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Abstract

Abstract meaning representation (AMR) high-001
lights the core semantic information of text in a002
graph structure. Recently, pre-trained language003
models (PLMs) have advanced tasks of AMR004
parsing and AMR-to-text generation. How-005
ever, PLMs are typically pre-trained on tex-006
tual data, thus are sub-optimal for modeling007
structural knowledge. To this end, we investi-008
gate graph self-supervised training to improve009
the structure awareness of PLMs over AMR010
graphs. In particular, we introduce two graph011
auto-encoding strategies for graph-to-graph pre-012
training and four tasks to integrate text and013
graph information during pre-training. We fur-014
ther design a unified framework to bridge the015
gap between pre-training and fine-tuning tasks.016
Experimental results on both AMR parsing and017
AMR-to-text generation tasks show the supe-018
riority of our model. To our knowledge, we019
are the first to consider pre-training on AMR020
graphs.021

1 Introduction022

Abstract meaning representation (AMR; Banarescu023

et al. (2013)) is a semantic structure formalism.024

It represents the meaning of a text in a rooted di-025

rected graph, where nodes represent basic semantic026

units such as entities and predicates, and edges027

represent their semantic relations. One example028

is shown in Figure 1(a), with the corresponding029

sentence in Figure 1(b). Serving as a structural030

representation, AMR has been shown useful for031

NLP tasks such as text summarization (Liu et al.,032

2015; Liao et al., 2018), machine translation (Song033

et al., 2019), information extraction (Huang et al.,034

2016; Zhang and Ji, 2021) and dialogue systems035

(Bai et al., 2021).036

There are two fundamental NLP tasks concern-037

ing AMR, namely AMR parsing (Flanigan et al.,038

2014; Konstas et al., 2017; Lyu and Titov, 2018;039

Guo and Lu, 2018; Zhang et al., 2019a; Cai and040
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Figure 1: Illustration of AMR tasks: (a) an AMR graph;
(b) a corresponding sentence.

Lam, 2020; Bevilacqua et al., 2021) and AMR-to- 041

text generation (Konstas et al., 2017; Song et al., 042

2018; Zhu et al., 2019; Zhao et al., 2020; Bai et al., 043

2020; Ribeiro et al., 2021a). As shown in Figure 1, 044

the former transforms a textual input (e.g., a sen- 045

tence) into a corresponding AMR structure, and 046

the latter transforms an AMR input into a fluent 047

and grammatical sentence that conveys the same 048

meaning. A common challenge to both tasks is that 049

AMR exists in the form of a graph structure, which 050

is difficult for neural models to learn with limited 051

human-curated data. 052

Recently, large-scale pre-trained sequence-to- 053

sequence (seq2seq) language models (Lewis et al., 054

2020; Raffel et al., 2020) have been shown use- 055

ful for both tasks above. The basic idea is to lin- 056

earize AMR structures into a sequence form, so 057

that both AMR parsing and AMR-to-text genera- 058

tion can be solved as standard seq2seq tasks, using 059

a pre-trained language model fine-tuned on task- 060

specific data. In this way, semantic knowledge 061

learned in self-supervised text-to-text (t2t) pre- 062

training can benefit both text-to-graph (t2g) and 063

graph-to-text (g2t) transformation. 064

Intuitively, structural knowledge about AMR can 065

be a useful complement to semantic knowledge 066

from text. A natural question that arises is whether 067

similar self-supervision strategy can be useful for 068

AMR graphs, so that graph-to-graph (g2g) denoise 069

auto-encoder training can serve as effective addi- 070

tion to t2t pre-training, before a model is fine- 071

tuned on t2g and g2t tasks. We investigate this 072

problem in this paper. In particular, there are three 073
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specific questions of interest. First, as mentioned074

