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Abstract
Large language models (LLMs) have revolution-
ized various AI applications. However, their bil-
lions of parameters pose significant challenges
for practical deployment. Structured pruning is
a hardware-friendly compression technique and
receives widespread attention. Nonetheless, exist-
ing literature typically targets a single structure
of LLMs. We observe that the structure units of
LLMs differ in terms of inference cost and func-
tionality. Therefore, pruning a single structure
unit in isolation often results in an imbalance be-
tween performance and efficiency. In addition,
previous works mainly employ a prescribed prun-
ing ratio. Since the significance of LLM modules
may vary, it is ideal to distribute the pruning load
to a specific structure unit according to its role
within LLMs. To address the two issues, we pro-
pose a pruning method that targets multiple LLM
modules with dynamic pruning ratios. Specifi-
cally, we find the intrinsic properties of LLMs
can guide us to determine the importance of each
module and thus distribute the pruning load on de-
mand, i.e., what to prune and how much to prune.
This is achieved by quantifying the complex inter-
actions within LLMs. Extensive experiments on
multiple benchmarks and LLM variants demon-
strate that our method effectively balances the
trade-off between efficiency and performance.

1. Introduction
Large language models (LLMs) have demonstrated excep-
tional performance in the field of natural language process-
ing (Mann et al., 2020; Thoppilan et al., 2022; Zhu et al.,
2024). Nonetheless, the billions of parameters (Zhao et al.,
2023) characteristic of LLMs substantially increase storage
requirements and computational overhead. Therefore, de-
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veloping effective methods to compress LLMs has become
a valuable research direction.

Network Pruning (Han et al., 2015) is a promising method to
reduce model complexity by pruning the non-essential net-
work connections. Traditional pruning strategy (i.e., weight
magnitude) may not be suitable to LLMs (Yin et al., 2024;
Muralidharan et al., 2024), which typically requires fine-
tuning (Gordon et al., 2020; Jaiswal et al., 2023; Xia et al.,
2023) to restore the performance. Since retraining LLMs
could be prohibitively expensive, (Frantar & Alistarh, 2023)
propose SparseGPT, the first accurate one-shot unstructured
pruning method without any post-training. Compared to
unstructured pruning, structured pruning (An et al., 2024;
Song et al., 2024; Ashkboos et al., 2024; Zhong et al., 2024;
Ma et al., 2023; Men et al., 2024) is more friendly for de-
ployment, which establishes a criterion to determine the
importance of specific structures, e.g., blocks and layers,
and remove the uninformative components accordingly.

Figure 1. Dilemma between per-
formance and efficiency. A faster
pruning strategy (speed ↑) comes
with inferior performance (PPL ↓).

Nonetheless, existing
literature on structured
pruning only focuses
a single structure unit
in LLMs, such as trans-
former block (Song
et al., 2024; Men et al.,
2024), attention & MLP
layers (Zhong et al.,
2024) and the rows
& columns of weight
matrices (An et al.,
2024; Ashkboos et al., 2024; Ma et al., 2023; Ling et al.,
2024). Different structure units vary from parameter counts
and functionality, contributing differently to inference speed
versus performance. An example is illustrated in Figure 1
where three structure units, accounting for 10% parameters,
of LLaMa2-7B are randomly pruned. The result shows that
there is no free lunch for structured pruning when targeting
a certain LLM module. Specifically, a faster strategy (e.g.,
block-wise pruning) comes with worse performance and
vice versa. Consequently, previous methods could lead to
an imbalance between throughput versus performance, as
shown in Figure 2.

In addition, a majority of arts (Ashkboos et al., 2024; Song
et al., 2024; Zhong et al., 2024; Lin et al., 2024; Men et al.,
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(a) Inference Speed (b) Perplexity Result

Figure 2. Compare different structured pruning methods. (a) We
compare the inference speed of pruned model using different struc-
tured pruning methods. (b) We evaluate the perplexity performance
of different structured pruning methods.

2024) prune LLMs with a prescribed ratio in each unit. For
instance, SLEB (Song et al., 2024) uses a binary operator
to determine whether to prune an entire (100%) block. Al-
though it achieves profound throughput (Figure 2a), it is
less flexible to scale up the pruning ratio (Figure 2b). In
parallel, SliceGPT (Ashkboos et al., 2024) evenly prunes the
matrix weights of each block. As the significance of each
unit varies (Zhang et al., 2022), the ideal pruning ratio dis-
tributed for each unit might vary. Hence, such a prescribed
proposal might be less flexible to scale up and limits the
model efficiency considering performances.

To address the two aforementioned issues, we propose a
hierarchical strategy to simultaneously target different struc-
ture units with a dynamic pruning ratio. In the first stage,
we allocate the pruning proportion for each block by con-
sidering their importance. Specifically, we rank each block
by measuring their interactions within the LLMs. Subse-
quently, in a transformer block, we dispatch the pruning load
to different structure units considering their entropy. We use
a simple clustering approach to mitigate the computation
complexity. Our approach not only ensures significant im-
provements in the inference speed of the pruned model but
also maximally preserves the original model’s performance.
Our contributions are summarized as follows:

• We propose a structured pruning framework to simulta-
neously target different structure units of LLMs, which
balances the trade-off between inference speed and
model performance.

• We introduce a hierarchical strategy to prune different
LLM modules with a dynamic ratio. In the first stage,
we determine the pruning proportion of each block by

measuring their interactions within the LLMs. We then
dispatch the pruning load to the structured units within
the block by entropy consideration.

• Our method has been rigorously validated across dif-
ferent benchmarks, demonstrating exceptional perfor-
mance without relying on any fine-tuning or retraining.

2. Related Work
To reduce the inference cost of large language models and
increase their practical applications, numerous recent stud-
ies have focused on model compression techniques. there
have been many recent works on compressing models. A
majority of model compression techniques fall into one of
three categories: distillation (Gu et al., 2023; Agarwal et al.,
2023; Ko et al., 2024; Padmanabhan et al., 2024), prun-
ing and quantization (Frantar et al., 2022; Chee et al., 2024;
Egiazarian et al., 2024; Zhang et al., 2024a). In the paper, we
specifically focus on the pruning of the LLMs. Pruning can
be categorized into unstructured pruning, semi-structured
pruning and structured pruning.

