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Abstract
A driving force behind the diverse applicability of
modern machine learning is the ability to extract
meaningful features across many sources. How-
ever, many practical domains involve data that
are non-identically distributed across sources, and
possibly statistically dependent within its source,
violating vital assumptions in existing theoreti-
cal studies of representation learning. Toward
addressing these issues, we establish statistical
guarantees for learning general nonlinear repre-
sentations from multiple data sources that admit
different input distributions and possibly depen-
dent data. Specifically, we study the sample-
complexity of learning T + 1 functions f (t)

⋆ ◦ g⋆
from a function class F × G, where f

(t)
⋆ are task

specific linear functions and g⋆ is a shared non-
linear representation. An approximate represen-
tation ĝ is estimated using N samples from each
of T source tasks, and a fine-tuning function f̂ (0)

is fit using N ′ samples from a target task passed
through ĝ. Our results show that the excess risk
of the estimate f̂ (0) ◦ ĝ on the target task decays
as Õ

(
C(G)
NT + dim(F)

N ′

)
, where C(G) denotes the

complexity of G. Notably, our rates match that of
the iid setting, while requiring fewer samples per
task than prior analysis and admitting no depen-
dence on the mixing time. We support our analysis
with numerical experiments performing imitation
learning over non-linear dynamical systems.

1. Introduction
Transfer learning, in which a model is pre-trained on a large
dataset, and then finetuned for a specific application, has
shown great success in various fields of machine learning
including computer vision (Dosovitskiy et al., 2021) and
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natural language processing (Devlin et al., 2019). The prin-
ciple enabling the success of these approaches is the use
of a large dataset to extract compressed features which are
broadly useful for downstream tasks. The extraction of such
generally useful features from data is referred to as repre-
sentation learning (Bengio et al., 2013). Despite its critical
role in the success of deep learning, statistical guarantees
remain somewhat limited.

Only recently have studies formalized multi-task represen-
tation learning in a way that illustrates how generalization
improves when data is aggregated across many tasks (Du
et al., 2020; Tripuraneni et al., 2020). These regression set-
tings consider learning T+1 functions f (t)

⋆ ◦g⋆ in a function
class F × G from covariate-observation pairs {(x(t)

i , y
(t)
i )},

where f
(t)
⋆ are task-specific functions, and g⋆ is a shared

representation. The tasks for t = 1, . . . , T are denoted
source (training) tasks, while t = 0 is the target (test) task.
A basic model of transfer learning can be expressed as a
two-step procedure in which an estimate ĝ for the repre-
sentation is determined by solving a least squares problem
using N data samples from each of the source tasks with
measurements corrupted by zero-mean noise. This represen-
tation is then used to determine an estimate f̂ (0) by solving a
least squares problem using N ′ samples from the target task,
also with measurements corrupted by zero-mean noise. Du
et al. (2020); Tripuraneni et al. (2020) show generalization
bounds on the learned predictor in which the excess risk
scales as Õ

(
C(G)
NT + C(F)

N ′

)
, where C quantifies the com-

plexity of a function class. These rates capture the desirable
behavior where the error from fitting the shared representa-
tion decays with the total amount of data aggregated across
the T source tasks.

While a rather complete picture can be stitched for linear
settings, for such rates to hold in settings where the represen-
tation class G is nonlinear, prior work crucially relies upon
the assumption that covariates are independent and iden-
tically distributed (iid) across all tasks, such that the only
source of variation comes from the task-specific f

(t)
⋆ . Such

assumptions are fundamentally incompatible with many po-
tential use cases of multi-task representation learning, such
as in domain generalization and sequential decision-making.
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A key goal of this work is to remedy this issue and achieve
multi-task rates in the absence of assumptions requiring
identical covariate distributions across tasks, and indepen-
dent data within tasks.

1.1. Related Work

Multi-task linear regression: Beginning with Du et al.
(2020), a fairly complete picture has emerged in the setting
of multi-task linear regression in which distinct tasks share
a low dimensional representation, i.e. f

(t)
⋆ (z) = Fz and

g(x) = Φx for some matrices F ∈ RdY×r and Φ ∈ Rr×dX

with r ≤ dX
1. In this setting, the authors demonstrate that

the excess risk achieved by the empirical risk minimizer
(ERM) achieves rates Õ

(
dXr
NT + dYr

N ′

)
. An active learning

setting is considered by Chen et al. (2022); Wang et al.
(2023), in which the assumption of uniform sampling from
each task is replaced with an adaptive sampling algorithm.
Chua et al. (2021) considers a setting in which the repre-
sentation is fine-tuned for each task, thereby allowing the
assumption of a shared Φ to be relaxed. Crucially, all of the
aforementioned bounds hold only if the minimum amount
of data (“burn-in time”) per task exceeds a quantity propor-
tional to dX. This is counterintuitive, as a goal of aggregat-
ing data across tasks is to remove the necessity for many
samples per task. Furthermore, solving the ERM is nomi-
nally a non-convex bilinear problem. Efficient algorithms
to bypass ERM have been proposed to explicitly address
these issues (Tripuraneni et al., 2021; Collins et al., 2021;
Thekumparampil et al., 2021), while attaining same rates
order-wise. The resulting analysis alleviates the dependence
of the burn-in time on dX, but iid covariates across tasks,
such that their estimators are consistent without requiring
standardizing data per-task which would otherwise reintro-
duce a ≈ dX burn-in per task. This is partially resolved by an
algorithm proposed in Zhang et al. (2023b), which handles
tasks with non-identical covariate distributions; however the
burn-in remains proportional to dX. These results beg the
question: is the dX per-task burn-in for ERM fundamen-
tal or a technical byproduct? A dX burn-in is unintuitive,
since given an optimal representation Φ⋆, solving each task
is precisely standard linear regression over r-dimensional
covariates z ≜ Φ⋆x, for which the burn-in is much more
lenient ≈ r (Wainwright, 2019).

Non-linear multi-task learning: Early works consider
statistical guarantees for multi-task learning over general
nonlinear function classes (Baxter, 2000; Ben-David & Bor-
bely, 2008; Maurer et al., 2016; Hanneke & Kpotufe, 2022);
however, they do not obtain rates scaling jointly in N,T due
to the data model or assuming agnostic settings. (Du et al.,
2020; Tripuraneni et al., 2020; Watkins et al., 2024) provide
excess risk bounds in which the error benefits jointly in N

1Du et al. (2020) consider a scalar setting dY = 1. Their analy-
sis is extended to vector-valued settings in Zhang et al. (2023a).

and T by assuming a shared representation. Du et al. (2020)
considers a setting in which F is a linear function class, and
G is a nonlinear function class. Tripuraneni et al. (2020);
Watkins et al. (2024) consider nonlinear F and G; however,
the resulting generalization bounds scale with diameter of
covariate distributions rather than with noise-level (Du et al.,
2020). These works all assume marginal covariate distri-
butions are identical across all tasks, and the final bounds
involve data-dependent complexity terms. When instanti-
ated in linear settings, their guarantees recover suboptimal
burn-ins at least order-dX samples per task. The aforemen-
tioned results study the ERM solution rather than feasible
algorithms. Meunier et al. (2023) is a notable exception,
providing a feasible algorithm in the setting of Reproduc-
ing Kernel Hilbert Spaces (RKHS), in which tasks share a
RKHS subspace projection.
Multi-task sequential learning: Multi-task learning has
been applied to many dynamical systems settings, such as
robotic manipulation (Brohan et al., 2022; Shridhar et al.,
2023), agile flight (O’Connell et al., 2022), robotic loco-
motion . Despite its effectiveness in practice, the existing
theoretical guarantees for representation learning do not ap-
ply to these settings due to their assumption that covariates
are iid across tasks. Notably, when the predictor is either
the dynamics function or a closed-loop control policy, the
covariate distribution is inextricably linked with the pre-
dictor itself. Consider, for example, a stable autonomous
system driven by white noise, yt ≜ xt+1 = Axt + wt with
x0, wt ∼ N (0, IdX

). The stationary covariate distribution is
inextricably linked to the “predictor” A, as demonstrated by
solving the Lyapunov equation

Σx ≜ E[xt+1x
⊤
t+1] = AΣxA

⊤ + IdX

=⇒ Σx =
∑
k≥0

Ak(Ak)⊤.

Therefore, in multi-task settings where multiple distinct
predictors are involved, the covariate distributions will be
non-identical between tasks. Furthermore, covariates gener-
ated by dynamical systems are correlated across time. These
issues have been remedied in the linear setting by Modi et al.
(2021); Zhang et al. (2023a) applied to system identification
and imitation learning by extending the analysis of Du et al.
(2020) to consider covariates generated by linear systems.
For the single-task non-linear regression setting, Ziemann
& Tu (2022); Ziemann et al. (2023a) demonstrate that learn-
ing in the presence of correlated covariates achieves the
same rate as learning in the absence of correlation, only
inflating the burn-in time by the correlation level. However,
we are unaware of extensions of these results to multi-task
representation learning.

In parallel, various works have considered extensions of
the aforementioned multi-task linear regression works to
linear bandit settings (Yang et al., 2022; 2020; Du et al.,
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2023; Mukherjee et al., 2023). We also note works studying
reinforcement learning (RL) with feature approximation
(or low-rank Markov decision processes (MDPs) (Agarwal
et al., 2020; Jin et al., 2020; Uehara et al., 2021; Efroni
et al., 2022; Du et al., 2019) which attain sample complexity
gains from dimensionality reduction, but do not consider
aggregating data across multiple tasks. Analysis of multi-
task representation learning for MDPs has been studied by
Arora et al. (2020); Lu et al. (2021); however these works
assume generative models, thereby sidestepping the issues
of independent data and non-identical covariates.

