering sig-
nificant improvements over the naive VARC baseline. We then present A-VARC+, an enhanced
variant that applies CCA finetuning to achieve further performance gains.
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4.1 LIKELIHOOD SMOOTHING

While Eq.7 provides a formulation for likelihood estimation, we observe that it lacks smoothness
and may lead to suboptimal performance. To illustrate this issue, we add a small perturbation to
the feature map f , producing a noised feature map fnoise and reconstructing a corresponding image
x̂noise as follows:

fnoise = f + ϵ, x̂noise = D(lookup(Z,Q(fnoise))), (8)

Figure 1: Visual comparison of images with and
without noise perturbation.

where ϵ ∼ N (0, σ2) is sampled from a Gaus-
sian distribution with small variance σ2. Al-
though x̂ and x̂noise are visually almost indis-
tinguishable (see Fig.1), their token maps Q(f)
andQ(fnoise) differ drastically, with 69% of to-
kens changed. This discrepancy in token maps
also causes observable variations in the esti-
mated likelihood. However, since x̂ and x̂noise

are perceptually similar, the corresponding like-
lihoods should ideally differ only slightly in or-
der to yield stable classification.

To address this problem, we propose a smoothed
class-conditional likelihood defined as:

p̃θ,S(x | y) =
S∑
i

pθ(Q(f + ϵi) | y), ϵi ∼ N (0, σ2) (9)

where S is the number of samples used for smoothing. Our empirical results demonstrate that like-
lihood smoothing effectively improves classification accuracy. Although this approach introduces
additional computational cost, we find that using only a small value of S already yields noticeable
gains, and the overhead can be further mitigated through the candidate pruning strategy.

4.2 PARTIAL-SCALE CANDIDATE PRUNING

While the tractable likelihood of the VAR model alleviates the computational cost of likelihood es-
timation, the most critical efficiency challenge of generative classifiers still remains. Specifically, as
shown in Eq. 2, the computation cost scales linearly with the number of classes, since classification
requires evaluating the class-conditional likelihood for all possible classes. This limitation greatly
restricts the applicability to datasets with large numbers of classes. To address this, prior works
adopt a two-stage procedure: first, apply a quick but coarse likelihood estimation method to filter
out unlikely candidates, and then use a more accurate but computationally expensive estimation on
the remaining classes. For instance, Li et al. (2023) employs such a strategy by using 25 samples
to approximate the ELBO in Eq. 3 for all classes, followed by 250 samples for the top-5 candidates
identified in the first stage to refine the predictions.

Figure 2: Top-10 accuracy and computation cost vs.
number of scales.

Inspired by this idea, A-VARC adopts a sim-
ilar but more aggressive candidate pruning
strategy. Unlike conventional autoregressive
image generation models, the VAR model
employs next-scale prediction, which gener-
ates images in a coarse-to-fine multi-scale or-
der. This design encodes global structural in-
formation at each scale with varying resolu-
tions. Because each scale contains global in-
formation, we find that the partial informa-
tion in the first few scales is often sufficient
to discriminate between classes with large vi-
sual differences (e.g., distinguishing a tench
from a hen). This observation motivates a
more efficient pruning strategy. Specifically,
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we introduce partial-scale likelihood approximation, defined as:

p̂θ,K′(x | y) = pθ(r1, r2, · · · , rK′ | y) =
K′∏
k

pθ(rk | r1, r2, · · · , rk−1, y) (10)

where K ′ < K denotes the number of scales used. Fig. 2 shows the top-10 accuracy and per-
image computation cost on ImageNet-100 across different values of K ′. The results indicate that
the approximated likelihood p̂θ,K′(x|y) with a small K ′ achieves comparable top-10 accuracy to the
full-scale likelihood, while offering substantial efficiency improvements, making it well suited for
candidate pruning. The efficiency gain stems from the reduction in token length: the full multi-scale
token maps contain 680 tokens, whereas the first five scales include only 55 tokens—about 8% of
the total—due to the smaller hk and wk at lower resolutions. This partial-scale pruning strategy
significantly reduces the computational burden of A-VARC, allowing resources to be focused on the
most likely candidates.