Unstructured pruning and semi-structured pruning. Un-
structured pruning involves removing individual elements
from the weight matrix without regard to the network’s
structure, which allows the model to achieve a high degree
of sparsity. However, this approach does not alter the matrix
size and the inference speed remains nearly identical to that
of the original model. To address this limitation, unstruc-
tured pruning can be combined with N : M sparsity (Mishra
et al., 2021), a technique known as ”semi-structured prun-
ing.” In N : M sparsity, at most N out of every M contiguous
weights are allowed to remain non-zero. SparseGPT (Fran-
tar & Alistarh, 2023) takes a different approach by employ-
ing the OBS technique (Hassibi et al., 1993) for pruning
GPT-family models, marking it as the first method capa-
ble of effectively pruning LLMs with 10-100 billion or
more parameters. RIA (Zhang et al., 2024b), another semi-
structured pruning method, also considers both weights and
activation. However, unlike Wanda, it proposes using the
relative magnitude of the weights rather than their absolute
values. Although semi-structured pruning can largely pre-
serve model performance at high sparsity, its acceleration
benefits are still heavily dependent on NVIDIA Ampere
GPU architecture (Mishra et al., 2021).

Structured pruning. Unlike unstructured pruning, which
removes individual elements without regard to the network’s
structural integrity, structured pruning specifically targets
and removes entire components or modules within LLMs.
LLM-Pruner (Ma et al., 2023) is a structured pruning tech-
nique that assesses the importance of module groups in
LLMs by analyzing gradients and activations, systematically
eliminating less significant components. SliceGPT (Ashk-
boos et al., 2024) employs a structured pruning strategy
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similar to weight slicing (Li et al., 2021; 2022), by intro-
ducing embedding dimensionality reduction matrices for
LLMs. These matrices facilitates the identification and
elimination of less critical component. FLAP (An et al.,
2024) introduces the concept of ”fluctuation measurement”
to assess the importance of rows&columns in the weight ma-
trix. BlockPrune (Zhong et al., 2024) is a dynamic pruning
method that masks attention and MLP layers sequentially,
recording the PPL results. The layer with the lowest PPL is
removed, and the process continues until the target pruning
ratio is achieved. SLEB (Song et al., 2024) also proposes an
iteration pruning method to assess the impact of each block
based on the token prediction results of the LLMs. In each
iteration, the block with the least impact on the prediction
results is removed. ShortGPT (Men et al., 2024) proposes
a metric called Block Influence (BI), which quantifies the
changes in the hidden state of each block, to measure of
block importance.

Yet, existing pruning methods typically focus on a sin-
gle structure unit within LLMs, but such single-structure-
oriented pruning strategies struggle to effectively balance
model performance and efficiency after pruning. Moreover,
existing pruning methods typically assign the same pruning
ratio to each block without accounting for the varying im-
portance of individual blocks within the LLMs. In contrast,
we consider information entropy as a pruning criterion, en-
abling a unified pruning approach across all structure units
with a dynamic ratio. Our approach not only maximizes
the retention of the model’s original performance but also
significantly enhances inference speed.

3. Method
In this section, we propose a systematic pruning framework
grounded in information-theoretic principles which simul-
taneously targets all the LLM modules. In Sec. 3.1, we
first introduce the metric of transfer entropy to analyze the
interaction among blocks in LLMs. This enables us to dy-
namically determine the pruning ratio for each block, and
perform pruning on coarse-grained structure units such as
blocks and layers in Sec. 3.2. Then, we further allocate the
pruning load within each block and perform fine-grained
pruning of the weight matrix rows&columns based on the
information entropy of individual structure units in Sec. 3.3.
Finally, in Sec. 3.4, our method use the bias compensation
to enhance the performance of the pruned model without
the need of post-training or any fine-tuning.

3.1. Quantifying the Importance of Blocks

Since the functionalities of network units would vary (Zhang
et al., 2022), we propose to assign a pruning proportion to
each block according to their role in the LLMs. We tend
to assign a larger pruning proportion to the uninformative

blocks and preserve the essential blocks. That is, we want
to formulate a metric to measure the importance of a trans-
former block.

Measuring interactions of blocks. We rank the blocks
by capturing their complex interactions within the LLM.
Intuitively, if the model output is highly correlated with
a block, this block is identified as important; otherwise
uninformative. To this end, we resort to the concept of
transfer entropy (TE) (Schreiber, 2000), which quantifies
the information transfer between two network components.
Transfer entropy is formally defined as:

TE = H(Xout)−H(Xout|Mask{blocki}), (1)

where H(Xout) represents the original entropy of the fi-
nal output layer, and H(Xout|Mask{blocki}) denotes the
entropy of final output layer after masking the ith block.
Specifically, when a block is masked, Equation (1) provides
a comprehensive evaluation of the impact on the hidden
state of the LLM output. Thus, TE can measure the sig-
nificance of blocki on the model output and thus reflect its
importance, i.e., a block is identified as important if the
TE metric changes drastically. Consequently, we use the
TE metric to guide the pruning proportion allocated to the
blocks. Similarly, Equation (1) can be applied to attention
or MLP layers. Figure 3a and Figure 3b illustrate the trans-
fer entropy w.r.t. each block and layer of the LLaMA2-7B
model. The transfer entropy of blocks varies dramatically
across different orders of magnitude. Hence, rather than a
static prescribed ratio, it is necessary to assign a pruning
ratio to each block based on its dynamic interaction within
the LLM.

Entropy quantification. For a distribution p(x), its entropy
can be written as:

H(X) = −
∫

p(x) log p(x), x ∈ X, (2)

where x represents the hidden state in the feature space of
a transformer unit X. In prior work, such as (Sirignano
& Spiliopoulos, 2020; Sun et al., 2022), it is assumed that
p(x) follows a Gaussian distribution, i.e. X ∼ N(µ, σ2).
Therefore, Equation (2) can be rewritten as:

H(X) = −E[logN(µ, σ2)]

= −E
[
log

[
(2πσ2)−1/2 exp

(x− µ)2

2σ2

]]
= log σ +

1

2
log(2π) +

1

2
, (3)

where σ is the standard deviation of X.
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(a) Block transfer entropy (b) Layer transfer entropy (c) Pruning ratio of each block

Figure 3. The transfer entropy of LLaMA2-7b’s block and layer. (a) We sequentially mask each block of the LLaMA2-7B model and
compute the transfer entropy of the output layer for each masked configuration. (b) We sequentially mask each layer of the LLaMA2-7B
model and calculate the transfer entropy for each corresponding layer. (c) The pruning ratio of each block using Algorithm 1.

