
Concept Bottleneck Generative Models

Aya Abdelsalam Ismail * 1 Julius Adebayo * 1 Héctor Corrada Bravo 1 Stephen Ra 1 Kyunghyun Cho 1 2 3

Abstract

Despite their increasing prevalence, generative
models remain opaque and difficult to steer reli-
ably. To address these challenges, we present
concept bottleneck (CB) generative models, a
type of generative model where one of its inter-
nal layers—a concept bottleneck (CB) layer—is
constrained to encode human-understandable fea-
tures. While concept-botttleneck layers have been
used to improve interpretability for supervised
learning tasks, here we extend them generative
models. The concept bottleneck layer partitions
the generative model into three parts: the pre-
concept bottleneck portion, the CB layer, and the
post-concept bottleneck portion. To train CB gen-
erative models, we complement the traditional
task-based loss function for training generative
models with three additional loss terms: a concept
loss, an orthogonality loss, and a concept sensitiv-
ity loss. The CB layer and these corresponding
loss terms are model agnostic, which we demon-
strate by applying them to three different fami-
lies of generative models: generative adversarial
networks, variational autoencoders, and diffusion
models. On real-world datasets, across three types
of generative models, steering a generative model
with the CB layer outperforms several baselines.

1. Introduction
Improvements in generative modeling have led to these
models being applied to produce photo realistic images (Sa-
haria et al., 2022), video (Ho et al., 2022; Villegas
et al., 2022), protein sequences (Ingraham et al., 2022),
small molecules (De Cao and Kipf, 2018), and coherent
text (Brown et al., 2020). However, current generative mod-
els admit little-to-no-room for interpretation and control of
high-level properties. Consider a model trained to generate

*Equal contribution 1Genentech 2Department of Computer
Science, New York University 3Center for Data Science, New
York University. Correspondence to: Aya Abdelsalam Ismail <is-
mail.aya@gene.com>.

protein sequences; a domain expert might be interested in
determining whether the model has captured desirable fea-
tures like thermostability and toxicity. An important goal is
then to use these features, as knobs, to steer the model to
generate sequences that satisfy desired ranges of thermosta-
bility and toxicity. In this work, we seek generative models
with intrinsically interpretable components that enable eas-
ier interpretation and steerability.

Challenges with interpreting and steering generative
model representations. Current approaches for interpret-
ing generative models cannot reliably indicate that a model’s
representations map to human-understandable features that
the model relies on for its output. One approach (Belinkov,
2022) for interpreting a generative model’s representations
uses a low-complexity model to predict a human under-
standable feature from the model’s representations; how-
ever, high predictive performance of the low-complexity
model does not mean the model’s output is sensitive or
reliant on that feature (Lovering and Pavlick, 2022). A dif-
ferent approach constrains the model to learn disentangled
(Higgins et al., 2017; Tran et al., 2017; Meo et al., 2023)
representations—that is, representations that can be decom-
posed into independent factors; nevertheless, it is generally
not possible to guarantee that a disentangled representa-
tion is human interpretable (Locatello et al., 2019). Other
approaches project model representations into lower dimen-
sions and then search for directions correlated with human
interpretable features (Härkönen et al., 2020); yet, since
the model was not constrained to learn such features by
design, it is possible that its representations do not encode
the desired features.

Concept bottleneck generative models. To address chal-
lenges with current approaches for interpreting and steering
current generative models, we present concept bottleneck
(CB) generative models, a generative model where one of
its internal layers—a concept bottleneck (CB) layer—is
constrained to encode human-understandable features. We
insert the CB layer into the generative model’s architecture
to give three parts: the pre-concept bottleneck portion, the
CB layer, and the post-concept bottleneck portion. The
pre-concept bottleneck portion maps from the input to acti-
vations, which are then mapped into human understandable
features by the CB layer. The pre-defined concepts alone
can be incomplete, so we allow additional representational

1

Concept Bottleneck Generative Models

Figure 1: Concept Bottleneck Layer

capacity for unknown concepts, which are constrained to
be orthogonal to the pre-defined features. Lastly, the post-
concept bottleneck layer maps both the output of the CB
layer and unknown concepts into a generated output. The
CB layer is model agnostic, which we demonstrate by ap-
plying them to three different families of generative models:
generative adversarial networks (Goodfellow, 2016; Rad-
ford et al., 2015; Creswell et al., 2018), variational autoen-
coders (Kingma and Welling, 2013; Kingma et al., 2019),
and diffusion models (Sohl-Dickstein et al., 2015; Song
et al., 2020; Ho et al., 2020). Using the CB layer, we are
able to demonstrate the following capabilities:

Steering Generative Models: By intervening on the output
of the CB layer, we can modulate the level of a particular
concept that is present in the output of a generative model.
We leverage this capability to control single concepts inde-
pendently, and multiple concepts.

Understanding and Debugging Generative Models: The
CB layer can also be used to debug a generative model
during and post training. In Section 4.2, we show that the
CB layer can help identify the important concepts that are
responsible for a model’s generated output. Similarly, the
output of the concept bottleneck (CB) layer can be used to
distinguish a model that has learned the pre-defined human-
understandable features from a model that hasn’t.