4.3 CLASS INFORMATION ENHANCEMENT VIA CCA

One possible factor contributing to the suboptimal performance of VAR-based classifiers is that
class-conditional information may be underutilized when training with a maximum-likelihood ob-
jective, as discussed in (Fetaya et al., 2020). Prior work has attempted to address this limitation by
incorporating an additional discriminative term into the training objective to strengthen class infor-
mation (Fetaya et al., 2020; Ardizzone et al., 2020; Mackowiak et al., 2021). While this approach
does enhance class-conditional information and improve classification accuracy, the improvement
comes at the expense of generation ability. A similar phenomenon is observed in image generation
tasks, where conditional image generation results may not strictly align with the given condition
when sampling directly from the conditional distribution. A common remedy in image generation is
classifier-free guidance (Ho & Salimans, 2022), which enhances conditional information by extrap-
olating between conditional and unconditional distributions. However, we find that this technique
is ineffective for generative classifiers and, in fact, degrades performance through our empirical
results and also reported by previous work Li et al. (2023). We hypothesize that this is because
classifier-free guidance sharpens the density of a subset of the distribution to produce visually ap-
pealing images, but weakens the model’s general likelihood estimation ability, as also argued by
(Karras et al., 2024).

In this work, we want to find a general solution that enhances the class conditional information and
benefits both the generation and classification tasks. Fortunately, we found that the recent advance in
VAR finetuning provides an ideal solution. Chen et al. (2024b) introduced a novel finetuning objec-
tive called Condition Contrastive Alignment (CCA), which was originally proposed to enhance the
class-conditional information through a finetuning technique to eliminate the necessity of classifier-
free guidance. Specifically, given a pretrained conditional generative model pϕ, the CCA objective
encourages the target model pθ to strengthen class-conditional information as follows:

LCCA
θ (x, y, yneg) = − log σsig[β log

pθ(x | y)
pϕ(x | y)

]− λ log σsig[−β log
pθ(x | yneg)
pϕ(x | yneg)

] (11)

where σsig(·) denotes the sigmoid function, and β and λ are hyperparameters. The pretrained model
pϕ remains fixed during finetuning. Intuitively, the first term encourages the model to increase the
likelihood under the ground-truth label y, while the second term penalizes high likelihood under an
incorrect label yneg . This objective effectively reinforces class-conditional information in condi-
tional generative models. Our empirical results demonstrate that applying CCA to A-VARC further
improves classification performance by guiding the model to focus on more object-relevant regions,
as illustrated in Fig. 6 in the Appendix. We denote this enhanced version as A-VARC+.

5 COMPARATIVE ANALYSIS

In this section, we conduct detailed experiments to evaluate the performance of the proposed A-
VARC+ and verify if the robustness property is transferable to our VAR-based method.

Datasets and Evaluation Metric. We evaluate the proposed A-VARC+ across a diverse set of
datasets to assess its performance from multiple perspectives. For general classification ability, we
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report results on ImageNet-100, a randomly sampled subset of ImageNet (Deng et al., 2009), pro-
vided by (Tian et al., 2020) with 50 samples per class. This smaller subset enables us to conduct
methods that have a higher computational cost for a fair comparison. To evaluate robustness, we con-
duct experiments on five distribution-shift datasets: ImageNetV2 (Shankar et al., 2020), ImageNet-
R (Hendrycks et al., 2021a), ImageNet-Sketch (Wang et al., 2019), ObjectNet (Barbu et al., 2019),
and ImageNet-A (Hendrycks et al., 2021b). For these datasets, we evaluate on subsets of 100 classes,
except for ObjectNet, where we use the 113 classes overlapping with ImageNet. To accelerate eval-
uation, we use 10 samples per class. Top-1 accuracy and per-image computation cost (in GFLOPs)
are reported as the performance and efficiency metrics, respectively.

Baselines and Implementation Details. In this work, we compare the proposed method against
both discriminative and generative classifiers. We focus on models trained on ImageNet to conduct
a fair comparison. For discriminative classifiers, we include ResNet-18, ResNet-34, ResNet-50,
and ResNet-101 (He et al., 2016), as well as ViT-L/32, ViT-L/16, and ViT-B/16 (Dosovitskiy et al.,
2020). For generative classifiers, we evaluate IBINN (Mackowiak et al., 2021), a normalizing flow-
based generative classifier, and the diffusion classifier (Li et al., 2023). For IBINN, we use the
model trained with β = 1. For diffusion-based generative classifiers, we examine two families:
diffusion and rectified flow. In the diffusion case, we follow the setup of (Li et al., 2023) (DC)
and adopt DiT-XL/2 (Peebles & Xie, 2023) at resolution 256 as the backbone. We report results
under two settings: (i) ELBO estimation using 25 samples, and (ii) the two-stage approach proposed
in the original paper, where 25 samples are used to select the top-5 candidates followed by 250
samples for refined prediction. For the rectified flow-based implementation, we report results us-
ing MeanFlow (Geng et al., 2025) (DC-MF) with a SiT/XL-2 backbone, which enables evaluating
whether improved sampling efficiency translates into better classification performance. In this case,
the noise prediction error in Eq. 3 is replaced with the velocity prediction error associated with the
rectified flow formulation, and 25 samples are used for error estimation. For A-VARC+, we use
VAR-d16 at resolution 256 as the backbone and adopt a three-stage procedure. In the first stage,
we use p̂θ,6(x|y) to narrow down the candidates to the top 10. In the second stage, we use pθ(x|y)
to select the top 3 candidates. In the final stage, we apply p̃θ,3(x|y) with σ = 0.1 for the final
prediction. Please refer to Sec. E in Appendix for more details.