3.2. Block-wise Pruning Ratio

Grouping blocks based on TE. We store the transfer en-
tropy associated with each block (Figure 3a) in set S and
divide them into three sub-sets: SL, SM and SH standing
for low, medium and high TE set, based on the statistic of
the set S:

S =


SL = {si|si < Tl},
SM = {si|Tl ≤ si ≤ Th},
SH = {si|si > Th}.

(4)

where si represents the transfer entropy of ith block, Tl =
µs − α · σs and Th = µs + α · σs are two thresholds
with the scaling factor α. Here µs = 1

N

∑
N
i=1si and

σs =
√

1
N

∑
N
i=1(si − µ)2 are the mean and the standard

deviation of the set S, N represents the number of blocks
in a LLM. Similarly, we sort the transfer entropy of the
attention and MLP layers (Figure 3b) in set A.

Hybrid pruning strategy. Let P denote the set of pruning
ratios. We allocate the pruning ratio to each block according
to their importance in Equation (4): S 7→ P . Since our
pruning strategy involves multiple LLM modules simultane-
ously, we have five pruning types in general: a) PZ : blocks
are preserved with zero pruning ratio; b) PF : blocks are
fully pruned; c) PE : attention or MLP layers are completely
pruned; d) PD: blocks are pruned with a lower pruning
ratio; e) PR: the resting blocks with an adjusted ratio.

Block-wise pruning. We preserve the blocks in SH as
they are the essential blocks in LLM identified by transfer
entropy, i.e., SH 7→ PZ . The blocks in SM would be
assigned with a pruning ratio plow lower than the target ratio
ptarget, as they are the relatively essential blocks in LLM,
i.e., SM 7→ PD. To accommodate the pruning requirement,
there would be a leftover pleftover that is redistributed to the
blocks in SL:

pleftover = |SH | × ptarget + |SM | × (ptarget − plow), (5)

where | · | represents the operation to obtain the number of
elements in a set.

Depth-First Search compensation process. To compen-
sate for the leftover, we should increase the pruning ratios of
other blocks. As Figure 5 shown, initially, we select the top
|SH | blocks with the least TE from set SL since they have
least impact on the hidden state of LLM and place them into
set F , assigned with the pruning ratio 1 (i.e., completely
pruned) and mapped to PF . The blocks assigned a prun-
ing ratio of 1 have their corresponding layers completely
removed. Therefore, these layers in set A will be classified
as unavailable part. Next, the top |SM | layers with the least
TE are selected from the available part from set A. These
layers will be completely pruned, and their corresponding
blocks are divided to the extensively pruned set E , with their
pruning ratio increased to 1− plow mapped to PE . For the
remaining blocks that have not yet been assigned an initial
pruning ratio, we incorporate them into setR. Finally, we
need to select according blocks from F and E to compen-
sate for the leftover. How to select according blocks can be
reformulated as the following optimization problem:

arg min
L⊆F,M⊆E

∥pcompensation − pleftover∥

s.t. : pcompensation ≥ pleftover, (6)

where

pcompensation = |L|(1− ptarget) + |M|(1− ptarget − plow).
(7)

L and M represent subsets of blocks selected from sets
F and E , respectively. This problem can be efficiently
solvable using a Depth-First search algorithm. This opti-
mization problem may yield multiple solutions {L∗,M∗}.
To achieve optimal inference speed, we select the solution
with the maximum |L∗| as the final result. The unselected
blocks in F and E are returned to R, with their pruning
ratios reassigned accordingly.

Dynamic ratio assigning. For the remaining blocks in
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Prune

Figure 4. Illustration of our proposed method based on information entropy. (Left): A weight matrix W and the L2 norm of the activation
value ∥X∥2. (Middle): Multiply the absolute value of weight matrix by the L2 norm of the activation value. (Right): Calculate the
information entropy of each column, perform clustering using the K-means algorithm, and represent different clusters with distinct colors,
where lighter colors indicate lower information entropy for the corresponding cluster.

Figure 5. Compensation process. Each ◦ represents a block, and
its fill level visually corresponds to the pruning ratio. ⊘ represents
a block that has not yet been assigned a pruning ratio.

R, we dynamically allocate these ratios based on transfer
entropy. The pruning ratio for each block g is calculated as
follows:

pg =
ωg

1
G

∑G
g=1 ωg

× p̂target, (8)

where

p̂target = (G · ptarget − p∗compensation + pleftover)/G,

p∗compensation represents the result obtained by substituting
the optimized solution {L∗,M∗} into Equation (6). G

is the number of blocks in R, weight ωg =
(

s̄
sg

)β

, β

is a scaling factor and average information entropy s̄ =(
1
G

∑G
g=1sg

)
. We summarize this assigning block-wise

pruning ratio process, as shown in Algorithm 1.

Algorithm 1 Block-wise pruning ratio assignment

Input: an original LLM, target pruning ratio ptarget.
Output: the pruning ratio for each block.
Calculate the transfer entropy of block and layer:
for i = 0 to N − 1 do

Store the TE values corresponding to layers and blocks
in the set A and set S using Eq. (1).

end for
Divide S into three subsets SL, SM and SH using Eq. (4).
SH← 0%, SM← plow, calculate pleftover using Eq. (5).
F← argmin|SH |{SL}, E←argmin|SM |{A}
F← 1, E← 1− plow.
Depth-First Search to solve this optimization problem 6.
Assign pruning ratios to the remaining blocks using
Eq. (8).

3.3. Row&Column-wise Pruning

Distributing the pruning load. After determining the
appropriate pruning ratios for each block, we sign the
pruning load to the structured units within the block,
i.e. finer-grained structure pruning by eliminating entire
rows&columns in weight matrices. Building on the ap-
proach proposed in (Sun et al., 2023), we propose an im-
portance metric driven by information entropy that jointly
weights W and the activation value X. Taking the j-th
structured unit(column) in W as an example, the impor-
tance score ISj is calculated as follows:

ISj = H(|W:,j | · ∥Xj∥2), (9)

where H(·) denotes the calculation of the information en-
tropy, | · | represents the absolute value operator, and ∥Xj∥2
is the l2-norm of j-th channel across N ×L different tokens.
Upon obtaining the information entropy for each column in
the weight matrix, we apply the K-means algorithm (Mac-
Queen et al., 1967) to cluster the units based on their entropy
values and prune the cluster with the lowest average infor-
mation entropy. Figure 4 illustrates the process of assessing

5



Let LLM Tell What to Prune and How much to Prune

Table 1. The perplexity results of pruned LLaMA2, LLaMA3 and Vicuna models.

