

000 001 002 003 004 005 YOUR VAR MODEL IS SECRETLY AN EFFICIENT AND 006 EXPLAINABLE GENERATIVE CLASSIFIER 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

011 Generative classifiers, which leverage conditional generative models for classi-
012 fication, have recently demonstrated desirable properties such as robustness to
013 distribution shifts. However, recent progress in this area has been largely driven
014 by diffusion-based models, whose substantial computational cost limits their scal-
015 ability in practice. To address the efficiency concern, we investigate generative
016 classifier built upon recent advances in visual autoregressive (VAR) modeling.
017 Owing to their tractable likelihood, VAR-based generative classifier enable signif-
018 icantly more efficient inference compared to diffusion-based counterparts. Build-
019 ing on this foundation, we introduce the Adaptive VAR Classifier⁺ (A-VARC⁺),
020 which further improves accuracy while reducing computational cost, substantially
021 enhancing practical usability. Beyond efficiency, we also study several proper-
022 ties of VAR-based generative classifiers that distinguish them from conventional
023 discriminative models. In particular, the tractable likelihood facilitates visual ex-
024 plainability via token-wise mutual information, and the model naturally adapts to
025 class-incremental learning without requiring additional replay data.
026
027

028 1 INTRODUCTION 029

030 Generative models are trained to directly capture the underlying data distribution of a given dataset,
031 which enables a wide range of applications such as image generation (Han et al., 2025), image
032 editing (Mu et al., 2025), and data augmentation (Trabucco et al., 2023). Given this expressive capa-
033 bility, a natural question arises: **Can we leverage these powerful generative models for classifica-
034 tion?** This question has motivated a line of research on the “Generative Classifier.” In this paradigm,
035 class-conditional generative models are employed to estimate the likelihood $p(x|y)$, where y denotes
036 the class label and x the input data. The posterior distribution $p(y|x)$ can then be derived via Bayes’
037 theorem, given the prior $p(y)$. This stands in contrast to conventional discriminative classifiers,
038 which directly model the conditional probability $p(y|x)$. Although generative classifiers are less
039 commonly adopted due to the inherent difficulty of accurately modeling $p(x|y)$ —a substantially
040 harder task than modeling $p(y|x)$ —prior work has shown that they exhibit several advantageous
041 properties distinct from discriminative classifiers.
042

043 Early work on generative classifiers (Schott et al., 2019) employed VAE (Kingma & Welling, 2013)
044 to model the likelihood $p(x|y)$ and demonstrated that such classifiers exhibit greater robustness
045 against adversarial attacks compared to discriminative models on the MNIST dataset (Deng, 2012),
046 a finding further supported by Li et al. (2019). In addition, Van De Ven et al. (2021) showed that
047 such generative classifiers achieve superior performance in class-incremental learning. Building on
048 these successes, subsequent studies explored normalizing flows (Ardizzone et al., 2020; Mackowiak
049 et al., 2021) and score-based models (Zimmermann et al., 2021) for estimating class-conditional
050 likelihoods, achieving classification performance comparable to discriminative counterparts. More
051 recent work adapted pre-trained text-to-image diffusion models as zero-shot generative classifiers by
052 approximating likelihood through the evidence lower bound (ELBO), revealing desirable properties
053 such as out-of-distribution robustness (Li et al., 2023), attribute binding (Clark & Jaini, 2023), shape
bias, and human-like error consistency (Jaini et al., 2023). Further studies have shown that diffusion-
based generative classifiers can achieve certifiable robustness (Chen et al., 2024a) and are robust to
subpopulation shifts (Li et al., 2024), underscoring their promising advantages.
054

Despite these advances, research on generative classifiers for image classification remains relatively underexplored. The recent emphasis on diffusion-based generative classifiers introduces two limitations. The first and most critical challenge is scalability. By design, generative classifiers suffer from efficiency issues, as their computational complexity grows linearly with the number of classes, which severely limits applicability to large-scale datasets such as ImageNet with 1,000 classes. This issue is further exacerbated by the lack of tractable likelihoods in diffusion models. Specifically, the diffusion-based method adopts ELBO as an approximation of likelihood (Li et al., 2023), which involves multiple forward passes. To obtain reliable approximations for classification, diffusion-based methods typically require dozens to hundreds of function evaluations, creating a significant barrier to practical deployment. The second limitation is the narrow perspective that arises from the recent exclusive focus on diffusion-based approaches. It is unclear whether the desirable properties reported in diffusion-based studies are shared across different generative classifiers.

Recent advances in visual autoregressive (VAR) modeling (Tian et al., 2024) present a promising and efficient backbone for generative classifiers. However, a naive implementation of a VAR classifier (VARC) yields suboptimal performance. To address this, we propose the Adaptive VAR Classifier (A-VARC), a framework designed to improve accuracy while reducing computational cost. A-VARC integrates two techniques: **(i) likelihood smoothing**, which enhances accuracy by producing more robust likelihood estimates, and **(ii) partial-scale candidate pruning**, which accelerates inference by exploiting the model’s multi-scale architecture for candidate pruning. Together, these components form a flexible and efficient generative classifier that outperforms the naive VARC baseline. In addition, we introduce A-VARC⁺, an enhanced variant finetuned using the recently proposed Condition Contrastive Alignment (CCA) method (Chen et al., 2024b). With these improvements, A-VARC⁺ achieves accuracy comparable to the DiT-based (Peebles & Xie, 2023) diffusion classifier on ImageNet-100—incurred less than a 1% drop—while requiring 89× less computational cost. This dramatically reduces the computational burden of generative classifiers and significantly improves their practical feasibility.

Beyond efficiency, we also investigate additional properties of VAR-based generative classifiers. Although we do not observe the same level of distribution-shift robustness reported for diffusion-based approaches, our analysis uncovers other distinctive advantages. In particular, the tractable likelihood enables visual explanations via token-wise mutual information, capturing the relevance of individual tokens to the target label. Moreover, unlike discriminative classifiers that typically suffer from catastrophic forgetting in class-incremental learning, VAR-based models, trained to model class-conditional likelihoods independently, naturally adapt to such tasks without requiring replay data. Collectively, these findings highlight new and complementary research directions for generative classifiers.

The main contributions of our paper are summarized as follows:

- We investigate VAR-based generative classifiers and introduce A-VARC⁺, which further improves both performance and efficiency. Notably, A-VARC⁺ achieves accuracy comparable to the DiT-based diffusion classifier while requiring 89× less computational cost.
- We conduct a comprehensive evaluation of generative classifiers across multiple model families and datasets under a well-controlled setup, providing a clearer understanding of their strengths and limitations.
- We show that the tractable likelihood of VAR-based generative classifiers enables visual explainability and allows the model to naturally adapt to class-incremental learning without the need for replay data.

2 RELATED WORK

2.1 GENERATIVE CLASSIFIER

The discussion of generative classifiers can be traced back to Ng & Jordan (2001), who studied Naive Bayes and showed its superior data efficiency compared to its discriminative counterpart. Subsequent research has explored generative classifiers built upon different backbone architectures. Early works (Schott et al., 2019; Li et al., 2019; Ghosh et al., 2019) employed VAEs to model the likelihood and demonstrated strong adversarial robustness. Van De Ven et al. (2021) further

108 showed that such classifiers achieve superior performance in class-incremental learning. Follow-up
 109 studies investigated normalizing flows. Fetaya et al. (2020) highlighted a key limitation of
 110 conditional likelihood-based generative classifiers, noting that class-conditional information may be
 111 underutilized when trained with a maximum-likelihood objective. Ardizzone et al. (2020) showed
 112 that this issue can be alleviated by introducing a reweighted discriminative term, and Mackowiak
 113 et al. (2021) demonstrated that such a design enables additional features such as explainability and
 114 out-of-distribution detection.

115 More recently, the rapid progress of diffusion models has motivated their adoption for generative
 116 classification. Zimmermann et al. (2021) derived class-conditional likelihoods via reverse SDE,
 117 showing improved performance on CIFAR-10 (Krizhevsky et al., 2009). Alternatively, Li et al.
 118 (2023) employed the ELBO as a proxy for likelihood estimation, demonstrating robustness to distri-
 119 bution shifts. Follow-up works (Clark & Jaini, 2023; Jaini et al., 2023) further highlighted intriguing
 120 properties such as human-like shape bias and error consistency with human judgments. Recent
 121 studies extended these findings by showing that ELBO-based diffusion classifiers can achieve sub-
 122 stantial improvements in certified robustness (Chen et al., 2024a) and mitigate shortcut learning
 123 caused by spurious correlations (Li et al., 2024). While some studies have explored autoregressive
 124 generative classifiers in NLP tasks (Li et al., 2024; Kasa et al., 2025), the recent investigation of
 125 autoregressive-based generative classifiers for image classification remains limited, with Jaini et al.
 126 (2023) providing only preliminary results. In this work, we study VAR-based generative classifiers,
 127 which provide a new perspective on the development of generative classifiers.

128 2.2 IMAGE AUTOREGRESSIVE MODEL

130 For image generation, autoregressive models transform the intractable problem of modeling all pixel
 131 dependencies simultaneously into a tractable sequence of prediction tasks. Larochelle & Murray
 132 (2011) demonstrated the feasibility of building neural autoregressive models for image generation.
 133 Follow-up works (Van Den Oord et al., 2016; Van den Oord et al., 2016; Salimans et al., 2017) intro-
 134 duced architectural improvements and performed next-pixel prediction in a raster-scan manner. The
 135 development of VQ-VAE (Van Den Oord et al., 2017) further enabled encoding images into shorter
 136 sequences of discrete tokens, greatly improving scalability. Subsequent works (Razavi et al., 2019;
 137 Ramesh et al., 2021; Esser et al., 2021; Sun et al., 2024) demonstrated the outstanding generative
 138 capability of such models. Moving beyond conventional next-token prediction, Tian et al. (2024)
 139 proposed visual autoregressive (VAR) modeling with next-scale prediction, which generates im-
 140 ages in a multi-scale, coarse-to-fine order and achieves performance superior to earlier approaches.
 141 Building upon this advance, we show that, with its tractable likelihood and next-scale prediction, the
 142 VAR model can also serve as an efficient and explainable generative classifier.

143 3 PRELIMINARY

146 3.1 GENERATIVE CLASSIFIER

148 Given an image-label pair (x, y) , the goal of a classifier is to model the conditional probability
 149 $p(y|x)$ for classification. Unlike discriminative classifiers, which directly learn this distribution,
 150 generative models are trained to estimate the class-conditional likelihood $p(x|y)$. Using Bayes'
 151 theorem, the parameterized posterior $p_\theta(y|x)$ can then be expressed as:

$$153 p_\theta(y_i | x) = \frac{p_\theta(x | y_i)p(y_i)}{\sum_j p_\theta(x | y_j)p(y_j)} \quad (1)$$

155 where $p(y_i)$ denotes the class prior. A common assumption is that the prior is uniform across all
 156 classes, in which case the prediction of a generative classifier is obtained by:

$$158 \arg \max_{y_i} p_\theta(x | y_i) \quad (2)$$

161 Note that performing classification using Eq. 2 requires the conditional likelihood $p_\theta(x|y_i)$ for every
 162 possible class y_i , and thus the computational complexity scales linearly with the number of classes.