Quantitative Results. Table 1 summarizes the comparison results. On ImageNet-100, the proposed
A-VARC+ improves both the accuracy and efficiency compared to the naive implementation VARC
and achieves accuracy comparable to that of the 2-stage DiT based diffusion classifier, with less
than a 1% drop, while requiring 89× less computational cost. The efficiency gain primarily arises
from the tractable likelihood and the candidate pruning strategy, whereas the enhanced accuracy can
be attributed to likelihood smoothing and CCA finetuning. By contrast, IBINN attains the highest
efficiency by modeling class-conditional likelihoods with a Gaussian Mixture Model, which enables
fast classification via cluster distance computation but leads to substantially lower accuracy. It is
worth noting that although rectified-flow models such as MeanFlow exhibit superior sampling ef-
ficiency for image generation compared to diffusion models, this advantage does not translate to
improved performance in rectified flow-based diffusion classifiers. When evaluated with the same
number of samples for error estimation, DC-MF performs significantly worse than the DiT-based
counterpart. Our analysis suggests that MeanFlow suffers from higher prediction error compared to
the DiT-based diffusion classifier. A possible explanation is that rectified-flow models are trained
to approximate marginal velocity fields using supervision from conditional flows, as discussed in
(Geng et al., 2025). This training mismatch may introduce additional noise into the error estimation,
weakening the class-conditional signal and ultimately degrading classification performance.

In terms of robustness, consistent with the findings of (Li et al., 2023), generative classifiers exhibit
improved robustness to adversarial shifts in ImageNet-A compared to ResNet-based models. How-
ever, for other distribution-shift datasets, the VAR classifier does not demonstrate any noticeable
advantage. This suggests that the robustness property reported in diffusion-based methods (Jaini
et al., 2023; Li et al., 2024) does not generalize to VAR. Interestingly, the DiT-based diffusion
classifier significantly outperforms all discriminative models except ViT-L/32 on ImageNet-Sketch,
highlighting its robustness to shifts from natural images to sketches. Neither IBINN nor A-VARC+

exhibits this behavior, which implies that the observed robustness likely originates from the denois-
ing training paradigm of diffusion models rather than from the generative objective itself. Finally, on
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ImageNet and its variants—including ImageNet-V2, ImageNet-R, and ObjectNet—discriminative
models continue to achieve superior overall performance. This persistent gap highlights that gener-
ative classifiers remain an underexplored direction with considerable room for improvement. Nev-
ertheless, given the rapid advances in generative modeling, we expect that generative classifiers will
benefit from these developments and gradually narrow this gap in the near future.

Table 1: Comparison on ImageNet and across multiple distribution shifts.

Method ImageNet Distribution shifts
Top-1 GFLOPs IN-V2 IN-R IN-Sketch ObjectNet IN-A

ResNet18 88.44 1.8 79.1 41.2 43.8 26.02 3.6
ResNet34 89.96 3.7 81.3 40.9 46.1 30.62 5.1
ResNet50 91.90 4.1 83.4 44.0 45.5 34.69 2.0
ResNet101 92.14 7.8 84.8 44.6 50.3 36.99 6.8
ViT-L/32 91.92 15.3 83.9 51.3 55.2 30.44 14.4
ViT-L/16 93.22 59.7 86.0 49.4 49.7 33.98 18.0
ViT-B/16 94.20 16.9 86.9 52.5 52.0 36.28 21.7

IBINN 51.12 9.2 40.9 13.2 14.6 3.98 3.2
DC-MF(25) 50.30 296861.3 44.0 4.5 3.9 10.27 4.8
DC(25) 86.32 286287.6 75.8 33.1 51.6 22.65 13.7
DC(25,250) 90.30 415056.0 80.6 38.3 53.7 29.38 16.2
VARC 83.30 14105.0 71.9 30.6 36.0 19.47 10.3
A-VARC+ 89.32 4649.4 79.3 33.1 34.0 24.51 10.0

Ablation Study. Table 2 presents the ablation study of the two accuracy enhancement techniques
adopted by A-VARC+: likelihood smoothing and CCA finetuning. To focus on the analysis of
the accuracy gain, the partial-scale candidate pruning technique is not applied in this experiment.
Likelihood smoothing is applied only to the top-10 candidate classes, selected based on the class-
conditional likelihood pθ(x|y) from a standard forward pass. We use 10 samples for smoothing,
as additional samples yield diminishing returns. The results show that likelihood smoothing con-
sistently improves the performance of the baseline for all datasets, though at the cost of increased
computation. In contrast, CCA finetuning enhances in-domain accuracy on ImageNet and closely
related datasets such as ImageNetV2, ImageNet-R, and ObjectNet, but slightly reduces performance
on ImageNet-A and ImageNet-Sketch. This suggests that CCA finetuning encourages the model to
emphasize class-specific information, thereby improving discrimination within the training distribu-
tion but reducing generalization to larger distribution shifts.