1.2. Contributions
In this work, we analyze the transfer learning problem in a
setting where F is a class of linear functions mapping Rr

to RdY , and G is a class of nonlinear representations, as in
(Du et al., 2020)2. In this setting, we remove assumptions
of both identical covariate distributions and independent
covariates within tasks, and we additionally improve the per-
task burn-in requirement. We list our specific contributions:

• We derive generalization bounds that hold for non-
identical covariate distributions and vector-valued mea-
surements. In particular, we present an updated “task-
diversity” measure, which takes into account overlap of
non-identical covariate distributions, in addition to the
similarity of linear heads f (t)

⋆ (e.g. Du et al. (2020); Zhang
et al. (2023a)).

• We show our proposed bounds on ERM scale multiplica-
tively with noise level and jointly with number of tasks
and per-task samples as in Du et al. (2020), while requir-
ing only Ω(dYr) samples per task (noting dY = 1 in most
prior work, e.g. Du et al. (2020); Tripuraneni et al. (2020)),
as opposed to Ω(dX).

• We extend our bounds to (within-task) dependent data.
Adapting ideas from recent work (Ziemann & Tu, 2022;
Ziemann et al., 2023b), we demonstrate that when task
covariates are ϕ-mixing, our generalization bounds scale
with the independent-data rate. In particular, we avoid the
effective sample-size deflation incurred by standard block-
ing techniques (Yu, 1994; Kuznetsov & Mohri, 2017), rel-
egating the effect of mixing to a mild increase of burn-in.

Notably, via our contributions, the guarantees in this work
can be lifted from offline regression to various sequential
decision-making settings, such as nonlinear system iden-
tification (Mania et al., 2022; Wagenmaker et al., 2023)
and stochastic contextual bandits (Foster & Rakhlin, 2020;
Simchi-Levi & Xu, 2022). Stating our main theoretical
result informally:

Theorem 1.1 (Main result, informal). Assume N ≥
CmixΩ (dYr +C(G)/T ), where Cmix characterizes the de-
pendency of the covariates of each task. Then the excess

2This is a prototypical predictor model found across many do-
mains, e.g. RL with feature approximation, nonlinear least squares.

transfer risk of ERM is bounded with high-probability:

ER(f̂ (0), ĝ) ≲ Ctask divσ
2

(
C(G)
NT

+
dYr

N

)
,

where Ctask div characterizes the relatedness between the
source tasks and the target task and σ2 characterizes the
level of the noise corrupting the measurements.

Notation Expectation (resp. probability) with respect to
the underlying probability space is denoted by E (resp. P).
For two probability measures P and Q defined on the same
probability space, their total variation is denoted ∥P−Q∥TV.
For an integer n ∈ N, we also define the shorthand [n] ≜
{1, . . . , n}. The Euclidean norm on Rd is denoted ∥ · ∥2,
and the unit sphere in Rd is denoted Sd−1. We also write
∥M∥2 for the spectral norm. For two symmetric matrices
M,N , we write M ≻ N (M ⪰ N) if M − N is positive
(semi-)definite. We use ≲,≳ to omit universal numerical
factors, and Õ(·), Θ̃(·), Ω̃(·) to omit polylog factors.

Samples In general, we index tasks by superscript while
within-task samples are indexed by subscript, e.g. x(t)

i for
task t and sample i. Let P(t)

i , t ∈ [T ] be probability mea-
sures over a fixed sample space S. We are given N samples
from each “training task” t: s(t)i ∼ P

(t)
i , t ∈ [T ], i ∈ [N ].

For convenience, we overload notation and understand P(t)

alternatively refers to the stationary distribution when s
(t)
i

are identically distributed or to a joint trajectory distribu-
tion {s(t)i }Ni=1 ∼ P(t) otherwise. We use superscript 1:T to
denote a uniform mixture, e.g. P1:T ≜ 1

T

∑T
t=1P

(t). We
consider supervised learning: the sample space decomposes
into an input (covariate) space X and and output (label)
space Y: S = X × Y and we write s

(t)
i = (x

(t)
i , y

(t)
i ).

Moreover, we are given N ′ samples from a target task dis-
tributed according to a probability measure P(0) over Z:
(x

(0)
i , y

(0)
i ) ∼ P

(0)
i , i ∈ [N ′]. It will also be convenient

to introduce empirical counterparts P̂(t)
N , Ê

(t)
N , such that e.g.

Ê
(t)
N [f(X)] = 1

N

∑N
i=1 f(x

(t)
i ). We generally denote co-

variance matrices3 by Σ, e.g. Σ(t)
x ≜ E(t)[XX⊤].

1.3. Problem Formulation

Given the above definitions of training and test/transfer
distributions, we consider a prototypical regression problem,
where the goal of the learner is to perform well on the
target task in terms of square loss over a fixed hypothesis
class H. To enable transfer and characterize the benefits of
representation learning, we assume that the hypothesis class
H under consideration splits into H = F × G. We define
the optimal training-task predictors:

3To be precise, second moment matrices.
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({f (t)
⋆ }Tt=1, g⋆) ∈ argmin

({f(t)},g)
∈F⊗T×G

T∑
t=1

E(t)∥f (t)◦ g(X)− Y ∥22.

Hence, to each task t ∈ [T ] we associate a task-specific
“head” f

(t)
⋆ ∈ F , while enforcing a shared “representation”

g⋆ ∈ G. We further denote the optimal target-task head:
f
(0)
⋆ ∈ argminf∈FE

(0)∥f ◦g⋆(X)− Y ∥22. Using our sam-
ples from both target and training tasks, we seek to find an
element (f, g) ∈ F × G that renders the excess risk on the
target distribution as small as possible:

ER(f, g) (1)

≜ E(0)∥f ◦g(X)− Y ∥22 − E(0)∥f (0)
⋆ ◦g⋆(X)− Y ∥22.

In particular, we study the excess risk of a standard two-
stage empirical risk minimization scheme (Du et al., 2020;
Tripuraneni et al., 2020), where a representation ĝ ∈ G is
fit on data from the T training tasks, and a target-task head
f̂ (0) is fit on the target task data, passed through ĝ:

({f̂ (t)}Tt=1, ĝ) ∈ argmin
F⊗T×G

T∑
t=1

N∑
i=1

∥f (t)◦ g(x(t)
i )− y

(t)
i ∥22

f̂ (0) ∈ argmin
f∈F

N ′∑
i=1

∥f ◦ ĝ(x(0)
i )− y

(0)
i ∥22. (2)

Though our work mostly concerns the statistical proper-
ties of ERM, we note that in many practical settings with
expressive G, the empirical loss on a given dataset can be ef-
fectively optimized, and the error incurred by an algorithm
enters as an additive factor in the generalization bounds
(Vaskevicius et al., 2020). Toward characterizing bounds on
the above excess risk, we consider vector-valued inputs and
outputs X×Y ⊆ RdX ×RdY . Following prior work, we con-
sider the realizable setting, i.e. there exist ({f (t)

⋆ }Tt=0, g⋆)

such that the noise term W (t) ≜ Y (t) − f
(t)
⋆ ◦ g⋆(X(t)) is a

(conditional) zero-mean process for every task.

Assumption 1.2. Given a filtration {F (t)
i }i≥1 to which

{x(t)
i−1}i≥1 is adapted, i.e. x(t)

i is predictable with respect

to F
(t)
i , for each t ∈ [T ], the noise sequence {w(t)

i }i≥1

is a σ2
W -conditionally subgaussian martingale difference

sequence:
a) E(t)[w

(t)
i |F (t)

i−1] = 0.

b) E(t)[exp(λ⟨w(t)
i , v⟩) | F

(t)
i−1] ≤ exp(λ2σ2

W /2), for
all λ ∈ R, v ∈ SdY−1, i ≥ 1.

Assumption 1.2 simply asserts the noise is zero-mean sub-
gaussian in the independent setting, with the additional for-
malism necessary when extending to sequentially dependent
settings.

2. Main Results
In this section, we present our main results and the key steps
in the proof. Firstly, we present the main definitions and

assumptions in Section 2.1, and convert the target-task ex-
cess risk to quantities defined over the training tasks. We
then instantiate in Section 2.2 a basic setting where G is fi-
nite and within-task samples are iid, but task-wise covariate
distributions may be non-identical, P(t)

X ̸= P
(t′)
X , in order

to highlight the benefits brought by our analysis. In Sec-
tion 2.3, we lift our results to general representations G and
settings where within-task samples may be sequentially de-
pendent. In particular, we leverage recent literature to shift
the effect of dependency to the burn-in, resulting in rates
analogous to the independent data setting.

2.1. Task Diversity and A Canonical Decomposition

A non-vacuous bound on the excess transfer risk is only
possible if the source tasks are somehow informative for
the target task. Therefore, a pervasive step in establishing
a bound lies in relating the risk on the target task to the
average risk over the training tasks, where the quality of
this relation is determined by a “task-diversity” condition.
To make this concrete, we adapt such a condition from
(Tripuraneni et al., 2020).

Definition 2.1 (Task-Diversity (Tripuraneni et al., 2020)).
The training tasks satisfy a task-diversity condition at level
ν > 0, if for any g ∈ G the following holds:

inf
f∈F

ER(f, g)

≤ ν−1

T

T∑
t=1

inf
f(t)

E(t)∥f (t) ◦ g(X)− f
(t)
⋆ ◦ g⋆(X)∥22

(TD)

We then consider a trivial canonical risk decomposition:
ER(f, g)

= E(0) ∥f ◦ g(X)− Y ∥22 − inf
f ′∈F

E(0) ∥f ′◦ g(X)− Y ∥22

+ inf
f ′∈F

E(0) ∥f ′◦ g(X)− Y ∥22 − E(0)∥f (0)
⋆ ◦ g⋆(X)− Y ∥22.

Applying the task-diversity condition (2.1) to the last line,
and observing any plug-in f ′ upper bounds the infimum
yields the following result.