162 3.2 DIFFUSION CLASSIFIER
163164 For diffusion models, the class-conditional likelihood $p(x|y)$ is intractable. To address this, the diffusion
165 classifier Li et al. (2023) employs the evidence lower bound (ELBO) as a surrogate objective.
166 The classification decision can then be obtained as:

167
$$\arg \min_{y_i} \mathbb{E}_{t, \epsilon} [\|\epsilon_\theta(x_t, y_i) - \epsilon\|^2], \epsilon \sim \mathcal{N}(0, I) \quad (3)$$

168

169 where ϵ_θ is the noise prediction model and t is the timestep used for determining the noise level. The
170 intuition is that with the correct class condition, the noise prediction error will be smaller. However,
171 obtaining a reliable estimate typically requires dozens to hundreds of Monte Carlo samples, resulting
172 in substantial computational overhead.
173174 3.3 IMAGE AUTOREGRESSIVE MODEL
175176 Autoregressive models provide a principled way to represent the complex distribution of high-
177 dimensional data by factorizing it into a product of one-dimensional conditional distributions.
178 To model the likelihood $p(x|y)$, an image x is first tokenized into a sequence of tokens
179 (x_1, x_2, \dots, x_L) . The class-conditional likelihood can then be expressed as:

180
$$p(x | y) = p(x_1, x_2, \dots, x_L | y) = \prod_l^L p(x_l | x_1, x_2, \dots, x_{l-1}, y). \quad (4)$$

181
182

183 A common tokenization strategy is to use a quantized autoencoder, such as VQ-VAE (Van Den Oord
184 et al., 2017), which converts an image feature map $f \in \mathbb{R}^{h \times w \times C}$ into discrete tokens $q \in [V]^{h \times w}$,
185 typically ordered in raster-scan fashion. However, Tian et al. (2024) identifies limitations of raster-
186 scan ordering, including loss of structural information and inefficiency, and instead proposes next-
187 scale prediction. In this approach, a feature map $f \in \mathbb{R}^{h \times w \times C}$ is quantized into K multi-scale
188 token maps (r_1, r_2, \dots, r_K) , each with progressively higher resolution $h_k \times w_k$, culminating in r_K ,
189 which matches the original resolution $h \times w$. Specifically, for a given image $x \in \mathbb{R}^{C \times H \times W}$, the
190 tokenization process is defined as:

191
$$f = \mathcal{E}(x), \quad (r_1, r_2, \dots, r_K) = \mathcal{Q}(f), \quad (5)$$

192

193 where $\mathcal{E}(\cdot)$ denotes the encoder and $\mathcal{Q}(\cdot)$ the quantizer. The multi-scale token maps can be projected
194 back to pixel space as a reconstructed image \hat{x} through a codebook Z and a decoder $\mathcal{D}(\cdot)$ as follows:

195
$$\hat{f} = \text{lookup}(Z, (r_1, r_2, \dots, r_K)), \quad \hat{x} = \mathcal{D}(\hat{f}). \quad (6)$$

196

197 where $\text{lookup}(Z, \cdot)$ means taking the corresponding vector in codebook Z . For high-capacity VQ-
198 VAE models, the difference between x and \hat{x} is generally negligible. Therefore, the VAR model is
199 trained on the discrete token set, which is formulated as:

200
$$p_\theta(x | y) = p_\theta(r_1, r_2, \dots, r_K | y) = \prod_k^K p_\theta(r_k | r_1, r_2, \dots, r_{k-1}, y), \quad (7)$$

201
202

203 where each $r_k \in [V]^{h_k \times w_k}$ is the token map at scale k , containing $h_k \times w_k$ tokens.
204206 4 ADAPTIVE VAR CLASSIFIER
207208 With the tractable likelihood defined in Eq.7, a VAR model can be directly converted into a VAR
209 classifier (VARC) using Eq.1. Since the token maps (r_1, r_2, \dots, r_K) are readily available after to-
210 kenizing a test image with VQ-VAE, the likelihood can be estimated with a single forward pass,
211 making VARC a more efficient classifier compared to diffusion-based methods. However, this naive
212 adaptation yields suboptimal performance. To address this, we first introduce the Adaptive VAR
213 Classifier (A-VARC), which integrates two key techniques: likelihood smoothing and partial-scale
214 candidate pruning. By design, A-VARC adaptively balances accuracy and efficiency, offering sig-
215 nificant improvements over the naive VARC baseline. We then present A-VARC⁺, an enhanced
variant that applies CCA finetuning to achieve further performance gains.

216 4.1 LIKELIHOOD SMOOTHING
217

218 While Eq.7 provides a formulation for likelihood estimation, we observe that it lacks smoothness
219 and may lead to suboptimal performance. To illustrate this issue, we add a small perturbation to
220 the feature map f , producing a noised feature map f^{noise} and reconstructing a corresponding image
221 \hat{x}^{noise} as follows:

$$222 \quad f^{noise} = f + \epsilon, \quad \hat{x}^{noise} = \mathcal{D}(\text{lookup}(Z, \mathcal{Q}(f^{noise}))), \quad (8)$$

224 where $\epsilon \sim \mathcal{N}(0, \sigma^2)$ is sampled from a Gaussian distribution with small variance σ^2 . Although \hat{x} and \hat{x}^{noise} are visually almost indistinguishable (see Fig.1), their token maps $\mathcal{Q}(f)$ and $\mathcal{Q}(f^{noise})$ differ drastically, with 69% of tokens changed. This discrepancy in token maps also causes observable variations in the estimated likelihood. However, since \hat{x} and \hat{x}^{noise} are perceptually similar, the corresponding likelihoods should ideally differ only slightly in order to yield stable classification.

234 To address this problem, we propose a smoothed
235 class-conditional likelihood defined as:

$$237 \quad \tilde{p}_{\theta, S}(x | y) = \sum_i^S p_{\theta}(\mathcal{Q}(f + \epsilon_i) | y), \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2) \quad (9)$$

240 where S is the number of samples used for smoothing. Our empirical results demonstrate that likelihood smoothing effectively improves classification accuracy. Although this approach introduces
241 additional computational cost, we find that using only a small value of S already yields noticeable
242 gains, and the overhead can be further mitigated through the candidate pruning strategy.

245 4.2 PARTIAL-SCALE CANDIDATE PRUNING
246

247 While the tractable likelihood of the VAR model alleviates the computational cost of likelihood estimation, the most critical efficiency challenge of generative classifiers still remains. Specifically, as
248 shown in Eq. 2, the computation cost scales linearly with the number of classes, since classification
249 requires evaluating the class-conditional likelihood for all possible classes. This limitation greatly
250 restricts the applicability to datasets with large numbers of classes. To address this, prior works
251 adopt a two-stage procedure: first, apply a quick but coarse likelihood estimation method to filter
252 out unlikely candidates, and then use a more accurate but computationally expensive estimation on
253 the remaining classes. For instance, Li et al. (2023) employs such a strategy by using 25 samples
254 to approximate the ELBO in Eq. 3 for all classes, followed by 250 samples for the top-5 candidates
255 identified in the first stage to refine the predictions.

256 Inspired by this idea, A-VARC adopts a similar but more aggressive candidate pruning
257 strategy. Unlike conventional autoregressive
258 image generation models, the VAR model
259 employs next-scale prediction, which generates
260 images in a coarse-to-fine multi-scale order.
261 This design encodes global structural information
262 at each scale with varying resolutions. Because each scale contains global information,
263 we find that the partial information in the first few scales is often sufficient
264 to discriminate between classes with large visual
265 differences (e.g., distinguishing a tench
266 from a hen). This observation motivates a
267 more efficient pruning strategy. Specifically,

Figure 1: Visual comparison of images with and without noise perturbation.

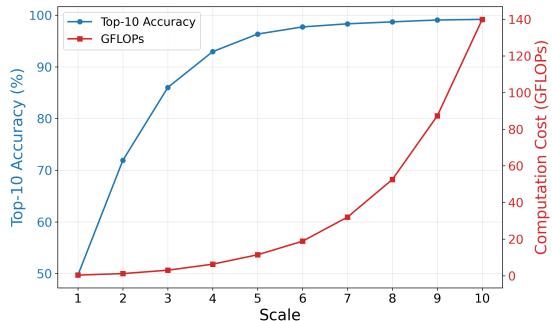


Figure 2: Top-10 accuracy and computation cost vs. number of scales.

270 we introduce partial-scale likelihood approximation, defined as:
 271

$$272 \hat{p}_{\theta, K'}(x | y) = p_{\theta}(r_1, r_2, \dots, r_{K'} | y) = \prod_{k=1}^{K'} p_{\theta}(r_k | r_1, r_2, \dots, r_{k-1}, y) \quad (10)$$

273
 274

275 where $K' < K$ denotes the number of scales used. Fig. 2 shows the top-10 accuracy and per-
 276 image computation cost on ImageNet-100 across different values of K' . The results indicate that
 277 the approximated likelihood $\hat{p}_{\theta, K'}(x | y)$ with a small K' achieves comparable top-10 accuracy to the
 278 full-scale likelihood, while offering substantial efficiency improvements, making it well suited for
 279 candidate pruning. The efficiency gain stems from the reduction in token length: the full multi-scale
 280 token maps contain 680 tokens, whereas the first five scales include only 55 tokens—about 8% of
 281 the total—due to the smaller h_k and w_k at lower resolutions. This partial-scale pruning strategy
 282 significantly reduces the computational burden of A-VARC, allowing resources to be focused on the
 283 most likely candidates.
 284

285 4.3 CLASS INFORMATION ENHANCEMENT VIA CCA

286

287 One possible factor contributing to the suboptimal performance of VAR-based classifiers is that
 288 class-conditional information may be underutilized when training with a maximum-likelihood ob-
 289 jective, as discussed in (Fetaya et al., 2020). Prior work has attempted to address this limitation by
 290 incorporating an additional discriminative term into the training objective to strengthen class infor-
 291 mation (Fetaya et al., 2020; Ardizzone et al., 2020; Mackowiak et al., 2021). While this approach
 292 does enhance class-conditional information and improve classification accuracy, the improvement
 293 comes at the expense of generation ability. A similar phenomenon is observed in image generation
 294 tasks, where conditional image generation results may not strictly align with the given condition
 295 when sampling directly from the conditional distribution. A common remedy in image generation is
 296 classifier-free guidance (Ho & Salimans, 2022), which enhances conditional information by extrap-
 297 olating between conditional and unconditional distributions. However, we find that this technique
 298 is ineffective for generative classifiers and, in fact, degrades performance through our empirical
 299 results and also reported by previous work Li et al. (2023). We hypothesize that this is because
 300 classifier-free guidance sharpens the density of a subset of the distribution to produce visually ap-
 301 pealing images, but weakens the model’s general likelihood estimation ability, as also argued by
 302 (Karras et al., 2024).