Table 2: Ablation study on likelihood smoothing and CCA finetuning.

Smooth CCA ImageNet Distribution shifts
(S=10) Top-1 GFLOPs IN-V2 IN-R IN-Sketch ObjectNet IN-A

83.30 14105.0 71.9 30.6 36.0 19.47 10.3
✓ 88.26 28210.0 77.1 33.6 40.4 24.78 11.0

✓ 88.68 14105.0 80.3 34.5 34.8 25.75 9.9
✓ ✓ 89.72 28210.0 81.2 33.9 36.0 26.73 10.9

6 INTRIGUING PROPERTIES

In this section, we discuss the intriguing properties of the VAR-based classifier that distinguish it
from conventional discriminative classifiers.

6.1 VISUAL EXPLAINABILITY

The tractable likelihood of the VAR model inherently provides visual explainability. The concept
of pointwise mutual information (PMI), defined as log p(x|y)

p(x) , has been widely used in NLP tasks
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(Church & Hanks, 1990; Levy & Goldberg, 2014) to measure word associations. Here, we show that
this concept can be naturally extended by the VAR-based classifier to provide visual explanations.
The goal of visual explanation is to capture fine-grained associations between local image regions
and a target label y, thereby clarifying why the model makes a particular decision. Since autore-
gressive models compute token-wise likelihoods, we can extend pointwise mutual information to
token-wise mutual information (TMI), which measures the association between a token and a label
as follows:

log
pθ(r

(i,j)
k | r1, r2, · · · , rk−1, y)

pθ(r
(i,j)
k | r1, r2, · · · , rk−1)

(12)

where r
(i,j)
k denotes the (i, j)-th token of the k-th scale token map. This ratio can be obtained for

each token with only two forward passes. Moreover, this concept can be extended to contrastive
explanations, which highlight why a prediction is made in favor of one class over another. Fig. 3
illustrates that token-wise mutual information effectively identifies regions strongly associated with
the label “little blue heron”, thereby revealing the basis of the model’s prediction. It also provides
contrastive evidence by explaining why the image is classified as a “little blue heron” rather than a
“goose”. This offers direct and interpretable insight into the decision-making process of the VAR
classifier. Please refer to Fig. 7 and Fig. 8 in the Appendix for more visualization results.

Figure 3: Visual explanation of A-VARC+ using TMI. From left to right: the input image, TMI
conditioned on the true label, TMI conditioned on the highest-ranked incorrect label, and the con-
trastive explanation between them.

The token-wise mutual information can be viewed as an attribution method that produces an attribu-
tion score for each token. To evaluate attribution quality, we adopt the insertion and deletion metrics
introduced in (Petsiuk et al., 2018), which are widely used in the explainability literature. Tokens
are first sorted according to their attribution scores; then, they are gradually inserted or removed
to measure the change in the predicted probability of the ground-truth class. The area under the
curve (AUC) is used for evaluation. Intuitively, for the insertion metric, a higher AUC is preferred,
as it indicates that tokens with high attribution scores meaningfully support the ground-truth class.
For the deletion metric, a lower AUC is preferred, as removing highly attributed tokens should de-
crease the ground-truth probability. We additionally report LIME (Ribeiro et al., 2016) and SHAP
(Lundberg & Lee, 2017) as baselines. Please refer to Sec. C in Appendix for more details.

Table 3 presents the quantitative analysis of the visual explanation methods. For A-VARC, LIME
demonstrates the strongest overall performance, while TMI performs comparably to SHAP on the
insertion metric and achieves the second-best score on the deletion metric. For A-VARC+, TMI out-
performs all other methods on both insertion and deletion metrics. These results are consistent with
the qualitative observations in Fig. 6, where TMI becomes more focused on class-relevant regions
after finetuning, leading to improved explainability.

6.2 CLASS-INCREMENTAL LEARNING

Unlike discriminative classifiers, which rely on a unified softmax layer across all classes to ob-
tain logits for classification, generative classifiers base their predictions solely on class-conditional
likelihoods. Since these likelihoods can be learned independently for each class, generative classi-
fiers naturally adapt to class-incremental learning without suffering from catastrophic forgetting, as
noted in (Van De Ven et al., 2021). This provides a distinct advantage over discriminative models,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Quantitative analysis of visual explanation methods. The reported metrics correspond to
the average area-under-the-curve (AUC) averaged across the ImageNet-100 dataset.