before, is g2g pre-training complementary to t2t075

pre-training? Second, what is the most effective076

way to combine t2t and g2g training? Third, is077

silver data useful for AMR self-supervision train-078

ing, and what is the most effective way of making079

use of such data?080

Taking BART (Lewis et al., 2020) as the seq-081

to-seq model, we introduce two strategies for g2g082

pre-training and propose four tasks to combine t2t083

and g2g training. To reduce the gap among dif-084

ferent pre-training tasks and between pre-training085

and fine-tuing, we unify all pre-training tasks and086

fine-tuning tasks in a general framework. Results087

on standard benchmarks show that 1) graph pre-088

training achieves significant improvements over the089

state-of-the-art systems; 2) silver data are useful090

for our pre-training framework; 3) our pre-training091

framework is a better way than fine-tuning to make092

use of silver data and; 4) our model is more robust093

than existing systems in unseen domains. Our final094

models give the best reported results on both pars-095

ing and generation tasks, with a large margin of096

improvement over the previous best results. To our097

knowledge, we are the first to consider graph-to-098

graph self-supervised training on AMR structures.099

We release code at xxx.100

2 Related Work101

AMR Parsing. Early AMR parsing systems use102

statistical methods (Flanigan et al., 2014, 2016;103

Wang et al., 2015a,b). With the advance in deep104

learning, various neural models are developed for105

AMR parsing. Those models can be categorized106

into: 1) neural transition-based parsers (Ballesteros107

and Al-Onaizan, 2017; Liu et al., 2018; Fernan-108

dez Astudillo et al., 2020; Zhou et al., 2021); 2)109

sequence-to-graph parsers (Zhang et al., 2019a;110

Lyu et al., 2020; Cai and Lam, 2020) and; 3)111

sequence-to-sequence parsers (Konstas et al., 2017;112

Peng et al., 2017, 2018; Zhang et al., 2019b; Xu113

et al., 2020; Bevilacqua et al., 2021). Recently, pre-114

training techniques have significantly boosted the115

performance of AMR parsing. For example, Lyu116

and Titov (2018), Zhang et al. (2019a,b) and Cai117

and Lam (2020) use BERT (Devlin et al., 2019)118

for sentence encoding; Bevilacqua et al. (2021)119

fine-tune BART for sequence-to-AMR generation.120

Xu et al. (2020) pre-train a model on three relevant121

seq2seq learning tasks before fine-tuning on AMR122

parsing. Similar to those methods, we consider123

using pre-trained models to improve the model ca- 124

pacity. However, while they use models pre-trained 125

on text, we pre-train a seq2seq model also on AMR 126

graphs. In addition, our method does not require 127

information from external tasks. 128

AMR-to-Text Generation. On a coarse-grained 129

level, we can categorize existing AMR-to-text gen- 130

eration approaches into two main classes: Graph- 131

to-sequence models adopt a graph encoder to pro- 132

cess an AMR graph and use a sequence decoder 133

for generation (Song et al., 2018; Beck et al., 2018; 134

Damonte and Cohen, 2019; Zhu et al., 2019), and 135

sequence-to-sequence models linearize an AMR 136

graph into a sequence and solve it as a seq2seq 137

problem using randomly initialized (Konstas et al., 138

2017) or pre-trained models (Mager et al., 2020; 139

Ribeiro et al., 2021a; Bevilacqua et al., 2021). 140

This work follows a seq2seq manner, but we use 141

a graph-aware encoder. The closest to our work, 142

Ribeiro et al. (2021b) integrate AMR structures 143

into pre-trained T5 (Raffel et al., 2020) by using 144

adapters (Houlsby et al., 2019) for AMR-to-text 145

generation. However, they do not pre-train AMR 146

structures, and their method can not solve both 147

parsing and generation tasks as they require full 148

AMR structure in the encoder as the input. 149

Graph Self-supervised Learning. Kipf and 150

Welling (2016) introduce a variational graph auto- 151

encoder to allow self-supervised learning on graph- 152

structured data. Hu et al. (2020a,b) propose lo- 153

cal and global learning strategies to pre-train a 154

graph neural network on large-scale protein ego- 155

networks, academic graphs and recommendation 156

data. Lu et al. (2021) enhance the graph learning 157

strategies of Hu et al. (2020b) with dual adapta- 158

tions. While existing work considers graph neural 159

networks, we pre-train a seq2seq model on AMR 160

graphs. In addition, we jointly pre-train on graphs 161

and text for graph-text correlation modeling. In 162

contrast, existing work pre-trains models on graphs 163

and in isolation with text pre-training. To our 164

knowledge, we are the first to consider AMR as a 165

graph pre-training target. 166

3 Method 167

We take BART (Lewis et al., 2020) as the basic 168

seq2seq model for both AMR parsing and genera- 169

tion (Section 3.1), adding graph pre-training (Sec- 170

tion 3.2) and unified pre-training (Section 3.3). 171
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Figure 2: Illustration of two graph pre-training strategies: 1) node/edge level denoising (a→ b); 2) sub-graph level
denoising (c→ b). Two transformations can be composed.

