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Abstract

Test-time adaptation aims to improve model robustness under distribution shifts
by adapting models with access to unlabeled target samples. A primary cause of
performance degradation under such shifts is the model’s reliance on features that
lack a direct causal relationship with the prediction target. We introduce Test-time
Adaptation by Causal Trimming (TACT), a method that identifies and removes
non-causal components from representations for test distributions. TACT applies
data augmentations that preserve causal features while varying non-causal ones. By
analyzing the changes in the representations using Principal Component Analysis,
TACT identifies the highest variance directions associated with non-causal features.
It trims the representations by removing their projections on the identified direc-
tions, and uses the trimmed representations for the predictions. During adaptation,
TACT continuously tracks and refines these directions to get a better estimate of
non-causal features. We theoretically analyze the effectiveness of this approach and
empirically validate TACT on real-world out-of-distribution benchmarks. TACT
consistently outperforms state-of-the-art methods by a significant margin. Our
code is available at https://github. com/NancyQuris/TACT.

1 Introduction

Machine learning models often exhibit significant performance degradation when evaluated on data
drawn from a distribution that differs from their training data distribution [13]. To address this
challenge, test-time adaptation (TTA) has emerged as a promising approach. TTA methods adapt
a pretrained model to the test distribution dynamically, using the incoming test data to enhance
predictive performance without requiring access to the original training data [19, 51, 56]. Despite
recent advances, many existing TTA methods rely heavily on predicted labels generated by the model
itself to guide the adaptation process [12, 37, 38, 51]. However, the effectiveness of these methods
hinges critically on the quality of the predictions. When the model’s predictions are influenced by
non-causal features that do not have a direct causal relationship with the prediction target [26, 54],
the predicted label may be unreliable, leading to sub-optimal adaptation outcomes [29, 47].

Unlike causal features that have stable associations with the semantic structure of the prediction task
[27], non-causal features exhibit inconsistent or spurious correlations with the prediction target across
training and test distributions [55]. Over-reliance on non-causal features is a key factor in model
performance degradation under distribution shift. While DeYO [29] recognizes this issue, it does not
explicitly mitigate reliance on non-causal features. Instead, it updates the model using predictions
that leverage causal features only, relying on gradual adaptation to reinforce causal features over
time. Consequently, early predictions may still be influenced by non-causal signals, requiring many
adaptation steps to suppress their effects.

Given the above limitations, we propose to actively reduce non-causal features. Prior studies have
shown that feature representations learned through standard training encode a mixture of causal and
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non-causal features and that the causal part is often learned sufficiently well for accurate prediction
[20, 27]. Motivated by this, we propose a Test-time Adaptation by Causal Trimming (TACT)
framework that seeks to improve adaptation performance by isolating and removing non-causal
components from the representations of samples from test distributions. Our framework aims to
achieve more reliable predictions in the presence of distribution shift by reducing the model’s
dependence on unstable, non-causal features. To identify non-causal features in representations,
we analyze how these representations change when we apply targeted perturbations to the input
data. Specifically, we perform input augmentations that preserve the underlying causal contents
while introducing variability in other, non-causal aspects of the input [9, 11, 18, 31, 32]. These
augmentations produce multiple test-time samples that share the same causal semantics but differ in
spurious or incidental attributes. By examining how the feature representations of these samples vary,
we can disentangle causal and non-causal components.

We operationalize this by applying Principal Component Analysis
(PCA) to the set of augmented representations and identify the di-
rection of greatest variance. We interpret this dominant direction
as being aligned with the non-causal features, under the assump-
tion that causal content remains stable across augmentations, while
non-causal attributes vary. This approach is inspired by prior work
showing that high-level semantic factors are often linearly encoded
in the learned representation space [1, 39, 46]. Building on the in-
sight that linear manipulations in representation space can produce 0 50 100
. . . Adaptation step

meaningful changes in semantic content [40, 50], we propose to

reduce the influence of non-causal features by subtracting the projec- Figure 1: Batch accuracy on
tion of a test sample’s representation along the identified non-causal Camelyonl17 dataset of the
direction. Since the prototypes used for prediction, defined as tem- first 100 adaptation steps.
plate representations corresponding to the weights for each class in

the linear classifier, are influenced by non-causal features, we apply

the same operation to them using the identified non-causal direction. During adaptation, we maintain
a moving average of the updated prototypes to mitigate noise effects. Compared to DeYO, TACT
can immediately produce predictions that are less affected by non-causal features, eliminating the
need for iterative updates to achieve reliable results (see Figure 1). We provide a theoretical analysis
to establish the conditions under which TACT can improve prediction accuracy under distribution
shift. Empirically, we evaluate TACT on five real-world out-of-distribution datasets, demonstrating
its effectiveness and superiority over state-of-the-art TTA methods.
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2 Related Work

Existing TTA methods can be broadly categorized into backpropagation-free and backpropagation-
based methods. Backpropagation-free methods modify model outputs or intermediate representations
without gradient-based optimization. These include modifiable prompts [36], re-normalized represen-
tations [44], updated prototypes [19, 57], and maximum likelihood estimation [4]. Backpropagation-
based methods update the model with the gradient of objective functions such as entropy minimization
[12, 37, 38, 51] and self-training with pseudo-labels [17, 25, 47, 52]. Entropy Minimization encour-
ages more confident predictions by reducing the entropy of model predictions during adaptation.
Self-training employs cross entropy [5, 17, 30, 47] and knowledge distillation [25, 52, 53] using
model predictions as pseudo-labels. Regularization measures such as information maximization
[30], representation statistics alignment [23, 58], and consistency regularization [35, 56] for invariant
prediction under augmentations have been proposed to regularize the adaptation.

A key challenge in test-time adaptation is obtaining reliable pseudo-labels to guide model updates.
One line of work assumes that correct predictions tend to exhibit low entropy, and update the model
using only high-confidence samples with low-entropy predictions [19, 37, 38, 57]. However, DeYO
[29] shows that spurious correlations can also result in low entropy predictions and proposes a causal
intervention technique to identify predictions that are more likely based on causal features, using
them selectively for model updates. Another line of work refines pseudo-labels by incorporating
updated prototype and neighborhood information [5, 17, 21, 47, 53]. AdaContrast [5] uses soft voting
among nearest neighbors. TSD [53] relies on updated prototypes and spatial local clustering. TAST
[21] employs neighbourhood information in self-training. PROGRAM [47] considers both prototype



and neighbour-based pseudo-labels to enhance label quality. PASLE [17] progressively refines the
pseudo-labels of uncertain predictions using updated prototypes.

All the above methods, except for DeYO, do not consider the effect of non-causal features on model
prediction. Although DeYO finds that non-causal features would make entropy an unreliable metric to
reflect prediction correctness, it does not adjust model predictions. TACT adjusts model predictions by
reducing non-causal features, and our adjusted prediction can be used as a more reliable pseudo-label.

3 Preliminaries

We consider the problem of adapting a well-trained model to test-time

distributions that differ from the training distribution. Our goal is to

improve the model’s performance on these shifted distributions with @ @
unlabeled test samples. Following prior work [18, 48], we model the dis-

tribution shift using a structural causal model that captures the underlying

data-generating process, as illustrated in Figure 2.