Lemma 2.2. Let ({f̂ (t)}Tt=0, ĝ) be the output of the two-
stage ERM (2). Assuming the task-diversity condition (2.1)
holds at level ν > 0, then

ER(f̂ (0), ĝ) ≤
(Risk of non-realizable regression on targets ĝ(X))

E(0)∥f̂ (0)◦ ĝ(X)− Y ∥22 − inf
f ′∈F

E(0)∥f ′ ◦ ĝ(X)− Y ∥22 (3)

+

(Task-average estimation error of training task predictors)

ν−1

T

T∑
t=1

E(t)∥f̂ (t)◦ ĝ(X)− f
(t)
⋆ ◦ g⋆(X)∥22. (4)

As outlined above, the risk of the transfer task predictor
can be bounded by two main terms. The former term is
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precisely the excess risk of target task head f̂ (0) over the
r-dimensional inputs ĝ(X); since ĝ via the two-stage ERM
is statistically independent of P(0), it may be treated as
fixed. Since generally ĝ ̸= g⋆, regressing Y against ĝ(X)
is non-realizable. In particular, this breaks the conditional
independence between the error ui = yi − F ĝ(xi) and
covariate xi. The latter term (4) is the population task-
averaged estimation error of the predictors f̂ (t) ◦ ĝ with
respect to optimal f (t)

⋆ ◦ g⋆, adjusted by task diversity ν.

Lemma 2.2 and definitions therein thus far hold for general
composite classes F × G. Toward substantiating bounds
on (3) and (4), we consider a prevalent model of non-linear
representation learning, where G is an arbitrary function
class that embeds the inputs into a low-dimensional latent
space in Rr, and the task-specific heads act linearly on
Rr (Du et al., 2020; Meunier et al., 2023; Collins et al.,
2023). Besides being an established theoretical model, we
note that last-layer finetuning (alternatively known as linear
probing) is known empirically to benefit multi-task / out-of-
distribution transfer compared to fine-tuning the full model
(Kumar et al., 2022; Lee et al., 2023).

Assumption 2.3 (Low-dim. representations). The represen-
tation class G embeds inputs to Rr, g : RdX → Rr ∀g ∈ G,
where r ≤ dX. The task-specific head class F is linear:
F = {f : f(z) = Fz, F ∈ RdY×r}.

In particular, Assumption 2.3 turns bounding (3) into bound-
ing the excess risk of a non-realizable least squares problem
(Ziemann et al., 2023b). We now discuss sufficient condi-
tions to quantify the task-diversity parameter ν. We define
the following “task-coverage” condition.

Definition 2.4. We say that the task-coverage condition
holds if there exists a constant µ > 0 such that: defining
h
(0)
⋆ ≜ f

(0)
⋆ ◦ g⋆, for any h = f ◦ g ∈ F × G:

E(0)∥h(X)− h
(0)
⋆ (X)∥22

≤ µ

T

T∑
t=1

E(t)∥h(X)− h
(0)
⋆ (X)∥22.

(TC)

Intuitively, Definition 2.4 quantifies the degree to which the
mixture distribution of training task covariates covers the
target covariate distribution.
Remark 2.5. When covariates are identically distributed
for all tasks P

(t)
X = P

(t′)
X , t, t′ ∈ {0, . . . , T}, then µ-(TC)

holds with equality and µ = 1. If the target distribution is
absolutely continuous w.r.t. the mixture training distribution
P
(0)
X ≪ P1:T

X , then µ is trivially bounded by the Radon-

Nikodym derivative µ ≤
∥∥∥ dP

(0)
X

dP1:T
X

∥∥∥
∞

. When F ,G are both

linear classes, then µ-(TC) holds for any µ such that Σ(0)
X ⪯

µ
T

∑T
t=1 Σ

(t)
X . Notably, this relaxes the “c” parameter in Du

et al. (2020, Assumption 4.2) Σ(0)
X ⪯ cΣ

(t)
X ∀t ∈ [T ], as it

only requires target task coverage on average over source
tasks, rather than on each source task.

It turns out the notion of task-coverage implies a bound on
the task-diversity parameter, captured in the following.

Proposition 2.6 ((TC) =⇒ (TD)). Let Assumption 2.3
hold. Define F

(0)
⋆ ≜ F

(0)
⋆

⊤F
(0)
⋆ and F1:T

⋆ ≜
1
T

∑T
t=1F

(t)
⋆

⊤F
(t)
⋆ ∈ Rr×r, and suppose range(F

(0)
⋆ ) ⊆

range(F1:T
⋆ ). Then any model satisfying µ-(TC) also satis-

fies ν-(TD) with ν−1 = µ∥F(0)
⋆ (F1:T

⋆ )†∥2.

The proof is found in Appendix A. It may be helpful
to consider scalar outputs dY = 1, where the range re-
quirement of Proposition 2.6 is equivalent to F

(0)
⋆ ∈

span(F
(1)
⋆ , . . . , F

(T )
⋆ ). If this is not satisfied, then in the

worst case P
(0)
X may only excite the orthogonal compo-

nent of F (0)
⋆ , for which the training data is uninformative.

We also note that ∥F(0)
⋆ (F1:T

⋆ )†∥2 is precisely the gener-
alization proposed in (Zhang et al., 2023a) of the “task-
diversity parameter” (Du et al., 2020; Tripuraneni et al.,
2021)4. However, we suggest that task diversity should ac-
tually be measured by the joint quantity µ∥F(0)

⋆ (F1:T
⋆ )†∥2.

Whereas ∥F(0)
⋆ (F1:T

⋆ )†∥2 is precisely ν−1 when task covari-
ates are identical (Remark 2.5), in general the alignment of
the train and target task heads and of the covariate distri-
butions both contribute to task diversity. Pathologically, if
the train and target task covariates have disjoint supports,
even if the heads are identical F (0)

⋆ = F
(t)
⋆ , ∀t ∈ [T ]

(∥F(0)
⋆ (F1:T

⋆ )†∥ = 1), the error induced by a given (F, g)
on the train distributions is in general uninformative to that
on the target distribution. Similarly, non-trivial transfer risk
is generally impossible when range(F

(0)
⋆ ) ̸⊆ range(F1:T

⋆ ),
even when P

(0)
X = P

(t)
X , ∀t ∈ [T ].

2.2. Warm-Up: Independent Covariates and Finite G

In this section, we consider a basic setting where covariates
are iid within-task (possibly non-identical between tasks)
and where the representation class G is finite for simplicity.
We now identify how the ideas introduced in the prequel
lead to sample-efficient guarantees for representation learn-
ing. As previewed earlier, the target excess risk induced
by the ERM (F̂ (0), ĝ) amounts to bounding two separate
terms–the excess risk of a non-realizable least-squares re-
gression, and the task-average estimation error of the ERM
training predictors ({F̂ (t)}Tt=1, ĝ). We make the following
boundedness assumptions to simplify ensuing expressions.

Assumption 2.7. Let F = {F ∈ RdY×r : ∥F∥F ≤ BF},

4Therein, task-diversity is imposed by directly assuming nor-
malization and well-conditioning λi(F

1:T
⋆ ) = Θ(T/r), i =

1, . . . , r. Generality aside, this can also accrue an additional factor
of r in the final rates when the eigenvalues of F(0)

⋆ are non-uniform
(see Du et al. (2020, Remark 4.2)).
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and supg∈G supx∈X ∥g(x)∥2 ≤ BG .

Lastly, defining the centered function class H ≜ F⊗T×G−
{F (t)

⋆ }Tt=1× {g⋆}, the following is an adaptation of a stan-
dard assumption (Oliveira, 2016; Koltchinskii & Mendelson,
2015; Ziemann & Tu, 2022).

Assumption 2.8 (Hypercontractivity). We assume
(H,P1:T ) and (H,P(0)) satisfy (4-2) hypercontractivity:
for each h ∈ H,

E1:T ∥h(X)∥42 ≤ C1:T
4→2

(
E1:T ∥h(X)∥22

)2
, (5)

E(0)∥h(X)∥42 ≤ C
(0)
4→2

(
E(0)∥h(X)∥22

)2
. (6)

Examples of hypercontractivity can be found in, e.g. (Zie-
mann & Tu, 2022).

Bounding Nonrealizable Least-Squares Error Let us
define the random variable Z ≜ ĝ(X) ∈ Rr, and a best-in-
class (misspecified) linear head on Z as

F̂
(0)
⋆ ≜ argmin

F∈RdY×r

E(0)∥Y − FZ∥22

Since ĝ is fixed with respect to P(0), we may re-write (3) as

E(0)∥F̂ (0)Z − Y ∥22 − E(0)∥F̂ (0)
⋆ − Y ∥22

= ∥(F̂ (0) − F̂
(0)
⋆ )

√
Σ

(0)
Z ∥2F , Σ

(0)
Z ≜ E(0)[ZZ⊤].

(7)

Define the (possibly biased) noise variable U ≜ Y − F̂
(0)
⋆ Z.

By the two-stage ERM, F̂ (0) is precisely the least-squares
solution on datapoints {(z(0)i , y

(0)
i )}N ′

i=1. Therefore, we may
adapt results from (Oliveira, 2016) and (Ziemann et al.,
2023b) to bound the excess risk (7).

Proposition 2.9. Fix δ ∈ (0, 1). Define the noise-
class interaction term V ≜ UZ⊤Σ

(0)
Z

−1/2, define
σ2
U ≜

√
E(0) [∥U∥42], σ2

V ≜ E(0)
[
∥V ∥2F

]
and CZ ≜

supv∈SdY−1

√
E(0)⟨v,Σ(0)

Z
−1/2Z⟩4. Then with probability

at least 1− δ we have

∥(F̂ (0) − F̂
(0)
⋆ )

√
Σ

(0)
Z ∥2F ≲

σ2
V log(1/δ)

N ′

≲
CZσ

2
Ur log(1/δ)

N ′ ,

as long as the burn-in N ′ ≳ r +B2
G log(1/δ) is satisfied.

In Proposition 2.9, we express the excess risk of the non-
realizable least squares in terms of the variance proxy σ2

U .
We shall now relate σ2

U to σ2
W , the “noise-level” of the

underlying data-generating process. To reason about the
magnitude of this quantity, we may re-arrange ν-(TD) to
yield the following lemma.