3.1 BART172

Bidirectional and Auto-Regressive Transformers173

(BART) is a pre-trained denoising auto-encoder174

which is implemented as a sequence-to-sequence175

model based on the standard Transformer (Vaswani176

et al., 2017) architecture. BART is trained by learn-177

ing to reconstruct the original text based on a cor-178

rupted text which is generated by several noising179

functions. Typically, BART has 5 noising func-180

tions: 1) Token Masking. Tokens are randomly181

replaced by [mask] elements; 2) Token Deletion.182

Tokens are randomly deleted from the input; 3)183

Text Infilling. Text spans are randomly replaced by184

a single [mask] token; 4) Sentence Permutation.185

Text is divided into segments and then shuffled;186

5) Document Rotation. A document is rotated to187

start with a random token. In fine-tuning, BART188

takes a complete text as input and maps it into a189

task-specific output sequence.190

We linearize an AMR graph into a sequence, so191

that both AMR parsing and AMR-to-text genera-192

tion can be performed using a seq2seq model. In193

addition, it allows pre-training of AMR structures194

using BART. Following Konstas et al. (2017), we195

adopt the depth-first search (DFS) algorithm which196

is closely related to the linearized natural language197

syntactic trees (Bevilacqua et al., 2021). For in-198

stance, the AMR graph in Figure 1 is linearized199

into: possible :domain ( go :arg0 (200

boy ) ) :polarity ( negative ) .201

To deal with the AMR symbols, we follow previ-202

ous work (Bevilacqua et al., 2021) to expand the203

vocabulary by adding all relations and frames. In204

addition, to distinguish between text and AMR205

graphs, we add two special tokens <g> and </g>206

to mark the beginning and end of AMR graphs.207

3.2 Pre-training on AMR graphs208

We introduce two self-supervised training strate-209

gies to further pre-train a BART on AMR graphs.210

As shown in Figure 2(a), the node/edge level de-211

noising strategy encourages the model to capture 212

local knowledge about nodes and edges. The 213

graph level denoising strategy (Figure 2(c)) en- 214

forces the model to predict a sub-graph, thus fa- 215

cilitating graph-level learning. 216

1) Node/edge level denoising. We apply a noise 217

function on AMR nodes/edges to construct a noisy 218

input graph. In particular, the noise function is im- 219

plemented by masking 15% nodes and 15% edges 220

in each graph. As shown in Figure 2(a), the node 221

[go-01] and edge [:arg0] are replaced with 222

two [mask] tokens. 223

2) Sub-graph level denoising. This task aims to 224

predict the whole graph when giving part of the 225

graph. We randomly remove a sub-graph1 from 226

the graph and replace it with a [mask] token (see 227

Figure 2(c)). The masking probability is 0.35. 228

3.3 Unified Pre-training Framework 229

The above standard pre-training and fine-tuning 230

strategy is shown in Table 1(a), by using <s> and 231

<g> for differentiating text and graphic informa- 232

tion and structural information during pre-training. 233

However, the model does not fully learn the inter- 234

action between textual and AMR information dur- 235

ing pre-training. To further address this issue, we 236

consider a unified pre-training framework, which 237

combines text and AMR sequences as input to the 238

denoise auto-encoder. In such way, dynamic mask- 239

ing can be carried out on the text, AMR or both 240

ends, so that the model can learn to make use of one 241

source of information for inferring the other. This 242

can benefit both a parser and a generation model by 243

enforcing the learning of correspondence between 244

text and AMR structures. 245

In addition, as shown in Table 1, there is a gap be- 246

tween standard pre-training and fine-tuning phase 247

for AMR from/to text transduction. Specifically, 248

the input and output formats are same in the pre- 249

training phase (i.e., t̂2t and ĝ2g) but different 250

1A sub-graph has at least one edge and one node.
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Phase Task input output

(a)
Std. P.T. t̂2t <s> x1, ..[mask].., xn </s> <s> x1, x2, ..., xn </s>

ĝ2g <g> g1, ..[mask].., gm </g> <g> g1, g2, ..., gm </g>

Std. F.T. g2t <g> g1, g2, ..., gm </g> <s> x1, x2, ..., xn </s>
t2g <s> x1, x2, ..., xn </s> <g> g1, g2, ..., gm </g>

(b)
Unified P.T.

t̂g2t <s> x1, ..[mask].., xn </s> <g> [mask] </g> <s> x1, x2, ..., xn </s>
tĝ2g <s> [mask] </s><g> g1, ..[mask].., gm </g> <g> g1, g2, ..., gm </g>
t̂g2t <s> x1, ..[mask].., xn </s> <g> g1, g2, ..., gm </g> <s> x1, x2, ..., xn </s>
tĝ2g <s> x1, x2, ..., xn </s> <g> g1, ..[mask].., gm </g> <g> g1, g2, ..., gm </g>
t̂ĝ2t <s> x1, ..[mask].., xn </s> <g> g1, ..[mask].., gm </g> <s> x1, x2, ..., xn </s>
t̂ĝ2g <s> x1, ..[mask].., xn </s> <g> g1, ..[mask].., gm </g> <g> g1, g2, ..., gm </g>

Unified F.T. tg2t <s> [mask] </s> <g> g1, g2, ..., gm </g> <s> x1, x2, ..., xn </s>
tg2g <s> x1, x2, ..., xn </s> <g> [mask] </g> <g> g1, g2, ..., gm </g>

Table 1: Different pre-training and fine-tuning strategies. P.T.=pre-training, F.T.=fine-tuning. t/g denotes the
original text/graph. t̂/ĝ represents a noisy text/graph. t/g means an empty text/graph.

in the fine-tuing phase (i.e., t2g and g2t). This251

gap restrains models to make the best use of “pre-252

trained knowledge” in the fine-tuning phase. The253

unified pre-training framework can also benefit task254

fine-tuning by drawing closer the input and output255

formats between pre-training and fine-tuning.256

Formally, denoting the text and linearized graph257

sequence as t and g where t = {x1, x2, ..., xn}258

and g = {g1, g2, ..., gn}. t̂ and ĝ represent the259

noisy text and graph, respectively, and t and g refer260

to the empty text and graph, respectively. As shown261

in Table 1(b), we unify the input form for both pre-262

training and fine-tuning to tg. For consistency, all263

input sequences start with a text sequence and end264

with a graph sequence.265

Joint Text and Graph Pre-training. We introduce266

4 additional pre-training tasks to encourage infor-267

mation exchanging between graphs and text. As268

shown in Table 1(b), the additional tasks are:269

1) graph augmented text denoising (t̂g2t),270

where an AMR graph is taken as additional input271

to help masked text reconstruction;272

2) text augmented graph denoising (tĝ2g),273

where text helps masked graph reconstruction;274

3) noisy graph augmented text denoising275

(t̂ĝ2t), where the target text is generated based276

on a pair of masked text and masked graph;277

4) noisy text augmented graph denoising278

(t̂ĝ2g), where a target graph is generated based279

on a pair of masked text and masked graph.280

Dynamic masking rate. Different from standard281

masking (Devlin et al., 2019) which uses a static282

masking rate, we adopt a dynamic masking rate p283

for task t̂g2t and tĝ2g. Formally, at each step t,284

we calculate the masking probability p according285

to the following function:286

f(t) = max(1, 0.3 + t/T ∗ 0.8), (1)287

where 0.3 is the initial masking rate and p increase 288

with training step t. When p increases to 1.0, the 289

pre-training tasks are identical to fine-tuning tasks. 290

Unified Pre-training and Fine-tuning. In our 291

unified framework, fine-tuning tasks can be viewed 292

as having an empty text (or AMR graph) in the 293

original input, resulting in an input format of tg2t 294

for AMR-to-text generation and tg2g for AMR 295

parsing, respectively. In this way, pre-training and 296

fine-tuning tasks share the same input format, thus 297

facilitating knowledge transfer from pre-training to 298

fine-tuning. 299

3.4 Training 300

For pre-training, we jointly optimize the sum of the 301

following 6 objectives: 302

Lt̂2t = −logP (t|t̂,g),
Lĝ2g = −logP (g|t, ĝ),
Lt̂g2t = −logP (t|t̂,g),
Ltĝ2g = −logP (g|t, ĝ),
Lt̂ĝ2t = −logP (t|t̂, ĝ),
Lt̂ĝ2g = −logP (g|t̂, ĝ),
Ltotal = Lt̂2t + Lĝ2g + Lt̂g2t