We model the observed sample X and its label Y as being generated from ° °
causal factors X< and non-causal factors Xy¢. Only X¢ is causally

related to Y, while X is related to both X and X yc. The correlation Figure 2:  Structural
between X¢ and Y is stable, i.c., the conditional distribution P(Y|X) ¢ausal model of the data-
remains unchanged at test time. We also assume that the distribution ~8€nerating process.

of causal factors P(X¢) remains invariant across the training and test

datasets, whereas distribution shifts arise from changes in P(X y¢). The

model would have stable performance across distributions if the prediction is based solely on features

related to the causal factors X . In contrast, reliance on non-causal factors X ¢ can lead to
unreliable performance under distribution shifts.

We consider a c-class classification task, where the model f := h o g used for adaptation is composed
of a feature extractor g and a classifier h. The feature extractor g maps an input sample to a d-
dimensional vector z € R as the representation. The classifier » maintains a set of class prototypes
{q1,...,q.} € RY, where each prototype ¢; serves as a template representation for class 7. Predictions
are made by computing the similarity between the input representation z and each class prototype
using the dot product z - g;, referred to as the logit of class ¢. A softmax function is then applied to
the logits to obtain the probability distribution over the classes.

4 Proposed Method

The works in [20, 27] show that models are often capable of learning causal features, even when their
predictions are predominantly driven by non-causal features with spurious correlations. However,
the predictive influence of these causal features is frequently obscured or suppressed due to the
heavily weighted non-causal components in the learned representations. Based on this observation,
we propose TACT, a method that identifies non-causal features and reduces their influence by causally
trimming the learned representations. We hypothesize that non-causal features are embedded in
representations along a specific direction. Such direction is of the maximum variance when the
non-causal features change. To suppress their influence, we subtract the projection of both the
input representation and class prototypes onto this identified direction. This operation attenuates
the non-causal information present in both elements. Since class prototypes serve as canonical
representations for each class, and the non-causal direction estimated from a single test sample may
be noisy, we maintain a moving average of the updated prototypes throughout test-time adaptation.
At inference, predictions are made by measuring the similarity between the adapted representation
and the moving average of the updated prototypes, thereby reducing influence of non-causal features.

4.1 Non-Causal Feature Identification

Given a sample x at test time, if we have access to additional samples generated with the same causal
factors but different non-causal factors, we can compare their representations to infer the influence of
non-causal factors. Changes in the representations across these samples can be attributed to variations



in these non-causal factors. By systematically analyzing these representational differences, we can
isolate and identify the components of the representation that correspond to non-causal features.

To simulate variations in the data-generating process, we apply data augmentation to target non-causal
features [9, 11, 18, 31, 32]. For a test sample =, we generate n augmented samples {Z;}7_; that
preserve the causal feature while varying the non-causal factors. We collect the representations of
these samples in a matrix Z = [z, Z1, ..., Z,] |, where z is the representation of the original sample
and z; are those of the augmented samples.

We interpret non-causal features as corresponding to specific, disentangled directions in the repre-
sentation space, consistent with prior work that indicates high-level semantic concepts are linearly
encoded as vector directions in learned representations [1, 39, 46]. For instance, the vector difference
between “woman” and “man” would resemble that between “queen” and “king” [33], both aligning
to the direction representing gender. Along this direction, specific instances of the gender concept,
such as “male” and “female”, take different magnitudes.

Given representations of samples that differ only in their non-causal factors, the direction along which
the representations change the most is expected to capture the non-causal features. This dominant
direction can be identified via Principal Component Analysis (PCA) which analyzes the covariance
matrix of the representations to extract the principal components. Principal components are vectors
along which the representations’ projections exhibit maximum variances. We first compute the
mean of the representations as: z = n%rlz + nLH Z:L:l Z;. Using this mean, we construct a matrix

Z =[z,%,..,2] " that has the same size as the representation matrix Z. The covariance matrix of the
representations is then given by Xz = (Z — Z) T (Z — Z). The eigenvectors of Xz correspond to the
principal components, and their eigenvalues quantify the variance along these components [22]. Since
3z is a real symmetric matrix, its eigenvectors form an orthonormal basis in R? [16]. Using spectral
decomposition, we express the covariance matrix as: Xz = QAQT, where Q = [eq, ea, ..., e4] is
an orthogonal matrix whose columns are the orthonormal eigenvectors, and A is a diagonal matrix
containing the eigenvalues of 3. Here, e; denotes the direction along which the variance of the
projected representations is the i‘" largest.

4.2 Causal Trimming to Reduce Non-Causal Feature

Prior work has demonstrated that applying linear transformations to representations can manipulate
the semantics they encode [40, 50]. Since the principal components {e; }¢_; form an orthonormal
basis in R¢, any representation z can be expressed as a linear combination of these components. To
reduce the influence of non-causal features, we propose to trim the representation by removing its
components along the top-m principal components:

m

2:z—Z(z~ei)ei (1

i=1

Since each ¢; is a vector of unit length, the term (z - €;)e; is the projection of z onto e; whose
magnitude is given by the dot product (z - ;). By subtracting these terms, we obtain an updated
representation 2 which is composed of components only formed by {e;}¢_, 11 If causal features
are invariant under data augmentations and their corresponding semantic directions are orthogonal
to those of the removed directions, causal information present in z is preserved in the trimmed
representation Z.

4.3 Model Adaptation

In a prototype-based classifier, each class prototype g; serves as a template representation learned by
the classifier h, summarizing the representations of samples belonging to class j. However, if the
learned representations encode non-causal features, the prototypes will be influenced by these features.
To mitigate this issue, we apply the same causal trimming to the class prototypes. Specifically, let g;
be the prototype of class j. Given the top-m principal components {e; } ; that are used to trim the

test sample representation z, we obtain the trimmed prototype §; for each class j € {1,2,...,c} as:
m
G =q;— > (g eie 2

i=1



Since the identified non-causal directions may vary across samples due to noise or context-specific
factors, we compute a batch-wise average of trimmed prototypes to obtain a more stable estimate. To
track the estimate across batches during adaptation, we maintain a moving average of the trimmed
prototypes during test-time adaptation. Suppose we obtain trimmed prototypes (j](-’) for each class j at
batch 7, the moving-average ¢; is updated by §; = %(jj + %qA<l). This moving average serves as a
more robust estimate of the causally refined prototypes, effectively smoothing out sample-specific
variance. The prediction made by the average of the trimmed prototypes is the same as that of
an ensemble over the logits produced by individual trimmed prototypes, resulting in more stable
predictions. At test time, for a given input sample x, we compute the causally trimmed representation
Z and compare it to the moving-averaged trimmed prototypes ¢;. The logit for class j is given by the

dot product 2 - éj, and the final predicted label y is given by:

y = arg maxM 3)

J STexp(2-q)

i=1
5 Theoretical Analysis

We present the conditions under which TACT would correct a wrong prediction and maintain a correct
prediction. We consider binary classification Y € {41, —1}. The two prototypes learned by the
binary classifier h are represented as {q41, ¢—1}. We drop the bias term for simplicity. Meanwhile,
we assume the existence of causal prototypes {p11,p—1 }, which always make correct predictions
on the learned representations and do not leverage non-causal features. To simplify the analysis, we
consider the decision boundary vectors Aq = g41 — q—1 and Ap = p;1 — p—1. We analyze the
representation z of an instance with label y. Given the principal components {e; }¢_; computed from

z and its augmented variants, we write z as Z?zl a,e;, where «; is the magnitude of z’s projection
on e;. Similarly, we define the learned decision boundary Ag’s projection magnitude as {v;}%_;.