Lemma 2.10. Let σ2
U be as in Proposition 2.9. Then:

σ2
U ≲ dYσ

2
W

+

√
C

(0)
4→2ν

−1

T

T∑
t=1

E(t)∥F̂ (t)ĝ(X)− F
(t)
⋆ g⋆(X)∥22.

In other words, the noise level of the misspecified model
is no more than the optimal noise level plus the familiar
task-averaged estimation error (4), which we note is addi-
tionally divided by N ′ in Proposition 2.9. Therefore, we
have isolated the task-averaged estimation error (4) as the
sole remaining quantity to control.

Bounding Task-Averaged Estimation Error The goal
now is to control the task-averaged estimation error. As
previously discussed, the key observation is to quantify a
lower isometry, such that

E1:T
∥∥h∥∥2

2
≲ Ê1:T

∥∥h∥∥2
2
, for all h ∈ H.

Toward this end, we show that hypercontractivity (Assump-
tion 2.8) leads to a lower estimate for any given h ∈ H
(Proposition A.1). By an application of the offset basic in-
equality (Rakhlin & Sridharan, 2014; Liang et al., 2015), an
empirical estimation error can be bounded by

1

NT

T∑
t=1

N∑
i=1

∥h(x(t)
i )∥22

≤ sup
h∈H

1

NT

T∑
t=1

N∑
i=1

4
〈
w

(t)
i , h(x

(t)
i )
〉
− ∥h(x(t)

i )∥22

≜ MNT (H),

where MNT (H) is denoted the (empirical) martingale offset
complexity (Liang et al., 2015; Ziemann & Tu, 2022), which
serves as the capacity measure of a hypothesis class H. No-
tably, MNT (H) scales with the noise-level σ2

W , rather than
the diameter of H. Via a high-probability chaining bound
(Lemma A.2), we demonstrate MNT (H) is controlled by a
log-covering number of H at a resolution γ of our choice.
As a result, there is a regime of γ such that with probability
at least 1− δ,

MNT (H) ≲
σ2
W

NT
(logN∞(H, γ) + log(1/δ)) ,

where N∞(H, γ) is the covering number of H in the supre-
mum metric: ρ(h1, h2) = supx∈X ∥h1(x)− h2(x)∥2. For
salient choices of γ, we want MNT (H) to be the dominant
scaling in the estimation error bound. We then proceed to a
localization argument, where we can define disjoint events
over elements of H:5 either: 1. the population estimation

5Technically, over a class that subsumes H.
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error is within an τ2 radius around zero, or 2. the estimation
error exceeds τ2 but is dominated by the empirical error,
which is bounded by the martingale offset complexity. In
particular, the probability of neither event holding can be
controlled by union bounding over a finite O(τ)-cover of H,
such that we have with probability at least 1− p(τ,N, T ),
for all h ∈ H:

E1:T ∥h∥22 ≲ max{MNT (H), τ2}. (8)

Thus, this informs choosing γ, τ such that the two terms
meet at the desired rate. The failure probability p(τ,N, T )
turns into a burn-in condition on N,T when inverted for
δ. As the last step before bounding the estimation error,
we note that F⊗T can be identified with a bounded set in
RTdYr, and therefore we get the following bound on the
covering number

N∞(H, ε) ≤ TdYr log

(
1 +

2TBFBG

ε

)
+ log |G|.

The aforementioned steps and proofs are found in
Lemma A.2, Proposition A.3, and Lemma A.4. Optimiz-
ing resolutions γ and τ yields a bound the task-averaged
estimation error.

Proposition 2.11. Let Assumption 2.7 hold. Then, with
probability at least 1 − δ, the estimation error of ERM
predictors {F̂ (t)}Tt=1, ĝ is bounded by

1

T

T∑
t=1

E(t)∥F̂ (t)ĝ(X)− F
(t)
⋆ g⋆(X)∥22

≤ σ2
W · Õ

(
dYr

N
+

log |G|+ log(1/δ)

NT

)
,

as long as N ≥ C1:T
4→2 · Ω̃ (dYr + log |G|/T + log(1/δ)).

We omit logarithmic dependencies on problem-dependent
constants and sample sizes for clarity. Combining Propo-
sition 2.6, Proposition 2.9, and Proposition 2.11 yields the
final bound on the excess transfer risk.

Theorem 2.12 (Transfer risk bound). Assume P0:T satisfy
µ-(TC), and let Assumption 2.7 hold. With probability at
least 1 − δ, the target excess risk of the two-stage ERM
predictor (F̂ (0), ĝ) is bounded by

ER(F̂ (0), ĝ) ≤ σ2
WCZdYr log(1/δ)

N ′

+ σ2
Wµ∥F(0)

⋆ (F1:T
⋆ )†∥2 · Õ

(
dYr

N
+

log |G|+ log(1/δ)

NT

)
,

as long as N ′ ≳ CZ

√
C

(0)
4→2r + B2

G log(1/δ) and N ≳

C1:T
4→2 · Ω̃ (dYr + log |G|/T + log(1/δ)).

The proofs of Proposition 2.11 and Theorem 2.12 can be
found in Appendix A.3. We observe the following: 1. the

rates are qualitatively correct, where the noise-level hits
dim(F)/{N,N ′} for the complexity of fitting the linear
heads and log |G| for the shared representation, 2. the burn-
in for N ′ is proportional to r, which is the number of sam-
ples necessary for F̂ (0) to be well-posed, 3. in the burn-in for
N , log |G| is additionally divided by T . Therefore, for large
T , the dominant term is dYr. Compared to prior nonlinear
representation learning work (Du et al., 2019; Tripuraneni
et al., 2020) (where dY = 1), this is a dramatic improvement
from at least O(dX) to r.

2.3. Representation Learning with Little Mixing

In this section, we extend our results to full generality,
allowing possibly dependent within-task data within-task
and general representation classes G, subsuming various
settings of interest, such as identification of nonlinear dy-
namical systems. Beyond finiteness, we instead character-
ize the complexity of a function class by its log-covering
number logN∞(G, γ) in the supremum metric ρ(g1, g2) =
supx∈X ∥g1(x)− g2(x)∥2. Besides finite classes, this sub-
sumes various standard classes of interest, such as (Lips-
chitz) parametric function classes.

Example 1 (Lipschitz parametric function class). A function
class G is called (Bθ, Lθ, dθ)-Lipschitz parametric if G =
{gθ(·) | θ ∈ Θ} with Θ ⊂ Rdθ , and satisfies

sup
θ∈Θ

∥θ∥ ≤ Bθ, (9)

sup
x∈X

sup
θ1,θ2∈Θ
θ1 ̸=θ2

∥gθ1(x)− gθ2(x)∥2
∥θ1 − θ2∥

≤ Lθ. (10)

By a standard volumetric argument (Wainwright, 2019), it
can be shown that a (Bθ, Lθ, dθ)-Lipschitz parametric class
satisfies

logN∞(G, γ) ≤ dθ log

(
1 +

2BθLθ

γ

)
.

Parametric function classes include various models of inter-
est, such as (generalized) linear models and neural networks
with smooth activations. Notably, instantiating G as a linear
class, by identifying it with r × dX (orthonormal) matri-
ces (Du et al., 2020), we may replace log |G| 7→ Õ(rdX),
immediately recovering the rates from prior work on multi-
task linear regression, along with the reduced burn-in and
refined task diversity estimate. We note that our results
are not limited to “parametric-type” covering number esti-
mates, and can handle various non-parametric classes. We
refer to (Ziemann & Tu, 2022) for various worked exam-
ples. In particular, by associating the complexity of G to
a well-studied measure in the log-covering number, rate-
optimal multi-task bounds can be painlessly extended from
many existing single-task settings, avoiding the need for

7



Guarantees for Nonlinear Representation Learning

custom complexity measures that may be hard to instantiate
or suboptimal.

To quantify dependency, we consider ϕ-mixing (Kuznetsov
& Mohri, 2017) covariates. For a sequence of random
variables {Si}ni=1 the ϕ-mixing coefficients are given
by ϕS(i) = supt∈[n]:t+i≤n sups ∥PSi+t(s | S1:t) −
PSi+t

∥TV, i ∈ [n], where ∥·∥TV denotes the total variation
distance. With this preliminary notion in place we now state
the analogue of Proposition 2.9.
Proposition 2.13. Suppose that P(0) is stationary and ϕ-
mixing and fix δ ∈ (0, 1). Fix a block length k dividing
N ′/2. Define the blocked noise-class interaction term V ≜
1
k

∑k
i=1 UiZ

⊤
i Σ

(0)
Z

−1/2 and σ2
V ≜ E(0)

[
∥V ∥2F

]
. Define

σ2
U and CZ as in Proposition 2.9. Then, defining C(0) ≜

CZ

√
C

(0)
4→2, with probability at least 1− δ we have

∥(F̂ (0) − F̂
(0)
⋆ )

√
Σ

(0)
Z ∥2F

≲
σ2
V log(1/δ)

N ′ ≲
CZσ

2
Ur log(1/δ)

N ′ +

C(0)kν−1 log(1/δ)

N ′T

T∑
t=1

E(t)∥F̂ (t)ĝ(X)− F
(t)
⋆ g⋆(X)∥22,

as long as the burn-in N ′ ≳ k
(
r+B2

G log(1/δ)
)

is satisfied

and the block length is sufficiently long: k ≥ N ′ϕ(k)δ−1.