+ Ltĝ2g + Lt̂ĝ2t + Lt̂ĝ2g,

(2) 303

where Lt̂2t and Lĝ2g are standard pre-training 304

loss on text (Section 3.1) and graph (Section 3.2), 305

respectively. Lt̂g2t,Ltĝ2g,Lt̂ĝ2t, and Lt̂ĝ2g de- 306

note 4 joint pre-training losses (Section 3.3). 307

For fine-tuning, the training objectives are: 308

Lamr2text = −logP (t|t,g),
Ltext2amr = −logP (g|t,g),

(3) 309

where Lamr2text and Ltext2amr are training loss 310

of AMR generation and AMR parsing, respectively. 311
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Datasets AMR2.0 AMR3.0 New3 TLP Bio

Train 36521 55635 - - -
Valid 1368 1722 - - -
Test 1371 1898 527 1562 500

Table 2: Benchmark AMR datasets.

4 Experiments312

We evaluate the effectiveness of our model on dif-313

ferent benchmarks and compare the results with314

state-of-the-art systems on both AMR parsing and315

generation tasks. In addition to standard supervised316

training settings, we evaluate the robustness of our317

model on a zero-shot domain adaptation setting.318

4.1 Datasets319

Table 2 shows the statistics of datasets. Follow-320

ing Bevilacqua et al. (2021), we use the AMR2.0321

(LDC2017T10) and AMR3.0 (LDC2020T02). We322

also evaluate the model performance on New3, The323

Little Prince (TLP) and Bio AMR (Bio) corpora.324

For pre-training, we additionally use 200k silver325

data parsed by SPRING (Bevilacqua et al., 2021).326

These data are randomly selected from Gigaword327

(LDC2011T07) corpus, which shares the same tex-328

tual source with AMR data.2329

4.2 Settings330

We follow Bevilacqua et al. (2021) in pre-331

processing and post-processing AMR graphs, ex-332

cept for omitting the recategorization step which333

does not consistently improve model performance334

in our preliminary experiments. Our model is built335

based on a vanilla BART, available at huggingface3336

library. The best model and hyper-parameters are337

selected by performance on the validation set. The338

detailed hyper-parameters are given in Appendix A.339

Metrics. We use a decoding beam size of 5 for340

generation. Following Bevilacqua et al. (2021),341

we evaluate on the AMR parsing benchmarks by342

using Smatch (Cai and Knight, 2013) and other343

fine-grained metrics.4 Regarding AMR-to-text, we344

use three common Natural Language Generation345

measures, including BLEU (Papineni et al., 2002),346

CHRF++ (Popović, 2017) and METEOR (Baner-347

jee and Lavie, 2005), tokenizing with the script348

provided with JAMR (Flanigan et al., 2014).349

2The data are available at https://catalog.ldc.
upenn.edu.

3https://github.com/huggingface/
transformers.

4Please refer to Appendix B for more details.

Setting Smatch BLEU Avg

baseline (BART) 82.7 42.5 62.6
+ t̂g2t 82.9 42.9 62.9
+ tĝ2g 83.1 42.6 62.9
+ t̂g2t, tĝ2g 83.1 42.8 63.0
+ t̂g2t, tĝ2g, tĝ2g 83.4 42.8 63.1
+ t̂g2t, tĝ2g, t̂g2t 83.1 45.3 63.2
+ t̂g2t, tĝ2g, tĝ2g, t̂g2t 83.3 45.0 63.2
+ t̂g2t, tĝ2g, t̂ĝ2g 83.2 43.0 63.1
+ t̂g2t, tĝ2g, t̂ĝ2t 83.1 44.2 63.7
+ t̂g2t, tĝ2g, t̂ĝ2g, t̂ĝ2t 83.2 44.0 63.6
+ ALL 83.6 45.6 64.1

Table 3: AMP parsing (Smatch) and AMR-to-text gen-
eration (BLEU) performance on AMR2.0.
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Figure 3: Development results: (a) comparison of stan-
dard pre-training and fine-tuning phase (baseline) and
our unified frameworks; (b) impact of silver data.

4.3 Baselines 350

For AMR parsing, we consider the following 351

baselines: 1) Lyu and Titov (2018; LyuT), a neu- 352

ral parser trained by jointly modeling alignments, 353

concepts and relations; 2) Zhang et al. (2019b; 354

Zhang+), a seq2seq approach which incrementally 355

builds an AMR graph via predicting a sequence of 356

semantic relations; 3) Zhou et al. (2020; Zhou+), 357

an aligner-free parser (Zhang et al., 2019a) en- 358

hanced by explicit dependency and latent struc- 359

tures; 4) Cai and Lam (2020a; CaiL), a graph-based 360

parser which enhances incremental sequence-to- 361

graph model with a graph-sequence iterative in- 362

ference mechanism; 5) Bevilacqua et al. (2021; 363

Bevilacqua+), a fine-tuned BART model which 364

predicts a linearized AMR graph from text. 365

For AMR-to-text generation, the baselines are: 366

1) Zhu et al. (2019; Zhu+), a Transformer-based 367

model that enhances self-attention with graph re- 368

lations; 2) Bai et al. (2020; Bai+), a graph en- 369

coder (Zhu et al., 2019) with a structural decoder 370

that jointly predicts the target text and the input 371

structure; 3) Mager et al. (2020; Mager+), a fine- 372

tuned GPT that predicts text based on a PENMAN 373

linearized AMR graph; 4) Bevilacqua et al. (2021; 374

Bevilacqua+), a fine-tuned BART that predicts text 375

5
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Model Smatch Unlab. NoWSD Con. Wiki. NER Reent. Neg. SRL