METHOD PRUNING UNIT PRUNING RATIO LLAMA2-7B LLAMA2-13B LLAMA2-70B LLAMA3-8B LLAMA3-70B VICUNA-7B VICUNA-13B

DENSE - 0% 5.47 4.88 3.31 5.53 2.85 6.78 5.94
SPARSEGPT 2:4 50% 9.33 7.90 5.74 19.99 6.73 10.31 9.22

WANDA 2:4 11.00 8.23 5.26 10.89 7.77 12.41 8.96
FLAP ROW&COLUMN

30%

9.13 7.31 4.89 10.64 5.99 11.21 10.13
SLICEGPT ROW&COLUMN 8.63 7.43 5.42 13.08 9.01 9.93 11.32

LLM-PRUNER ROW&COLUMN 17.86 19.38 - 22.88 - 21.17 14.27
BLOCKPRUNER LAYER 15.06 8.52 6.27 26.91 10.09 13.90 9.93

SLEB BLOCK 27.45 23.48 5.93 29.17 9.08 - -
OURS ALL 8.71 7.03 4.77 10.53 5.83 9.90 8.54
FLAP ROW&COLUMN

40%

14.49 9.60 5.71 14.13 7.14 14.42 11.65
SLICEGPT ROW&COLUMN 12.79 10.61 7.08 20.1 13.46 14.09 19.79

LLM-PRUNER ROW&COLUMN 46.33 43.10 - 56.28 - 43.52 27.24
BLOCKPRUNER LAYER 32.39 13.91 8.42 74.75 16.34 29.94 16.64

SLEB BLOCK 45.36 27.49 7.57 78.66 13.39 - -
OURS ALL 12.55 8.85 5.64 14.72 6.93 13.91 10.54
FLAP ROW&COLUMN

50%

25.98 15.25 7.13 23.12 8.76 29.23 18.91
SLICEGPT ROW&COLUMN 21.08 17.51 10.75 35.64 28.69 23.01 45.01

LLM-PRUNER ROW&COLUMN 286.07 89.31 - 185.86 - 189.08 70.37
BLOCKPRUNER LAYER 58.86 29.13 12.81 479.23 61.47 80.16 36.07

SLEB BLOCK 106.02 51.56 11.58 390.56 24.13 - -
OURS ALL 20.07 13.44 6.76 21.97 8.92 22.05 15.20

the importance of columns in a weight matrix using informa-
tion entropy and subsequently removing the less important
columns.

Practical pruning process. In practical pruning process,
due to the attention head mechanism employed in LLMs,
where each attention head corresponds to a subset of rows or
columns, attention head are typically treated as the primary
unit for pruning the attention layers. In the MLP layer, rows
or columns are treated as the fundamental pruning units.
The pruning procedure for different LLMs is provided in
the Appendix A.

3.4. Bias Compensation

Bias compensation is a common compensatory mechanism
used to recover the performance of models after pruning
or quantization (Gong et al., 2024; Finkelstein et al., 2019;
An et al., 2024). The compensation bias term for the j-
th channel is computed as a weighted average across all
samples, formulated as follows:

X̂j =

∑N
n=1

∑L
l=1 λ1(n)λ2(l)Xn,l,j∑N

n=1

∑L
l=1 λ1(n)λ2(l)

, (10)

where the normalized weighting factors λ1(n) and λ2(l)
modulate contributions along the sequence and channel di-
mensions respectively:

λ1(n) =
σ1(n)∑N
n=1 σ1(n)

,

λ2(l) =
σ2(l)∑L
l=1 σ2(l)

. (11)

Here, σ1 denotes the standard deviation computed over the
joint sequence-channel dimensions of X, while σ2 repre-
sents the standard deviation across the batch-channel di-
mensions. This weighted approach adaptively prioritizes

dimensions with higher activation variability through σ1 and
σ2, thereby more effectively preserving critical features and
maintaining the original activation statistics.

Once the rows&columns in the weight matrix that require
pruning are identified, we can employ a binary mask matrix
M to indicate the locations of pruning (0 for pruned, 1 for
retained). According to the binary mask matrix M and
weighted average X̂, we can calculate the corresponding
bias term b0 as follows:

b0 = W((1−M)⊙ X̂). (12)

where 1 denotes an all-ones matrix and ⊙ represents
Hadamard product. Subsequently, we employ bias to com-
pensate for the impact of pruning on the model’s output, as
shown in the following equation:

WX ≈ (M⊙W)X+ b0 (13)

4. Experiment
4.1. Experimental Setup

Setup. In our experiment, we apply our method to various
large language models (LLMs), including LLaMA2 (Tou-
vron et al., 2023), LLaMA3 (Meta, 2024), and Vicuna-
7B/13B (Chiang et al., 2023), all of which are available
through the Hugging Face Transformers library (Wolf,
2019). All experiments are conducted on NVIDIA A800
GPUs with 80GB memory.

Datasets and Evaluation. For calibration data, we ran-
domly select 128 samples from the WikiText2 training
dataset (Merity et al., 2016). Since pruning can affect the
model’s ability, it is crucial to measure its impact using a
reliable evaluation metric. Perplexity serves as the primary
metric for evaluating model performance, with lower per-
plexity indicating better performance. Therefore, we focus
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Table 2. Zero-shot performance of the compressed LLaMA2-7B. Bold results highlight the best performance.