Metric LIME SHAP TMI (Ours)

A-VARC Insertion (↑) 0.979 0.853 0.845
Deletion (↓) 0.192 0.432 0.346

A-VARC+ Insertion (↑) 0.939 0.902 0.944
Deletion (↓) 0.614 0.746 0.605

which are vulnerable to catastrophic forgetting and typically require storing a portion of past data as
“rehearsal” to preserve performance.

To investigate whether recent generative classifiers exhibit similar behavior, we conduct a proof-
of-concept class-incremental learning experiment on the first 10 classes of ImageNet. The classes
are partitioned into two tasks, each containing 5 classes. Discriminative classifiers are trained se-
quentially, first on Task 1 and then on Task 2. For generative classifiers, two separate models are
independently trained on each task, following the setup in (Van De Ven et al., 2021). We evaluate
both diffusion-based and VAR-based generative classifiers. Specifically, we use ResNet-50 as the
discriminative baseline, DiT-S/2 for the diffusion classifier, and VAR-d8 for the VAR classifier. All
models are trained from scratch for 1,000 epochs, except DiT-S/2, which is trained for 2,000 epochs.
Afterward, the VAR model is further finetuned with CCA for an additional 10 epochs.

As shown in Table 4, without rehearsal data, the discriminative model suffers severe catastrophic
forgetting. Although methods such as CWR (Lomonaco & Maltoni, 2017) can mitigate this issue,
their reliance on fixed feature extractors limits performance on new tasks. In contrast, the generative
classifiers, trained to model class-conditional likelihoods independently, adapts naturally to new
tasks and achieves promising performance without requiring additional data or complex techniques.
This provides a promising solution for creating a unified classifier by simply merging classifiers
trained on different datasets, making it capable of recognizing an expanded set of classes without
retraining. Compared to the VAE used in previous work Van De Ven et al. (2021), the VAR model,
along with the techniques of A-VARC+, provides a powerful alternative for future research in class-
incremental learning.

Table 4: Class-incremental learning experiment on the first 10 classes of ImageNet.

None CWR DC A-VARC+

Task1 Task2 Avg Task1 Task2 Avg Task1 Task2 Avg Task1 Task2 Avg

0.0 82.4 41.2 83.2 61.6 72.4 78.4 73.6 76.0 72.4 82.4 77.4

7 CONCLUSION

In this work, we investigate VAR-based generative classifiers and propose A-VARC+, which further
improves both accuracy and efficiency, achieving performance comparable to DiT-based diffusion
classifiers while requiring substantially less computational cost. Although our analysis indicates
that VAR-based classifiers do not inherit certain properties exhibited by diffusion-based models,
such as robustness to distribution shift, we uncover other notable characteristics, including visual
explainability and natural adaptability to class-incremental learning. These findings offer a deeper
understanding of the strengths and limitations of generative classifiers and point toward promising
directions for future research.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed instructions in Sec. F of the Appendix for obtaining
the evaluation subsets used in our experiments. In addition, the pseudo-code of A-VARC is pro-
vided in Algorithm1. For discriminative baselines, the pretrained models are publicly available in
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torchvision1. The code and pretrained models for IBINN2, DC3, VAR4, and CCA5 are also
accessible through their respective repositories.
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A USE OF LARGE LANGUAGE MODELS

In this work, we made limited use of large language models (LLMs) to assist with writing and ref-
erence search. Specifically, LLMs were used to polish the text for clarity and readability, and to
conduct preliminary surveys for identifying relevant references. All generated content was carefully
reviewed and edited by the authors to ensure that it faithfully reflects the intended meaning. Like-
wise, all references retrieved through LLM-assisted searches were manually verified for accuracy
and alignment with the described content.

B ADDITIONAL ABLATION STUDY

B.1 LIKELIHOOD SMOOTHING WITH VARYING NUMBERS OF SAMPLES

Following the setting in Table 2, we provide an additional ablation study using different values of S
for likelihood smoothing in Table 5. For A-VARC, the accuracy increases as S grows and saturates
at S = 16, yielding an overall improvement of 5.12%. For A-VARC+, saturation occurs earlier at
S = 8 with a smaller improvement of 1.06%, indicating that the gain from smoothing is reduced
when combined with CCA. In both cases, the results consistently show that applying likelihood
smoothing improves classification accuracy.

Table 5: Ablation study of likelihood smoothing with varying numbers of samples.