AMR 2.0
LyuT (2018) 74.4 77.1 75.5 85.9 75.7 86.0 52.3 58.4 69.8
Zhang+ (2019b)† 77.0 80.0 78.0 86.0 86.0 79.0 61.0 77.0 71.0
Zhou+ (2020)† 77.5 80.4 78.2 85.9 86.5 78.8 61.1 76.1 71.0
CaiL (2020a)† 80.2 82.8 80.0 88.1 86.3 81.1 64.6 78.9 74.2
Xu+ (2020)† 80.2 83.7 80.8 87.4 75.1 85.4 66.5 71.5 78.9
Bevilacqua+ (2021, base)† 82.7 85.1 83.3 89.7 82.2 90.0 70.8 72.0 79.1
Bevilacqua+ (2021, large)† 84.5 86.7 84.9 89.6 87.3 83.7 72.3 79.9 79.7
Bevilacqua+ (2021, large)†s 84.3 86.7 84.8 90.8 83.1 90.5 72.4 73.6 80.5
Ours (base)† 83.7 86.8 84.1 90.2 78.0 90.4 71.1 73.3 79.4
Ours (large)† 85.2 88.0 85.6 91.1 80.9 91.2 73.2 74.4 81.3
Ours (large)†s 85.2 88.1 85.6 90.8 80.9 90.9 73.8 75.7 81.5

AMR 3.0
Bevilacqua+ (2021, large)† 83.0 85.4 83.5 89.8 82.7 87.2 70.4 73.0 78.9
Bevilacqua+ (2021, large)†s 83.0 85.4 83.5 89.5 81.2 87.1 71.3 71.7 79.1
Ours (base)† 82.7 85.8 83.1 89.4 75.9 86.7 70.6 70.3 78.6
Ours (large)† 83.9 86.9 84.3 90.2 78.0 88.4 71.8 72.3 80.1
Ours (large)†s 83.8 86.9 84.2 90.1 77.8 88.3 71.7 72.3 80.2

Table 4: AMR parsing results on AMR2.0 and AMR3.0. s means using 200k silver data for fine-tuning. Model
marked with † rely on pre-trained models. The best result within each row block is shown in bold.

based on a DFS linearized AMR graph; 5) Ribeiro376

et al. (2021; Ribeiro+), a fine-tuned BART based377

on a PENMAN linearized AMR graph. For a fair378

comparison, we leave out baselines that rely on379

T5 (Ribeiro et al., 2021a,b), which has about two380

times more parameters than BART.381

4.4 Development Experiments382

Table 3 shows results on the validation set of383

AMR2.0 under different model settings, where we384

take a fine-tuned BART-based model (Bevilacqua385

et al., 2021) as our baseline.386

We first study the effectiveness of pre-training387

only on text and graphs. As shown in Table 3, both388

pre-training on the text (t̂g2t) and graph (tĝ2g)389

leads to better results, and combining them can390

give better results on both tasks. Also, adding joint391

pre-training tasks improves the performance. In392

particular, tĝ2g gives a Smatch improvement of393

0.7 for AMR paring, and t̂g2t reaches a BLEU394

of 45.3 for AMR generation, which is 2.8 points395

higher than baseline. Adding t̂ĝ2g gives a Smatch396

of 83.2 for AMR parsing, and t̂ĝ2t improves the397

baseline by 1.7 BLEU points for generation. By398

combining tĝ2g and t̂g2t, the performance in-399

crease by 0.6 and 2.5 points on AMR parsing and400

generation, respectively. Similar trend can be ob-401

served by combining t̂ĝ2g and t̂ĝ2t. Finally, us-402

ing all 6 pre-training tasks, our model reach a result403

of 83.6 Smatch and 45.6 BLEU, respectively. We404

also study the impact of two graph self-supervised405

training strategies, please refer to Appendix C.1. 406

Figure 3(a) compares the performance of stan- 407

dard pre-training (t̂2t, ĝ2g) and fine-tuning (t2g, 408

g2t) with our unified pre-training framework. The 409

unified framework gives better results than standard 410

versions on both tasks. This confirms our assump- 411

tion that our unified framework is helpful for reduc- 412

ing the gap between pre-training and fine-tuning 413

phases. Besides, by unifying pre-training and fine- 414

tuning format, our model converges faster than 415

baseline during fine-tuning (See Appendix C.2). 416

Figure 3(b) shows the model performance re- 417

garding different scales of silver data. Even without 418

silver data, the performance of our model is better 419

than the baseline, indicating that graph pre-training 420

is beneficial for downstream tasks by providing a 421

rich format of training data and more training ob- 422

jectives. When silver data are available, the perfor- 423

mance of both AMR parsing and generation tasks 424

increase with the scale of silver data, with a BLEU 425

increase by about 2 points. 426

4.5 Main Results 427

AMR parsing. Table 4 lists the result of different 428

models on AMR2.0 and AMR3.0. Among pre- 429

vious works, Bevilacqua+ (2021, large) achieves 430

the best results, consistently outperforming other 431

systems. Compared with the system of Bevilac- 432

qua et al. (2021), our model obtains significantly 433

(p<0.01) better Smatch scores in both base and 434

large settings on both datasets. In particular, our 435
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base model outperforms the Bevilacqua+ (2021,436