LLAMA2-7B PRUNING UNIT SPARSITY WINOGRANDE PIQA HELLASWAG ARC-E ARC-C AVG

DENSE - 0% 68.98 79.11 76.00 74.58 46.25 68.98
SPARSEGPT 2:4 50% 61.03 68.77 52.8 56.69 30.63 53.99

WANDA 2:4 60.93 69.80 54.16 58.08 30.89 54.77
FLAP ROW&COLUMN

30%

61.25 70.67 56.79 54.84 32.08 55.12
SLICEGPT ROW&COLUMN 62.67 64.80 49.19 50.38 31.48 51.70

LLM-PRUNER ROW&COLUMN 54.93 72.85 57.79 53.16 32.51 54.24
BLOCKPRUNER LAYER 57.62 70.51 56.62 50.51 30.97 53.24

SLEB BLOCK 52.33 69.80 51.49 51.85 30.03 51.10
OURS ALL 60.77 70.95 59.18 58.16 34.22 56.65
FLAP ROW&COLUMN

40%

56.51 67.57 49.00 37.71 27.30 47.62
SLICEGPT ROW&COLUMN 57.22 58.22 39.49 43.39 27.05 45.07

LLM-PRUNER ROW&COLUMN 52.80 66.32 43.44 39.23 29.95 46.34
BLOCKPRUNER LAYER 53.99 63.00 45.70 42.51 29.01 46.84

SLEB BLOCK 51.38 64.85 42.75 44.95 25.85 45.95
OURS ALL 56.67 66.10 49.00 49.83 30.38 50.39
FLAP ROW&COLUMN

50%

53.35 62.40 40.31 36.53 25.09 43.53
SLICEGPT ROW&COLUMN 53.43 53.81 32.64 34.89 23.63 39.68

LLM-PRUNER ROW&COLUMN 50.59 56.96 31.23 31.23 26.62 39.32
BLOCKPRUNER LAYER 53.35 58.16 36.32 37.50 26.11 42.28

SLEB BLOCK 50.75 57.34 34.41 33.92 26.28 40.54
OURS ALL 53.83 61.81 40.46 43.94 27.56 45.52

on perplexity and utilize the WikiText2 test dataset to evalu-
ate the perplexity of the model after pruning with different
pruning methods. Furthermore, to further validate the effi-
cacy of our method, we report the Zero-Shot accuracy on
five benchmark datasets: PIQA (Bisk et al., 2020); Wino-
Grande (Sakaguchi et al., 2021); HellaSwag (Zellers et al.,
2019); ARC-e and ARC-c (Clark et al., 2018).

Baselines. We compare our proposed approach with prun-
ing methods designed for individual structure units: LLM-
Prune (Ma et al., 2023), FLAP (An et al., 2024) (utilizing
bias compensation) and SliceGPT (Ashkboos et al., 2024)
prune the rows&columns of the weight matrices. Block-
Prune (Zhong et al., 2024) and SLEB (Song et al., 2024)
separately focus on pruning the layers (attention&MLP) and
the blocks in LLMs.

4.2. Pruning Results on LLMs

Generation Tasks. We begin by presenting the WikiText2
performance results for the LLaMA2, LLaMA3, and Vicuna
models at three distinct pruning ratios (30%, 40%, and 50%)
in Table 1. As illustrated in Table 1, our approach, which
prunes across all structure units, consistently achieves supe-
rior perplexity performance compared to methods that prune
based on rows and columns, such as SliceGPT, FLAP, and
LLM-Pruner, across most LLMs. Notably, at a pruning ratio
of 30%, our method outperforms semi-structured pruning
techniques, including SparseGPT and Wanda, across LLMs.

Zero-shot Tasks. Table 2 presents the zero-shot accura-
cies of the pruned LLaMA2-7B model across five different
tasks, evaluated using various pruning methods. As ex-
pected, at the same pruning ratio, our method consistently

outperforms SliceGPT, FLAP, and LLM-Pruner, even af-
ter removing a significant number of blocks and layers.
Compared to pruning methods that focus primarily on re-
moving blocks or layers, such as SLEB and BlockPruner,
our method achieves significantly better results across all
zero-shot tasks. Even compared to semi-structured pruning
methods such as SparseGPT and Wanda, our approach de-
livers superior performance at the 30% pruning ratio. These
results demonstrate that our method not only effectively
reduces the model size but also maximally preserves the
original performance of the LLMs. For further details, ad-
ditional accuracy results for other LLMs across these tasks
can be found in Appendix B.

4.3. Inference Speed

In Table 3, we provide a detailed comparison of the infer-
ence speed for generation the sequences of length 128 (batch
size of 1) under different pruning methods. All experiments
are conducted on NVIDIA A800 GPUs and we observe that
unstructured pruning methods like Wanda and SparseGPT
do not significantly improve inference speed. Compared
to row&column pruning methods such as SliceGPT and
FLAP, our approach achieves a significant improvement in
inference speed while requiring less memory overhead. Fur-
thermore, as the pruning ratio increases, the improvement
in inference speed achieved by our method becomes more
pronounced. This is because, at higher pruning ratios, our
approach tends to remove more blocks and layers within
LLMs. For example, when pruning LLaMA2-7B model
at a 50% ratio, we remove three blocks and three layers,
respectively, further enhancing inference speed.
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Table 3. Inference speed of LLaMA2-7B/13B compared with dif-
ferent pruning methods.

METHOD SPARSITY MEMORY TOKENS/S

LLAMA2-7B 0% 12989MB 29.86
WANDA 50% 14908MB 28.60

SPARSEGPT 12860MB 30.34
SLICEGPT

30%
10118MB 33.39

FLAP 9296MB 32.81
OURS 9297MB 34.88

SLICEGPT
50%

7172MB 34.38
FLAP 6833MB 34.39
OURS 6800MB 38.78

LLAMA2-13B 0% 25114MB 25.64
WANDA 50% 25114MB 26.85

SPARSEGPT 25114MB 25.35
SLICEGPT

30%
19631MB 29.11

FLAP 17767MB 26.90
OURS 17701MB 29.22

SLICEGPT
50%

12995MB 29.79
FLAP 12922MB 27.91
OURS 12632MB 31.80

4.4. Baseline Bias Compensation

Our approach leverages bias compensation, which elimi-
nates the need for retraining or fine-tuning. To evaluate its
effectiveness, we conduct experiments on the LLaMA2-13B
model with different pruning ratio. The results shown in Fig-
ure 6, highlight that bias compensation effectively restores
the model’s performance after pruning. As the pruning
ratio increases, the impact of bias compensation becomes
more pronounced, emphasizing its importance in maintain-
ing performance. Notably, even without the use of bias
compensation, our method outperforms other approaches
without bias compensation in terms of PPL.

Figure 6. Performance comparison of the LLM with and without
bias compensation at various pruning ratios.

4.5. Robustness to Calibration Samples

The effectiveness of different pruning methods can be af-
fected by the number of samples in the calibration dataset.
Therefore, this makes it critical to verify whether our method
remains robust and outperforms other pruning methods with
calibration datasets of varying samples. In the section, we se-
lect SliceGPT as the comparison method because, as shown
in Table 1, it exhibits the second-best performance when
pruning LLaMA2-7B at a 50% ratio. As Figure 7 shown,

our method consistently outperform SliceGPT across the
different number of samples. Moreover, our method exhibits
the smallest perplexity variation as the number of samples
increasing, making it more robust compared to SliceGPT.