303 In this work, we want to find a general solution that enhances the class conditional information and
 304 benefits both the generation and classification tasks. Fortunately, we found that the recent advance in
 305 VAR finetuning provides an ideal solution. Chen et al. (2024b) introduced a novel finetuning objec-
 306 tive called Condition Contrastive Alignment (CCA), which was originally proposed to enhance the
 307 class-conditional information through a finetuning technique to eliminate the necessity of classifier-
 308 free guidance. Specifically, given a pretrained conditional generative model p_{ϕ} , the CCA objective
 309 encourages the target model p_{θ} to strengthen class-conditional information as follows:
 310

$$311 \mathcal{L}_{\theta}^{CCA}(x, y, y^{neg}) = -\log \sigma_{sig}[\beta \log \frac{p_{\theta}(x | y)}{p_{\phi}(x | y)}] - \lambda \log \sigma_{sig}[-\beta \log \frac{p_{\theta}(x | y^{neg})}{p_{\phi}(x | y^{neg})}] \quad (11)$$

312

313 where $\sigma_{sig}(\cdot)$ denotes the sigmoid function, and β and λ are hyperparameters. The pretrained model
 314 p_{ϕ} remains fixed during finetuning. Intuitively, the first term encourages the model to increase the
 315 likelihood under the ground-truth label y , while the second term penalizes high likelihood under an
 316 incorrect label y^{neg} . This objective effectively reinforces class-conditional information in condi-
 317 tional generative models. Our empirical results demonstrate that applying CCA to A-VARC further
 318 improves classification performance by guiding the model to focus on more object-relevant regions,
 319 as illustrated in Fig. 6 in the Appendix. We denote this enhanced version as A-VARC⁺.
 320

321 5 COMPARATIVE ANALYSIS

322

323 In this section, we conduct detailed experiments to evaluate the performance of the proposed A-
 324 VARC⁺ and verify if the robustness property is transferable to our VAR-based method.
 325

326 Datasets and Evaluation Metric. We evaluate the proposed A-VARC⁺ across a diverse set of
 327 datasets to assess its performance from multiple perspectives. For general classification ability, we
 328

324 report results on ImageNet-100, a randomly sampled subset of ImageNet (Deng et al., 2009), pro-
 325 vided by (Tian et al., 2020) with 50 samples per class. This smaller subset enables us to conduct
 326 methods that have a higher computational cost for a fair comparison. To evaluate robustness, we con-
 327 duct experiments on five distribution-shift datasets: ImageNetV2 (Shankar et al., 2020), ImageNet-
 328 R (Hendrycks et al., 2021a), ImageNet-Sketch (Wang et al., 2019), ObjectNet (Barbu et al., 2019),
 329 and ImageNet-A (Hendrycks et al., 2021b). For these datasets, we evaluate on subsets of 100 classes,
 330 except for ObjectNet, where we use the 113 classes overlapping with ImageNet. To accelerate eval-
 331 uation, we use 10 samples per class. Top-1 accuracy and per-image computation cost (in GFLOPs)
 332 are reported as the performance and efficiency metrics, respectively.

333 **Baselines and Implementation Details.** In this work, we compare the proposed method against
 334 both discriminative and generative classifiers. We focus on models trained on ImageNet to conduct
 335 a fair comparison. For discriminative classifiers, we include ResNet-18, ResNet-34, ResNet-50,
 336 and ResNet-101 (He et al., 2016), as well as ViT-L/32, ViT-L/16, and ViT-B/16 (Dosovitskiy et al.,
 337 2020). For generative classifiers, we evaluate IBINN (Mackowiak et al., 2021), a normalizing flow-
 338 based generative classifier, and the diffusion classifier (Li et al., 2023). For IBINN, we use the
 339 model trained with $\beta = 1$. For diffusion-based generative classifiers, we examine two families:
 340 diffusion and rectified flow. In the diffusion case, we follow the setup of (Li et al., 2023) (DC)
 341 and adopt DiT-XL/2 (Peebles & Xie, 2023) at resolution 256 as the backbone. We report results
 342 under two settings: (i) ELBO estimation using 25 samples, and (ii) the two-stage approach proposed
 343 in the original paper, where 25 samples are used to select the top-5 candidates followed by 250
 344 samples for refined prediction. For the rectified flow-based implementation, we report results us-
 345 ing MeanFlow (Geng et al., 2025) (DC-MF) with a SiT/XL-2 backbone, which enables evaluating
 346 whether improved sampling efficiency translates into better classification performance. In this case,
 347 the noise prediction error in Eq. 3 is replaced with the velocity prediction error associated with the
 348 rectified flow formulation, and 25 samples are used for error estimation. For A-VARC⁺, we use
 349 VAR-d16 at resolution 256 as the backbone and adopt a three-stage procedure. In the first stage,
 350 we use $\hat{p}_{\theta,6}(x|y)$ to narrow down the candidates to the top 10. In the second stage, we use $p_{\theta}(x|y)$
 351 to select the top 3 candidates. In the final stage, we apply $\tilde{p}_{\theta,3}(x|y)$ with $\sigma = 0.1$ for the final
 352 prediction. Please refer to Sec. E in Appendix for more details.

353 **Quantitative Results.** Table 1 summarizes the comparison results. On ImageNet-100, the proposed
 354 A-VARC⁺ improves both the accuracy and efficiency compared to the naive implementation VARC
 355 and achieves accuracy comparable to that of the 2-stage DiT based diffusion classifier, with less
 356 than a 1% drop, while requiring $89\times$ less computational cost. The efficiency gain primarily arises
 357 from the tractable likelihood and the candidate pruning strategy, whereas the enhanced accuracy can
 358 be attributed to likelihood smoothing and CCA finetuning. By contrast, IBINN attains the highest
 359 efficiency by modeling class-conditional likelihoods with a Gaussian Mixture Model, which enables
 360 fast classification via cluster distance computation but leads to substantially lower accuracy. It is
 361 worth noting that although rectified-flow models such as MeanFlow exhibit superior sampling ef-
 362 ficiency for image generation compared to diffusion models, this advantage does not translate to
 363 improved performance in rectified flow-based diffusion classifiers. When evaluated with the same
 364 number of samples for error estimation, DC-MF performs significantly worse than the DiT-based
 365 counterpart. Our analysis suggests that MeanFlow suffers from higher prediction error compared to
 366 the DiT-based diffusion classifier. A possible explanation is that rectified-flow models are trained
 367 to approximate marginal velocity fields using supervision from conditional flows, as discussed in
 368 (Geng et al., 2025). This training mismatch may introduce additional noise into the error estimation,
 369 weakening the class-conditional signal and ultimately degrading classification performance.

370 In terms of robustness, consistent with the findings of (Li et al., 2023), generative classifiers exhibit
 371 improved robustness to adversarial shifts in ImageNet-A compared to ResNet-based models. How-
 372 ever, for other distribution-shift datasets, the VAR classifier does not demonstrate any noticeable
 373 advantage. This suggests that the robustness property reported in diffusion-based methods (Jaini
 374 et al., 2023; Li et al., 2024) does not generalize to VAR. Interestingly, the DiT-based diffusion
 375 classifier significantly outperforms all discriminative models except ViT-L/32 on ImageNet-Sketch,
 376 highlighting its robustness to shifts from natural images to sketches. Neither IBINN nor A-VARC⁺
 377 exhibits this behavior, which implies that the observed robustness likely originates from the denois-
 378 ing training paradigm of diffusion models rather than from the generative objective itself. Finally, on

378 ImageNet and its variants—including ImageNet-V2, ImageNet-R, and ObjectNet—discriminative
 379 models continue to achieve superior overall performance. This persistent gap highlights that gener-
 380 ative classifiers remain an underexplored direction with considerable room for improvement. Nev-
 381 ertheless, given the rapid advances in generative modeling, we expect that generative classifiers will
 382 benefit from these developments and gradually narrow this gap in the near future.

383
384 Table 1: Comparison on ImageNet and across multiple distribution shifts.
385

Method	ImageNet		Distribution shifts				
	Top-1	GFLOPs	IN-V2	IN-R	IN-Sketch	ObjectNet	IN-A
ResNet18	88.44	1.8	79.1	41.2	43.8	26.02	3.6
ResNet34	89.96	3.7	81.3	40.9	46.1	30.62	5.1
ResNet50	91.90	4.1	83.4	44.0	45.5	34.69	2.0
ResNet101	92.14	7.8	84.8	44.6	50.3	36.99	6.8
ViT-L/32	91.92	15.3	83.9	51.3	55.2	30.44	14.4
ViT-L/16	93.22	59.7	86.0	49.4	49.7	33.98	18.0
ViT-B/16	94.20	16.9	86.9	52.5	52.0	36.28	21.7
IBINN	51.12	9.2	40.9	13.2	14.6	3.98	3.2
DC-MF ₍₂₅₎	50.30	296861.3	44.0	4.5	3.9	10.27	4.8
DC ₍₂₅₎	86.32	286287.6	75.8	<u>33.1</u>	<u>51.6</u>	22.65	<u>13.7</u>
DC _(25,250)	90.30	415056.0	80.6	38.3	53.7	29.38	16.2
VARC	83.30	14105.0	71.9	30.6	36.0	19.47	10.3
A-VARC ⁺	<u>89.32</u>	<u>4649.4</u>	<u>79.3</u>	<u>33.1</u>	34.0	<u>24.51</u>	10.0

401
402 **Ablation Study.** Table 2 presents the ablation study of the two accuracy enhancement techniques
 403 adopted by A-VARC⁺: likelihood smoothing and CCA finetuning. To focus on the analysis of
 404 the accuracy gain, the partial-scale candidate pruning technique is not applied in this experiment.
 405 Likelihood smoothing is applied only to the top-10 candidate classes, selected based on the class-
 406 conditional likelihood $p_\theta(x|y)$ from a standard forward pass. We use 10 samples for smoothing,
 407 as additional samples yield diminishing returns. The results show that likelihood smoothing con-
 408 sistently improves the performance of the baseline for all datasets, though at the cost of increased
 409 computation. In contrast, CCA finetuning enhances in-domain accuracy on ImageNet and closely
 410 related datasets such as ImageNetV2, ImageNet-R, and ObjectNet, but slightly reduces performance
 411 on ImageNet-A and ImageNet-Sketch. This suggests that CCA finetuning encourages the model to
 412 emphasize class-specific information, thereby improving discrimination within the training distribu-
 413 tion but reducing generalization to larger distribution shifts.

414
415 Table 2: Ablation study on likelihood smoothing and CCA finetuning.
416

Smooth ($S=10$)	CCA	ImageNet		Distribution shifts				
		Top-1	GFLOPs	IN-V2	IN-R	IN-Sketch	ObjectNet	IN-A
		83.30	14105.0	71.9	30.6	36.0	19.47	10.3
✓		88.26	28210.0	77.1	33.6	40.4	24.78	11.0
	✓	88.68	14105.0	80.3	34.5	34.8	25.75	9.9
✓	✓	89.72	28210.0	81.2	33.9	36.0	26.73	10.9

422
423

6 INTRIGUING PROPERTIES

424 In this section, we discuss the intriguing properties of the VAR-based classifier that distinguish it
 425 from conventional discriminative classifiers.