base) by 1.0 Smatch point on AMR2.0, and our437

large model obtains a Smatch of 85.2 and 83.9 on438

AMR2.0 and AMR3.0, respectively. To our knowl-439

edge, these are the best-reported results, showing440

the effectiveness of our method.441

Besides, Bevilacqua+ (2021, large)s uses silver442

data for fine-tuning, yet does not lead to consistent443

improvement over Bevilacqua+ (2021, large). In444

contrast, our large model gives 0.9 higher Smatch445

than Bevilacqua+ (2021, large)s. This indicates446

that our pre-training framework is a better way447

than fine-tuning to make use of silver data. The448

main reason is that our models are pre-trained using449

a denoising auto-encoding manner, which is less450

sensitive to silver (or noisy) data than fine-tuning.451

AMR-to-text generation. We report the results452

of different systems on AMR2.0 and AMR3.0 in453

Table 5. With the help of BART, Bevilacqua+454

(2021, large) obtains significantly better results455

than previous graph-to-sequence and GPT-based456

models. Compared with the system of Bevilacqua457

et al. (2021), our models (base and large) give sig-458

nificantly (p<0.001) better results in terms of all459

evaluation metrics. In particular, our base model460

achieves comparable or better performance than461

Bevilacqua+ (2021, large). Compared with Bevilac-462

qua+ (2021, large)s, our large model improves the463

performance by 3.2 and 2.7 points on AMR2.0 and464

AMR3.0, respectively. In addition, using silver465

data (same with pre-training) for fine-tuning leads466

to further improvements over our large model. This467

indicates that our pre-training methods are comple-468

mentary to fine-tuning on AMR generation task.469

Zero-shot Domain Adaption. We use the model470

trained on AMR2.0 to get predictions on out-of-471

domain testsets. Table 6 shows the results on AMR472

parsing and AMR-to-text generation tasks. Similar473

to in-domain experiments, our models achieve bet-474

ter results than existing methods. In particular, our475

base model can give comparable performance than476

Bevilacqua+ (2021, large), and our large model ob-477

tains the best-reported results. This indicates that478

our model is more robust to new domains, thanks479

to joint graph and text pre-training. Regarding480

different domains, our method achieves bigger im-481

provements on New3 than the other two domains.482

This is intuitive, as New3 is close to the domain483

of AMR training data, pre-training strengthens the484

model representation power on the domain.485

In addition, Bevilacqua+ (2021, large)s gives486

Model BLEU CH. MET.

AMR 2.0
Zhu+ (2019) 31.8 64.1 36.4
Bai+ (2020) 34.2 65.7 38.2
Mager+ (2020)† 33.0 63.9 37.7
Ribeiro+ (2021)† 43.5 - 42.9
Bevilacqua+ (2021, base)† 42.7 72.2 40.7
Bevilacqua+ (2021, large)† 45.3 73.5 41.0
Bevilacqua+ (2021, large)s† 45.9 74.2 41.8
Ours (base)† 46.4 74.1 41.2
Ours (large)† 49.1 75.8 42.5
Ours (large)†s 49.5 76.1 42.8

AMR 3.0
Bevilacqua+ (2021, large)† 44.9 72.9 40.6
Bevilacqua+ (2021, large)s† 46.5 73.9 41.7
Ours (base)† 46.7 73.8 41.2
Ours (large)† 49.2 75.4 42.3
Ours (large)†s 49.7 75.8 42.6

Table 5: AMR-to-text results on AMR 2.0 and AMR
3.0. CH.=CHRF++. MET.=METEOR. Model marked
with † rely on pre-trained models. The best result within
each row block is shown in bold.

Model New3 TLP Bio

AMR Parsing
Bevilacqua+ (2021, large) 73.7 77.3 59.7
Bevilacqua+ (2021, large)s 71.8 77.5 59.5
Ours (base) 74.9 77.8 59.5
Ours (large) 76.4 79.2 62.0

AMR-to-Text
Bevilacqua+ (2021, large) 38.8 25.4 18.7
Bevilacqua+ (2021, large)s 38.2 25.1 19.4
Ours (base) 40.6 25.7 17.4
Ours (large) 45.2 27.5 21.1

Table 6: Out of distribution performance on AMR pars-
ing (Smatch) and AMR-to-text (BLEU).

lower results than Bevilacqua+ (2021, large) in 487

New3 (both tasks) and TLP (only AMR-to-text 488

generation). In contrast, our model gives consistent 489

improvements on all 3 domains. This can be be- 490

cause fine-tuning leads to catastrophic forgetting of 491

distributional knowledge (Kirkpatrick et al., 2017). 492

4.6 Impact of Graph 493

Table 7 shows the effects of the graph size, graph 494

diameter and reentrancies on the performance. We 495

split the testset of AMR2.0 into different groups 496

and report the performance improvement of over 497

the system of Bevilacqua et al. (2021). All models 498

are trained on AMR2.0. We first consider graph 499

size, which records the number of nodes in an AMR 500

graph. Our model consistently outperforms the 501

baseline model on both tasks, with the performance 502

gap growing on larger graphs. This indicates that 503
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Graph Size 1-10 (522) 11-20 (556) >20 (293)
AMR parsing +0.3 +1.0 +0.8
AMR-to-text +0.9 +3.2 +2.1

Graph Depth 1-3 (422) 4-6 (667) >6 (282)
AMR parsing +0.8 +0.9 0.0
AMR-to-text +1.2 +2.3 +2.8

Reentrancies 0 (622) 1-3 (712) >4 (37)
AMR parsing +1.1 +0.6 0.0
AMR-to-text +2.0 +2.7 +0.4

Table 7: Performance improvements on AMR parsing
(Smatch) and AMR-to-text (BLEU).