Figure 7. Robustness to calibration samples in the LLaMA2-7B
with 50% pruning ratio.

4.6. Dependency on Calibration Dataset

Different calibration datasets can affect the performance of
the pruned model. Therefore, it is important to evaluate
how different calibration datasets affect the performance
of different pruning methods. We use C4 and WikiText2
training datasets as different calibration datasets. Then, we
utilize different structured pruning methods to evaluate the
perplexity of the pruned LLaMA2-7B with 50% pruning
ratio on both C4 and WikiText2 test datasets. In Figure 8,
regardless of the choice of calibration dataset, the perfor-
mance variation of our method is much smaller than that of
other methods. This indicates that our approach does not
rely on the selection of the calibration dataset compared to
other methods. Furthermore, regardless of the chosen test
dataset, our method consistently outperforms other pruning
methods.

(a) Perplexity results on Wiki-
Text2.

(b) Perplexity results on C4.

Figure 8. Perplexity results of LLaMA2-7B with 50% pruning ratio
on the different calibration dataset.

4.7. Ablation Studies

In this section, we conduct comprehensive ablation studies
to evaluate the effectiveness of our proposed method. Specif-
ically, we compare various evaluation criteria for quantify-
ing module interactions and different search methods, ana-
lyze the performance differences between multi-structured
units and single-structured unit pruning, and assess the im-
pact of dynamic versus static pruning ratio allocation strate-
gies on the performance of the pruned model. The detailed
results of the ablation studies are provided in Appendix C.
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5. Conclusion
In this paper, we propose a a structured pruning framework
to simultaneously target different structure units of LLMs
with dynamic ratios. Our method can effectively balance the
trade-off between model performance and inference speed.
We validate our proposed method across multiple LLMs and
performe a comprehensive comparison with various struc-
tured pruning methods. The experiment results demonstrate
that our method can effectively maintain model performance
after pruned and enhance inference efficiency.
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A. Implementation Details
A.1. Detailed Pruning Process for LLMs Using the Multi-Head Attention Mechanism

The LLaMA2-7B, LLaMA2-13B, and Vicuna models employ a multi-head attention mechanism (MHA), where each
attention head is comprised of a set of rows or columns from the weight matrix, functioning as an independent computational
unit. Directly pruning the rows or columns of the weight matrix in the attention layer can compromise the integrity of
the attention heads. Thus, to address this, we treat entire attention heads as the fundamental pruning units to preserve the
functionality and coherence of the attention mechanism.

We first prune the attention heads in the attention layer. As illustrated in Figure 9a, after multiplying the absolute value
of the weight matrix by the L2 norm of the activation value, we perform an averaging operation on the columns of each
attention head within the output projection weight matrix Wo, and then compute the information entropy for these averaged
values. Based on the calculated information entropy, we cluster and sort the attention heads. The cluster with the smallest
average information entropy are pruned. When the columns of Wo are pruned, the corresponding rows in Wq (query
projection weight matrix), Wk (key projection weight matrix), and Wv (value projection weight matrix) should also be
pruned accordingly, as illustrated in Figure 9b. To achieve the target pruning ratio for each block, the remaining portion is
pruned in the MLP layer.

For the weight matrices in the MLP layer, we directly calculate the information entropy of the columns in Wdown (down-
projection weight matrix). After clustering and sorting the columns based on their information entropy, we prune the
smallest average entropy within each cluster. Consequently, the corresponding rows in Wup (up-projection matrix) and
Wgate (gate weight matrix) are also pruned to maintain structure consistency.

(a) Attention heads pruning for LLMs using MHA.

Attention Layer MLP Layer
(b) Pruning process for LLMs using MHA.

Figure 9. The detailed pruning process for LLMs using MHA. (a) Attention head pruning. (b) The pruning process for the attention layer
and MLP layer.
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A.2. Detailed Pruning Process for LLMs Using the Group-Query Attention Mechanism

Group-Query Attention mechanism (GQA) is a variant of the multi-head self-attention mechanism (MHA), designed to
enhance computational efficiency by reducing computation and storage requirements. In GQA, the query heads are divided
into G groups, with each group sharing a single key and value head. LLaMA2-70B, LLaMA3-8B and LLaMA3-70B
models use the GQA, therefore, different from Appendix A.1, we treat the group as the pruning unit as Figure 10a shown.
Consistent with Figure 9a, we calculate the information entropy of each group within the Wo, perform clustering, and prune
the cluster with the lowest information entropy. When the groups of Wo are pruned, the corresponding groups in Wq , and
the corresponding heads in Wk and Wv should also be pruned accordingly, as shown in Figure 10b. In order to reach the
desired pruning ratio for each block, the remaining portion is pruned in the MLP layer accordingly. For the weight matrix in
the MLP layer, the pruning process is consistent with that described in Appendix A.1.

(a) Attention heads pruning for LLMs using GQA.

Attention Layer MLP Layer
(b) Pruning process for LLMs using GQA.

Figure 10. The detailed pruning process for LLMs using GQA. Upper:Attention head pruning. Down: The pruning process for the
attention layer and MLP layer.
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B. Additional Experiment Results
In this section, we provide the more detailed zero-shot tasks results of the different LLMs .

Table 4. Zero-shot performance of the compressed LLaMA2-13B. Bold results highlight the best performance.

LLAMA2-13B PRUNING UNIT SPARSITY WINOGRANDE PIQA HELLASWAG ARC-E ARC-C AVG

DENSE - 0% 72.30 80.52 79.37 77.53 49.06 71.75
SPARSEGPT 2:4 50% 65.75 71.22 58.97 61.03 34.90 58.37

WANDA 2:4 65.35 74.86 62.07 65.19 36.86 60.86
SLICEGPT ROW&COLUMN

30%

65.59 64.96 52.35 53.54 36.86 54.65
LLM-PRUNER ROW&COLUMN 61.88 73.72 64.37 63.72 38.05 60.34
BLOCKPRUNE LAYER 63.22 75.08 65.28 66.37 40.02 61.99

SLEB BLOCK 56.43 74.65 62.11 63.09 37.37 58.72
OURS ALL 66.69 73.61 64.83 67.68 41.47 62.85

SLICEGPT ROW&COLUMN

40%

60.69 59.30 42.50 56.44 34.13 47.30
LLM-PRUNER ROW&COLUMN 54.70 68.23 50.50 49.45 31.40 50.85
BLOCKPRUNE LAYER 58.80 71.00 57.15 56.14 35.58 55.73