We write the projection magnitude of causal decision boundary Ap as {n;v;}&_;, to view Ap as a
transformation from Agq by a projection magnitude 7; on the direction of each principal component.

We can obtain 2 by trimming the top-m principal components (PCs) for z. Proposition 1 shows the
conditions under which TACT can correct a wrong prediction.

Proposition 1. For any z that is misclassified by the learned decision boundary Aq, the misclassi-
fication can be corrected by using the representation obtained after removing the top-m principal
components, if both of the following two conditions are satisfied:

m d
yY> i <0 and y Y >0 )
i=1 i=m+1

> &)

d
Z Q%

i=m-+1

m
E ;75
i=1

Appendix A.1 provides the formal proof. Equation (4) captures the case in which a prediction based
solely on the top-m PCs leads to an incorrect outcome, whereas a prediction based on the remaining
PCs yields the correct result. Equation (5) requires the absolute value of the prediction score derived
from the top-m PCs must be greater than that from the remaining PCs. Together, these conditions in
Proposition 1 suggests that a wrong prediction can be corrected by TACT when the top-m PCs are
solely responsible for the wrong prediction, and the prediction made by the top-m PCs weighs more
than the prediction made by the remaining PCs.

In Proposition 2, we establish the conditions under which the trimmed representation Z retains
sufficient causal information to preserve the correct prediction by the causal decision boundary Ap.

Proposition 2 (Causal Preservation). For any original representation z, the trimmed representation
Z preserves the correct prediction under the causal decision boundary Ap if any one of the following



conditions holds:

m
y > niay; =0
=1

m
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The proof is provided in Appendix A.2. Equation (6) characterizes three cases: (a) the top-m PCs
have no contribution to the causal prediction; (b) the top-m PCs has a negative influence on the
causal prediction and thus their removal is beneficial; (c) the top-m PCs has a positive contribution,
but the representation forms by all PCs contribute even more strongly. When the top-m PCs have
no contribution to the causal predictions, they are considered non-causal features. In other words,
the removed component z — £ does not contain causal information. When the top-m PCs contain
causal information, m should be selected such that the top-m PCs contribute less to the prediction
compared to all the PCs, ensuring that the trimmed representation 2 remains causally informative. In
other words, sufficient causal features need to be preserved after causal trimming.

Finally, in Proposition 3, we identify the conditions under which causal trimming would have no
negative impact on the prediction of samples that are already correctly classified.

Proposition 3. Suppose z is correctly classified by the learned decision boundary Aq. The trimmed
representation Z obtained via TACT will still be classified correctly if either of the conditions holds:

1. y(z—2)Aq <0, or

2. y(z — 2)Aq > 0, and Equation (7) holds, assuming % already satisfies the Causal Preserva-
tion condition (Proposition 2).

d d
sign( Z 771'01171) sign( Z ai%‘) @)

1=m-+1 1=m-+1

The proof can be found in Appendix A.3. Equation (7) indicates that when classification relies only
on the representations formed by the remaining PCs, the learned decision boundary makes the same
prediction as the causal decision boundary. Proposition 3 also shows that if a correct prediction is
made by the learned decision boundary, TACT will preserve this correstness as long as the removed
part z — Z contributes negatively or does not contribute to the prediction. On the other hand, when
the trimmed representation Z contains sufficient causal information as established in Proposition 2,
the learned decision boundary is required to align directionally with the causal decision boundary
defined by the remaining PCs.

6 Performance Study

We study the test-time adaptation performance under real-world distribution shifts, using datasets
from multiple modalities, including image, audio, and text. Compared to prior works that pri-
marily benchmark on image data, our comprehensive experiments offer broader insights into the
generalizability of TACT and other TTA methods.

Datasets. We summarize the datasets used in our experiments below:

o Birdcalls [15, 24, 34], curated by [9], is an audio classification dataset to identify bird species
from clips recorded in diverse environments. Each clip is converted into a Mel spectrogram
for classification. Distribution shifts stem from variations in microphone gain settings, habitat
acoustics (e.g. other animal sounds), and bird population. The test set includes 724 audio clips.

o Camelyonl7 [2], sourced from from the Wilds benchmark [28], is a medical imaging dataset
for binary classification of tumor versus normal tissue images. The distribution shift arises
from variations in slide staining protocols, patient demographics, and scanner equipment. The
test set consists of 85,054 images.

o CivilComments [3], from the Wilds benchmark [28], is a natural language dataset comprising
user-submitted text comments. The task is to classify whether a comment is toxic or non-toxic.



The toxicity is spuriously associated with the mention of certain demographics in the training
data. The test set contains 133,782 comments.
« ImageNet-R [14] contains 30,000 images of objects from 200 ImageNet [42] classes. The
images consist of various renditions, resulting in visual domain shifts from the original dataset.
« ImageNet-V2 [41] is collected years after the original ImageNet using the same methodology,
and includes 10,000 images across 1,000 original classes. It represents a natural temporal shift.

Non-causal feature identification for TACT. We applied the following data augmentations to identify
non-causal features in each dataset: For Birdcalls, we follow [9] that investigates augmentations that
randomize features independent of labels but dependent on distributions. Here, random color jitter is
applied to the Mel spectrograms to simulate changes in microphone gain settings. For Camelyon17,
we use stain color jitter [49] as suggested in [9] to mimics variations in histopathological slide
staining. For CivilComments, we randomly prepend or append short demographic-referencing
sentences to the original text. The full list of sentences is provided in Appendix B. For ImageNet-R
and ImageNet-V2, where the sources of distribution shift are unknown, we experiment with general-
purpose image augmentations. Specifically, we apply AutoAugment [6] with ImageNet policy and
RandomAugment [7]. Both methods apply a series of transformations to the images. A detailed
discussion on augmentation design and selection in practice is presented in Appendix C.

Baselines. Since TACT is a backpropagation-free approach, we compare TACT with the following
state-of-the-art (SOTA) TTA backpropagation-free algorithms:

« T3A [19] adapts the classifier by updating class prototypes using confident test-time represen-
tations.

o LAME [4] adjusts model output probabilities via Laplacian-adjusted maximum likelihood
estimation.

« FOA [36] introduces an adaptable prompt at model input to match the representation statistics
of test and train data.

We also implement a variant called TACT-adapt, where predictions from TACT are used to guide
gradient-based model updates with cross entropy loss L. We employ the information maximization
loss Lrar proposed in SHOT [30] as regularization. We optimize the model using the objective:
L = Lcr (4, yract) + AL (§). § is the model’s prediction, and yract is TACT’s prediction. A is
the hyperparameter balancing the two terms.