The proof is analogous to Proposition 2.9 but with an extra
term once again including the task-average estimation error
due to mixing. This term arises due to a slightly different
computation of σV wherein we need to account for cross-
terms due to dependency. Crucially, we point out that this
term is of higher order in the sample size than typical oc-
currences of the task-average estimation error and can be
rendered negligible after a burn in N ′ ≳ k. In other words,
we recover Proposition 2.9 and are able to shift the effect of
mixing to the burn-in. Additionally, as we noted earlier, a
key benefit of the martingale offset complexity is that it does
not depend on the data distribution beyond the conditional
noise-level. Therefore, with minimal modifications there,
we state the main theorem for the mixing case.
Theorem 2.14 (Transfer risk bound, mixing). Suppose that
P 0:T are each stationary and ϕ-mixing and fix δ ∈ (0, 1).
Assume that k is fixed and divides N ′/2 and N/2. De-
fine the quantity Φ ≜ (

∑∞
i=1

√
ϕ(i))2. Assume P0:T sat-

isfy µ-(TC), and let Assumption 2.7 hold. Define C(G) ≜
logN∞

(
G, BFNT

√
dY

σW

)
. With probability at least 1−δ, the

target excess risk is bounded by

ER(F̂ (0), ĝ) ≤ σ2
WCZdYr log(1/δ)

N ′

+ σ2
Wµ∥F(0)

⋆ (F1:T
⋆ )†∥2 · Õ

(
dYr

N
+

C(G) + log(1/δ)

NT

)
,

(a) Example observa-
tion

(b) ideal keypoint extraction

Figure 1. Figure 1(a) shows an example camera observation of the
pybullet simulated cartpole environment. In this image, the cart-
pole is at the state x =

[
0 0 0 0

]⊤. Figure 1(b) illustrates
the ideal keypoints extracted from a cartpole image.

as long as N ′ ≳ k

(
CZ

√
C

(0)
4→2r +B2

G log(1/δ)

)
and

N ≳ C1:T
4→2Φ · Ω̃ (dYr +C(G)/T + log(1/δ)).

To understand how mixing affects our bounds, we consider
geometric ϕ-mixing, i.e. ϕ(k) ≤ Γρk for some Γ > 0, ρ ∈
(0, 1). Then we can find a valid block length k ≈ log(N ′)
and Φ = Γ

(1−√
ρ)2 , thereby inflating the burn-in requirement

on N ′ by a factor of log(N ′) and N by a constant factor.
Notably, the rate remains the same as the iid setting. With
ϕ-mixing, we are able to port to broader sequential settings,
such as Markov Chains (Samson, 2000) and parametrized
dynamical systems (Tu et al., 2022; Ziemann & Tu, 2022).

3. Numerical Validation
To validate our theoretical observations, we consider a non-
trivial regression task over dynamical systems: balancing a
pole atop a cart from visual observations, as pictured in Fig-
ure 1(a). A collection of systems is obtained by randomly
sampling different values for the cart mass, pole mass, and
pole length parameters. The regression task is to imitate
expert policies controlling each collection of systems from
(control input, observation) pairs. We design expert policies
as linear controllers of the underlying state6 to balance the
pole in the upright position. The expert estimates the state
of the system from the camera observations by first applying
a keypoint extractor to the camera observations to get noisy
estimates of two keypoints (visualized in Figure 1(b)), and
then passing these noisy estimates into a Kalman filter. A
common keypoint extractor is shared across the experts, but
the linear controllers and filters are system-specific. Actu-
ation noise is added to the expert input when it is applied
to the system. We use demonstrations from the aforemen-
tioned expert policies to train imitation learning policies to
replicate the experts. The policies are parameterized with
convolutional neural networks. They take as input a history
of 8 images, and output the control action to be applied to

6This consists of the cart position and velocity, and pole angular
position and angular velocity.
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Figure 2. Three evaluation metrics comparing the performance of multi-task versus single-task imitation learning: the MSE between the
input of the learned and expert controllers when evaluated on the expert trajectory, the deviation between the state trajectories generated by
the learned and expert controllers, and the %trials that the learned controller keeps the pole balanced for all 500 timesteps (the dynamics
are discretized to ∆t = 0.02 seconds). Three curves are shown for multi-task imitation learning, generated by pre-training with a different
number of source tasks. In all metrics, multi-task learning improves over single task when few target trajectories are available.

the system. The policies are trained by solving a supervised
learning problem using the expert demonstrations.

Our theoretical analysis predicts that multi-task learning
helps substantially in this setting, due to the shared keypoint
extractor across all policies. The part that varies between
expert policies is the controller and filter, which are linear
maps from the keypoints to the control action to be consis-
tent with our linear F nonlinear G model.

The experimental results in Figure 2 compare multi-task
learning with single-task learning. We consider multi-task
learning using a varying number of source tasks, each con-
sisting of 10 expert demonstrations. The x-axis denotes the
number of demonstrations available from the target task.
For single task learning, these trajectories are used to train
the entire network, while for multi-task learning they are
used to fit only the final layer, keeping the representation
fixed from pre-training on the source tasks. Three evaluation
metrics are plotted: the MSE of the learned controller inputs,
the MSE between the learned and expert trajectories, and
the %trials where the controller is stabilizing. Each metric
is averaged over 50 evaluation rollouts for each controller.
We plot the median and shade 30%-70% quantiles for these
evaluation metrics over 5 random seeds for pretraining the
representation, and 10 realizations of target tasks. In all met-
rics, multi-task learning improves over single task learning
in the low data regime as predicted, but saturates quickly
when the number of target trajectories exceeds the number
of per-task training trajectories, which our theory predicts is
the limiting rate when T is large. Full experimental details
are contained in Appendix C.

4. Discussion
We provided new guarantees for nonlinear representation
learning that: 1. agree with prior work rate-wise, 2. apply
to non-identical covariates and/or sequentially dependent

(ϕ-mixing) covariates, 3. improve the per-task sample re-
quirement and refine the task-diversity measure. We did
not address pathologies that can arise in multi-task learning,
such as class (source data) imbalance and low task diver-
sity. Indeed, addressing these pathologies is what motivates
ongoing work in active learning (Wang et al., 2023) and
alignment (Wu et al., 2020), which are important directions
to fully realize the benefit of learning over multiple tasks.

We conclude with some remaining technical open questions,
contained in Appendix D.
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A. Proofs and Additional Information for Section 2
A.1. Section 2.1

Proposition 2.6 ((TC) =⇒ (TD)). Let Assumption 2.3 hold. Define F
(0)
⋆ ≜ F

(0)
⋆

⊤F
(0)
⋆ and F1:T

⋆ ≜ 1
T

∑T
t=1F

(t)
⋆

⊤F
(t)
⋆ ∈

Rr×r, and suppose range(F
(0)
⋆ ) ⊆ range(F1:T

⋆ ). Then any model satisfying µ-(TC) also satisfies ν-(TD) with ν−1 =

µ∥F(0)
⋆ (F1:T

⋆ )†∥2.

Proof. Let g be fixed. Then, writing out the left-hand side of (TD), we have:

inf
F∈F

E(0)∥(F, g)(X)− Y ∥22 − E(0)∥F (0)
⋆ g⋆(X)− Y ∥22

≤ inf
F∈F

E(0)∥(f, g)(X)− F
(0)
⋆ g⋆(X)∥22 (F

(0)
⋆ is E(0) − optimal)

≤ inf
F∈F

µ

T

T∑
t=1

Pt∥(f, g)(X)− (f0,⋆, g⋆)(X)∥22. invoking (TC)

(11)

Recall P1:T is the uniform mixture over P(t), t ∈ [T ]. Define also Σ ≜ E1:T

[
g(X)g(X)⊤ g(X)g⋆(X)⊤

g⋆(X)g(X)⊤ g⋆(X)g⋆(X)⊤

]
and its Schur

complement

Σ ≜ E1:T [g(X)g(X)⊤]− E1:T [g⋆(X)g(X)⊤]E1:T [g⋆(X)g⊤⋆ (X)]†E1:T [g(X)g⋆(X)⊤].

We now rewrite the last line of (11) as a single integral:

inf
F∈F

µ

T

T∑
t=1

E(t)∥Fg(X)− F
(0)
⋆ g(X)∥22

= inf
F∈F

µ E1:T ∥Fg(X)− F
(0)
⋆ g⋆(X)∥22

= inf
F∈F

µTr

([
F⊤

−F
(0)
⋆

⊤

]⊤
Σ

[
F⊤

−F
(0)
⋆

⊤

])
(linearity)

= µTr
(
F

(0)
⋆ ΣF

(0)
⋆

⊤
)

(optimize over f)

≜ µTr
(
ΣF

(0)
⋆

)
.

(12)

The optimization step is a standard calculation about partial minima of quadratic forms (see e.g. Boyd & Vandenberghe,
2004, Example 3.15, Appendix A.5.4).

A similar calculation on the RHS of (TD) yields

1

T

T∑
t=1

inf
F∈F

E(t)∥Fg(X)− F
(t)
⋆ g⋆(X)∥22 =

1

T

T∑
t=1

Tr
(
ΣF

(t)
⋆

⊤F
(t)
⋆

)
(13)

≜ Tr
(
ΣF1:T

⋆

)
. (14)

Clearly µTr(ΣF
(0)
⋆ ) ≤ µ∥F(0)

⋆ F1:T
⋆

†∥2 Tr
(
ΣF1:T

⋆

)
and so by combining (11), (12) and (13), we get

inf
F∈F

ER(F, g) ≜ E(0)∥(F, g)(X)− Y ∥22 − E(0)∥F (0)
⋆ g⋆(X)− Y ∥22

≤ inf
F∈F

µ

T

T∑
t=1

Pt∥(f, g)(X)− (f0,⋆, g⋆)(X)∥22

≤ µ∥F(0)
⋆ F1:T

⋆
†∥2

T

T∑
t=1

inf
F∈F

E(t)∥Fg(X)− F
(t)
⋆ g⋆(X)∥22.

By setting ν−1 = µ∥F(0)
⋆ F1:T

⋆
†∥2, this verifies ν-(TD).

13



Guarantees for Nonlinear Representation Learning

A.2. Non-realizable Least Squares

Proposition 2.9. Fix δ ∈ (0, 1). Define the noise-class interaction term V ≜ UZ⊤Σ
(0)
Z

−1/2, define σ2
U ≜

√
E(0) [∥U∥42],

σ2
V ≜ E(0)

[
∥V ∥2F

]
and CZ ≜ supv∈SdY−1

√
E(0)⟨v,Σ(0)

Z
−1/2Z⟩4. Then with probability at least 1− δ we have

∥(F̂ (0) − F̂
(0)
⋆ )

√
Σ

(0)
Z ∥2F ≲

σ2
V log(1/δ)

N ′

≲
CZσ

2
Ur log(1/δ)

N ′ ,

as long as the burn-in N ′ ≳ r +B2
G log(1/δ) is satisfied.