426
427

6.1 VISUAL EXPLAINABILITY

428 The tractable likelihood of the VAR model inherently provides visual explainability. The concept
 429 of pointwise mutual information (PMI), defined as $\log \frac{p(x|y)}{p(x)}$, has been widely used in NLP tasks
 430

(Church & Hanks, 1990; Levy & Goldberg, 2014) to measure word associations. Here, we show that this concept can be naturally extended by the VAR-based classifier to provide visual explanations. The goal of visual explanation is to capture fine-grained associations between local image regions and a target label y , thereby clarifying why the model makes a particular decision. Since autoregressive models compute token-wise likelihoods, we can extend pointwise mutual information to token-wise mutual information (TMI), which measures the association between a token and a label as follows:

$$\log \frac{p_\theta(r_k^{(i,j)} | r_1, r_2, \dots, r_{k-1}, y)}{p_\theta(r_k^{(i,j)} | r_1, r_2, \dots, r_{k-1})} \quad (12)$$

where $r_k^{(i,j)}$ denotes the (i,j) -th token of the k -th scale token map. This ratio can be obtained for each token with only two forward passes. Moreover, this concept can be extended to contrastive explanations, which highlight why a prediction is made in favor of one class over another. Fig. 3 illustrates that token-wise mutual information effectively identifies regions strongly associated with the label “little blue heron”, thereby revealing the basis of the model’s prediction. It also provides contrastive evidence by explaining why the image is classified as a “little blue heron” rather than a “goose”. This offers direct and interpretable insight into the decision-making process of the VAR classifier. Please refer to Fig. 7 and Fig. 8 in the Appendix for more visualization results.

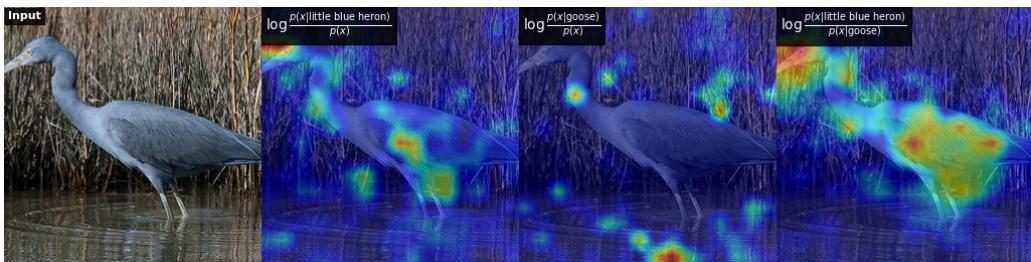


Figure 3: Visual explanation of A-VARC⁺ using TMI. From left to right: the input image, TMI conditioned on the true label, TMI conditioned on the highest-ranked incorrect label, and the contrastive explanation between them.

The token-wise mutual information can be viewed as an attribution method that produces an attribution score for each token. To evaluate attribution quality, we adopt the insertion and deletion metrics introduced in (Petsiuk et al., 2018), which are widely used in the explainability literature. Tokens are first sorted according to their attribution scores; then, they are gradually inserted or removed to measure the change in the predicted probability of the ground-truth class. The area under the curve (AUC) is used for evaluation. Intuitively, for the insertion metric, a higher AUC is preferred, as it indicates that tokens with high attribution scores meaningfully support the ground-truth class. For the deletion metric, a lower AUC is preferred, as removing highly attributed tokens should decrease the ground-truth probability. We additionally report LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017) as baselines. Please refer to Sec. C in Appendix for more details.

Table 3 presents the quantitative analysis of the visual explanation methods. For A-VARC, LIME demonstrates the strongest overall performance, while TMI performs comparably to SHAP on the insertion metric and achieves the second-best score on the deletion metric. For A-VARC⁺, TMI outperforms all other methods on both insertion and deletion metrics. These results are consistent with the qualitative observations in Fig. 6, where TMI becomes more focused on class-relevant regions after finetuning, leading to improved explainability.

6.2 CLASS-INCREMENTAL LEARNING

Unlike discriminative classifiers, which rely on a unified softmax layer across all classes to obtain logits for classification, generative classifiers base their predictions solely on class-conditional likelihoods. Since these likelihoods can be learned independently for each class, generative classifiers naturally adapt to class-incremental learning without suffering from catastrophic forgetting, as noted in (Van De Ven et al., 2021). This provides a distinct advantage over discriminative models,

486
487 Table 3: Quantitative analysis of visual explanation methods. The reported metrics correspond to
488 the average area-under-the-curve (AUC) averaged across the ImageNet-100 dataset.
489

	Metric	LIME	SHAP	TMI (Ours)
A-VARC	Insertion (\uparrow)	0.979	0.853	0.845
	Deletion (\downarrow)	0.192	0.432	0.346
A-VARC ⁺	Insertion (\uparrow)	0.939	0.902	0.944
	Deletion (\downarrow)	0.614	0.746	0.605

494
495
496 which are vulnerable to catastrophic forgetting and typically require storing a portion of past data as
497 “rehearsal” to preserve performance.

498 To investigate whether recent generative classifiers exhibit similar behavior, we conduct a proof-
499 of-concept class-incremental learning experiment on the first 10 classes of ImageNet. The classes
500 are partitioned into two tasks, each containing 5 classes. Discriminative classifiers are trained se-
501 quentially, first on Task 1 and then on Task 2. For generative classifiers, two separate models are
502 independently trained on each task, following the setup in (Van De Ven et al., 2021). We evaluate
503 both diffusion-based and VAR-based generative classifiers. Specifically, we use ResNet-50 as the
504 discriminative baseline, DiT-S/2 for the diffusion classifier, and VAR-d8 for the VAR classifier. All
505 models are trained from scratch for 1,000 epochs, except DiT-S/2, which is trained for 2,000 epochs.
506 Afterward, the VAR model is further finetuned with CCA for an additional 10 epochs.
507

508 As shown in Table 4, without rehearsal data, the discriminative model suffers severe catastrophic
509 forgetting. Although methods such as CWR (Lomonaco & Maltoni, 2017) can mitigate this issue,
510 their reliance on fixed feature extractors limits performance on new tasks. In contrast, the generative
511 classifiers, trained to model class-conditional likelihoods independently, adapts naturally to new
512 tasks and achieves promising performance without requiring additional data or complex techniques.
513 This provides a promising solution for creating a unified classifier by simply merging classifiers
514 trained on different datasets, making it capable of recognizing an expanded set of classes without
515 retraining. Compared to the VAE used in previous work Van De Ven et al. (2021), the VAR model,
516 along with the techniques of A-VARC⁺, provides a powerful alternative for future research in class-
517 incremental learning.

518 Table 4: Class-incremental learning experiment on the first 10 classes of ImageNet.
519

None			CWR			DC			A-VARC ⁺		
Task1	Task2	Avg	Task1	Task2	Avg	Task1	Task2	Avg	Task1	Task2	Avg
0.0	82.4	41.2	83.2	61.6	72.4	78.4	73.6	76.0	72.4	82.4	77.4

523 7 CONCLUSION

524
525 In this work, we investigate VAR-based generative classifiers and propose A-VARC⁺, which further
526 improves both accuracy and efficiency, achieving performance comparable to DiT-based diffusion
527 classifiers while requiring substantially less computational cost. Although our analysis indicates
528 that VAR-based classifiers do not inherit certain properties exhibited by diffusion-based models,
529 such as robustness to distribution shift, we uncover other notable characteristics, including visual
530 explainability and natural adaptability to class-incremental learning. These findings offer a deeper
531 understanding of the strengths and limitations of generative classifiers and point toward promising
532 directions for future research.
533

534 8 REPRODUCIBILITY STATEMENT

535
536 To ensure reproducibility, we provide detailed instructions in Sec. F of the Appendix for obtaining
537 the evaluation subsets used in our experiments. In addition, the pseudo-code of A-VARC is pro-
538 vided in Algorithm1. For discriminative baselines, the pretrained models are publicly available in
539

540 torchvision¹. The code and pretrained models for IBINN², DC³, VAR⁴, and CCA⁵ are also
 541 accessible through their respective repositories.
 542

543 **REFERENCES**
 544

545 Lynton Ardizzone, Radek Mackowiak, Carsten Rother, and Ullrich Köthe. Training normalizing
 546 flows with the information bottleneck for competitive generative classification. *Advances in Neu-
 547 ral Information Processing Systems*, 33:7828–7840, 2020.

548 Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
 549 Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the
 550 limits of object recognition models. *Advances in neural information processing systems*, 32,
 551 2019.

552 Huanran Chen, Yinpeng Dong, Shitong Shao, Hao Zhongkai, Xiao Yang, Hang Su, and Jun Zhu.
 553 Diffusion models are certifiably robust classifiers. *Advances in Neural Information Processing
 554 Systems*, 37:50062–50097, 2024a.

555 Huayu Chen, Hang Su, Peize Sun, and Jun Zhu. Toward guidance-free ar visual generation via
 556 condition contrastive alignment. *arXiv preprint arXiv:2410.09347*, 2024b.

557 Kenneth Church and Patrick Hanks. Word association norms, mutual information, and lexicography.
 558 *Computational linguistics*, 16(1):22–29, 1990.

559 Kevin Clark and Priyank Jaini. Text-to-image diffusion models are zero shot classifiers. *Advances
 560 in Neural Information Processing Systems*, 36:58921–58937, 2023.

561 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 562 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 563 pp. 248–255. Ieee, 2009.

564 Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
 565 web]. *IEEE signal processing magazine*, 29(6):141–142, 2012.

566 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 567 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 568 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
 569 arXiv:2010.11929*, 2020.

570 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 571 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
 572 tion*, pp. 12873–12883, 2021.

573 Ethan Fetaya, Jørn-Henrik Jacobsen, Will Grathwohl, and Richard Zemel. Understanding the lim-
 574 itations of conditional generative models. In *International Conference on Learning Representa-
 575 tions (ICLR)*, 2020. URL <https://arxiv.org/abs/1906.01171>.

576 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
 577 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.

578 Partha Ghosh, Arpan Losalka, and Michael J Black. Resisting adversarial attacks using gaussian
 579 mixture variational autoencoders. In *Proceedings of the AAAI conference on artificial intelligence*,
 580 volume 33, pp. 541–548, 2019.

581 Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaob-
 582 ing Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis.
 583 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15733–15744,
 584 2025.

585
 586 ¹<https://github.com/pytorch/vision>

587 ²https://github.com/vislearn/trustworthy_GCs

588 ³<https://github.com/diffusion-classifier/diffusion-classifier>

589 ⁴<https://github.com/FoundationVision/VAR>

590 ⁵<https://github.com/thu-ml/CCA>

594 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 595 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 596 770–778, 2016.