We compare TACT-adapt with the following SOTA backpropagation-based methods:

o SHOT [30] adapts the feature extractor using information maximization and cross entropy loss
on confident prediction.

o Tent [51] performs entropy minimization to update the affine parameters of normalization
layers at test time.

o SAR [38] builds upon Tent by incorporating sharpness-aware minimization and model reset to
mitigate overfitting to noisy samples.

« DeYO [29] identify confident samples that leverage causal features only by image augmenta-
tions that destroy shapes and using confidence-reweighted entropy minimization to update the
affine parameters.

o TAST [21] adapts a trainable module on top of the trained feature extractor via self-training
with nearest neighbor information.

« TSD [53] enhances feature representations through self-distillation and local clustering, ensur-
ing alignment and uniformity while filtering noisy labels.

o PASLE [17] refines uncertain pseudo-labels progressively using selective label enhancement
with candidate label sets and classifier-consistent loss.

Model architecture. We study TACT on transformer-based architectures, which are increasingly
used in practice but remain relatively underexplored in TTA. Specifically, we use ViT-B/32 [8] as
the backbone for Birdcalls, Camelyon17, ImageNet-R, and ImageNet-V2, and DistilBERT [43] for
CivilComments. Appendix D.1 provides more details on model studied.

Hyperparameters and model selection. We use a test batch size of 64 [29, 36]. There are two
hyperparameters in TACT, the number of augmentation n and the number of removed principal
components m. We search n € {222 ... 28}, m € [1,16] and m is an integer. For TACT-
adapt, we search A € {1,5} x {0.1, 1,10, 100}. The rest hyperparameters follow the search space



Table 1: Test-time adaptation performance (%). We group the methods into backpropagation-free
(BP-free) and backpropagation-based (BP-based). The best performance of each dataset is in bold.

Method | Birdcalls Camelyonl7  CivilComments ImageNet-R  ImageNet-V2
No TTA | 22.74 62.31 55.38 41.83 62.97
T3A 26.16£1.33  69.96+1.98 56.43+0.00 41.78+£0.12  62.931+0.02
BP- LAME 23.66+1.01  62.3840.03 56.2440.10 41.7740.01 63.004+0.02
free FOA 26.95+1.81  58.36+0.77 - 41.46£0.16  62.76+0.08
TACT 31.14£1.69  70.1740.05 71.80+0.35 43.59+0.02  63.334+0.10
SHOT 26.82+5.14  80.28+5.61 13.934+0.97 48.79+0.08  63.324+0.09
Tent 23.16+0.42  62.2940.01 55.38+0.00 42.08+0.05  63.094+0.03
SAR 23.16+0.42  62.3040.00 55.38+0.00 42.584+0.11  62.97+0.01
BP- DeYO 23294039  69.64+1.47 - 46.87+0.08  62.96+0.01
based TAST 26.08+1.11  83.01+1.42 56.56+0.20 41.09+0.08  62.844+0.07
TSD 27.33£1.75 67.33+4.74 55.384+0.00 41.76+0.01  62.98+0.01
PASLE 27.35+1.79  60.661+0.04 55.774+0.15 46.08+£0.09  63.154+0.04

TACT-adapt | 31.25+3.59 83.70+1.10 71.98+0.19 48.81+0.05  63.4440.07

of SHOT. For all baseline methods, we perform hyperparameter tuning within the search spaces
specified in their respective papers. The detailed configurations and search procedures are provided
in Appendix D.2. Following the protocol recommended in [59], we employ oracle selection to choose
the best-performing hyperparameters, ensuring a fair and consistent evaluation across all methods.

6.1 Test-time Adaptation Performance

Following the evaluation protocol of each dataset, we use macro F1 for Birdcalls, accuracy for
Camelyon17, ImageNet-R and ImageNet-V2, and worst-group accuracy for CivilComment, whose
data are grouped by demographic attributes and toxicity. Due to the high variability observed in
Birdcalls, each experiment is repeated ten times, whereas experiments on the remaining datasets are
conducted three times. The mean and standard deviation are summarized in Table 1.

We see that TACT consistently outperforms existing backpropagation-free methods on all the datasets,
with substantial gains of 4% on Birdcalls, 15% on CivilComments, and 1.7% on ImageNet-R.
Further, TACT-adapt achieves the best overall performance across all datasets, outperforming both
backpropagation-free and backpropagation-based baselines. These results suggest that non-causal
features are a major source of performance degradation under distribution shift, and that removing
them improves predictive reliability. It also confirms the value of TACT not only as a standalone
method but also as a reliable supervisory signal for test-time learning.

We note that TACT performs well when causal features are approximately invariant under augmenta-
tion. For ImageNet-R and ImageNet-V2, AutoAugment [6] and RandomAugment [7] maintain the
key causal features, which are object structure and shape [10, 29]. Other causal features that could
be helpful in inferring objects, such as color when inferring strawberries, are altered. In addition,
the models we perform adaptation on do not have their representation space explicitly constrained
such that causal and non-causal features are linearly encoded, disentangled, or orthogonal. Yet, the
approximate separation of causal and non-causal features by PCA yields consistent performance
gains, suggesting the robustness of TACT.

6.2 Visualization of Predictions after Causal Trimming

To gain insight into the predictions made after causal trimming, we employ GradCAM [45] to
visualize the focus of the original predictions and those made by TACT on samples from ImageNet-R.
GradCAM identifies which parts of an input image contribute most to a prediction by computing
the gradients of the predicted class score with respect to the embeddings of the image patches.
The resulting heatmaps are overlaid on the input images, where brighter regions indicate higher
importance for the prediction.

The visualization results are presented in Figure 3. Compared to the original predictions, TACT
places less emphasis on non-causal information, such as background elements. For instance, in the



Input GradCAM TACT-GradCAM GradCAM TACT-GradCAM

ground truth: meerkat ground truth: pug-dog; prediction: hatchet

(a) correct predictions (b) wrong predictions corrected by TACT

Figure 3: GradCAM visualizations of the original predictions and TACT’s predictions.

snowbird sample, TACT disregards irrelevant features like the surrounding branches. Similarly, in the
white shark example, TACT restricts the focus to the object itself, unlike the original prediction that
diffuses significant attention across the background. The sea background in the scuba diver example,
and the dot texture in the background of the strawberry example, are likely to be spuriously correlated
with certain prediction classes. These features are de-emphasized by TACT, contributing to a more
accurate prediction.

Furthermore, TACT enhances attention on core causal features, leading to a sharper focus on an
object’s defining characteristics. This is clearly demonstrated in the lorikeet example, where the beak
becomes the key focus, and the meerkat example, where attention is concentrated on the banded
pattern and body. Moreover, in cases where the original prediction neglects causal features, as shown
in the space shuttle and pug-dog example, TACT can redirect the emphasis to the actual salient
features, such as the nose cone of the space shuttle and the face of the pug-dog, resulting in improved
prediction performance.

6.3 Effect of Hyperparameters

The performance of TACT depends on two key hyperparameters: the number of augmentations n and
the number of removed principal components m. These parameters govern the accuracy of non-causal
direction estimation and the extent of causal trimming, respectively. Figure 4 shows the performance
under different numbers of augmentations and removed principal components for the Camelyon17,
CivilComments and ImageNet-R datasets.