S=1 S=2 S=4 S=8 S=10 S=16 S=32
A-VARC 83.30 85.30 87.18 88.18 88.26 88.42 88.42
A-VARC+ 88.68 89.42 89.30 89.74 89.72 89.54 89.72

B.2 VARIANCE FOR LIKELIHOOD SMOOTHING

Likelihood smoothing averages the likelihoods of neighboring samples in the latent space to pro-
mote local smoothness. The neighborhood size is controlled by the variance parameter σ. Table 6
reports an ablation study of A-VARC over different σ values. A small σ limits smoothing to a nar-
row neighborhood, while a large σ may undesirably average over semantically dissimilar samples.
Empirically, we find that σ = 0.1 provides the most favorable results.

Table 6: Effect of varying the likelihood smoothing variance σ.

σ 0.01 0.05 0.1 0.5 1.0
Acc 85.50 87.72 88.26 84.38 39.54

B.3 PARTIAL-SCALE CANDIDATE PRUNING WITH LIKELIHOOD SMOOTHING

We explored using more samples during the candidate pruning stage by combining likelihood
smoothing with partial-scale pruning. The results are provided in Fig. 4. It shows that although us-
ing more samples can slightly improve the top-10 accuracy, it substantially increases computational
cost. Therefore, we recommend using S = 1 at this stage to achieve better efficiency.

C VISUAL EXPLAINABILITY

C.1 IMPLEMENTATION DETAILS OF QUANTITATIVE ANALYSIS

To compute attribution scores, LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017) per-
turb the features of interest and measure the corresponding variation in the target function. In our
setting, we apply these explanation methods to estimate an attribution score for each token, using
the predicted probability of the ground-truth class as the target function. For each perturbation, a
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(a) Top-10 accuracy vs. number of scales (b) Computation cost vs. number of scales

Figure 4: Comparison of top-10 accuracy and computational cost across different numbers of scales
for varying values of S.

binary mask vector M = {m(i,j)
k } is used to select a subset of tokens. The predicted probability of

the ground-truth class, pθ(ygt | x,M), is computed as follows:

lθ(x | y,M) =
∑

(i,j,k)

m
(i,j)
k log pθ(r

(i,j)
k | r1, r2, · · · , rk−1, y) (13)

pθ(ygt | x,M) =
exp(lθ(x | ygt,M))∑
i exp(lθ(x | yi,M))

(14)

where m
(i,j)
k ∈ {0, 1} is a binary indicator determining token inclusion, and lθ(x | y,M) denotes

the mask-aware log-likelihood of x. LIME then fits a linear model on the perturbation outputs to
obtain attribution scores, whereas SHAP uses Kernel SHAP to approximate Shapley values. For
both methods, we use 5,000 perturbations during evaluation. The resulting attribution scores are
then evaluated using the insertion and deletion metrics. An example AUC curve for these metrics is
shown in Fig. 5.

Note that we precompute the token-wise log-likelihoods and apply the masking strategy in Eq. 13
to approximate the effect of token insertion or deletion. This allows efficient computation of token
attributions while avoiding potential out-of-distribution artifacts that may arise from directly altering
the sequence.

Figure 5: Insertion/deletion analysis of explanation methods. The first row shows insertion results,
and the second row shows deletion results. Methods from left to right are LIME, SHAP, and TMI.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.2 VISUALIZATION RESULTS

In this section, we provide additional visual explanations of the VAR-based classifier. Fig. 7 and
Fig. 8 illustrate that the classification results are indeed driven by regions corresponding to the fore-
ground object. For example, in the second row of Fig. 7, the example is correctly classified as
a green mamba, not because of the background green leaf, but because the model focuses on the
snake’s head.

We also analyze failure cases in Fig. 9. The most common type of error occurs when the model fails
to distinguish between visually similar classes, such as hen vs. cock or chihuahua vs. toy terrier.
Even when the model correctly identifies important regions for each class, it may still produce
an incorrect final prediction. Another common error arises in scenarios where multiple candidate
objects appear in the same image. For instance, the ground-truth label of the third-row example
is ’modem’, but the presence of a laptop in the same image misleads the classifier into predicting
’laptop’. A similar issue is observed in the last example, where the co-occurrence of a tabby cat and
a bassinet results in an incorrect prediction.

These examples demonstrate that visual explanations can provide valuable insights into the decision-
making process of the VAR-based classifier, enabling developers to better understand model behav-
ior and make informed adjustments during development.

D TRADE-OFF BETWEEN GENERATIVE AND DISCRIMINATIVE
PERFORMANCE.

The trade-off between generative and discriminative performance in conditional generative clas-
sifiers has been discussed in prior work (Fetaya et al., 2020). While this phenomenon is less
pronounced in the VAR-d16 model, it becomes increasingly evident as model size grows. Ta-
ble 7 reports the performance of VAR classifiers with different model sizes, including accuracy on
ImageNet-100 and the FID reported by Chen et al. (2024b) (without likelihood smoothing or can-
didate pruning). As model size increases, generative performance improves, as reflected by lower
FID, but classification accuracy on ImageNet-100 drops substantially.