2. Setup & Background
In this section, we give an overview of concept bottleneck
models, and the three types of generative models that we
consider. We assume that all training samples come with
pre-defined human understandable features, for example,
CelebFaces Attributes dataset (Liu et al., 2015) that comes
annotated with 40 concepts (e.g., male, smiling..etc), as
such: {(xi, ci)}ni=1, where an example xi ∈ Rd and an
associated concept ci ∈ Rk with k << d.

Generative models consider the task of modeling the proba-
bility distribution of an observed random variable x ∼ P(x),
using a chosen model family pθ(x) where θ is the param-
eters of the selected model family. We will refer to the
standard objective for each type of generative model family
as the task loss: Ltask. We consider 3 generative model
families: VAEs (Kingma and Welling, 2013), GANs (Good-
fellow et al., 2014), and diffusion models (Ho et al., 2020).

Concept Bottleneck Models & Concept Embedding Mod-
els. Concept Bottleneck Models (Koh et al., 2020) (CBMs)
aim to replace black-box DNNs with interpretable models
by first learning to predict a set of concepts, that is, ‘inter-
pretable’ (e.g., hair color, gender), and then using these con-
cepts to learn a downstream classification task. CBMs map
samples xi to labels yi by first mapping xi to an intermedi-
ate representation ci = h(xi), where ci are the understand-
able human concepts. An ‘interpretable’ label predictor, f ,
then maps the predicted concepts to labels: y = f (h (x)).
Consequently, the goal is to learn the following relationship

xi
h−→ ci

f−→ yi. The functions h and f can be learned jointly,
sequentially or independently. However, CBMs often result
in a lower task accuracy, especially when concept set is in-
sufficient to characterize the label. Espinosa Zarlenga et al.
(2022) proposed Concept Embedding Models (CEMs) to
address this accuracy-interpretability trade-off. Instead of
a scalar, CEMs map the input to a high-dimensional repre-
sentation for each concept, and have predictive performance
that is competitive with unconstrained models.

Variational Autoencoder. VAEs (Kingma and Welling,
2013; Kingma et al., 2019) consist of two components: an
encoder and a decoder. The encoder, q(zi|xi), maps an
input, xi, to a distribution over the latent variable, zi. The
output of the encoder parameterizes a Gaussian density,
from which we sample a latent vector zdi . VAEs regularizes

2

Concept Bottleneck Generative Models

this latent distribution to be similar to the prior distribution
p(z) which is typically z ∼ N (0, I). The vector zdi is
passed to the decoder, p(xi|zdi), a function that maps the
latent vector to a distribution over the input. The task loss
for the VAE is the negative log-likelihood:

L(xi)task,vae = DKL

(
q (zi|xi) ||p (zi)

)
− E

[
log p(xi|zdi)

]
,

(1)

where DKL is the Kullback-Leibler divergence.

Generative Adversarial Networks. GANs (Goodfellow
et al., 2014) consist of two components: a generator G
that captures the data distribution and a discriminator D
that estimates the probability that a sample came from the
training data rather than G; both models are trained simul-
taneously. The generator learns to map a noise vector zi to
an output x̂i = G(zi). Conditional GANs (Mirza and Osin-
dero, 2014b; Chen et al., 2016; Odena et al., 2017) augment
the input to the generator with the concepts and also learn
G(zi|ci). They however do not learn ci = h(zi). To learn
ci = h(zi), we first encode xi into a latent vector q(zi|xi),
since p(ci|xi) is known, i.e., concepts for a given sample
are known, we now can learn ci = h(zi). Similar to VAEs,
we then sample a new latent vector zdi and use this for gen-
eration G(zdi). This approach has been widely employed
(Larsen et al., 2016; Isola et al., 2017; Wang et al., 2018) for
image generation. For training, we use the loss introduced
by VAE-GANs(Larsen et al., 2016), which combines the
VAE encoder regularization prior loss with a GAN loss.

L(xi)task,gan = DKL

(
q (zi|xi) ||p (zi)

)
+ E

[
logD (xi)

]
+ E

[
1− logD

(
G
(
zdi
))]

.

(2)

Diffusion models. Diffusion models can be interpreted
as latent variable models with two stages (Sohl-Dickstein
et al., 2015; Ho et al., 2020) . Given input data xi, the
first stage is the forward diffusion process, which involves
incrementally adding Gaussian noise to the input and can
be described as: q

(
xt
i|x

t−1
i

)
= N

(
xt
i;
√
1− βtx

t
i, βtI

)
,

where βt is determined according to a pre-specified sched-
ule. The second stage of the process learns a denoising
model, p

(
xt
i|x

t−1
i

)
to reverse the forward process. The dif-

fusion model is trained to maximize the lower bound to the
marginal likelihood of the data, which can be reformulated
into a mean-squared error loss as:

L(xt
i)task,df =

T∑
i=1

E
∥∥µ(xt

i, t)− µ̂
(
xt
i, x

t=0
i

) ∥∥2. (3)

We refer to (Ho et al., 2020; Weng, 2021; Rogge and Rasul,
2022) for a more detailed overview of diffusion models.