SLEB BLOCK 55.49 70.24 54.08 54.25 32.34 53.27
OURS ALL 62.90 69.48 54.25 59.05 34.56 56.04

SLICEGPT ROW&COLUMN

50%

55.17 55.22 34.33 37.08 24.49 41.25
LLM-PRUNER ROW&COLUMN 54.06 62.68 40.85 39.02 27.22 44.76
BLOCKPRUNE LAYER 54.62 61.48 45.08 41.71 28.16 46.02

SLEB BLOCK 55.01 62.95 43.29 42.76 26.11 46.02
OURS ALL 55.72 65.72 47.30 45.54 29.10 48.68

Table 5. Zero-shot performance of the compressed LLaMA2-70B. Bold results highlight the best performance.

LLAMA2-70B PRUNING UNIT SPARSITY WINOGRANDE PIQA HELLASWAG ARC-E ARC-C AVG

DENSE - 0% 77.98 82.7 83.82 80.98 57.42 76.57
SPARSEGPT 2:4 50% 74.82 78.62 76.11 77.86 52.47 71.97

WANDA 2:4 74.66 79.49 75.86 76.73 51.45 71.64
SLICEGPT ROW&COLUMN

30%

73.09 71.55 62.72 73.95 49.23 66.10
BLOCKPRUNE LAYER 70.40 78.02 72.50 69.78 43.09 66.75

SLEB BLOCK 69.53 77.80 73.57 72.01 44.03 67.38
OURS ALL 73.64 79.43 80.09 76.47 51.11 72.15

SLICEGPT ROW&COLUMN

40%

70.48 65.07 50.6 61.15 38.75 57.20
BLOCKPRUNE LAYER 65.27 74.48 65.99 61.91 38.05 61.15

SLEB BLOCK 66.61 75.03 66.76 66.62 39.68 62.94
OURS ALL 72.30 76.71 77.26 71.09 47.95 69.06

SLICEGPT ROW&COLUMN

50%

63.61 58.11 39.45 45.75 30.03 47.39
BLOCKPRUNE LAYER 60.38 69.15 58.49 51.56 34.04 54.72

SLEB BLOCK 61.25 70.29 57.67 58.00 35.58 56.55
OURS ALL 71.27 74.43 72.00 62.79 41.72 64.44
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Table 6. Zero-shot performance of the compressed Vicuna-7B. Bold results highlight the best performance.

VICUNA-7B PRUNING UNIT SPARSITY WINOGRANDE PIQA HELLASWAG ARC-E ARC-C AVG

DENSE - 0% 68.38 78.02 73.77 71.3 45.82 67.65
SPARSEGPT 2:4 50% 61.17 68.72 55.7 59.6 33.7 55.77

WANDA 2:4 62.75 71.6 57.14 61.07 35.07 57.52
SLICEGPT ROW&COLUMN

30%

59.83 63.87 48.99 49.24 31.74 50.73
LLM-PRUNER ROW&COLUMN 56.51 73.5 58.37 56.65 35.07 56.02
BLOCKPRUNER LAYER 57.3 71.49 56.98 58.42 33.36 55.51

OURS ALL 64.48 70.18 60.43 59.89 37.29 58.45
SLICEGPT ROW&COLUMN

40%

57.22 58.71 40.23 43.31 27.56 45.41
LLM-PRUNER ROW&COLUMN 51.62 67.85 47.6 46.97 32.59 49.32
BLOCKPRUNER LAYER 53.43 63.55 45.97 49.37 28.84 48.23

OURS ALL 58.64 65.78 50.63 53.32 30.97 51.87
SLICEGPT ROW&COLUMN

50%

50.28 53.26 32.67 34.76 23.98 38.99
LLM-PRUNER ROW&COLUMN 54.06 59.14 34.74 34.81 28.07 42.65
BLOCKPRUNER LAYER 47.43 58.76 36.76 42.51 28.24 42.74

OURS ALL 55.33 60.34 39.97 43.73 28.07 45.48

Table 7. Zero-shot performance of the compressed Vicuna-13B. Bold results highlight the best performance.

VICUNA-13B PRUNING UNIT SPARSITY WINOGRANDE PIQA HELLASWAG ARC-E ARC-C AVG

DENSE - 0% 71.59 79.05 77.51 74.87 50.68 70.74
SPARSEGPT 2:4 50% 64.48 72.14 60.08 63.72 37.03 59.49

WANDA 2:4 67.17 74.10 64.07 66.20 42.66 62.84
SLICEGPT ROW&COLUMN

30%

65.51 64.20 50.51 56.94 33.62 54.15
LLM-PRUNER ROW&COLUMN 59.19 77.04 65.48 63.89 40.61 61.24
BLOCKPRUNER LAYER 62.43 73.67 64.90 64.94 40.78 61.34

OURS ALL 65.35 73.39 63.04 69.99 40.44 62.44
SLICEGPT ROW&COLUMN

40%

58.72 58.27 38.22 44.49 27.05 45.35
LLM-PRUNER ROW&COLUMN 54.38 72.69 57.00 51.88 34.73 53.99
BLOCKPRUNER LAYER 58.88 67.68 53.99 54.21 34.90 53.93

OURS ALL 60.62 69.10 53.39 63.22 36.52 56.56
SLICEGPT ROW&COLUMN

50%

53.28 54.52 31.73 35.19 24.40 39.82
LLM-PRUNER ROW&COLUMN 52.09 65.07 44.59 39.06 28.75 45.91
BLOCKPRUNER LAYER 52.41 62.02 40.81 42.59 28.24 45.21

OURS ALL 56.12 64.04 45.10 50.08 32.25 49.52
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Table 8. Zero-shot performance of the compressed LLaMA3-8B. Bold results highlight the best performance.