Since representations from augmented samples are used to compute the covariance matrix from which
the directions of maximum variances are identified, a larger number of augmentations n generally
leads to more stable and accurate identification of non-causal directions. Empirically, we find that
values of n € {128,256, 512} provides sufficient performance, while small values of n often fail to
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Figure 4: Performance across number of augmentation and number of removed principal components.

adequately capture the variance needed for accurate principal component estimation. The number
of removed principal components m, should be carefully selected to ensure effective reduction of
non-causal features while retaining sufficient causal features as suggested by our theoretical analysis.
In practice, removing the top principal component, which typically captures the dominant non-causal
variation, often suffices. However, for datasets with more complex or layered distribution shifts, such
as ImageNet-R, removing more principal components would further boost the performance.

6.4 Ablation Study

We conduct two sets of ablation experiments. In the first experiment, we isolate the impact of
representation trimming, without prototype averaging. In the second experiment, we assess whether
prototype averaging alone can sufficiently filter out non-causal features.

Table 2 shows the results. We observe that trimming the representation z yields better performance
than no adaptation, confirming that removing components aligned with non-causal directions in
representations is beneficial. While using only the averaged trimmed prototypes ¢ also improves
performance over no adaptation, the gains are generally less significant than when trimmed repre-
sentations are employed. This suggests that relying solely on the averaged trimmed prototypes is
insufficient for effectively reducing non-causal features. The best performance is achieved when both
the trimmed representation and the averaged trimmed prototypes are used in conjunction, indicating
that mitigating non-causal features in both representations and prototypes is crucial.

Table 2: Results of ablation study.
Birdcalls Camelyonl7 CivilComments ImageNet-R  ImageNet-V2

trim z trimgq  average ¢

No TTA | 22.74 62.31 55.38 41.83 62.97
v 2591£1.67  69.43£0.01 67.84+0.37 43.21£0.03  63.24£0.10
v v 27.36£0.23  64.74+0.05 62.414+0.08 42.2440.00  63.03£0.01
v v v 31.14£1.69  70.17+0.05 71.80£0.35 43.59+0.02  63.33+0.10

7 Conclusion and Future Work

We present TACT, a test-time adaptation method that reduces model reliance on non-causal features
for test representations. TACT identifies non-causal components in the representation space by
analyzing samples with identical causal features but varying non-causal features. The directions of
maximum variance among the representations are treated as the non-causal directions. To adapt the
model, we subtract the projection of the representation and class prototypes onto this non-causal
direction. We keep track of the identified directions and utilize the average of the trimmed class
prototypes for improved prediction. We analyze the theoretical conditions for TACT to enhance
predictive performance. Extensive experiments on five real-world out-of-distribution datasets demon-
strate the effectiveness and generalizability of our approach. While TACT demonstrates strong
performance, it requires prior knowledge of the data to select augmentations that vary non-causal
features without altering causal ones. Future work should explore identifying non-causal features
when such knowledge is unavailable, and better methods to find non-causal features beyond PCA’s
orthogonality constraint.
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. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper uses existing public datasets and develops a method trained on these
datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the datasets in Section 6 and baseline related works in Section 2
and Section 6.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the code and datasets used in the supplemental materials.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components, except that we use ChatGPT to generate the
augmentations for the textual data in CivilComments dataset, as described in Appendix B.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of Theoretical Analysis

A.1 Conditions for TACT to correct a wrong prediction

We first restate Proposition 1 as follows:

Proposition 1. For any z that is misclassified by the learned decision boundary Aq, the misclassi-
fication can be corrected by using the representation obtained after removing the top-m principal
components, if both of the following two conditions are satisfied:

m d
yY i <0 and y Y ami>0 @
i=1 i=m+1

m d
Z Q%4 Z QY4
i=1

i=m-+1
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Proof. As the learned decision boundary Aq cannot classify z correctly, we have:

yz-Ag <0
d d
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TACT updates z to Z and g to ¢ via causal trimming, and the resulting prediction is correct if and
only if yZ - AG > 0, which leads to:

yz-AG>0
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By combining Equation (8) and (9), we can derive:
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In addition:
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A.2 Conditions for trimmed representations to preserve causal features

Proposition 2 (Causal Preservation). For any original representation z, the trimmed representation
% preserves the correct prediction under the causal decision boundary Ap if any one of the following
conditions holds:

Y > miciyi =0

=1
m
y > miay <0 (6)
=
! m d
0<yd> may <y Y mioi
=1 =1

Equation (6) characterizes three cases: (a) the top-m PCs have no contribution to the causal prediction;
(b) the top-m PCs has a negative influence on the causal prediction and thus their removal is beneficial;
(c) the top-m PCs has a positive contribution, but the representation forms by all PCs contribute
even more strongly. When the top-m PCs have no contribution to the causal predictions, they are
considered non-causal features. In other words, the removed component z — Z does not contain
causal information. When the top-m PCs contain causal information, m should be selected such that
the causal information in the top-m PCs contributes less to the prediction compared to all the PCs,
ensuring that the trimmed representation Z remains causally informative.

The proof provided here corresponds to this corrected version.

Proof. As the causal decision boundary Ap can classify z correctly, we have:

yz-Ap >0
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By rearranging Equation (12), we can derive:
d m
Y Z 05y > *yzmai% (13)
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Using causal decision boundary to predict Z, the prediction is correct if and only if yZ - Ap > 0,
which leads to:

yz-Ap >0
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Given Equation (13), Equation (14) is satisfied if any one of the following conditions holds:
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Equation (15) leads to:
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By adding y > | n;7y; to Equation (16), we can derive:
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A.3 Conditions for TACT to preserve a correct prediction

Proposition 3. Suppose z is correctly classified by the learned decision boundary Aq. The trimmed
representation z obtained via TACT will still be classified correctly if either of the conditions holds:

1. y(z—2)Aq <0, 0r

2. y(z — 2)Aq > 0, and Equation (7) holds, assuming % already satisfies the Causal Preserva-
tion condition (Proposition 2).

d d
sign( > niai%‘> :sign< > ai%‘) )
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Equation (7) requires that when classification relies only on the representations formed by the
remaining PCs, the learned decision boundary makes the same prediction as the causal decision
boundary. Proposition 3 also shows that if a correct prediction is made by the learned decision
boundary, TACT will preserve this correctness as long as the removed part z — Z contributes negatively
or does not contribute to the prediction. On the other hand, when the trimmed representation Z contains
sufficient causal information as established in Proposition 2, the learned decision boundary is required
to align directionally with the causal decision boundary defined by the remaining PCs.

The proof provided here corresponds to this corrected version.