3. Concept Bottleneck Generative Models
We propose to insert a concept embedding layer—which
we term a concept bottleneck (CB) layer—into a generative
model. Our overall framework, shown in Figure 1, consists
of 3 parts: the portion of the generative model before the
CB layer (the pre-concept bottleneck network); the CB
layer, and the portion of the generative model after the
CB layer (the post-concept bottleneck network). The pre-
concept bottleneck and post-concept bottleneck networks
are specific to the family of models (GANs, diffusion, &
VAE) used for generation, while the CB is common across
all generative model families. We denote the pre-bottleneck
network as e, its output as h, the CB layer as f , and the post-
bottleneck network as g. In this section, we introduce the
architecture of the CB layer, the constituent loss functions,
and discuss how to intervene on the CB layer.

3.1. Architecture

We adapt the CEM layer of Espinosa Zarlenga et al.
(2022) to the generative model setting. However, unlike in
supervised learning tasks where the concept set is assumed
to be near complete (Koh et al., 2020; Espinosa Zarlenga
et al., 2022; Yuksekgonul et al., 2022), it is unrealistic to
expect the pre-defined human understandable features—
concepts—to be complete in the generative setting. For
example, consider the task of generating human face;
finding a comprehensive set of concepts that can control
every generation aspect is challenging. However, one might
have available concepts such as hair color, eye color, and
skin tone amongst other attributes. We extend the CEM
layer of Espinosa Zarlenga et al. (2022) to also account
for unknown concepts that might also be required for
generation. The proposed modification of the concept
bottleneck layer is shown in Figure 1, and consists of k
concept networks and an extra unknown-concept network
(similar to (Deng et al., 2020; Shoshan et al., 2021)).

Each concept is represented with two embeddings:
w+

i , w
−
i ∈ Rm representing the active and inactive con-

cept states, respectively. The output of the pre-concept bot-
tleneck portion, embedding vector h, is fed into a context
network ϕ that maps h into two embeddings per concept.
This context network can be viewed as two separate func-
tions: w+

i = ϕ+(h) and w−
i = ϕ−(h). Embeddings w+

i

and w−
i are encouraged to be aligned with ground-truth

concept ci by the function Ψi trained to predict the proba-
bility of concept ci being active from the joint embedding
space, ĉi = Ψi([w

+
i , w

−
i]

T) ∈ [0, 1]. The final context
embedding wi is then constructed as a weighted mixture
of the two embedding wi =

(
ĉiw

+
i + (1− ĉi)w

−
i

)
. We

refer to the Appendix on how to extend to continuous con-
cepts. These concept embeddings from all k concepts are
then concatenated together with the non-concept embed-

3

Concept Bottleneck Generative Models

dings w = [w1, w2, . . . , wk+1], resulting in a bottleneck
f(h) = w with size m(k + 1), which is fed into the post-
concept network. Concept embeddings are interpretable,
since we can interpret the degree to which the concept ap-
plies to a generated instance by observing the concept prob-
ability. For details on how we add a CB layer to different
models refer to Appendix A

Intervention on Concept. CBGMs support test-time in-
terventions, which allows the user to steer the output of
the generative model. To intervene on concept ci, one sim-
ply replaces the probability of the concept being active, ĉi,
with the desired probability c̄i. The CB layers’ context
embedding, wi =

(
c̄iw

+
i + (1− c̄i)w

−
i

)
, is combined as

a convex combination of the positive and negative context
vectors. The new context embedding will then be passed
to the post-concept bottleneck model to generate the new
output with the desired concept.

3.2. Loss Functions & Training

We train CB generative models in an end-to-end fashion by
jointly minimizing the following augmented loss function:
Ltotal = Ltask + αLcon + βLorth + γLsens,

where Ltask is the task loss, Lcon is the concept loss, Lorth

is the concept orthogonality loss and, Lsens is the concept
sensitivity loss. The hyperparameters α, β and γ control the
relative importance of the concept, orthogonality, sensitivity,
and task losses. While the task loss is specific to each
generative model family, Lcon, Lorth and Lsens are common
across different models.

• Task Loss: the task loss is the traditional objective
function for each generative model family as defined in
Equations 1, 2, and 3, respectively.

• Concept Loss: across all generative model classes, the
concept loss, Lcon, is the binary cross-entropy loss on
the output of each probability network of the CB layer.

• Concept Orthogonality Loss: Since the concept set is
incomplete, we allow for additional representation ca-
pacity for unknown concepts. However, these unknown
concepts can also turn out to be transformations of the
known concepts, which is undesirable. To prevent this,
we encourage the unknown concepts to be orthogonal to
the outputs of each concept network using an orthogo-
nality constraint Ranasinghe et al. (2021) by minimizing
the cosine similarity between the concept context em-
bedding and the unknown context embedding within a
mini-batch as follows:

Lorth =
∑
j∈B

∑i=k
i=1

∣∣⟨wi , wk+1⟩
∣∣∑i=k

i=1 1
(4)

where ⟨· , ·⟩ is the cosine similarity applied to two em-
bedding, | · | is the absolute value, and B denotes mini-
batch size. The cosine similarity in the above equa-
tion involves the normalization of features such that
⟨xi , xj⟩ = xi·xj

∥xi∥2·∥xj∥2
, where ∥ · ∥2 is l2 norm.