597 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 598 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A criti-
 599 cal analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international*
 600 *conference on computer vision*, pp. 8340–8349, 2021a.

601 Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
 602 examples. *CVPR*, 2021b.

603 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 604 *arXiv:2207.12598*, 2022.

605 Priyank Jaini, Kevin Clark, and Robert Geirhos. Intriguing properties of generative classifiers. *arXiv*
 606 *preprint arXiv:2309.16779*, 2023.

607 Tero Karras, Miika Aittala, Tuomas Kynkänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
 608 Guiding a diffusion model with a bad version of itself. *Advances in Neural Information Processing*
 609 *Systems*, 37:52996–53021, 2024.

610 Siva Rajesh Kasa, Karan Gupta, Sumegh Roychowdhury, Ashutosh Kumar, Yaswanth Biruduraju,
 611 Santhosh Kumar Kasa, Nikhil Priyatam Pattisapu, Arindam Bhattacharya, Shailendra Agarwal,
 612 et al. Generative or discriminative? revisiting text classification in the era of transformers. *arXiv*
 613 *preprint arXiv:2506.12181*, 2025.

614 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 615 *arXiv:1312.6114*, 2013.

616 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 617 2009.

618 Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In *Proceed-
 619 ings of the fourteenth international conference on artificial intelligence and statistics*, pp. 29–37.
 620 JMLR Workshop and Conference Proceedings, 2011.

621 Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. *Advances*
 622 *in neural information processing systems*, 27, 2014.

623 Alexander C. Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak. Your diffu-
 624 sion model is secretly a zero-shot classifier. In *Proceedings of the IEEE/CVF International Con-
 625 ference on Computer Vision (ICCV)*, 2023. URL <https://arxiv.org/abs/2303.16203>.

626 Alexander Cong Li, Ananya Kumar, and Deepak Pathak. Generative classifiers avoid shortcut solu-
 627 tions. In *The Thirteenth International Conference on Learning Representations*, 2024.

628 Yingzhen Li, John Bradshaw, and Yash Sharma. Are generative classifiers more robust to adversarial
 629 attacks? In *International Conference on Machine Learning*, pp. 3804–3814. PMLR, 2019.

630 Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for continuous
 631 object recognition. In *Conference on robot learning*, pp. 17–26. PMLR, 2017.

632 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances*
 633 *in neural information processing systems*, 30, 2017.

634 Radek Mackowiak, Lynton Ardizzone, Ullrich K”othe, and Carsten Rother. Generative classifiers
 635 as a basis for trustworthy image classification. In *Proceedings of the IEEE/CVF Conference*
 636 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 2970–2980, 2021. URL <https://arxiv.org/abs/2007.15036>.

637 Jiteng Mu, Nuno Vasconcelos, and Xiaolong Wang. Editar: Unified conditional generation with au-
 638 toregressive models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 639 pp. 7899–7909, 2025.

648 Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A com-
 649 parison of logistic regression and naive bayes. In Thomas G. Dietterich, Suzanna Becker,
 650 and Zoubin Ghahramani (eds.), *Advances in Neural Information Processing Systems 14 (NIPS*
 651 *2001)*, pp. 841–848. MIT Press, 2001. URL <http://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf>.

652

653 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 654 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

655

656 Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: randomized input sampling for explanation of
 657 black-box models. In *British Machine Vision Conference 2018, BMVC 2018, Newcastle, UK,*
 658 *September 3-6, 2018*, pp. 151, 2018.

659

660 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 661 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine*
 662 *learning*, pp. 8821–8831. Pmlr, 2021.

663

664 Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
 665 vq-vae-2. *Advances in neural information processing systems*, 32, 2019.

666

667 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
 668 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference*
 669 *on knowledge discovery and data mining*, pp. 1135–1144, 2016.

670

671 Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
 672 pixelcnn with discretized logistic mixture likelihood and other modifications. *arXiv preprint*
 673 *arXiv:1701.05517*, 2017.

674

675 Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the first adversarially
 676 robust neural network model on mnist. In *International Conference on Learning Representations*
 677 *(ICLR) — Poster*, 2019. URL <https://arxiv.org/abs/1805.09190>.

678

679 Vaishaal Shankar, Rebecca Roelofs, Horia Mania, Alex Fang, Benjamin Recht, and Ludwig
 680 Schmidt. Evaluating machine accuracy on imagenet. In *International Conference on Machine*
 681 *Learning*, pp. 8634–8644. PMLR, 2020.

682

683 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 684 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint*
 685 *arXiv:2406.06525*, 2024.

686

687 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 688 Scalable image generation via next-scale prediction. *Advances in neural information processing*
 689 *systems*, 37:84839–84865, 2024.

690

691 Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In *European*
 692 *conference on computer vision*, pp. 776–794. Springer, 2020.

693

694 Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective data augmen-
 695 tation with diffusion models. *arXiv preprint arXiv:2302.07944*, 2023.

696

697 Gido M Van De Ven, Zhe Li, and Andreas S Tolias. Class-incremental learning with generative clas-
 698 sifiers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 699 pp. 3611–3620, 2021.

700

701 Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
 702 ditional image generation with pixelcnn decoders. *Advances in neural information processing*
 703 *systems*, 29, 2016.

704

705 Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
 706 In *International conference on machine learning*, pp. 1747–1756. PMLR, 2016.

707

708 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 709 *neural information processing systems*, 30, 2017.

702 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
703 tions by penalizing local predictive power. *Advances in neural information processing systems*,
704 32, 2019.

705

706 Roland S. Zimmermann, Lukas Schott, Yang Song, Benjamin A. Dunn, and David A. Klindt. Score-
707 based generative classifiers. *arXiv preprint arXiv:2110.00473*, 2021. URL <https://arxiv.org/abs/2110.00473>.

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A USE OF LARGE LANGUAGE MODELS**
757758 In this work, we made limited use of large language models (LLMs) to assist with writing and
759 reference search. Specifically, LLMs were used to polish the text for clarity and readability, and to
760 conduct preliminary surveys for identifying relevant references. All generated content was carefully
761 reviewed and edited by the authors to ensure that it faithfully reflects the intended meaning. Like-
762 wise, all references retrieved through LLM-assisted searches were manually verified for accuracy
763 and alignment with the described content.764 **B ADDITIONAL ABLATION STUDY**
765766 **B.1 LIKELIHOOD SMOOTHING WITH VARYING NUMBERS OF SAMPLES**
767769 Following the setting in Table 2, we provide an additional ablation study using different values of S
770 for likelihood smoothing in Table 5. For A-VARC, the accuracy increases as S grows and saturates
771 at $S = 16$, yielding an overall improvement of 5.12%. For A-VARC⁺, saturation occurs earlier at
772 $S = 8$ with a smaller improvement of 1.06%, indicating that the gain from smoothing is reduced
773 when combined with CCA. In both cases, the results consistently show that applying likelihood
774 smoothing improves classification accuracy.775
776 Table 5: Ablation study of likelihood smoothing with varying numbers of samples.
777778
779

	$S=1$	$S=2$	$S=4$	$S=8$	$S=10$	$S=16$	$S=32$
A-VARC	83.30	85.30	87.18	88.18	88.26	88.42	88.42
A-VARC ⁺	88.68	89.42	89.30	89.74	89.72	89.54	89.72

780781
782 **B.2 VARIANCE FOR LIKELIHOOD SMOOTHING**
783784 Likelihood smoothing averages the likelihoods of neighboring samples in the latent space to pro-
785 mote local smoothness. The neighborhood size is controlled by the variance parameter σ . Table 6
786 reports an ablation study of A-VARC over different σ values. A small σ limits smoothing to a nar-
787 row neighborhood, while a large σ may undesirably average over semantically dissimilar samples.
788 Empirically, we find that $\sigma = 0.1$ provides the most favorable results.
789790
791 Table 6: Effect of varying the likelihood smoothing variance σ .
792793
794

σ	0.01	0.05	0.1	0.5	1.0
Acc	85.50	87.72	88.26	84.38	39.54

795796 **B.3 PARTIAL-SCALE CANDIDATE PRUNING WITH LIKELIHOOD SMOOTHING**
797798 We explored using more samples during the candidate pruning stage by combining likelihood
799 smoothing with partial-scale pruning. The results are provided in Fig. 4. It shows that although us-
800 ing more samples can slightly improve the top-10 accuracy, it substantially increases computational
801 cost. Therefore, we recommend using $S = 1$ at this stage to achieve better efficiency.
802803 **C VISUAL EXPLAINABILITY**
804805 **C.1 IMPLEMENTATION DETAILS OF QUANTITATIVE ANALYSIS**
806807 To compute attribution scores, LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017) per-
808 turb the features of interest and measure the corresponding variation in the target function. In our
809 setting, we apply these explanation methods to estimate an attribution score for each token, using
the predicted probability of the ground-truth class as the target function. For each perturbation, a

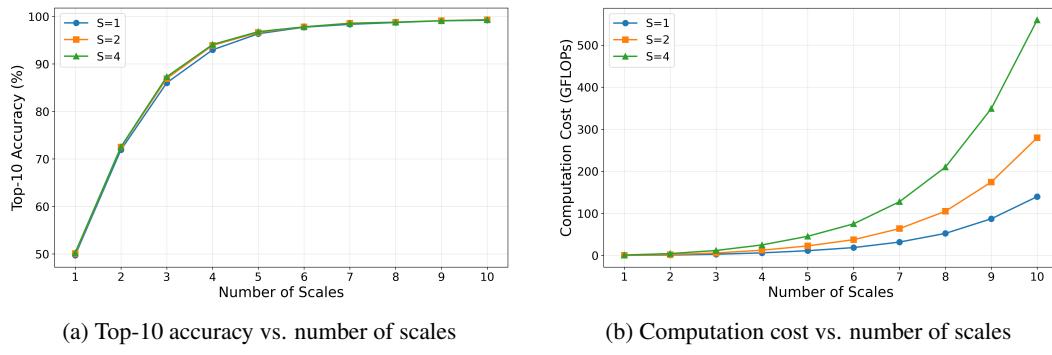


Figure 4: Comparison of top-10 accuracy and computational cost across different numbers of scales for varying values of S .

binary mask vector $M = \{m_k^{(i,j)}\}$ is used to select a subset of tokens. The predicted probability of the ground-truth class, $p_\theta(y_{gt} | x, M)$, is computed as follows:

$$l_\theta(x | y, M) = \sum_{(i,j,k)} m_k^{(i,j)} \log p_\theta(r_k^{(i,j)} | r_1, r_2, \dots, r_{k-1}, y) \quad (13)$$

$$p_\theta(y_{gt} | x, M) = \frac{\exp(l_\theta(x | y_{gt}, M))}{\sum_i \exp(l_\theta(x | y_i, M))} \quad (14)$$

where $m_k^{(i,j)} \in \{0, 1\}$ is a binary indicator determining token inclusion, and $l_\theta(x | y, M)$ denotes the mask-aware log-likelihood of x . LIME then fits a linear model on the perturbation outputs to obtain attribution scores, whereas SHAP uses Kernel SHAP to approximate Shapley values. For both methods, we use 5,000 perturbations during evaluation. The resulting attribution scores are then evaluated using the insertion and deletion metrics. An example AUC curve for these metrics is shown in Fig. 5.