Proof. As the learned decision boundary Aq classify z correctly, we have:
yz - Ag >0
y(z—2) - Aq+yz-Ag>0 (19)
We can rewrite yZ - Aq as:
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By combining Equation (19) and Equation (20), we can derive:
ylz—2)-Aq+yz2-AG>0 21
The updated prediction by TACT is correct if and only if y2 - A¢ > 0. Equation (21) shows that the
value of y(z — 2) - Aq needs to be considered to derive the conditions under which yZ - Ag > 0.
1. When y(z — 2) - Agq < 0, the removed part does not positively contribute to the prediction
using the learned decision boundary, together with Equation (21), we can derive:
yz-AG> —y(z—2)-A¢>0 (22)
Equation (22) suggests that yZ - AG > 0 is always true when y(z — 2) - Ag < 0.

2. When y(z — 2) - Ag > 0, the removed part positively contributes to the prediction using
the learned decision boundary. We wish to connect with the causal decision boundary
to understand the conditions. Therefore, we additionally assume Z satisfies the Causal
Preservation condition (Proposition 2), which suggests yZ - Ap > 0.

The updated prediction is correct, i.e. y2 - Ag > 0 if:
sign (yZ - Ap) = sign (yZ - Ag)
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B Data Augmentation for CivilComments

CivilComments considers the following demographics mentioned in a comment: male, female,
LGBTQ, Christian, Muslim, other religions, Black, White. We group the demographics into
gender (male/female), sexuality (LGBTQ), religion (Christian/Muslim/other religions), and race
(Black/White). We notice that the comments tend to mention only one of the demographics in each
group, and some comments mention more than one group. To vary demographics, we propose to
introduce new demographics to the comments.

We propose to randomly insert a sentence before or after the comment. The sentences being inserted
are randomly drawn from a set of sentences. Each sentence in the set mentions all demographics
in one of the groups. The sentences are not toxic, so they would not affect the toxicity rating of
the comment. Toxic comments remain toxic, and non-toxic comments remain non-toxic when the
sentence is added. We ask ChatGPT via the web interface (https://chatgpt.com) to generate 20
sentences for each demographic group. We list the sentences below. Sentences from all groups make
up the set from which we randomly sample for augmentation.

Gender(male/female)

o “This is a post about females and males.”

o “The discussion focuses on women and men.”

o “Females and males are the central topic here.”

« “Women and men both contribute to this conversation.”
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o “This explores perspectives of females and males.”

o “The post highlights contributions of women and men.”
« “Both females and males are part of the narrative.”

« “Women and men play essential roles in this story.”

o “Females and males are equally represented here.”

o “This covers aspects of both women and men.”

o “This is a post about women and men.”

o “The discussion centers on ladies and gentlemen.”

o “Females and males are the key focus here.”

» “Girls and boys both play significant roles.”

o “Both genders are part of this discussion.”

o “This highlights contributions from men and women.”
« “Ladies and gentlemen are represented here equally.”
o “The focus is on both sexes and their roles.”

o “Womenfolk and menfolk shape this narrative.”

o “Both males and females are included in this topic.”

Sexuality (LGBTQ)

o “This is a post about LGBTQ+ and heterosexual individuals.”

» “The discussion focuses on sexual minorities and heterosexual communities.”

« “This highlights experiences of both LGBTQ+ and cisgender people.”

o “The post compares queer and non-queer perspectives.”

o “This covers topics relevant to both LGBTQ+ and straight groups.”

» “Gender-diverse and cisgender voices are included in this conversation.”

o “The focus is on LGBTQ+ and heterosexual rights and issues.”

o ‘“Both sexual minorities and heterosexual people’s experiences are addressed here.”

o “This post examines the lives of gender-nonconforming and cisgender individuals.”

« “The post explores the intersection of queer and non-queer identities.”

o “LGBTQ+ and heterosexual people both contribute to this topic.”

« “This content engages with both gender-diverse and cisgender communities.”

o “The article offers insights into the experiences of LGBTQ+ and non-LGBTQ+ indi-
viduals.”

o “This is a post about LGBTQ+ and heterosexual experiences in society.”

« “Both sexual minorities and heterosexual groups have a place in this discussion.”

« “This conversation includes both LGBTQ+ and cisgender perspectives.”

o “We explore issues affecting both sexual minorities and heterosexual individuals.”

« “This is about the relationships between LGBTQ+ and heterosexual people.”

o “The focus is on creating unity between LGBTQ+ and cisgender communities.”

o “This post discusses challenges faced by both gender-diverse and cisgender people.”

« “This is a post about Christians, Muslims, and followers of other faiths.”

o “The discussion focuses on Christians, Muslims, and practitioners of different reli-
gions.”

« “This highlights the experiences of Christians, Muslims, and believers from various
traditions.”

o “The post compares Christian, Muslim, and other spiritual practices.”

o “This covers topics relevant to Christians, Muslims, and people of other religious
backgrounds.”

o “The voices of Christians, Muslims, and adherents of different faiths are included in
this conversation.”
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o “The focus is on Christian, Muslim, and interfaith perspectives.”

o “Both Christians, Muslims, and people of other beliefs contribute to this discussion.”
« “This post examines the lives of Christians, Muslims, and followers of other religions.”
« “The post explores the intersection of Christianity, Islam, and other spiritual practices.”
o “Christians, Muslims, and people from diverse faiths share common values of compas-

sion.”

« “This content engages with Christians, Muslims, and those from various religious
traditions.”

« “The article offers insights into the teachings of Christians, Muslims, and other faith
communities.”

o “This is a post about Christians, Muslims, and adherents of various world religions.”

o “Both Christians, Muslims, and individuals from different belief systems are included
in this conversation.”

o “The focus is on how Christians, Muslims, and people of other religions practice faith.”

o “This conversation includes insights from Christians, Muslims, and followers of other
spiritual paths.”

o “We’ll explore issues affecting Christians, Muslims, and people from various religious
backgrounds.”

o “This is about the relationships between Christians, Muslims, and those of other beliefs.”

o “The post discusses shared values between Christians, Muslims, and adherents of other
religions.”

Race (Black/White)

o “This is a post about Black and White communities.”

« “The discussion focuses on African American and Caucasian experiences.”

« “This highlights the perspectives of Black and White individuals.”

o “The post compares the lives of Black and White people.”

« “This covers topics relevant to both Black and White races.”

o “The voices of African Americans and Caucasians are included in this conversation.”

o “The focus is on Black and White racial dynamics.”

« “Both Black and White communities contribute to this discussion.”

« “This post examines the experiences of Black and White individuals.”

o “The post explores the intersection of African American and European American
identities.”

« “Black and White people play vital roles in shaping society.”

« “This content engages with the experiences of Black and White groups.”

o “The article offers insights into the lives of Black and White people in different settings.

« “This is a post about African American and White American experiences.”

« ‘“Both Black and White cultures have unique contributions to the world.”

o “The focus is on both Black and White perspectives in social issues.”

« “This conversation includes both Black and White voices.”

o “We’ll explore the relationship between Black and White individuals.”

« “This is about the interactions between African Americans and Caucasians.”

o “The post discusses challenges faced by both Black and White communities.”

il

C Augmentation Design and Selection

Data augmentation requires careful consideration in order to achieve strong performance. It should
heuristically maximize variations along non-causal directions and minimize variations along causal
directions, so that the directions corresponding to non-causal features are well identified by Principal
Component Analysis.
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In practice, the augmentation can be treated as a hyperparameter to search over. The data collection
process that raises variation and features that affect the prediction target should be analyzed to
propose a set of augmentations that are semantically invariant with respect to the prediction target,
yet introduce variability in other, non-causal aspects.