• Concept Sensitivity Loss: An undesirable scenario
might occur where the post-bottleneck portion of the
generative model bases sole generation on the unknown
concept vectors. To avoid this, we encourage the post-
bottleneck portion of the generative model to strongly
depend the concept vectors via the concept sensitivity
loss. We achieve this by intervening on the concept
vector as described in section 3.1. The original pipeline
is shown in Equation 5a. We intervene by replacing ĉ
with c̄, changing the output of the CB layer and the gen-
erative model as shown in Equation 5b. The generated
output is passed as an input to the network Equation 5c.
We minimize the binary cross-entropy loss between the
known concepts c̄ and predicted concepts ĉ. This forces
the generator to rely on the concept vectors.

xi
e−→ hi −→

CB layer︷ ︸︸ ︷([
w+, w−] −→ ĉ −→ w

)
g−→ yi (5a)

xi
e−→ hi −→

([
w+, w−] −→ c̄ −→ w

)
g−→ yi (5b)

yi
e−→ hi −→

([
w+, w−] −→ ĉ −→ w

)
g−→ yi (5c)

Taken together, we now have a full scheme for instantiating
a concept-bottleneck generative model for any of the three
widely-used types of generative models.

4. Experiments & Results
In this section, we answer the following questions: 1) Steer-
ability: How can the CB layer be used to control the output
of the generative model? 2) Interpretability: How can
the CB layer be used to help interpret and debug a genera-
tive model? Additional experiments investigating the effect
of CB layer on generation quality, details about different
datasets, and baselines are available in Appendix B.

4.1. Steering CB Generative Models

Experimental Setup. We train a classifier for each con-
cept. For each model, we generate 1000 samples where all
classifiers return false, i.e., the concept was not detected
in the generated image. Given the generated images with
no concepts detected, we consider intervening on a single
concept at a time by switching that concept ‘on’ (switch-
ing a concept ‘on’ is method dependent; for example, in

4

Concept Bottleneck Generative Models

CGAN, this involves appending the value of the concept to
the input, while for CBGMs, we intervene by changing the
probabilities generated in the concept vector as described
previously). We show both quantitative and qualitative re-
sults for both single-concept steerability on the Celeb-A
dataset. Multi-concept steerability experiments are avail-
able in B. For empirical evaluation of concept steerability,
we calculate the accuracy of a concept classifier when that
concept is turned ‘on’.

Results. Figure 2 show images generated by CB-GAN
before and after single concept intervention. We find that
by changing the concept probability vector we can control
the generated output. We report the single-concept steer-
ability metric in Table 1. At a high level, for each class
of generative model and across most features considered,
we find that controlling the presence of a concept in the
generated output is more effective with concept-bottleneck
generative models than current approaches. In GANs, for
prominent concepts like gender, steering the model output
with the CB layer can be five times as effective as compared
to the closest baseline (ACGAN). In the diffusion model
setting, the concept-bottleneck diffusion model outperforms
classifier-free diffusion control across all 5 attributes con-
sidered. Similar results were also found in VAEs.

Class High Cheekbones Male Mouth Open Smiling Wavy Hair
CGAN 5.8 ± 0.9 6.0 ± 0.6 6.1 ± 0.9 3.6± 0.9 13.5±1.47

ACGAN 11.8± 1.4 9.3± 0.8 13.5± 0.9 14.3±1.1 8.4 ± 0.9
InfoGAN 7.6 ± 0.7 6.6 ± 0.5 6.1± 0.7 6.8 ± 0.8 8.7 ± 0.7
CB-GAN 9.8± 0.9 53.7± 1.6 8.2± 0.6 25.8± 1.8 30.5± 1.6

CF-Diffusion 8.3±4.1 10.2±5.5 7.2±4.6 7.1±5.4 3.8±1.7
CB Diffusion 11.7±1.1 14.8±2.4 13.9±1.3 15.1±3.6 10.3±2.5

CVAE 4.8±2.4 3.5±1.3 3.9±1.9 8.9±2.0 9.1±1.5
CB-VAE 12.5±1.4 14.3±3.1 14.2±2.6 19.4±4.5 15.7±2.4

Table 1: Single concept steering.

Figure 2: Single-concept interventions on CB-GAN.

4.2. Interpretability

A longstanding challenge with current generative models
is that it is difficult to gain insight into what features are
key for the output of the generative model. In this section,
we show how the concept layer can be used for debugging
a generative model during training time and assessing the
quality of a generative model during inference. Additional
experiments on Interpreting the generated output are avail-
able in Appendix B.

4.2.1. MODEL DEBUGGING

Experimental Setup. Here, we use the CB layer to de-
bug a generative model during training and inference. We
train two CB-GAN models on color MNIST: (a) Model-a
is trained on the ground truth set of concepts; (b) Model-b
we corrupt one concept (red concept) by randomly flipping
the label. During training, we track the concept loss and
the concept validation accuracy on a test dataset. We then
use the fully-trained models to generate 1000 random sam-
ples; we plot the probability histogram for each concept and
use this to measure the ability of each model to capture the
concept distribution.

Training-time debugging. Figure 3-a shows that both mod-
els were able to learn the green concept, i.e., both models
have high accuracy on the validation dataset. Figure 3-b
shows that Model-a was able to learn the red concept, while
corrupted Model-b failed to learn red. By inserting a CB
layer, we were able to track the model’s ability to learn the
desired properties while training.