This degradation can be attributed to the dilution of class-conditional information by structural in-
formation. Specifically, the class-conditional likelihood of each token depends on both class and
structural information. Larger models, with stronger generative capacity, are able to more accu-
rately infer tokens at subsequent scales even when conditioned on an incorrect class label. This is
evidenced by the simultaneous increase in both p(x|y) and p(x|yneg) as model size grows. As a
result, the contribution of class information to likelihood estimation diminishes, leading to weaker
discriminative ability. As illustrated in Fig. 10, larger models increasingly fail to distinguish between
visually similar classes, such as cock vs. hen or great white shark vs. tiger shark.

To address this issue, one promising direction is to improve the training objective so that it more
effectively preserves class information. While recent advances such as CCA represent a meaningful
step in this direction, our results indicate that CCA alone is insufficient to fully resolve the problem.
Another complementary direction is to disentangle class information from structural information,
thereby preventing the dilution effect associated with increased likelihood. We leave the exploration
of these directions to future work.

Table 7: Trade-off between generative and discriminative performance of the VAR classifier across
different model sizes.

d16 d20 d24 d30
VAR CCA VAR CCA VAR CCA VAR CCA

Accuracy 83.30 88.68 80.80 88.90 75.68 84.92 64.96 71.64
FID 12.00 4.03 8.48 3.02 6.20 2.63 5.26 2.54
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Figure 6: Impact of CCA finetuning. From left to right: the input image, TMI conditioned on the
true label, TMI conditioned on the highest-ranked incorrect label, and the contrastive explanation
between them.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7: Visual explanation of A-VARC+ using TMI. From left to right: the input image, TMI
conditioned on the true label, TMI conditioned on the highest-ranked incorrect label, and the con-
trastive explanation between them.

E PSUEDO CODE

Algorithm 1 outlines the classification procedure of the proposed Adaptive VAR Classifier (A-
VARC). The likelihood estimation strategy is composed of three forms of likelihood estimation:
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Figure 8: Visual explanation of A-VARC+ using TMI. From left to right: the input image, TMI con-
ditioned on the true label, TMI conditioned on the highest-ranked incorrect label, and the contrastive
explanation between them.
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Figure 9: Visual explanation for failure cases. From left to right: the input image, TMI conditioned
on the true label, TMI conditioned on the highest-ranked incorrect label, and the contrastive expla-
nation between them.

pθ(x|y) (Eq. 7), p̃θ,S(x|y) (Eq. 9), and p̂θ,K′(x|y) (Eq. 10). This flexible design enables a wide
range of combinations, allowing users to balance accuracy and efficiency according to their re-
quirements. For the experiments reported in Table1, we adopt a three-stage configuration with
Nstage = 3, K = (10, 3, 1) and M = (p̂θ,6(x|y), pθ(x|y), p̃θ,3(x|y)). Note that, while the al-
gorithm is presented using likelihoods for clarity, in practice, we compute log-likelihoods to ensure
numerical stability.

F IMPLEMENTATION DETAILS

To enhance reproducibility, we provide details of the subsets used in Table 1. For ImageNet,
ImageNet-V2, and ImageNet-Sketch, we adopt the same set of classes provided by Tian et al.
(2020), as listed in Table 8. Since ImageNet-A and ImageNet-R do not include all classes from
ImageNet-100, we select the overlapping classes and list them in Table 9 and Table 10, respectively.
For ObjectNet, we use all overlapping classes reported in Barbu et al. (2019), with implementation
support from the diffusion classifier’s (Li et al., 2023) repository6.

6https://github.com/diffusion-classifier/diffusion-classifier
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Figure 10: Confusion matrices of the VAR classifier evaluated on the first 10 classes of ImageNet.

Algorithm 1 Adaptive VAR Classifier (A-VARC)

Require: Test image x; Initial set of candidate labels Y = {yi}ni=1; Number of stages Nstages;
Sequence of candidate counts K = (k1, . . . , kNstages); Likelihood estimation strategy M =
(m1, . . . ,mNstages).