Proof. The result in terms of σV is immediate by Ziemann et al. (2023b, Theorem 3.1) and so it remains to compute the
noise term σV for the second inequality. Namely, we have that:

σ2
V = E∥UZ⊤Σ

−1/2
Z ∥2F

= E∥U∥22∥Σ
−1/2
Z Z∥22 (rewrite rank-1 objects)

≤
√

E∥U∥42E∥Σ
−1/2
Z Z∥42. (Cauchy-Schwarz)

(15)

The result follows since E∥Σ−1/2
Z Z∥42 ≤ C2

Zr
2.

Lemma 2.10. Let σ2
U be as in Proposition 2.9. Then:

σ2
U ≲ dYσ

2
W

+

√
C

(0)
4→2ν

−1

T

T∑
t=1

E(t)∥F̂ (t)ĝ(X)− F
(t)
⋆ g⋆(X)∥22.

Proof. Recall that U = Y − F̂
(0)
⋆ ĝ(X) = W +F

(0)
⋆ g⋆(X)− F̂

(0)
⋆ ĝ(X). By orthogonality (in L2) of Wi to F̂

(0)
⋆ ĝ(X) thus

have that:

σ2
U =

√
E∥U∥4

=

√
E∥W∥4 + E∥F (0)

⋆ g⋆(X)− F̂
(0)
⋆ ĝ(X)∥4

≤
√

E∥W∥4 +
√
E∥F (0)

⋆ g⋆(X)− F̂
(0)
⋆ ĝ(X)∥4 (Triangle inequality)

≲ dyσ
2
W +

√
C

(0)
4→2E∥F

(0)
⋆ g⋆(X)− F̂

(0)
⋆ ĝ(X)∥2 (hypercontractive estimate and sub-Gaussianity)

≲ dyσ
2
W +

√
C

(0)
4→2ν

−1

T

T∑
t=1

E(t)∥F̂ (t)ĝ(X)− F
(t)
⋆ g⋆(X)∥22 (task-diversity assumption, Definition 2.1)

(16)

Proposition 2.13. Suppose that P(0) is stationary and ϕ-mixing and fix δ ∈ (0, 1). Fix a block length k dividing N ′/2.
Define the blocked noise-class interaction term V ≜ 1

k

∑k
i=1 UiZ

⊤
i Σ

(0)
Z

−1/2 and σ2
V ≜ E(0)

[
∥V ∥2F

]
. Define σ2

U and CZ

as in Proposition 2.9. Then, defining C(0) ≜ CZ

√
C

(0)
4→2, with probability at least 1− δ we have

∥(F̂ (0) − F̂
(0)
⋆ )

√
Σ

(0)
Z ∥2F

≲
σ2
V log(1/δ)

N ′ ≲
CZσ

2
Ur log(1/δ)

N ′ +

C(0)kν−1 log(1/δ)

N ′T

T∑
t=1

E(t)∥F̂ (t)ĝ(X)− F
(t)
⋆ g⋆(X)∥22,

14
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as long as the burn-in N ′ ≳ k
(
r +B2

G log(1/δ)
)

is satisfied and the block length is sufficiently long: k ≥ N ′ϕ(k)δ−1.

Proof. As noted the argument is identical to that presented in Proposition 2.9. The only difference is calculation of σV ,
detailed below.

By definition we have that (with summation ranging from 1 to k):

σ2
V =

1

k
tr

Σ
−1/2
Z E

∑
i,j

U⊤
i UjZiZ

⊤
j

Σ
−1/2
Z


≲

1

k
tr

(
Σ

−1/2
Z E

(∑
i

U⊤
i UiZiZ

⊤
i

)
Σ

−1/2
Z

)
+

1

k
tr

Σ
−1/2
Z E

∑
i ̸=j

U⊤
i UjZiZ

⊤
j

Σ
−1/2
Z


≲ CZσ

2
U +

1

k

∑
i ̸=j

EU⊤
i Uj

 .

(17)

We now compute EU⊤
i Uj . Notice that Ui = Yi − F̂

(0)
⋆ ĝ(Xi) = Wi + F

(0)
⋆ g⋆(Xi)− F̂

(0)
⋆ ĝ(Xi). Hence since the Wi,Wj

for i ̸= j are orthogonal we have that:

EU⊤
i Uj = E⟨F (0)

⋆ g⋆(Xi)− F̂
(0)
⋆ ĝ(Xi), F

(0)
⋆ g⋆(Xj)− F̂

(0)
⋆ ĝ(Xj)⟩

≲ E∥F (0)
⋆ g⋆(Xi)− F̂

(0)
⋆ ĝ(Xi)∥22 +E∥F (0)

⋆ g⋆(Xj)− F̂
(0)
⋆ ĝ(Xj)∥22.

(18)

The result follows by summation and using the task diversity condition, see Definition 2.1.

A.3. Bounding the Estimation Error

The goal is to control the task-averaged estimation error. As previously discussed, the key observation is to quantify a lower
isometry, such that

1

T

T∑
t=1

E(t)∥f (t)◦ g(X)− f
(t)
⋆ ◦ g⋆(X)∥22 ≲

1

NT

T∑
t=1

N∑
i=1

∥f (t)◦ g(x(t)
i )− f

(t)
⋆ ◦ g⋆(x(t)

i )∥22.

By hypercontractivity, we have an anti-concentration result:

Proposition A.1 (Samson (2000, Theorem 2), Ziemann & Tu (2022, Prop. 5.1)). Fix C > 0. Let g : X → R be a
non-negative function satisfying

E[g(X)2] ≤ CE[g(X)]2.

Then we have:

P

[
1

m

m∑
i=1

g(xi) ≤
1

2
E[g(X)]

]
≤ exp

(
−m

8C

)
.

Setting g(X) ≜ ∥h(X)∥22, Proposition A.1 yields a tail bound on the lower-isometry event for a given h. By an application
of the basic inequality (Rakhlin & Sridharan, 2014; Liang et al., 2015), an empirical estimation error can be bounded by

1

NT

T∑
t=1

N∑
i=1

∥∥∥h(x(t)
i )
∥∥∥2
2
≤ sup

h∈H

1

NT

T∑
t=1

N∑
i=1

4
〈
w

(t)
i , h(x

(t)
i )
〉
− ∥h(x(t)

i )∥22 (19)

≜ MNT (H), (20)

where MNT (H) is denoted the (empirical) martingale offset complexity (Liang et al., 2015; Ziemann & Tu, 2022), which
serves as the capacity measure of hypothesis class H. Notably, MNT (H) scales with the noise-level σ2

w, rather than the
diameter of H. We control MNT (H) via a high-probability chaining bound, derived from Ziemann (2022, Theorem 4.2.2):
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Lemma A.2 (High-probability chaining bound). Let Assumption 1.2 hold, and fix δ ∈ (0, 1). There exists a universal
constant c > 0 such that given a function class H, with probability at least 1− δ,

MNT (H) ≤ c · inf
γ>0

{
σw

√
dyγ log(1/δ) +

σ2
w

NT
log(1/δ) +

σ2
w logN∞(H, γ)

NT
+

σwγ
√
log(1/δ)√
NT

+ γ2

}
, (21)

where N∞(H, γ) is the covering number of H at resolution γ under the metric ρ(h1, h2) = supx∈X ∥h1(x)− h2(x)∥.

In particular, Lemma A.2 suggests that the martingale complexity is solely a function of the class H, and not the statistics of
the data. Roughly speaking, we can choose γ to be whatever is required such that the log-covering number term is dominant,
as γ manifests only logarithmically there. To determine what H to cover, we use the following localization result from
Ziemann & Tu (2022, Theorem 5.1).

Proposition A.3. Let Assumption 2.8 hold with C1:T
4→2. Defining H⋆ as the star-hull7 of H, B(r) ≜ {h ∈ H⋆

∣∣E1:T ∥h∥22 ≤
r2}, and ∂B(r) the boundary of B(r). Then, there exists a r/

√
8-net H⋆(r) in the ∥·∥∞ of ∂B(r) such that

P

[
inf

h∈H⋆\B(r)

{
Ê1:T
N ∥h∥22 −

1

8
E1:T ∥h∥22

}
≤ 0

]
≤
∣∣H⋆(r)

∣∣ exp( −NT

8C1:T
4→2

)
. (22)

We note that the star-hull subsumes the original class, and thus for a given r, we have for any h ∈ H, with probability at
least 1−

∣∣H⋆(r)
∣∣ exp (−NT/8C1:T

4→2

)
:

E1:T ∥h∥22 ≤ max{8MNT (H⋆), r
2}. (23)

Thus, we should choose r such that the two terms meet at the desired rate, order-wise. The union bound over H⋆(r) in the
failure probability turns into a burn-in condition on NT . As the last step before the final bound, we derive the following
covering bound:

Lemma A.4. Under Assumption 2.7, and recalling H⋆ is the star-hull of H, we have

logN∞(H⋆, ε) ≤ Tdyr log

(
1 +

4TBFBG

ε

)
+ log

(
1 +

2BFBG

ε

)
+ logN∞

(
G, ε

4BF

)
.

Proof. Firstly, noting that H⋆ is trivially 2BFBG-bounded by Assumption 2.7, we invoke Mendelson (2002, Lemma 4.5) to
show the covering number of star-hull of H incurs only a negligible additive factor to the log-covering number.

logN∞(H⋆, ε) ≤ logN∞(H, ε/2) + log

(
1 +

2BFBG

ε

)
.