Test-time debugging. Figure 3-c shows that concept prob-
abilities for Model-a are centered around 1 (concept is on)
and 0 (concept is off); hence Model-a was able to capture
the data distribution for both concepts. In contrast, the red
concept distribution for Model-b was centered around 0.5,
which shows that Model-b could not learn the red concept’s
data distribution.

Figure 3: (a) Both have high accuracy for green. (b) Model-a
has high accuracy for the red concept, but Model-b’s accu-
racy was random. (c) Model-a captured the data distribution;
Model-b could not learn the red concept’s data distribution.

5. Conclusion
Due to unprecedented improvements, there has been an in-
creased use of generative models across various settings.
However, these models are mostly inscrutable and difficult
to steer. In this paper, we present concept bottleneck gen-
erative models, a type of generative model where one of
its internal layers—a concept bottleneck (CB) layer—is
constrained to map from input representations to human-
understandable features. The CB layer can be used as a
simple plug-in module across different types of generative
models. We show that inserting the CB layer does not hurt
generation quality but helps to better steer and debug the
models during and post-training. Overall, we see this work
as a stepping stone for new kinds of generative models that
are easier to understand and debug.

5

Concept Bottleneck Generative Models

References
Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David

Lopez-Paz. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and Anto-
nio Torralba. Rewriting a deep generative model. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part I 16, pages 351–369.
Springer, 2020.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings,
and advances. Computational Linguistics, 48(1):207–219, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. Advances in neural information process-
ing systems, 33:1877–1901, 2020.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Infogan: Interpretable representa-
tion learning by information maximizing generative adversarial
nets. Advances in neural information processing systems, 29,
2016.

Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for
interpretable image recognition. Nature Machine Intelligence,
2(12):772–782, 2020.

Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulku-
maran, Biswa Sengupta, and Anil A Bharath. Generative adver-
sarial networks: An overview. IEEE signal processing maga-
zine, 35(1):53–65, 2018.

Nicola De Cao and Thomas Kipf. Molgan: An implicit gen-
erative model for small molecular graphs. arXiv preprint
arXiv:1805.11973, 2018.

Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin Tong.
Disentangled and controllable face image generation via 3d
imitative-contrastive learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
5154–5163, 2020.

Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna,
Giuseppe Marra, Francesco Giannini, Michelangelo Diligenti,
Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian
Weller, et al. Concept embedding models: Beyond the accuracy-
explainability trade-off. Advances in Neural Information Pro-
cessing Systems, 35:21400–21413, 2022.

Ian Goodfellow. Nips 2016 tutorial: Generative adversarial net-
works. arXiv preprint arXiv:1701.00160, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial nets. Advances in neural infor-
mation processing systems, 27, 2014.

Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain
Paris. Ganspace: Discovering interpretable gan controls. Ad-
vances in Neural Information Processing Systems, 33:9841–
9850, 2020.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun.
Does localization inform editing? surprising differences in
causality-based localization vs. knowledge editing in language
models. arXiv preprint arXiv:2301.04213, 2023.

Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Ad-
dressing leakage in concept bottleneck models. In Advances in
Neural Information Processing Systems, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter. Gans trained by a two time-scale
update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier
Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander
Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference
on learning representations, 2017.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic
Matthey, Danilo Rezende, and Alexander Lerchner. Towards
a definition of disentangled representations. arXiv preprint
arXiv:1812.02230, 2018.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion
probabilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi
Gao, Alexey Gritsenko, Diederik P Kingma, Ben Poole, Mo-
hammad Norouzi, David J Fleet, et al. Imagen video: High def-
inition video generation with diffusion models. arXiv preprint
arXiv:2210.02303, 2022.

John Ingraham, Max Baranov, Zak Costello, Vincent Frappier,
Ahmed Ismail, Shan Tie, Wujie Wang, Vincent Xue, Fritz Ober-
meyer, Andrew Beam, et al. Illuminating protein space with
a programmable generative model. bioRxiv, pages 2022–12,
2022.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1125–1134, 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameteri-
zation with gumbel-softmax. arXiv preprint arXiv:1611.01144,
2016.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James
Wexler, Fernanda Viegas, et al. Interpretability beyond feature
attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning, pages
2668–2677. PMLR, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Diederik P Kingma, Max Welling, et al. An introduction to vari-
ational autoencoders. Foundations and Trends® in Machine
Learning, 12(4):307–392, 2019.

6

Concept Bottleneck Generative Models

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Muss-
mann, Emma Pierson, Been Kim, and Percy Liang. Concept
bottleneck models. In International Conference on Machine
Learning, pages 5338–5348. PMLR, 2020.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo
Larochelle, and Ole Winther. Autoencoding beyond pixels
using a learned similarity metric. In International conference
on machine learning. PMLR, 2016.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep
learning face attributes in the wild. In Proceedings of Inter-
national Conference on Computer Vision (ICCV), December
2015.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch,
Sylvain Gelly, Bernhard Schölkopf, and Olivier Bachem. Chal-
lenging common assumptions in the unsupervised learning of
disentangled representations. In international conference on
machine learning, pages 4114–4124. PMLR, 2019.

Max Losch, Mario Fritz, and Bernt Schiele. Interpretability beyond
classification output: Semantic bottleneck networks. arXiv
preprint arXiv:1907.10882, 2019.

Charles Lovering and Ellie Pavlick. Unit testing for concepts in
neural networks. Transactions of the Association for Computa-
tional Linguistics, 10:1193–1208, 2022.