our system is more powerful in dealing with larger504

graphs. The main reason is that our joint text and505

graph pre-training mechanism enhances the model506

with the ability to capture word or span level corre-507

lation between text and graph, which is helpful for508

dealing with long sequence and large graphs.509

The graph depth is defined as the longest dis-510

tance between the AMR node and root node. A511

graph with deeper depth has more long-range de-512

pendencies. For AMR parsing, the proposed model513

gives a better Smatch than the baseline on the first514

two groups of graphs, and a comparable score on515

graphs with a depth bigger than 6. For AMR gen-516

eration, our model consistently improves over the517

baseline on all graphs, and the improvements are518

bigger on deeper graphs. This shows that our model519

is better for learning more complex graphs. A pos-520

sible reason is that our graph masking strategies521

train the model to learn the relationships between a522

sub-graph and the remaining graph context, making523

it easier to understand deep graphs.524

Reentrancy is the number of nodes which has525

multiple parents. According to previous work (Da-526

monte and Cohen, 2019; Szubert et al., 2020), reen-527

trancies pose difficulties to both AMR parsing and528

AMR-to-text tasks. The more reentrancies, the529

harder the graph is to be understood. Our method530

gives significantly (p<0.01) better results on both531

tasks when the input graphs have less than 4 reen-532

trancies. For graphs with more than 4 reentrancies,533

the proposed model is 0.4 better on AMR-to-text534

generation task and comparable than baseline on535

AMR parsing task. This means that our system has536

an overall better ability on learning reentrancies.537

4.7 Case study538

Table 8 presents two examples for AMR parsing539

and generation tasks, respectively. We take the base540

model of Bevilacqua et al. (2021) as the baseline.541

Although generating a fluent sentence, the base-542

AMR: (h / have-purpose-91
:ARG1 (t / thing

:ARG1-of (e / expend-01
:ARG2 (t2 / transport-01)))

:ARG2 (a / amr-unknown))

Gold: What is the purpose of transportation-related
expenditures?

Baseline: What are the transportation expenses?
Ours: What is the purpose of transportation expenses?

Text: It’s getting hard to keep strong and keep
carrying on with life.

Gold: (g / get-03
:ARG1 (a / and

:op1 (k / keep-02
:ARG1 (s / strong-02))

:op2 (k2 / keep-02
:ARG1 (c / carry-on-02

:ARG1 (l / live-01))))
:ARG2 (h / hard-02))

Baseline: (z0 / get-03
:ARG1 (z1 / and

:op1 (z2 / keep-02
:ARG1 (z3 / strong-02))

:op2 (z4 / carry-on-02
:ARG1 (z5 / life))))

Ours:(z0 / get-03
:ARG1 (z1 / and

:op1 (z2 / keep-02
:ARG1 (z3 / strong-02))

:op2 (z4 / keep-02
:ARG1 (z5 / carry-on-02

:ARG1 (z6 / life))))
:ARG2 (z7 / hard-02

:ARG1 z1))

Table 8: Outputs generated by baseline and our model.

line model omits important semantic unit “have- 543

purpose-91” in the first example. Also, in the sec- 544

ond, the concept “hard” is ignored by baseline in 545

the generated AMR graph. In contrast, our system 546

preserves all semantic information from the input. 547

This shows that our model generates more faithful 548

output than baseline. The reason can be attributed 549

to the modeling of correspondence between text 550

and AMR graph during pre-training. We give more 551

examples for both tasks in Table 11 and Table 12, 552

please refer to Appendix C.3 for more details. 553

5 Conclusion 554

We investigated pre-training of AMR graphs as a 555

complement to text pre-training for AMR parsing 556

and generation tasks, considering a novel unified 557

framework with dual graph and text masking. Re- 558

sults showed that graph pre-training is highly ef- 559

fective for both parsing and generation, and is a 560

more effective way of making use of silver data 561

compared with fine-tuning. Our methods give the 562

best results on multiple benchmarks. 563
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Param. Name Value

Pre-training
Batch Size 32
Optimizer AdamW
Learning Rate (lr) 5e-5
Lr Scheduler inverse_sqrt
Warmup Step 2,500
Total Step 100,000
Extended Vocabulary Size 53,843
Max Sequence Length 512
Mix Precision fp16 (O1)
Number of Parameters 142M (base), 409M (large)
Training Time 13h (base), 70h (large)

Fine-tuning (AMR parsing)
Batch Size 8
Optimizer AdamW
Learning Rate (lr) 3e-5 (base), 1e-5 (large)
Lr Scheduler constant
Warmup Step 0
Total Epoch 20
Early Stop 5
Max Sequence Length 512
Beam Size 5
Length Penalty 1.0
Label Smoothing 0
Mix Precision fp16 (O1)
Training Time 6h (base), 12h (large)

Fine-tuning (AMR2text)
Batch Size 8
Optimizer AdamW
Learning Rate (lr) 1e-5 (base), 3e-6 (large)
Lr scheduler constant
Warmup Step 0
Total Epoch 20
Early Stop 5
Max Sequence Length 512
Beam Size 5
Length Penalty 1.0
Label Smoothing 0
Mix Precision fp16 (O1)
Training Time 3h (base), 6h (large)

Table 9: Hyper-parameters of our models on Pre-
training and Fine-tuning.

A Model Hyper-Parameters900

Table 9 lists all model hyper-parameters used for901

our experiments. We implement our model based902

on Pytorch and Huggingface Transformers. The903

pre-processed data, source code and pre-trained904

models will be released at xxx.905

B Fine-grained Evaluation Metric for906

AMR Parsing907

The Smatch score (Cai and Knight, 2013) measures908

the degree of overlap between the gold and the909

prediction AMR graphs. It can be further broken910

into different sub-metrics, including:911

• Unlabeled (Unlab.): Smatch score after re-912

moving edge-labels913

Setting AMR parsing AMR-to-text

Full Model 83.6 45.6
- Node/edge masking 83.4 45.1
- Sub-graph masking 83.1 44.7

Table 10: Comparison of two masking strategies.