For example, for the commonly studied image classification task, we recommend searching over
general image augmentations, such as AutoAugment [6] and RandomAugment [7]. These augmenta-
tions preserve the critical causal features, particularly the shape information of objects [10], while
simultaneously injecting variability into less essential aspects. Our experiments examine the effect of
different augmentation strategies on datasets where images serve as the predictive input. As shown in
Table 3, augmentation affects model performance, but AutoAugment and RandomAugment could
provide consistent improvements over no adaptation.

The most effective way to select the augmentation is to test on a small subset of labeled test data.

Table 3: Performance of TACT with different augmentation strategies.

Augmentation ‘ Birdcalls Camelyon17' ImageNet-R ImageNet-V2
no TTA | 22.74 62.31 41.83 62.97
Stain color jitter/color jitter | 31.14+£1.69  70.17£0.05  41.78+0.01 61.88+0.11
AutoAugment 27.61£2.25  72.04+0.12  43.29£0.07  63.334+0.10
RandomAugment 32.19+£1.26  79.71£0.07  43.59+0.02  62.99£0.10

D Details of Test-Time Adaptation Experiment

D.1 Model Used for Adaptation

For Birdcalls and Camelyon, to our knowledge, there were no publicly available ViT-B/32 models
trained on the datasets. Therefore, we train a model using the standard empirical risk minimiza-
tion. The training scripts and models can be found at our code repository https://github.com/
NancyQuris/TACT. The details of the training are:

« Birdcalls uses a batch size of 16 and is trained for 100 epochs. AdamW is employed as the
optimizer, with a learning rate of 5Se-5 and weight decay of 0.001. As specified in [9], the
training starts from a weight pretrained on ImageNet, and the best model is selected by macro
F1 on the in-distribution validation split.

o Camelyonl7 uses a batch size of 32 and is trained for 30 epochs. SGD is employed as
the optimizer, with a learning rate of 5e-5 and momentum 0.9. As instructed in [28], the
training starts from a randomly initialized weight, and the best model is selected by the average
classification accuracy on the validation domain.

For CivilComments, we use the model provided by Wilds [28]. The model was trained on the training
domain of CivilComments using empirical risk minimization. The model can be found in https:
//worksheets.codalab.org/rest/bundles/0x17807ae09e364ec3b2680d71ca3d9623/
contents/blob/best_model.pth.

For ImageNet-R and ImageNet-V2, we use the model published by torchvision. The model was
trained on ImageNet using empirical risk minimization. The pretrained weight ViT_B_32_Weights.
IMAGENET1K_V1 is loaded to the model for test-time adaptation.

D.2 Hyperparameter Search Space

We perform a grid search to find the best hyperparameters for the baseline methods we compared
with. For backpropagation-free methods, here list the details of the hyperparameters searched:

'The performance of AutoAugment and RandomAugment on Camelyon17 is under the removal of principal
components beginning with the 2nd. We observe that removing the first principal component only results in
performance degradation. We hypothesize that important causal features might be present in the first principal
component.
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T3A: Following [19], M, the number of representations stored to compute the centroid of each
class is searched in {1,5,20,50,100, N/A}, where N/A means storing all representations.
LAME: Following [4], the k used in k-nearest neighbours is searched in {1,3,5}, and the kernel
to compute distance is searched in {kNN, linear, rbf}.

FOA: Following [36], we use 3 prompts. The population size is set to 4 + 3 x log(prompt dim).
The A to balance entropy and representation distance is searched in {0.2, 0.4}.

For all backpropagation-based methods, we search the learning rate in {1e-3, le-4, le-5, le-6}. The
adaptation is performed in a non-episodic way. For other hyperparameters used in each method, the
details are listed below:

D.3

SHOT: The method was originally proposed for source-free domain adaptation [30]. Following
[19] that adapts it as a TTA strategy, 3, the hyperparameter to balance information maximization
and cross entropy, is set to 0.1. The hyperparameter to filter confident pseudo-labels is set to
0.9. Adam is used as the optimizer. The feature extractor is updated during adaptation. The
adaptation step is set to 1.

Tent: Following [51], SGD is used as the optimizer with momentum 0.9. The affine parameters
of normalization layers are updated during adaptation. The adaptation step is set to 1.

SAR: Following [38], the margin Fj is set to 0.4x In C, where C' is the number of classes. To
recover the model, the moving average factor is set to 0.9, and the reset constant is set to 0.2.
SGD is used as the base optimizer with sharpness-aware minimization (SAM). The momentum
for SGD is set to 0.9. p in SAM is set to 0.05. The affine parameters of shallow normalization
layers are updated. Normalization layers in the 9¢"-11*" block in the feature extractor are
frozen during adaptation. The adaptation step is set to 1.

DeYO: Following [29], we search over the three augmentations {patch shuffling, pixel shuffling,
occlusion} to destory causal features. The patch size in patch shuffling is set to 4. For occlusion,
the occlusion size is set to (H/2) x (W/2), where H and W stand for the height and width of

the image. The occulsion starts from (H/4)™ row and (W/4)™ column. The DeYO margin is
set to 0.5x In C, and the margin Ej is set to 0.4 x In C, where C' is the number of classes. The
PLPD threshold is searched in {0.2, 0.3, 0.5}. SGD is used as the optimizer with momentum
0.9. The affine parameters of shallow normalization layers are updated. Normalization layers
in the 9*"-11*" block in the feature extractor are frozen during adaptation. The adaptation step
issetto 1.

TAST: Following [21], we search the number of nearby support examples N in {1, 2, 4, 8}.
M, the number of support examples per class is searched in {1,5,20,50,100, N/A}, where N/A
means storing all representations. The number of adaptation modules V. is set to 20. Adam is
used as the optimizer. The trainable module added on top of the feature extractor is adapted.
The adaptation step is searched in {1, 3}.

TSD: Following [53], the hyperparameter for feature filter M is searched in {1, 5, 20, 50, 100,
N/A}, where N/A denotes no entropy filter. The tradeoff parameter A to balance TSD loss and
MSLC loss is set to 0.1. Adam is used as the optimizer. Adapting {affine parameters, classifier,
feature extractor, all parameters} is searched. The adaptation step is set to 1.

PASLE: Following [17], we search the the threshold in {0.2, 0.4, 0.6, 0.8}. The threshold gap
is set to 0.1. The 74es is searched in {1e-3, le-4}. The buffer size is set to 16, 1/4 of the batch
size we used. Adam is used as the optimizer. Adapting {affine parameters, classifier, feature
extractor, all parameters} is searched. The adaptation step is set to 1.

Hardware and Software Used

We perform experiments on the NVIDIA V100 GPU with 32GB memory. When the batch size is set
to 64, the memory of 1 GPU is sufficient to perform test-time adaptation using TACT as well as all
the baseline methods.