Note that we precompute the token-wise log-likelihoods and apply the masking strategy in Eq. 13 to approximate the effect of token insertion or deletion. This allows efficient computation of token attributions while avoiding potential out-of-distribution artifacts that may arise from directly altering the sequence.

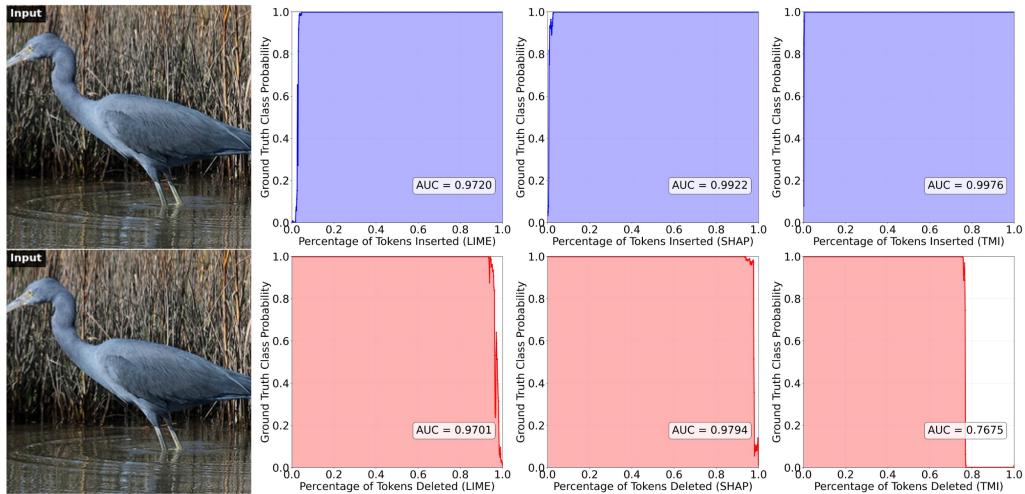


Figure 5: Insertion/deletion analysis of explanation methods. The first row shows insertion results, and the second row shows deletion results. Methods from left to right are LIME, SHAP, and TMI.

864 C.2 VISUALIZATION RESULTS
865866 In this section, we provide additional visual explanations of the VAR-based classifier. Fig. 7 and
867 Fig. 8 illustrate that the classification results are indeed driven by regions corresponding to the fore-
868 ground object. For example, in the second row of Fig. 7, the example is correctly classified as
869 a green mamba, not because of the background green leaf, but because the model focuses on the
870 snake’s head.871 We also analyze failure cases in Fig. 9. The most common type of error occurs when the model fails
872 to distinguish between visually similar classes, such as hen vs. cock or chihuahua vs. toy terrier.
873 Even when the model correctly identifies important regions for each class, it may still produce
874 an incorrect final prediction. Another common error arises in scenarios where multiple candidate
875 objects appear in the same image. For instance, the ground-truth label of the third-row example
876 is ‘modem’, but the presence of a laptop in the same image misleads the classifier into predicting
877 ‘laptop’. A similar issue is observed in the last example, where the co-occurrence of a tabby cat and
878 a bassinet results in an incorrect prediction.879 These examples demonstrate that visual explanations can provide valuable insights into the decision-
880 making process of the VAR-based classifier, enabling developers to better understand model behav-
881 ior and make informed adjustments during development.884 D TRADE-OFF BETWEEN GENERATIVE AND DISCRIMINATIVE
885 PERFORMANCE.
886887 The trade-off between generative and discriminative performance in conditional generative clas-
888 sifiers has been discussed in prior work (Fetaya et al., 2020). While this phenomenon is less
889 pronounced in the VAR-d16 model, it becomes increasingly evident as model size grows. Ta-
890 ble 7 reports the performance of VAR classifiers with different model sizes, including accuracy on
891 ImageNet-100 and the FID reported by Chen et al. (2024b) (without likelihood smoothing or can-
892 didate pruning). As model size increases, generative performance improves, as reflected by lower
893 FID, but classification accuracy on ImageNet-100 drops substantially.
894895 This degradation can be attributed to the dilution of class-conditional information by structural in-
896 formation. Specifically, the class-conditional likelihood of each token depends on both class and
897 structural information. Larger models, with stronger generative capacity, are able to more accu-
898 rately infer tokens at subsequent scales even when conditioned on an incorrect class label. This is
899 evidenced by the simultaneous increase in both $p(x|y)$ and $p(x|y^{neg})$ as model size grows. As a
900 result, the contribution of class information to likelihood estimation diminishes, leading to weaker
901 discriminative ability. As illustrated in Fig. 10, larger models increasingly fail to distinguish between
902 visually similar classes, such as cock vs. hen or great white shark vs. tiger shark.903 To address this issue, one promising direction is to improve the training objective so that it more
904 effectively preserves class information. While recent advances such as CCA represent a meaningful
905 step in this direction, our results indicate that CCA alone is insufficient to fully resolve the problem.
906 Another complementary direction is to disentangle class information from structural information,
907 thereby preventing the dilution effect associated with increased likelihood. We leave the exploration
908 of these directions to future work.909
910 Table 7: Trade-off between generative and discriminative performance of the VAR classifier across
911 different model sizes.

	d16		d20		d24		d30	
	VAR	CCA	VAR	CCA	VAR	CCA	VAR	CCA
Accuracy	83.30	88.68	80.80	88.90	75.68	84.92	64.96	71.64
FID	12.00	4.03	8.48	3.02	6.20	2.63	5.26	2.54

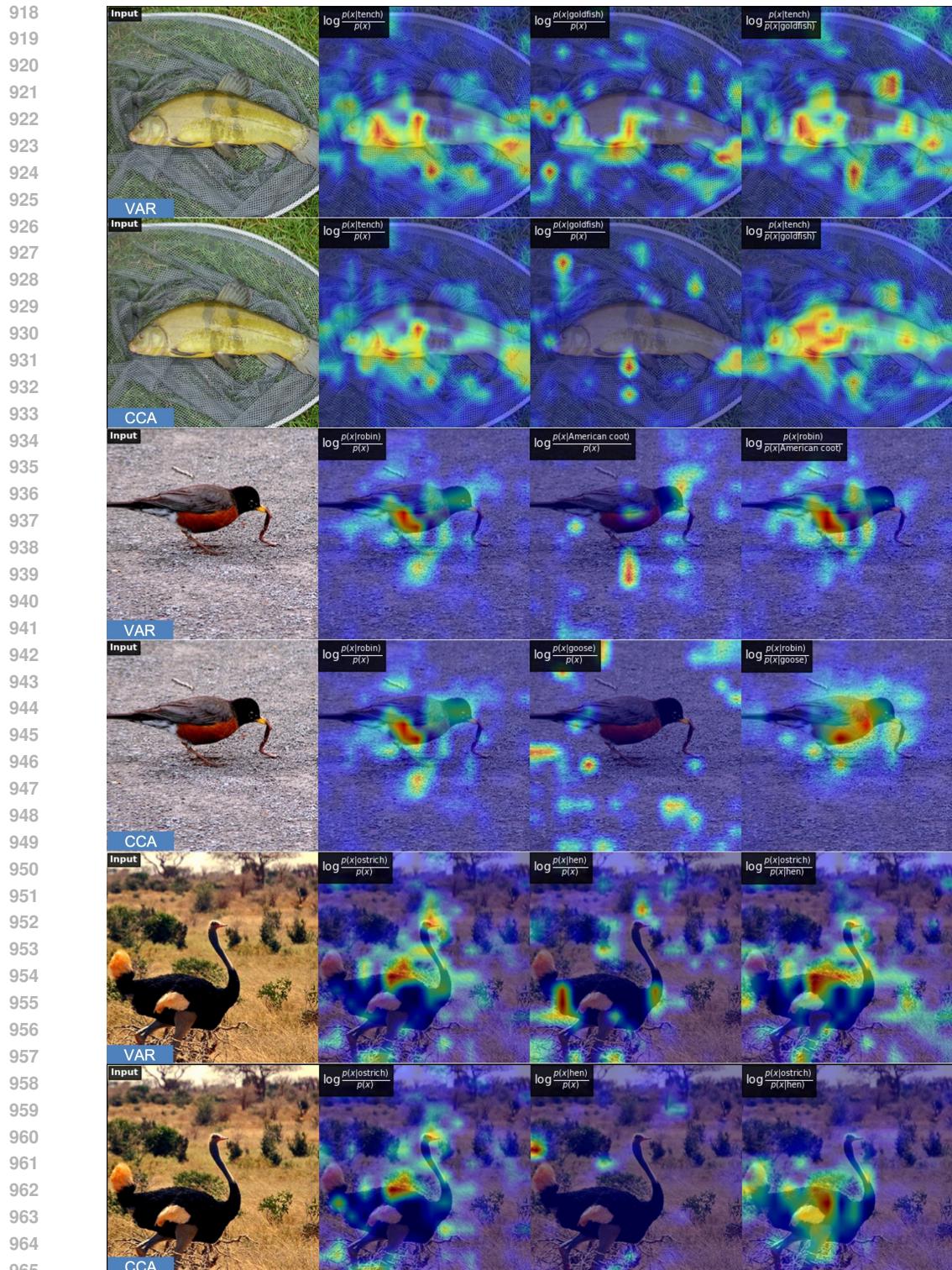


Figure 6: Impact of CCA finetuning. From left to right: the input image, TMI conditioned on the true label, TMI conditioned on the highest-ranked incorrect label, and the contrastive explanation between them.