It remains to demonstrate how a covering of F⊗T and G witnesses an ε-covering of H. Given h1, h2 ∈ H, define the we
start with the ∥·∥∞ norm:

∥h1 − h2∥∞ ≜ sup
t∈[T ]

sup
x∈X

∥∥∥F (t)
1 g1(x)− F

(t)
2 g2(x)

∥∥∥
2

≤ sup
t∈[T ]

sup
x∈X

∥∥∥(F (t)
1 − F

(t)
2 )g1(x)

∥∥∥
2
+
∥∥∥F (t)

2 (g1 − g2)
∥∥∥
∞

(add and subtract, triangle ineq.)

≤ sup
t∈[T ]

BG

∥∥∥F (t)
1 − F

(t)
2

∥∥∥
2
+BF ∥g1 − g2∥∞ (Cauchy-Schwarz, boundedness)

≤ BG
√
T ∥F1 − F2∥F +BF ∥g1 − g2∥∞ ,

where we define the task-stacked matrix F ≜
[
F (1) · · · F (T )

]
∈ Rdy×Tr. Therefore, to witness a ε-covering of H,

it suffices to cover Rdy×Tr ∼ RTdyr at resolution ε
2BG

√
T

in the Euclidean norm ∥·∥2, and G at resolution ε
2BF

in the

7H⋆ ≜ StarHull(H) = {αh, h ∈ H, α ∈ [0, 1]}.
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sup-norm ∥·∥∞. We recall by Assumption 2.7 that F is identified by an ℓ2-ball of radius BF , and thus by standard volumetric
arguments (e.g. Wainwright (2019, Example 5.8)), we combine bounds and recover

logN∞(H⋆, ε) ≤ Tdyr log

(
1 +

4TBFBG

ε

)
+ log

(
1 +

2BFBG

ε

)
+ logN∞

(
G, ε

4BF

)
.

Recalling that G is finite, and balancing choices of γ and r yields a bound the task-averaged estimation error.
Proposition 2.11. Let Assumption 2.7 hold. Then, with probability at least 1− δ, the estimation error of ERM predictors
{F̂ (t)}Tt=1, ĝ is bounded by

1

T

T∑
t=1

E(t)∥F̂ (t)ĝ(X)− F
(t)
⋆ g⋆(X)∥22

≤ σ2
W · Õ

(
dYr

N
+

log |G|+ log(1/δ)

NT

)
,

as long as N ≥ C1:T
4→2 · Ω̃ (dYr + log |G|/T + log(1/δ)).

Proof. Observing the chaining bound from Lemma A.2, we may choose γ ≍ σw

NT
√

dy

, and apply to H⋆ such that

MNT (H⋆) ≲
σ2
w

NT
log(1/δ) +

σ2
w logN∞

(
H⋆,

σw

NT
√

dy

)
NT

+
σ2
w

√
log(1/δ)

(NT )3/2
√

dy
+

σ2
w

(NT )2dy

≲
σ2
w

NT

(
logN∞

(
H⋆,

σw

NT
√
dy

)
+ log(1/δ)

)
.

Now applying the covering number bound Lemma A.4, we get

logN∞

(
H⋆,

σw

NT
√

dy

)
≤ Tdyr log

(
1 +

4T 2N
√
dyBFBG

σw

)
+ log

(
1 +

2TN
√
dyBFBG

σw

)
+ log |G|,

thus our desired rate r2 ≍ σ2
w

NT logN∞

(
H⋆,

σw

NT
√

dy

)
, yielding with probability at least 1 − δ −∣∣H⋆(r/

√
8)
∣∣ exp (−NT/8C1:T

4→2

)
,

1

T

T∑
t=1

E(t)∥F̂ (t)ĝ(X)− F
(t)
⋆ g⋆(X)∥22 ≤ σ2

W · Õ
(
dyr

N
+

log |G|+ log(1/δ)

NT

)
.

Now inverting
∣∣H⋆(r/

√
8)
∣∣ exp (−NT/8C1:T

4→2

)
≤ δ yields the burn-in requirement

N ≥ C1:T
4→2 · Ω̃ (dyr + log |G|/T + log(1/δ)) .

By Lemma 2.2, we simply sum up the bounds from Proposition 2.9 and Proposition 2.11 and apply Proposition 2.6 to
specify ν−1, which yields
Theorem 2.12 (Transfer risk bound). Assume P0:T satisfy µ-(TC), and let Assumption 2.7 hold. With probability at least
1− δ, the target excess risk of the two-stage ERM predictor (F̂ (0), ĝ) is bounded by

ER(F̂ (0), ĝ) ≤ σ2
WCZdYr log(1/δ)

N ′

+ σ2
Wµ∥F(0)

⋆ (F1:T
⋆ )†∥2 · Õ

(
dYr

N
+

log |G|+ log(1/δ)

NT

)
,

as long as N ′ ≳ CZ

√
C

(0)
4→2r +B2

G log(1/δ) and N ≳ C1:T
4→2 · Ω̃ (dYr + log |G|/T + log(1/δ)).
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The modified burn-in on N ′ comes from Lemma 2.10, where the additive error from misspecification in σ2
U when expanded

is proportional to

rCZ

√
C

(0)
4→2

N ′
ν−1

T

T∑
t=1

E(t)∥F̂ (t)ĝ(X)− F
(t)
⋆ g⋆(X)∥22.

Therefore, it suffices to inflate the existing burn-in on N ′ by an additive ≈ Cz

√
C

(0)
4→2r factor so that the estimation error

terms merge.

To extend bounds to the ϕ-mixing, beyond the legwork done Appendix A.2, very little changes for the estimation error
bounds, apart from the sole modification in Samson’s Theorem:

Proposition A.5 (Samson (2000, Theorem 2), Ziemann & Tu (2022, Prop. 5.1)). Fix C > 0. Assume {X}i≥1 ∼ P is
ϕ-mixing and admits dependency matrix Γdep(P). Let g : X → R be a non-negative function satisfying

E[g(X)2] ≤ CE[g(X)]2.

Then we have:

P

[
1

m

m∑
i=1

g(xi) ≤
1

2
E[g(X)]

]
≤ exp

(
−m

8C ∥Γdep(P)∥22

)
.

Using the bound following Definition B.2, defining Φ ≜
(∑∞

i=1

√
ϕX(i)

)2
, we can follow the exact same steps above for

the iid case to yield:

Theorem 2.14 (Transfer risk bound, mixing). Suppose that P 0:T are each stationary and ϕ-mixing and fix δ ∈ (0, 1).
Assume that k is fixed and divides N ′/2 and N/2. Define the quantity Φ ≜ (

∑∞
i=1

√
ϕ(i))2. Assume P0:T satisfy µ-(TC),

and let Assumption 2.7 hold. Define C(G) ≜ logN∞

(
G, BFNT

√
dY

σW

)
. With probability at least 1− δ, the target excess risk

is bounded by

ER(F̂ (0), ĝ) ≤ σ2
WCZdYr log(1/δ)

N ′

+ σ2
Wµ∥F(0)

⋆ (F1:T
⋆ )†∥2 · Õ

(
dYr

N
+

C(G) + log(1/δ)

NT

)
,

as long as N ′ ≳ k

(
CZ

√
C

(0)
4→2r +B2

G log(1/δ)

)
and N ≳ C1:T

4→2Φ · Ω̃ (dYr +C(G)/T + log(1/δ)).

Note that the burn-in for N now has an additional factor of Φ.

B. Properties of Mixing Sequences of Random Variables
In Section 2.3 we extend our analysis to mixing random variables. This requires some additional machinery. Namely,
for a sequence of random variables Z1:n we partition [n] into 2m consecutive intervals, denoted aj for j ∈ [2m], so that∑2m

j=1 |aj | = n. Denote further by O (resp. by E) the union of the oddly (resp. evenly) indexed subsets of [n]. We further
abuse notation by writing ϕZ(ai) = ϕZ(|ai|) in the sequel. We will typically instantiate the below machinery with all
partitions of equal length k, but for now describe the general setup.

We split the process Z1:n as:

Zo
1:|O| ≜ (Za1 , . . . , Za2m−1), Ze

1:|E| ≜ (Za2 , . . . , Za2m). (24)

Let Z̃o
1:|O| and Z̃e

1:|E| be blockwise decoupled versions of (24). That is we posit that Z̃o
1:|O| ∼ PZ̃o

1:|O|
and Z̃e

1:|E| ∼ PZ̃e
1:|E|

,
where:

PZ̃o
1:|O|

≜ PZa1
⊗ PZa3

⊗ · · · ⊗ PZa2m−1
and PZ̃e

1:|E|
≜ PZa2

⊗ PZa4
⊗ · · · ⊗ PZa2m

. (25)
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The process Z̃1:n with the same marginals as Z̃o
1:|O| and Z̃e

1:|E| is said to be the decoupled version of Z1:n. To be clear:

PZ̃1:n
≜ PZa1

⊗ PZa2
⊗ · · · ⊗ PZa2m

, so that Z̃o
1:|O| and Z̃e

1:|E| are alternatingly embedded in Z̃1:n. The following result

is key—by skipping every other block, Z̃1:n may be used in place of Z1:n for evaluating scalar functions at the cost of an
additive mixing-time-related term.

Proposition B.1 (Lemma 2.6 in (Yu, 1994) instantiated to ϕ-mixing processes). Fix a ϕ-mixing process Z1:n and let Z̃1:n

be its decoupled version. For any measurable function f of Zo
1:|O| (resp. g of Ze

1:|E|) with joint range [0, 1] we have that:

|E(f(Zo
1:|O|))−E(f(Z̃o

1:|O|))| ≤
∑

i∈E\{2m}

ϕZ(ai),

|E(g(Ze
1:|E|))−E(g(Z̃e

1:|E|))| ≤
∑

i∈O\{1}

ϕZ(ai).
(26)

The above proposition is originally stated for β-mixing random variables in Yu (1994), but these coefficients always dominate
the ϕ-mixing coefficients and so the result remains true in our setting.

We will also require a second notion of dependency.