• NoWSD: Smatch score after ignoring Prop- 914

bank senses (e.g. go-01 vs go-02) 915

• Concepts (Con.): F -score on the concept iden- 916

tification task 917

• Wikification (Wiki.): F -score on the wikifica- 918

tion (:wiki roles) 919

• Named Entity Recognition (NER): F -score 920

on the named entities (:name roles). 921

• Reentrancy (Reen.): Smatch score on reen- 922

trant edges. 923

• Negation (Neg.): F -score on the negation de- 924

tection (:polarity roles). 925

• Semantic Role Labeling (SRL): Smatch score 926

computed on :ARG-i roles. 927

C More Experimental Results 928

C.1 Ablation Study of Graph Masking 929

Strategies 930

Table 10 shows an ablation study on two graph 931

masking strategies (in Section 3.2). We use our 932

base model as the baseline and evaluate the perfor- 933

mance after removing the node/edge masking or 934

the sub-graph masking task. Without the node/edge 935

masking task, the performance decreases on both 936

AMR parsing and AMR-to-text generation tasks. 937

The performance drop is larger when removing the 938

sub-graph masking task, with a decrease of by 0.5 939

Smatch and 0.9 BLEU, respectively. 940

C.2 The effect of our pre-training framework 941

Figure 4 compares the learning curve between our 942

system (fine-tuning from our pre-trained model) 943

and baseline (fine-tuning from vanilla BART) on 944

AMR2.0 devset.5 It can be observed that our sys- 945

tem has a initial BLEU score of 26.0, which is sig- 946

nificantly (p< 0.001) better than the baseline. This 947

confirm that our unified framework can reduce the 948

gap between pre-training and fine-tuning. In ad- 949

dition, the training curve of the proposed model 950

5We use the same learning rate and optimizer.
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Figure 4: The learning curve of baseline and our system
on AMR-to-text generation task.

converges faster while the BLEU score is better951

than the baseline. This indicates that our model has952

a larger capacity than baseline.953

C.3 Case Study954

Table 11 presents two cases of AMR parsing. We955

compare the model generated outputs ( base model956

of (Bevilacqua et al., 2021) and our base model957

model) and the gold output given the same input958

sentence. As shown in the first example, the base-959

line model omits the semantic unit “hard”, thus960

generates an incomplete AMR graph of a different961

meaning compared with the input sentence. In con-962

trast, our system successfully preserves the concept963

“hard” and transfer the semantic relations correctly.964

In the second example, the clause “they can help965

you” in the input text is a modification of “if ”. We966

see that in the output AMR graph of the baseline967

model, clause “they can help you” is misconnected968

with “tell”, resulting in the meaning of “they tell969

you they can help you”. In contrast, our system pre-970

serves all semantic units and connects nodes with971

correct relations. This shows that our method is972

better than baseline in “translating” core semantics,973

thank to the modeling of correspondence between974

text and graph during pre-training.975

Table 12 lists two AMR graphs and the corre-976

sponding outputs of two different AMR-to-text sys-977

tems. In the first example, although the baseline978

generates a fluent sentence, it ignores the concept979

“have-purpose-91”, resulting in that the generated980

sentence is of a different meaning compared with981

the input graph. Regarding to the second AMR982

graph, “before” modifies the phrase “won many983

championships”. However, “before” is used to984

modified the phrase “participating in international985

competitions” in the baseline output. Compared986

Text#1: It’s getting hard to keep strong and keep
carrying on with life.

Gold:
(g / get-03

:ARG1 (a / and
:op1 (k / keep-02

:ARG1 (s / strong-02))
:op2 (k2 / keep-02

:ARG1 (c / carry-on-02
:ARG1 (l / live-01))))

:ARG2 (h / hard-02))

Baseline:
(z0 / get-03

:ARG1 (z1 / and
:op1 (z2 / keep-02

:ARG1 (z3 / strong-02))
:op2 (z4 / carry-on-02

:ARG1 (z5 / life))))

Ours:
(z0 / get-03

:ARG1 (z1 / and
:op1 (z2 / keep-02

:ARG1 (z3 / strong-02))
:op2 (z4 / keep-02

:ARG1 (z5 / carry-on-02
:ARG1 (z6 / life))))

:ARG2 (z7 / hard-02
:ARG1 z1))

Text#2: If you tell people they can help you.

Gold:
(p / possible-01

:ARG1 (h / help-01
:ARG0 (p2 / person)
:ARG1 (y / you))

:condition (t / tell-01
:ARG0 y
:ARG2 p2))

Baseline:
(z0 / have-condition-91

:ARG2 (z1 / tell-01
:ARG0 (z2 / you)
:ARG1 (z3 / possible-01

:ARG1 (z4 / help-01
:ARG0 (z5 / they)
:ARG1 z2))

:ARG2 (z6 / person)))

Ours:
(z0 / possible-01

:ARG1 (z1 / help-01
:ARG0 (z2 / they)
:ARG1 (z3 / you))

:condition (z4 / tell-01
:ARG0 z3
:ARG2 (z5 / person)))

Table 11: Case study for AMR parsing.
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with the baseline, our system recovers all concepts987

and maps the modification relationship from the988

AMR graph to text correctly. This indicates that989

our model generates more faithful sentences than990

baseline.991
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AMR#1:
(h / have-purpose-91

:ARG1 (t / thing
:ARG1-of (e / expend-01

:ARG2 (t2 / transport-01)))
:ARG2 (a / amr-unknown))

Gold: What is the purpose of transportation-related expenditures?
Baseline: What are the transportation expenses?
Ours: What is the purpose of transportation expenses?

AMR#2:
(w / win-01

:ARG0 (p2 / person :wiki - :name (n / name :op1 "Fengzhu" :op2 "Xu"))
:ARG1 (c / championship-02

:ARG0 p2
:quant (m / many))

:time (b / before)
:part-of (c2 / compete-01

:mod (i / international)))

Gold: Fengzhu Xu has won many championships in international competitions before.

Baseline: Fengzhu Xu won many championships before participating in international competitions.

Ours: Fengzhu Xu has won many championships in international competitions before.

Table 12: Case study for AMR-to-text generation.
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