Anita Mahinpei, Justin Clark, Isaac Lage, Finale Doshi-Velez,
and Weiwei Pan. Promises and pitfalls of black-box concept
learning models. arXiv preprint arXiv:2106.13314, 2021.

Andrei Margeloiu, Matthew Ashman, Umang Bhatt, Yanzhi Chen,
Mateja Jamnik, and Adrian Weller. Do concept bottleneck
models learn as intended? arXiv preprint arXiv:2105.04289,
2021.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov.
Locating and editing factual associations in gpt. Advances
in Neural Information Processing Systems, 35:17359–17372,
2022.

Cristian Meo, Anirudh Goyal, and Justin Dauwels. Tc-vae: Uncov-
ering out-of-distribution data generative factors. arXiv preprint
arXiv:2304.04103, 2023.

Mehdi Mirza and Simon Osindero. Conditional generative adver-
sarial nets. arXiv preprint arXiv:1411.1784, 2014a.

Mehdi Mirza and Simon Osindero. Conditional generative adver-
sarial nets. arXiv preprint arXiv:1411.1784, 2014b.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and
Christopher D Manning. Fast model editing at scale. arXiv
preprint arXiv:2110.11309, 2021.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Con-
ditional image synthesis with auxiliary classifier gans. In In-
ternational conference on machine learning, pages 2642–2651.
PMLR, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised
representation learning with deep convolutional generative ad-
versarial networks. arXiv preprint arXiv:1511.06434, 2015.

Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat,
Salman Khan, and Fahad Shahbaz Khan. Orthogonal projection
loss. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 12333–12343, 2021.

Vikas Raunak and Arul Menezes. Rank-one editing of encoder-
decoder models. arXiv preprint arXiv:2211.13317, 2022.

Niels Rogge and Kashif Rasul. The annotated diffusion model.
June 2022. URL https://huggingface.co/blog/
annotated-diffusion.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay
Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gon-
tijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Pho-
torealistic text-to-image diffusion models with deep language
understanding. Advances in Neural Information Processing
Systems, 35:36479–36494, 2022.

Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, David
Bau, Antonio Torralba, and Aleksander Madry. Editing a clas-
sifier by rewriting its prediction rules. Advances in Neural
Information Processing Systems, 34:23359–23373, 2021.

Maximilian Seitzer. pytorch-fid: FID Score for PyTorch.
https://github.com/mseitzer/pytorch-fid,
August 2020. Version 0.3.0.

Alon Shoshan, Nadav Bhonker, Igor Kviatkovsky, and Gerard
Medioni. Gan-control: Explicitly controllable gans. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 14083–14093, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and
Surya Ganguli. Deep unsupervised learning using nonequilib-
rium thermodynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR, 2015.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured
output representation using deep conditional generative models.
Advances in neural information processing systems, 28, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. arXiv preprint arXiv:2010.02502,
2020.

Luan Tran, Xi Yin, and Xiaoming Liu. Disentangled representation
learning gan for pose-invariant face recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 1415–1424, 2017.

Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans,
Hernan Moraldo, Han Zhang, Mohammad Taghi Saffar, Santi-
ago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Variable
length video generation from open domain textual description.
arXiv preprint arXiv:2210.02399, 2022.

Sheng-Yu Wang, David Bau, and Jun-Yan Zhu. Sketch your own
gan. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 14050–14060, 2021.

Sheng-Yu Wang, David Bau, and Jun-Yan Zhu. Rewriting geomet-
ric rules of a gan. ACM Transactions on Graphics (TOG), 41
(4):1–16, 2022.

7

https://huggingface.co/blog/annotated-diffusion
https://huggingface.co/blog/annotated-diffusion
https://github.com/mseitzer/pytorch-fid

Concept Bottleneck Generative Models

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan
Kautz, and Bryan Catanzaro. High-resolution image synthesis
and semantic manipulation with conditional gans. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 8798–8807, 2018.

Lilian Weng. What are diffusion models? lilianweng.github.io,
Jul 2021. URL https://lilianweng.github.io/
posts/2021-07-11-diffusion-models/.

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc con-
cept bottleneck models. arXiv preprint arXiv:2205.15480, 2022.

Rui Zhang, Xingbo Du, Junchi Yan, and Shihua Zhang. Decou-
pling concept bottleneck model. 2023.

Appendix
A. Concept Bottleneck Layer
A.1. CB layer with non-binary concepts

Continous Variables. Our discussion in the main draft mostly
addressed binary variables. Here is discuss a simple extension of
the current framework that also extends to continuous variables as
well. First, we represent each continuous variable with a single
context vector instead of the positive and negative context vec-
tors. Second, we transform each continuous variable so that it
is normalized to [0, 1]. The output of the probability vector is
then the normalized continuous variable. Instead of the binary
cross-entropy loss function as before, we use the mean-squared
error loss function. With these changes, we can now account for
continuous variables.