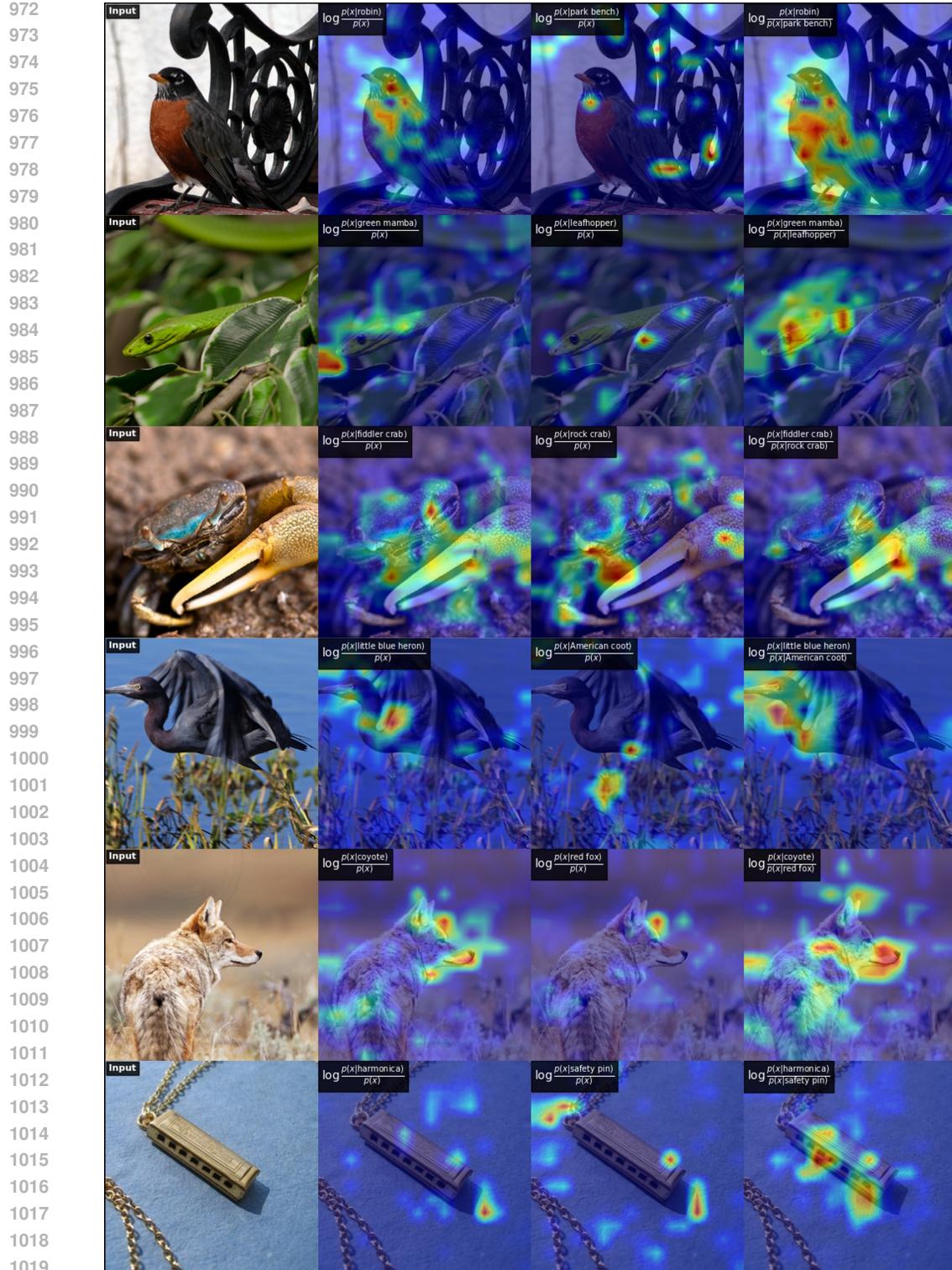


Figure 7: Visual explanation of A-VARC⁺ using TMI. From left to right: the input image, TMI conditioned on the true label, TMI conditioned on the highest-ranked incorrect label, and the contrastive explanation between them.

E PSUEDO CODE

Algorithm 1 outlines the classification procedure of the proposed Adaptive VAR Classifier (A-VARC). The likelihood estimation strategy is composed of three forms of likelihood estimation:

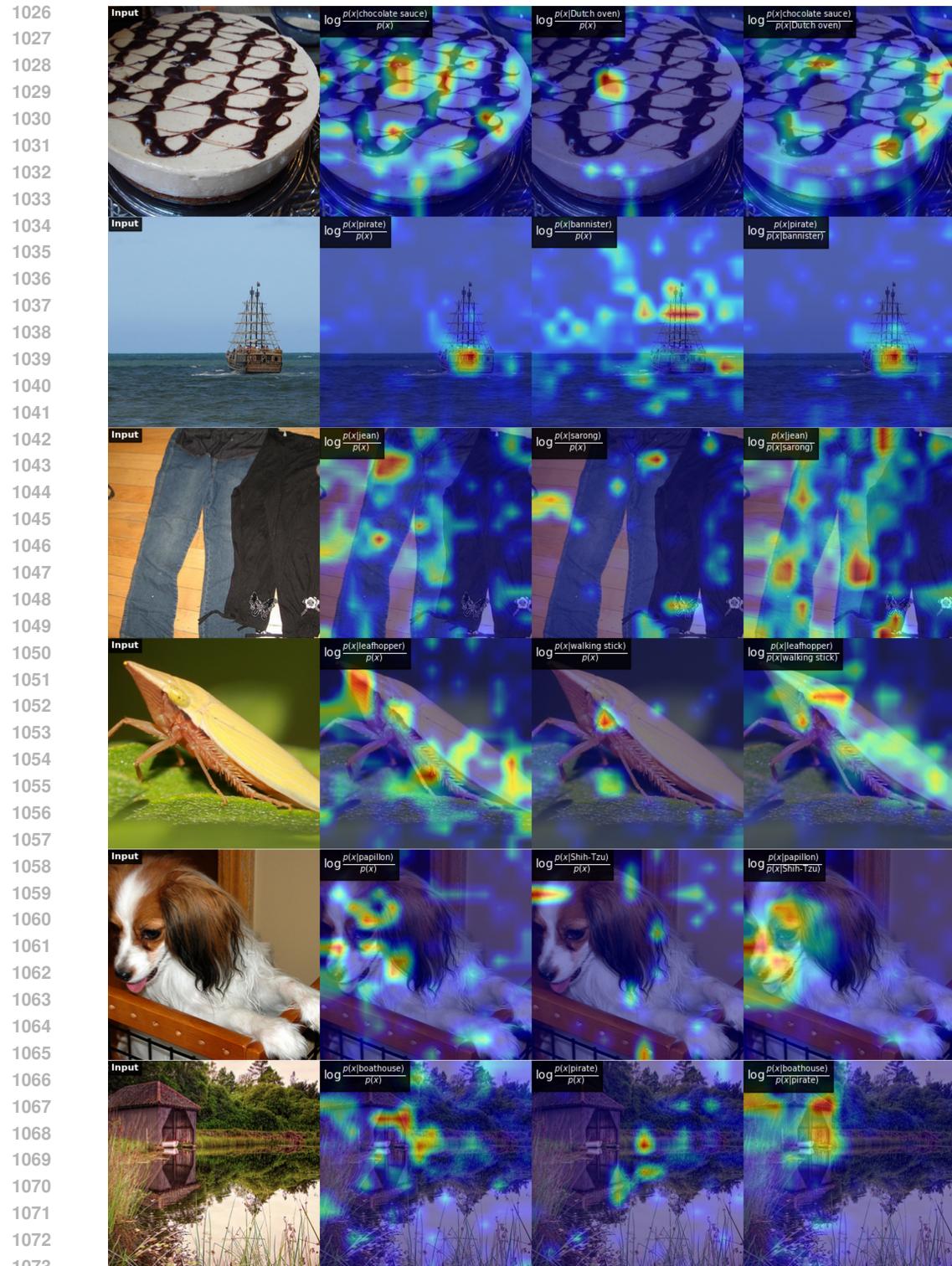


Figure 8: Visual explanation of A-VARC⁺ using TMI. From left to right: the input image, TMI conditioned on the true label, TMI conditioned on the highest-ranked incorrect label, and the contrastive explanation between them.

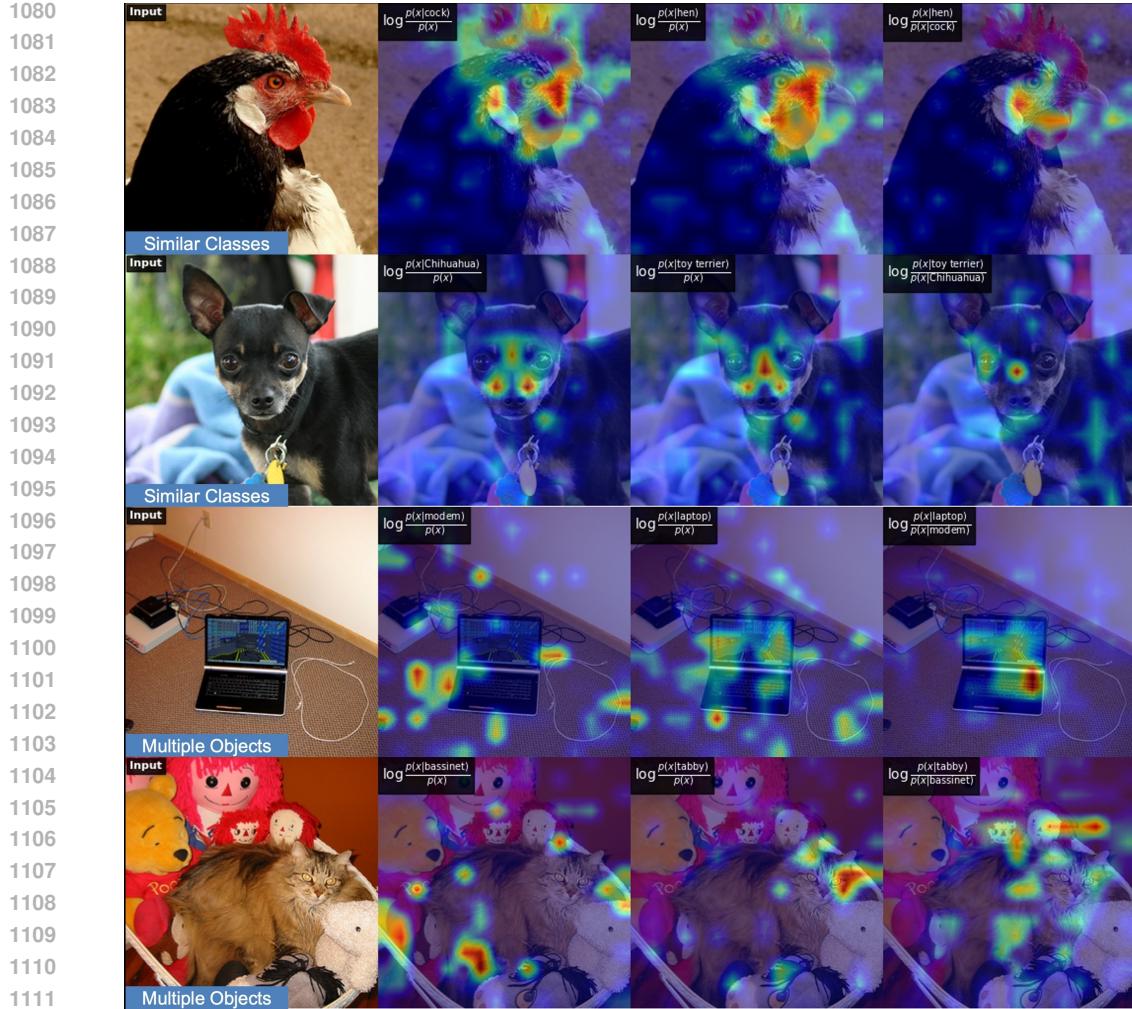


Figure 9: Visual explanation for failure cases. From left to right: the input image, TMI conditioned on the true label, TMI conditioned on the highest-ranked incorrect label, and the contrastive explanation between them.