1: Initialize candidate set C0 ← Y
2: Initialize a map L to store likelihood scores
3: for stage i = 1, . . . , Nstages do
4: for each candidate yj ∈ Ci−1 do
5: L(yj)← ComputeLikelihood(x, yj ,method = mi) ▷ e.g., computing p̂θ,K′(x | yj)
6: end for
7: Let C ′

i−1 be the set Ci−1 sorted by descending scores L(·)
8: Ci ← the first ki elements of C ′

i−1 ▷ Prune candidates with the lowest scores
9: end for

10: return argmaxy∈CNstages
L(y)

To reduce evaluation cost on distribution-shift datasets, we further subsample 10 samples per class.
For most datasets, we sort file names alphabetically and select the first 10 samples per class. For
ImageNet-R, which includes multiple styles (e.g., art, cartoon, deviantart), we first sort styles al-
phabetically and then apply a round-robin ordering across styles (e.g., art 0.jpg, cartoon 0.jpg, de-
viantart 0.jpg, . . . ), ensuring that as many styles as possible are represented.
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Table 8: List of ImageNet 100 classes used in our experiments, identified by their WordNet IDs
(n-numbers).

List of ImageNet 100 classes

n02869837 n01749939 n02488291 n02107142 n13037406 n02091831 n04517823
n04589890 n03062245 n01773797 n01735189 n07831146 n07753275 n03085013
n04485082 n02105505 n01983481 n02788148 n03530642 n04435653 n02086910
n02859443 n13040303 n03594734 n02085620 n02099849 n01558993 n04493381
n02109047 n04111531 n02877765 n04429376 n02009229 n01978455 n02106550
n01820546 n01692333 n07714571 n02974003 n02114855 n03785016 n03764736
n03775546 n02087046 n07836838 n04099969 n04592741 n03891251 n02701002
n03379051 n02259212 n07715103 n03947888 n04026417 n02326432 n03637318
n01980166 n02113799 n02086240 n03903868 n02483362 n04127249 n02089973
n03017168 n02093428 n02804414 n02396427 n04418357 n02172182 n01729322
n02113978 n03787032 n02089867 n02119022 n03777754 n04238763 n02231487
n03032252 n02138441 n02104029 n03837869 n03494278 n04136333 n03794056
n03492542 n02018207 n04067472 n03930630 n03584829 n02123045 n04229816
n02100583 n03642806 n04336792 n03259280 n02116738 n02108089 n03424325
n01855672 n02090622

Table 9: List of ImageNet-A 100 classes used in our experiments, identified by their WordNet IDs
(n-numbers).

List of ImageNet-A 100 classes

n01531178 n01580077 n01616318 n01631663 n01641577 n01669191 n01677366
n01687978 n01694178 n01774750 n01820546 n01833805 n01843383 n01847000
n01855672 n01910747 n01924916 n01944390 n01986214 n02051845 n02077923
n02099601 n02106662 n02110958 n02119022 n02133161 n02137549 n02165456
n02174001 n02190166 n02206856 n02219486 n02236044 n02259212 n02268443
n02279972 n02280649 n02325366 n02445715 n02454379 n02504458 n02655020
n02730930 n02782093 n02802426 n02814860 n02879718 n02883205 n02895154
n02906734 n02948072 n02951358 n02999410 n03014705 n03026506 n03223299
n03250847 n03255030 n03355925 n03444034 n03452741 n03483316 n03590841
n03594945 n03617480 n03666591 n03720891 n03721384 n03788195 n03888257
n04033901 n04099969 n04118538 n04133789 n04146614 n04147183 n04179913
n04252077 n04252225 n04317175 n04366367 n04376876 n04399382 n04442312
n04456115 n04507155 n04509417 n04591713 n07583066 n07697313 n07697537
n07714990 n07718472 n07734744 n07768694 n07831146 n09229709 n11879895
n12144580 n12267677

Table 10: List of ImageNet-R 100 classes used in our experiments, identified by their WordNet IDs
(n-numbers).

List of ImageNet-R 100 classes

n01484850 n01514859 n01531178 n01534433 n01614925 n01616318 n01632777
n01774750 n01820546 n01833805 n01843383 n01847000 n01855672 n01860187
n01882714 n01944390 n01983481 n02007558 n02056570 n02066245 n02086240
n02088094 n02088238 n02096585 n02097298 n02098286 n02102318 n02106166
n02106550 n02106662 n02108089 n02108915 n02110341 n02113624 n02113799
n02117135 n02119022 n02128757 n02129165 n02130308 n02190166 n02206856
n02236044 n02268443 n02279972 n02317335 n02325366 n02346627 n02356798
n02363005 n02364673 n02395406 n02398521 n02410509 n02423022 n02486410
n02510455 n02749479 n02793495 n02797295 n02808440 n02814860 n02883205
n02939185 n02950826 n02966193 n02980441 n03124170 n03372029 n03424325
n03452741 n03481172 n03495258 n03630383 n03676483 n03710193 n03773504
n03775071 n03930630 n04118538 n04254680 n04266014 n04310018 n04347754
n04389033 n04522168 n04536866 n07693725 n07697313 n07697537 n07714571
n07714990 n07720875 n07745940 n07749582 n07753275 n07753592 n09835506
n10565667 n12267677
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