Definition B.2 (Dependency matrix, Samson (2000, Section 2)). The dependency matrix of a process Z1:n with distribution
PZ is the (upper-triangular) matrix Γdep(PZ) = {Γij}T−1

i,j=0 ∈ Rn×n defined as follows. Let Z1:i+1 denote the σ-algebra
generated by Z1:i+1. For indices i < j, let

Γij =
√
2 sup
A∈Z1:i+1

∥PZj+1:n
(· | A)− PZj+1:n

∥TV. (27)

For the remaining indices i ≥ j, let Γii = 1 and Γij = 0 when i > j (below the diagonal).

It is straightforward to verify—and we will use—that

∥Γdep(PZ)∥ ≤
∞∑
i=1

√
ϕZ(i). (28)

C. Additional Numerical Details
We consider the simulation task of balancing a pole atop a cart from visual observations, as pictured in Figure 1(a). This
experimental setup is used to demonstrate the benefit of multi-task imitation learning (compared to single task imitation
learning) for a visuomotor control task. We first describe the system, and how expert policies are generated. We then provide
details about the imitation learning and evaluation process.

System Description: The pole is balanced by applying a force to the cart along a track. Denoting the position of the cart
by p and the angle of the pole by θ, the system evolves according to the following dynamics:

u = (M +m)(p̈+ dpṗ) +mℓ((θ̈ + dθ θ̇) cos θ − θ̇2 sin θ),

0 = m((p̈+ dpṗ) cos θ + ℓ(θ̈ + dθ θ̇)− g sin θ).

Here, M is the mass of the cart, m is the mass of the pole, ℓ is the length of the pole, g is the acceleration due to gravity, kp is
the damping coefficient for cart on the track, and kθ is the damping coefficient for the joint of the pole with the cart. The state
of this system at time t is denoted xt =

[
pt ṗt θt θ̇t

]⊤
. These dynamics are discretized via an euler approximation

with stepsize dt = 0.02. The discrete time dynamics will be written xt+1 = f(xt, ut). We further suppose that we have a
camera setup next to the track, directed towards the track and centered at the zero position of the cart. This camera gives us a
partial observation of the state at any time: ot = camera(xt). Figure 1(a) is one such observation generated by the PyBullet
simulator when the system is at the origin. We consider a collection of instances of this system by uniformly randomly
sampling M,m, ℓ ∈ [0.5, 3.0]× [0.05, 0.2]× [1.0, 2.5], and setting g = 9.8, kp = kθ = 0.4.
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Expert Policy Description: The expert has access to a (noisy) key-point extractor that maps the image observations from
the camera to a vector containing the position of the cart-pole joint along the track, the position of the pole tip along the track,
and the height of the pole tip above the track. This provides the two keypoints illustrated in Figure 1(b)8. We denote this
noisy observation as keypoint(ot). A single keypoint extractor is used by all experts (across the parameter variations of the
system), and is trained from labeled data across a variety of parameter settings. After applying the keypoint extractor to the
images, the ideal measurements become a simple function of p and θ: they may be written

[
pt pt + sin(θt)ℓ cos(θt)ℓ

]⊤
.

As such, we can construct expert controllers using the dynamics of the system by synthesizing LQG controllers9 for the
system linearized about the upright equilibrium point. In particular, for some particular parameter realization, indexed by h,
the corresponding expert controller generates the force u⋆

t applied to the cart at time t as

ξt+1 = A
(h)
K ξt +B

(h)
K keypoint (camera(xt))

u⋆
t = C

(h)
K ξt +D

(h)
K keypoint (camera(xt)) ,

where (A
(h)
K , B

(h)
K , C

(h)
K , D

(h)
K ) are constructed from two Riccati equation solutions involving the linearized system, and ξt

is a four dimensional latent state. We assume that when the input applied is applied to the system, there is an unobserved
actuation noise added. Therefore, the input applied to the system at time t by the expert controller will be ut = u⋆

t + ηt,
where ηt ∼ N (0, 0.5).

Imitation Learning Policy Description: We consider imitation learning agents that operate a short history of camera
observations10. In particular, the learning agent selects inputs as

ût = Kθ


 camera(xt)

...
camera(xt−hist)


 .

Here Kθ is a convolutional neural network with parameters θ. In the single task setting, the parameters are specific to the
parameter realization for the task at hand. In the multi-task setting, the network parameters are partitioned into a shared
component θshared and a task specific component for the final layer, θh.

First Stage: The shared parameters in the multi-task setting are jointly trained on a collection of H source tasks.11. The
dataset therefore consists of demonstrations from rollouts of the expert controllers generated for H systems with different
parameter realizations. Expert demonstrations are obtained from 10 independent realizations of the actuation noise sequence
for each system. The length of the rollout trajectory is 500 steps (recalling the discretization timestep of 0.02.)

The multi-task network is jointly trained on the entire collection of source data to minimize the loss

H∑
h=1

10∑
i=1

500∑
t=1

∥∥∥∥∥∥∥∥u
(h)
t [i]−Kθshared,θh




camera(x
(h)
t [i])

...
camera(x

(h)
t−hist[i])



∥∥∥∥∥∥∥∥
2

over the network parameters θshared, θ1, . . . , θH . The superscript h on the inputs and states denotes the system index that
they came from, while the argument in the brackets enumerates the 10 expert trajectories collected from each system. To
obtain an approximate minimizer to the above problem, we employ the adam optimizer using a batch size of 32, weight
decay of 1e−3, and learning rate of 1e−3 with a decay factor of 0.5 every 10 epochs for a total of 100 epochs.12

Second Stage: The second stage consists of 10 target tasks, defined by new parameter realizations for the cartpole system.
We compare:

8In our experiments, the keypoint extractor is a convolutional neural network trained on a 50000 cartpole images from instances drawn
uniformly at random with states having position p ∈ [−3, 3], θ ∈ [−π/3, π/3], and pole lengths ℓ ∈ [1, 2.5].

9We use Q = R = Σw = Σv = I .
10We use a history of 8.
11We consider three values of H: H = 5, 10, 20.
12Tasks are mixed together in the each batch.
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1. Training a convolutional neural network for each of these tasks from scratch using the data available for the task (this is
single task imitation learning).

2. Re-using the representation trained for the collection of source tasks along with a head that is fit to the target task. The
head is obtained by solving a least squares problem by computing the shared representation for the history of camera
observations in the expert demonstrations and solving a regression problem to match the expert inputs.

For each target task, we again collect expert demonstrations. Here, we consider a variable number of trajectories, Ntarget.
Each trajectory is again obtained by rolling out the corresponding expert controller for 500 steps under new, independent
realizations of the actuation noise. These expert trajectories are used to fit a linear head for the corresponding target tasks for
the multi-task setting, and to train a behavior cloning agent from scratch for the single task setting.

Evaluation Results: Once the target controllers are trained, we evaluate them by rolling them out on the cartpole system
with the parameters for which they were designed. These evaluation rollouts occur by rolling out out the single-task learned,
multi-task learned, and expert controller under new realizations of the actuation noise. We track the input imitation error
over the entire trajectory, which is the MSE of the gap between the inputs applied by the expert, and the inputs a learned
controller K̂ would apply when faced with the same observations:

500∑
t=1

∥∥∥∥∥∥∥u⋆
t − K̂


 camera(x⋆

t )
...

camera(x⋆
t−hist)



∥∥∥∥∥∥∥
2

.

We additionally track the state imitation error between the states x̂t from rolling out the learned controller and the states x⋆
t

from rolling out the expert controller:
500∑
t=1

∥x⋆
t − x̂t∥2.

We also track whether the controller lasts 500 steps without allowing the pole to fall past an angle of π/2 in either direction.
We plot the results for representation learning with 5, 10, or 20 source tasks, in addition to single task learning. The
evaluation metrics are averaged across 50 evaluation rollouts for each target controller. In Figure 2, the median is plotted,
with the 30%-70% quantiles are shaded. The median and quantiles are over 10 random seeds for the target tasks and 5
random seeds for the parameters of the source task instances. In the low data regime, multi-task learning excels in all metrics,
with increasing benefit as more source tasks are available. In the high data regime, the single task controller eventually beats
out the multi-task controllers for all metrics.

In Figure 3, we plot the input imitation error versus the number of source tasks available for pre-training on a log− log scale
with the number of target trajectories fixed at 100. Neglecting the component of the error that decays with the number of
target trajectories, our theoretical results predict a decay in the error of 1

H , or a slope of −1 on a log log plot. In Figure 3, we
observe a slope of approximately −0.8. The discrepancy may arise for several reasons. Firstly, the empirical risk minimizer
is approximated using SGD. Secondly, the number of target trajectories used for fitting the final layer of the network is not
infinite, meaning that we occur some additional error in training the final layer.

D. Open Questions
We list some open questions remaining following our analysis.

Can (poly) log(#Tasks) be removed from the burn-in? To the best of our knowledge, all theoretical representation
learning works that attain multi-task rates–in either the linear or non-linear representation setting–inevitably contain a
term scaling with polylog(T ), ours no exception. In certain cases, e.g. (Du et al., 2020; Collins et al., 2021; Zhang et al.,
2023b), this inevitably arises due to a union bound over a desirable event per-task. In our analysis, it arises as a byproduct of
covering over T balls in Rdy×r. A polylog(T ) term in the burn-in is unintuitive, as it suggests for a fixed per-task sample
size N , the benefit of multi-task learning only provably extends to an upper bound on #tasks. For dy = 1, and r constant
(Thekumparampil et al., 2021), this equates to an upper bound of T ≈ exp(r) tasks.
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Figure 3. Input imitation error of the policies trained with a shared representation plotted against the number of source tasks used to train
the representation on a log log scale. The number of target trajectories used for finetuning is fixed at 100.

For F ⊆ Rdy×r, can the burn-in be stated independently of dx, dy? Following our chaining bound, we are able to yield
a burn-in with dominant term dyr. While this is a vast improvement in previously considered scalar settings dy = 1, it is not
intuitively the correct order. For a fixed g, by linearity of F , only r samples are required per task for the task-specific heads
to be well-posed. Furthermore, it is known that chaining-type analysis can lead to suboptimal burn-ins for certain settings
(Ziemann & Tu, 2022).
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