$p_\theta(x|y)$ (Eq. 7), $\tilde{p}_{\theta,S}(x|y)$ (Eq. 9), and $\hat{p}_{\theta,K'}(x|y)$ (Eq. 10). This flexible design enables a wide range of combinations, allowing users to balance accuracy and efficiency according to their requirements. For the experiments reported in Table 1, we adopt a three-stage configuration with $N_{stage} = 3$, $\mathcal{K} = (10, 3, 1)$ and $\mathcal{M} = (\hat{p}_{\theta,6}(x|y), p_\theta(x|y), \tilde{p}_{\theta,3}(x|y))$. Note that, while the algorithm is presented using likelihoods for clarity, in practice, we compute log-likelihoods to ensure numerical stability.

F IMPLEMENTATION DETAILS

To enhance reproducibility, we provide details of the subsets used in Table 1. For ImageNet, ImageNet-V2, and ImageNet-Sketch, we adopt the same set of classes provided by Tian et al. (2020), as listed in Table 8. Since ImageNet-A and ImageNet-R do not include all classes from ImageNet-100, we select the overlapping classes and list them in Table 9 and Table 10, respectively. For ObjectNet, we use all overlapping classes reported in Barbu et al. (2019), with implementation support from the diffusion classifier's (Li et al., 2023) repository⁶.

⁶<https://github.com/diffusion-classifier/diffusion-classifier>

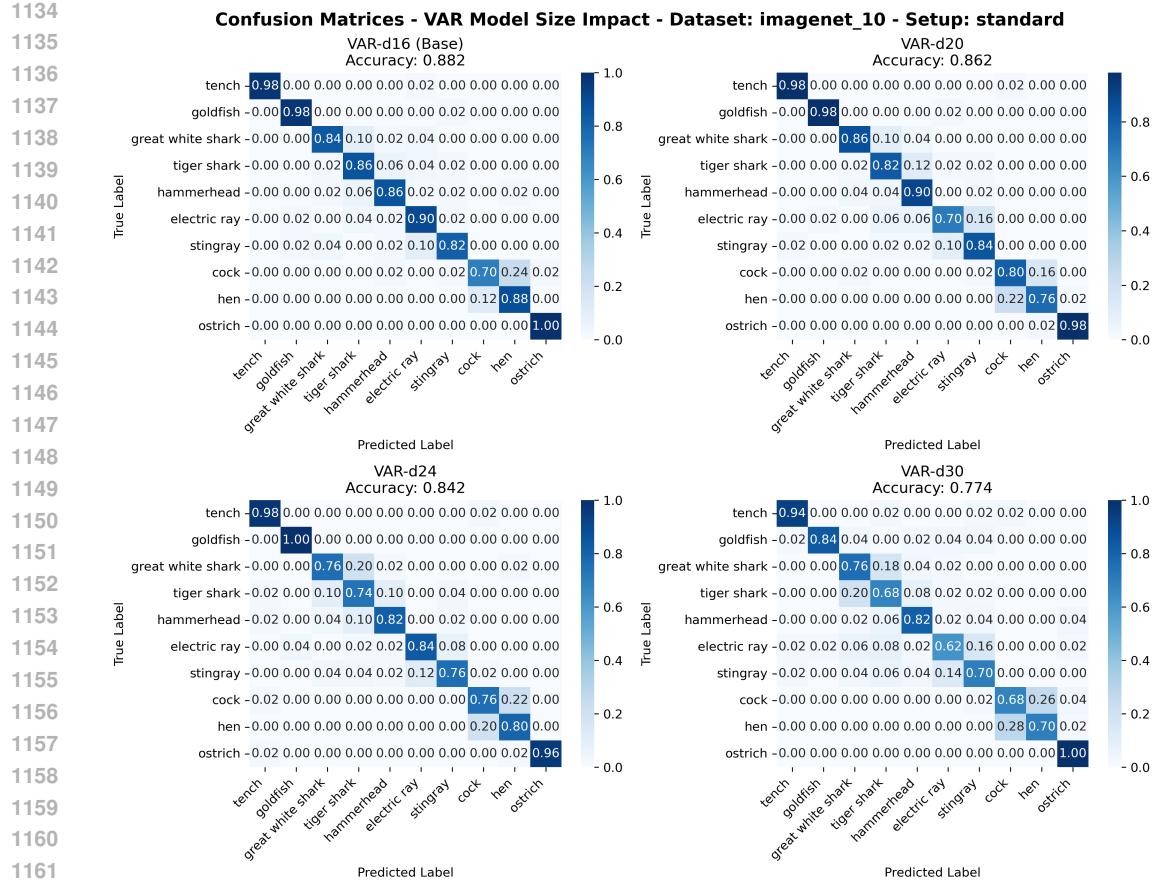


Figure 10: Confusion matrices of the VAR classifier evaluated on the first 10 classes of ImageNet.

Algorithm 1 Adaptive VAR Classifier (A-VARC)

Require: Test image x ; Initial set of candidate labels $\mathcal{Y} = \{y_i\}_{i=1}^n$; Number of stages N_{stages} ; Sequence of candidate counts $\mathcal{K} = (k_1, \dots, k_{N_{\text{stages}}})$; Likelihood estimation strategy $\mathcal{M} = (m_1, \dots, m_{N_{\text{stages}}})$.

- 1: Initialize candidate set $C_0 \leftarrow \mathcal{Y}$
- 2: Initialize a map L to store likelihood scores
- 3: **for** stage $i = 1, \dots, N_{\text{stages}}$ **do**
- 4: **for** each candidate $y_j \in C_{i-1}$ **do**
- 5: $L(y_j) \leftarrow \text{ComputeLikelihood}(\mathbf{x}, y_j, \text{method} = m_i)$ ▷ e.g., computing $\hat{p}_{\theta, K'}(x \mid y_j)$
- 6: **end for**
- 7: Let C'_{i-1} be the set C_{i-1} sorted by descending scores $L(\cdot)$
- 8: $C_i \leftarrow$ the first k_i elements of C'_{i-1} ▷ Prune candidates with the lowest scores
- 9: **end for**
- 10: **return** $\arg \max_{y \in C_{N_{\text{stages}}}} L(y)$

To reduce evaluation cost on distribution-shift datasets, we further subsample 10 samples per class. For most datasets, we sort file names alphabetically and select the first 10 samples per class. For ImageNet-R, which includes multiple styles (e.g., art, cartoon, deviantart), we first sort styles alphabetically and then apply a round-robin ordering across styles (e.g., art_0.jpg, cartoon_0.jpg, deviantart_0.jpg, ...), ensuring that as many styles as possible are represented.

1188
 1189 Table 8: List of ImageNet 100 classes used in our experiments, identified by their WordNet IDs
 1190 (n-numbers).

List of ImageNet 100 classes						
1193 n02869837	n01749939	n02488291	n02107142	n13037406	n02091831	n04517823
1194 n04589890	n03062245	n01773797	n01735189	n07831146	n07753275	n03085013
1195 n04485082	n02105505	n01983481	n02788148	n03530642	n04435653	n02086910
1196 n02859443	n13040303	n03594734	n02085620	n02099849	n01558993	n04493381
1197 n02109047	n04111531	n02877765	n04429376	n02009229	n01978455	n02106550
1198 n01820546	n01692333	n07714571	n02974003	n02114855	n03785016	n03764736
1199 n03775546	n02087046	n07836838	n04099969	n04592741	n03891251	n02701002
1200 n03379051	n02259212	n07715103	n03947888	n04026417	n02326432	n03637318
1201 n01980166	n02113799	n02086240	n03903868	n02483362	n04127249	n02089973
1202 n03017168	n02093428	n02804414	n02396427	n04418357	n02172182	n01729322
1203 n02113978	n03787032	n02089867	n02119022	n03777754	n04238763	n02231487
1204 n03032252	n02138441	n02104029	n03837869	n03494278	n04136333	n03794056
1205 n03492542	n02018207	n04067472	n03930630	n03584829	n02123045	n04229816
1206 n02100583	n03642806	n04336792	n03259280	n02116738	n02108089	n03424325
1207 n01855672	n02090622					

1206
 1207 Table 9: List of ImageNet-A 100 classes used in our experiments, identified by their WordNet IDs
 1208 (n-numbers).

List of ImageNet-A 100 classes						
1211 n01531178	n01580077	n01616318	n01631663	n01641577	n01669191	n01677366
1212 n01687978	n01694178	n01774750	n01820546	n01833805	n01843383	n01847000
1213 n01855672	n01910747	n01924916	n01944390	n01986214	n02051845	n02077923
1214 n02099601	n02106662	n02110958	n02119022	n02133161	n02137549	n02165456
1215 n02174001	n02190166	n02206856	n02219486	n02236044	n02259212	n02268443
1216 n02279972	n02280649	n02325366	n02445715	n02454379	n02504458	n02655020
1217 n02730930	n02782093	n02802426	n02814860	n02879718	n02883205	n02895154
1218 n02906734	n02948072	n02951358	n02999410	n03014705	n03026506	n03223299
1219 n03250847	n03255030	n03355925	n03444034	n03452741	n03483316	n03590841
1220 n03594945	n03617480	n03666591	n03720891	n03721384	n03788195	n03888257
1221 n04033901	n04099969	n04118538	n04133789	n04146614	n04147183	n04179913
1222 n04252077	n04252225	n04317175	n04366367	n04376876	n04399382	n04442312
1223 n04456115	n04507155	n04509417	n04591713	n07583066	n07697313	n07697537
1224 n07714990	n07718472	n07734744	n07768694	n07831146	n09229709	n11879895
1225 n12144580	n12267677					

1225
 1226 Table 10: List of ImageNet-R 100 classes used in our experiments, identified by their WordNet IDs
 1227 (n-numbers).

List of ImageNet-R 100 classes						
1229 n01484850	n01514859	n01531178	n01534433	n01614925	n01616318	n01632777
1230 n01774750	n01820546	n01833805	n01843383	n01847000	n01855672	n01860187
1231 n01882714	n01944390	n01983481	n02007558	n02056570	n02066245	n02086240
1232 n02088094	n02088238	n02096585	n02097298	n02098286	n02102318	n02106166
1233 n02106550	n02106662	n02108089	n02108915	n02110341	n02113624	n02113799
1234 n02117135	n02119022	n02128757	n02129165	n02130308	n02190166	n02206856
1235 n02236044	n02268443	n02279972	n02317335	n02325366	n02346627	n02356798
1236 n02363005	n02364673	n02395406	n02398521	n02410509	n02423022	n02486410
1237 n02510455	n02749479	n02793495	n02797295	n02808440	n02814860	n02883205
1238 n02939185	n02950826	n02966193	n02980441	n03124170	n03372029	n03424325
1239 n03452741	n03481172	n03495258	n03630383	n03676483	n03710193	n03773504
1240 n03775071	n03930630	n04118538	n04254680	n04266014	n04310018	n04347754
1241 n04389033	n04522168	n04536866	n07693725	n07697313	n07697537	n07714571
1242 n07714990	n07720875	n07745940	n07749582	n07753275	n07753592	n09835506
1243 n10565667	n12267677					