Joint Categorical Variables. This can be extended to cate-
gorical concepts by having j context vector where j is the number
of categories, i.e., each concept is represented as w1

i , . . . , w
j
i ; Ψi

now predicts a probability for each class via a Softmax function
[ĉ1i . . . ĉ

j
i] = Ψi([w

1
i , . . . , w

j
i]

T) the final context vector is con-
structed as the weighted mixture of all classes. In practice, we
found that forcing sparse concept probabilities by adding tempera-
ture to the Softmax or using Gumbel-Softmax (Jang et al., 2016)
improves performance since this makes the probabilities more
aligned with the ground truth concept distribution. For continuous
variables, the context network Ψ would generate a single context
vector, which would then be concatenated directly into the final
context embedding w; for interventions, an additional encoder is
needed to encode the continuous variable to its context vector as
done by (Shoshan et al., 2021).

A.2. Adapting CB layer to generative models

In Figure 4, we show where to add the CB layer for each type of
generative model. For the VAE Figure 4-a, the CB layer is the
final layer of the encoder, which means the output latent vector
of the encoder is directly associated with pre-defined concepts.
Similarly, in GANs, the input to the generator contains the pre-
defined concepts (see Figure 4-b). Diffusion models typically

Gen Model FID
GAN 28.2

CGAN 14.4
ACGAN 14.9
InfoGAN 15.4
CB-GAN 23.8
Diffusion 15.9

CF-Diffusion 16.7
CB-Diffusion 15.9

VAE 17.1
CVAE 17.0

CB-VAE 17.5

Table 2: FID scores for different classes of generative mod-
els on Celeb-A.

follow a U-Net structure, and we insert the CB layer right after the
middle block of the U-Net as shown in Figure 4-c.

B. Experiments
B.1. Setup

B.1.1. DATASETS.

Color-MNIST We use a variation of MNIST introduced by Ar-
jovsky et al. (2019). Where every digit has is either red or green.
Here we assume we have 11 attributes (10 labels and 2 colors);
each attribute has an active and inactive state. One can think of
this as a multitasking problem where different tasks can exist in
the same image.

Celeb-A (Liu et al., 2015): Following (Espinosa Zarlenga et al.,
2022), we select the 8 most balanced attributes out of each image’s
40 binary attributes, as defined by how close their distributions are
to a random uniform binary distribution, and use attributes. Each
image has 8 attributes each represented as active or inactive giving
a total of 16 classes. We downsample every image to have shape
(3, 64, 64).

B.1.2. BASELINES.

We consider three types of generative models: VAE, GANs, and
diffusion models. We compare our method with each family’s
most commonly used framework fro conditional generation. For
VAEs, we benchmark against conditional VAEs (CVAE) (Sohn
et al., 2015). For GANs, we consider CGAN (Mirza and Osindero,
2014a), ACGAN (Odena et al., 2017), and InfoGAN (Chen et al.,
2016). For diffusion models, we compare with classifier-free (CF)
diffusion models (Ho and Salimans, 2022). Across each generative
model family, we keep the underlying model architecture fixed.

B.2. Generation Quality

In this section, we demonstrate that the proposed concept bot-
tleneck generative model does not incur a degradation in output
quality compared to alternatives without constrained representa-
tions.

Experimental Setup. To test that a CB generative model does not

8

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Concept Bottleneck Generative Models

Figure 4: Adapting concept bottleneck layer to different generative model families.

affect generation quality, we compare the output of a CB generative
model to standard models whose layers have not been constrained
on Celeb-A (64×64 version). We keep the image resolution and
data pre-processing steps fixed across all models and the under-
lying model architecture fixed for each generative model family.
From each method, we generate 40K random samples; we calcu-
late Frechet inception distance (FID1) (Heusel et al., 2017; Seitzer,
2020) between the synthetic images and the training dataset.

Results. Table 2 shows FID scores across generative model classes.
We observe that the concept bottleneck versions of the generative
models have FID scores that match those of standard alternatives.
We note that the goal here is not to achieve state-of-the-art FID
scores but to show that adding a CB layer does not harm generation.

B.3. Steering CB Generative Models

B.3.1. MULTI-CONCEPT STEERABILITY

Here, we are interested in assessing whether various control strate-
gies can simultaneously induce a change in multiple concepts. We
start with only one concept, ‘on’ at k = 1, and gradually increase
the number of ‘on’ concepts. Note that at each value of k, we gen-
erate all possible concept combinations for that k. For empirical
evaluation of concept steerability, we calculate the accuracy of a
concept classifier when that concept is turned ‘on’. If multiple
concepts are on, we calculate the average accuracy over all ‘on’
concept classifiers.

Results. Figure 5 shows images generated by CB-GAN, we can
add and remove multiple concepts from the generated images using
the CB layer. We report the steerability metric across five attributes
in Table 3. For each setting of K, we intervene on the concept
vector for one thousand inputs during generation and measure the
induced change in attributes with attribute-independent classifiers.
We find that CB-GAN has average concept accuracy around 30%,
across all experiments, which indicates that CB-GAN steerability
performance does not deteriorate with the addition of concepts.
CB-GAN all outperforms the baselines for up till K = 3. In the
diffusion model and VAEs setting, adding a CB layer outperforms
the baseline across all values of K.

B.4. Interpretability

B.4.1. INTERPRETING THE GENERATED OUTPUT

One of the most important open-ended questions in AI research is
answering ‘why did a black-box DNN make certain predictions?’.