LLAMA3-8B PRUNING UNIT SPARSITY WINOGRANDE PIQA HELLASWAG ARC-E ARC-C AVG

DENSE - 0% 72.69 80.79 79.19 77.69 53.41 72.75
SPARSEGPT 2:4 50% 64.25 68.77 55.40 59.34 32.85 56.12

WANDA 2:4 59.67 65.94 47.93 50.04 28.67 50.45
SLICEGPT ROW&COLUMN

30%

58.72 57.78 40.68 45.20 28.75 46.22
LLM-PRUNER ROW&COLUMN 53.67 69.15 45.06 43.31 27.65 47.76
BLOCKPRUNER LAYER 54.54 67.03 46.54 49.41 27.99 49.10

SLEB BLOCK 61.01 67.74 55.53 47.10 32.25 52.72
OURS ALL 60.30 69.10 54.40 54.76 33.19 54.34

SLICEGPT ROW&COLUMN

40%

52.49 53.59 33.12 35.94 22.61 39.55
LLM-PRUNER ROW&COLUMN 51.54 62.73 36.25 36.87 23.46 42.17
BLOCKPRUNER LAYER 50.67 58.76 36.18 36.41 24.06 41.21

SLEB BLOCK 51.54 60.88 40.33 40.78 26.88 44.02
OURS ALL 56.27 64.20 44.74 46.51 27.30 47.80

SLICEGPT ROW&COLUMN

50%

50.04 52.23 29.18 31.31 21.67 36.88
LLM-PRUNER ROW&COLUMN 51.22 60.34 31.74 33.00 24.74 40.20
BLOCKPRUNER LAYER 48.62 55.22 29.12 30.01 21.59 36.91

SLEB BLOCK 50.67 55.98 31.54 31.19 24.74 38.82
OURS ALL 54.14 59.96 38.36 37.84 24.15 42.89

Table 9. Zero-shot performance of the compressed LLaMA3-70B. Bold results highlight the best performance.

LLAMA3-70B PRUNING UNIT SPARSITY WINOGRANDE PIQA HELLASWAG ARC-E ARC-C AVG

DENSE - 0% 80.35 84.55 84.88 85.86 64.33 79.94
SPARSEGPT 2:4 50% 75.37 78.35 72.30 78.37 51.37 71.15

WANDA 2:4 71.67 79.27 73.33 76.01 49.06 69.86
SLICEGPT ROW&COLUMN

30%

69.14 65.72 55.01 64.69 42.58 59.42
SLEB BLOCK 74.59 77.48 74.03 72.90 48.12 69.42

BLOCKPRUNER LAYER 71.90 76.12 73.81 69.40 47.44 67.73
OURS ALL 75.53 80.69 80.38 77.78 52.05 73.28

SLICEGPT ROW&COLUMN

40%

61.09 58.49 43.93 47.85 32.85 48.81
SLEB BLOCK 68.75 71.93 63.49 60.65 37.63 60.48

BLOCKPRUNER LAYER 66.38 71.06 64.76 59.60 37.80 59.91
OURS ALL 72.93 77.26 73.27 73.23 47.44 68.82

SLICEGPT ROW&COLUMN

50%

54.70 54.95 33.11 36.74 25.77 41.05
SLEB BLOCK 56.20 66.92 49.99 48.32 29.27 50.13

BLOCKPRUNER LAYER 55.49 64.85 51.09 45.45 30.29 49.43
OURS ALL 68.82 72.63 61.72 61.78 39.33 60.85
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C. Ablation Studies
C.1. Ablation Study on Criteria for Quantifying Module Interactions

We use the Frobenius norm (He et al., 2017) instead of transfer entropy as the new criterion to measure the change of LLM
hidden state. We conduct evaluations on five different zero-shot datasets. As shown in Table 10, TE consistently preserves
better model performance compared to the Frobenius norm.

Table 10. Different criteria for quantifying block interactions. Bold results highlight the best performance.

LLAMA2-7B PRUNING UNIT SPARSITY WINOGRANDE PIQA HELLASWAG ARC-E ARC-C AVG

FROBENIUS NORM ALL 50% 54.54 61.75 39.29 42.05 26.28 44.78
TE(OURS) ALL 53.83 61.81 40.46 43.94 27.56 45.52

C.2. Ablation Study on Search Method

We compare Depth-First Search (DFS) with an intuitive solution - greedy search. We observe greedy search tends to
prioritize removing entire blocks during the compensation phase to quickly satisfy the remaining pruning ratio in Equation (5).
However, due to the lack of a backtracking mechanism, greedy search selects the seemingly optimal option at each step but
is prone to getting stuck in local optima. Our ablation study in Table 11 further supports this observation, demonstrating that
DFS consistently outperforms greedy search in terms of pruning effectiveness.

Table 11. Different search methods. Bold results highlight the best performance.

LLAMA2-7B PRUNING UNIT SPARSITY WINOGRANDE PIQA HELLASWAG ARC-E ARC-C AVG

GREEDY SEARCH ALL 50% 53.67 61.53 39.96 41.75 27.22 44.82
DFS ALL 53.83 61.81 40.46 43.94 27.56 45.52

C.3. Ablation Study on Hierarchical Pruning

In this ablation study, we adopt the Hybrid pruning strategy proposed in Sec. 3.2 to jointly prune both blocks and layers,
thereby implementing hierarchical pruning. However, for the remaining blocks, we implement the approach described in
Sec. 3.3, pruning only the rows&columns of the weight matrices without applying dynamic ratio allocation. Instead, a
uniform pruning ratio is used across all of them. To compare with pruning single structure unit, without using hierarchical
pruning, we apply a uniform pruning ratio across all blocks and prune only the entire rows&columns of the weight matrices.
The corresponding results are shown in Table 12.

Table 12. Zero-shot performance of the Hierarchical Pruning. Bold results highlight the best performance.

LLAMA2-7B PRUNING UNIT SPARSITY WINOGRANDE PIQA HELLASWAG ARC-E ARC-C AVG

SINGLE UNIT ROW&COLUMN 50% 51.07 55.60 29.60 33.67 24.15 38.81
MULTIPLE UNITS ALL 55.09 61.32 40.50 43.22 27.13 45.45

C.4. Ablation Study on Dynamic Ratio

To validate the effectiveness of dynamic pruning ratios, we build upon the Hierarchical Pruning setup from Appendix C.3 by
incorporating dynamic ratio assignment. The corresponding ablation results are presented in Table 13.

Table 13. Zero-shot performance of different pruning metrics. Bold results highlight the best performance.

LLAMA2-7B PRUNING UNIT SPARSITY WINOGRANDE PIQA HELLASWAG ARC-E ARC-C AVG

STATIC RATIO ALL 50% 55.09 61.32 40.50 43.22 27.13 45.45
DYNAMIC RATIO ALL 53.83 61.81 40.46 43.94 27.56 45.52
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