We implement TACT using PyTorch 2.1.2. Singular vector decomposition implemented by
torch.linalg.svd() is used to compute the principal components, as it is computationally more
stable than spectral decomposition. Since the covariance matrix is a symmetric positive semi-definite
matrix, the singular vectors are the same as the eigenvectors.
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E Additional Performance Study

E.1 TTA Performance on Larger Models

We examine TACT’s effectiveness on larger models, specifically ViT-B/16 for images and BERT
for texts. The experiment setup is consistent with that described in Section 6. Table 4 presents
the performance of TACT and other state-of-the-art backpropagation-free methods on the larger
architectures. Across all datasets except ImageNet-R, TACT achieves the best performance, ranking
second on ImageNet-R. These results demonstrate the scalability of TACT to larger models.

The models for Birdcalls and Camelyon are trained under the same setting as that for ViT-B/32 stated
in Appendix D.1. We follow the guidance of CivilComments’ publisher to train BERT. The models
we trained are included in our code repository. ViT-B/16 backbone for ImageNet-R and ImageNet-V?2
is published by torchvision.

Table 4: Test-time adaptation performance of backpropagation-free methods on larger models. The
best performance of each dataset is in bold.

Method | Birdcalls Camelyonl7 CivilComments ImageNet-R ImageNet-V2
NoTTA |  27.10 65.37 67.62 44.06 69.57

T3A 28.324+1.60  72.724+0.73 67.46+0.00 43.994+0.08  69.67+0.04
LAME | 27.48+1.44 68.50£0.11 67.65+0.04 44.04+0.04  69.59+0.01
FOA 27.894+0.54 67.15+0.67 - 47.53+2.73  69.68+0.04
TACT 33.65+2.11 72.85+0.02 69.76+0.44 45.59+0.01  69.71+0.02

E.2 Synergy with Training-time Augmentation

The “no TTA” baselines of BirdCalls, Camelyon17, and CivilComments are trained without the
augmentations used by TACT to identify and reduce non-causal features. To assess TACT’s synergy
with training-time augmentation, we trained models using the same augmentations as those applied
by TACT and then performed test-time adaptation. For ImageNet-R and ImageNet-V2, the “no TTA”
baseline provided by torchvision was trained with AutoAugment using the ImageNet policy.

Table 5 shows the test-time adaptation performance of TACT on models trained with the same
augmentation strategy. The results show that, even when models are trained with these augmentations,
TACT further improves test-time performance. This highlights TACT’s ability to synergize with
training-time augmentation and provides strong evidence of its effectiveness and generalizability.

Table 5: Test-time adaptation performance of TACT with training-time augmentation models.

‘ Birdcalls Camelyonl7 CivilComments ImageNet-R  ImageNet-V2

no TTA (train time aug) 29.86 74.09 64.60 41.83 62.97
+ TACT 30.5740.96  77.2740.03 68.841+0.20 43.2940.07 63.33+0.10

E.3 TTA Performance under Different Batch Size

We study the test-time adaptation performance of TACT on ImageNet-R when the test batch size
varies. Table 6 shows the result when the test batch size is set to 1, 4, 16, 64 and 128, respectively.
The performance remains stable across different batch sizes. Even with a batch size of 1, the
performance only decreases by 0.06% compared to a batch size of 64. Moreover, TACT still improves
performance by 1.7% over the no-adaptation baseline when only one sample is available per batch
during adaptation. The result suggests that TACT is robust to variations in batch size, maintaining
high performance even when batch sizes are small. This makes it well-suited for situations where the
number of test samples per batch is constrained.
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Table 6: Test-time adaptation performance (%) of TACT on ImageNet-R under different batch sizes.
no TTA | batchsize=1 batchsize=4 batchsize=16 batch size =64 batch size = 128
41.83 | 43.53+0.02 43.51+£0.03 43.55+0.06 43.5940.02 43.56£0.03

E.4 Computational Cost

We compared the computational requirements of TACT with those of other backpropagation-free
methods on the Birdcalls dataset using a ViT-b/32 backbone. As shown in Table 7, TACT incurs
higher time and GPU memory consumption relative to alternative approaches. Nevertheless, this
additional computational cost results in substantial performance gains (Table 1), which justifies the
trade-off. Future work may explore optimization strategies, such as more efficient eigendecomposition
techniques for PCA, to reduce the overhead.

Table 7: Time and GPU memory required by backpropagation-free methods on Bridcalls.
| time (second) GPU memory (MB)

T3A 7.67 667.42
LAME 7.34 667.42
FOA 16.83 667.42
TACT (num aug=128) 112.22 1750.21
TACT (num aug=256) 170.00 2966.21
TACT (num aug=512) 323.62 5398.21

E.5 Additional Visualization of Predictions after Causal Trimming

We provide more GradCAM visualization of the original predictions and the predictions made by
TACT on samples from ImageNet-R. Figure 5 shows the visualizations.

Compared to original predictions, predictions made by TACT focus less on non-causal information.
For example, TACT pays less attention to the background of the warplane example, and the blowfish
example. The focus on the information that is semantically correlated with the class is retained in
predictions made by TACT in the above examples. When the causal information is not important to
the original prediction, prediction made by TACT leverages the causal information and thus turn the
wrong prediction correct, as shown in the example of jellyfish and bloodhound.

GradCAM TACT-GradCAM Input GradCAM TACT-GradCAM

ground truth: blowfish ground truth: Weimaraner; prediction: bloodhound

(a) correct predictions (b) wrong predictions corrected by TACT

Figure 5: Additional GradCAM visualizations of the original predictions and TACT’s predictions.
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F Alternative Design of TACT

F.1 ICA to Find Non-Causal Directions

We experiment using an alternative direction finding method, Independent Component Analysis
(ICA) with TACT. We rank the independent components by the variance of the scalars of features on
the components. We remove the top independent components that have maximum variance. Table 8
shows the result on the Birdcalls dataset. ICA performs inferior to Principal Component Analysis
(PCA), but better than no adaptation. Although ICA overcomes the orthogonality constraints of
PCA, it only looks for statistically independent components and assumes each component follows
a non-Gaussian distribution. Causal and non-causal features might not follow the non-Gaussian
distribution assumption under augmentations that vary non-causal features.

Table 8: Performance of TACT with ICA to find non-causal directions.
no TTA \ TACT w/ PCA TACT w/ ICA

22.74 | 31.14£1.69 25.53£1.06

F.2 Causal Trimming Based on a Threshold

We consider using the variance that the top principal components (PC) account for as a threshold to
decide whether causal trimming is conducted or not. When the augmentation only changes non-causal
features and causal features remain unchanged, datapoints that are invariant to augmentations should
have smaller variance of the top PCs. Thus, if the variance is smaller than a threshold, causal
trimmings will not be conducted on the data. As the range of variance is not known and it could
change significantly, setting a numerical threshold might not be feasible. We consider normalized
variance, where we divide the variance of top PCs by the sum of variances of all PCs. Table 9 shows
the result on the Birdcalls dataset. Removing components based on a threshold does not outperform
using no threshold.

Table 9: Performance of TACT when causal trimming is performed based on a threshold 7.
no TTA |  TACT TACT (7=0.1) TACT (7=0.2) TACT (7=0.3)

22.74 | 31.14£1.69  30.9942.18 31.03+2.19 28.03+3.12
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