1We use the following code
https://github.com/mseitzer/pytorch-fid to calculate the FID
scores

Class K=1 K=2 K=3 K=4 K=5
CGAN 7.6 ± 0.1 11.3 ± 0.4 18.1 ± 0.6 26.9 ± 0.8 35.7 ± 1.1

ACGAN 7.5 ±0.2 13.1 ± 0.5 25.0 ± 0.7 40.6 ± 0.7 55.0 ±0.6
infogan 6.8 ± 0.4 9.6 ± 0.4 16.2 ± 0.5 24.5 ± 0.6 32.6± 0.7

CB-GAN 29.3 ± 0.5 30.0 ± 0.4 31.0 ± 0.3 32.9 ± 0.4 36.0 ± 0.4

CF-Diffusion 7.58±2.6 13.1±0.9 17.6±2.6 21.3±1.9 29.6±3.4
CB Diffusion 14.32±1.9 19.3±3.5 27.6±1.4 36.2±3.3 39.8±2.7

CVAE 6.2±1.37 14.5±3.1 20.3±1.4 24.7±1.9 34.8±3.6
CB-VAE 15.1±2.46 18.9±2.3 27.6±4.8 38.3±3.7 41.6±0.9

Table 3: Multi-concept steerability metric.

Figure 5: Adding and removing multiple concepts in
CBGMs

One way to explain a black-box network is by using concept bottle-
neck layers (Koh et al., 2020; Espinosa Zarlenga et al., 2022). This
generalizes to generative models as well. After adding a CB layer
to the generative model one can understand why a model generated
a particular output by looking at the concept probabilities. Figure
6 shows concept probabilities for different samples generated from
CB-GAN on Celeb-A and color MNIST. Figure 7 shows concept
probabilities for different samples generated from CB-VAE and
CB-Diffuision on Celeb-A and color MNIST. By looking at each
bar chart, one can understand which concepts were most effective
in generating the output.

B.4.2. MODEL DEBUGGING

In the main paper, we showed that we can use a validation dataset
to check if the CB-layer is actually learning concepts during
training. This can also be done by examining the concept training
loss define in main paper Section 3.2. Figure 8-a shows the
training loss for different models in the debugging experiment
described in the main paper Section 4.4.2. Figure 8-a shows that
both models were able to learn the green concept, i.e., training loss

9

Concept Bottleneck Generative Models

Figure 6: Sample-wise interpretability offered by adding a
CB layer. By looking at the concept probability vector, we
can understand why the model generated a particular output.

CB-VAE CB-DDIM

Figure 7: Sample-wise interpretability offered by adding a
CB layer for Diffusion model and VAE. The concept proba-
bility vector helps us understand why the model generated a
particular output.

decreases for both models. Figure 8-b shows that only Model-a’s
training loss decreased for the red concept, while the training loss
for Model-b remained high.

(a) (b)

Figure 8: Model-a is trained on the ground truth concepts.
Model-b is trained on the corrupted ‘red’ concept and the
ground truth ‘green’ concept. (a) Low training loss on
the green concept for both models. (b) Model-a has low
training for the red concept, but Model-b’s training loss
does not decrease.

C. Related Work
In this work, we propose to insert a concept bottleneck (CB) layer
into a generative model. Concept-based interpretability approaches
have been applied post hoc (Kim et al., 2018; Yuksekgonul et al.,
2022), but here we focus on incorporating using concepts during
training. Concept bottleneck layers have been used for supervised
learning (Koh et al., 2020; Chen et al., 2020) and semantic segmen-
tation (Losch et al., 2019) but not generative models. Despite their
benefits, CB layers are susceptible to feature leakage (Mahinpei
et al., 2021; Margeloiu et al., 2021), which harms the ability to
intervene on concepts. Recent work has proposed alternatives to

address leakage and improve the performance of models based on
CB layers (Havasi et al., 2022; Zhang et al., 2023). In this work,
we incorporate these ideas into and adapt the concept embedding
layer of Espinosa Zarlenga et al. (2022) into a generative model.

There is extensive literature on learning disentangled representa-
tions (Higgins et al., 2018); however, our goal is not to disentangle
the generative model’s latent space but to map the model’s repre-
sentations into human interpretable features. In general, there is
often no guarantee that a disentangled representation should be
human understandable.

A key capability that the CB layer allows is the ability to make
model ‘edits’. Model editing has taken on a renewed significance,
with recent work demonstrating intriguing edits and control of Clas-
sifiers (Santurkar et al., 2021), GANs (Bau et al., 2020; Wang et al.,
2021; 2022), and large language models (Raunak and Menezes,
2022; Mitchell et al., 2021; Meng et al., 2022). The current ap-
proach for model editing first searches the model’s latent space
to localize human-interpretable features before manipulating ei-
ther the weights or activations that correspond to those features.
However, a longstanding observation with large models is that
they learn distributed representations, which makes effective lo-
calization challenging (Hase et al., 2023). Even if the localization
strategy is effective, the latent representations of the generative
model might not encode the interpretable feature that we seek to
control. We circumvent these challenges by directly mapping to
interpretable features, which obviates the need for a search.

D. Limitations
Our proposed CB generative model does come with certain chal-
lenges: it requires that the entire training set be annotated with
pre-defined concepts that—a potentially laborious requirement in
practice. Even though the CB layer can be applied broadly, we
have only tested it for image tasks. Moving to text poses further
challenges about what the nature of the concepts should be.

10

