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ABSTRACT

Pre-trained encoders available online have been widely adopted to build down-
stream machine learning (ML) services, but various attacks against these encoders
also post security and privacy threats toward such a downstream ML service
paradigm. We unveil a new vulnerability: the Pre-trained Encoder Inference (PEI)
attack, which can extract sensitive encoder information from a targeted down-
stream ML service that can then be used to promote other ML attacks against the
targeted service. By only providing API accesses to a targeted downstream service
and a set of candidate encoders, the PEI attack can successfully infer which en-
coder is secretly used by the targeted service based on candidate ones. Compared
with existing encoder attacks, which mainly target encoders on the upstream side,
the PEI attack can compromise encoders even after they have been deployed and
hidden in downstream ML services, which makes it a more realistic threat. We
empirically verify the effectiveness of the PEI attack on vision encoders. we first
conduct PEI attacks against two downstream services (i.e., image classification
and multimodal generation), and then show how PEI attacks can facilitate other
ML attacks (i.e., model stealing attacks vs. image classification models and adver-
sarial attacks vs. multimodal generative models). Our results call for new security
and privacy considerations when deploying encoders in downstream services. The
code is submitted and will be released publicly.

1 INTRODUCTION

Recent advances of self-supervised learning (SSL) (Devlin et al., 2019; Radford et al., 2021; He
et al., 2020; Xu et al., 2021; Raffel et al., 2020; Chen et al., 2020b) and the availability of large
amounts of public unlabeled data have enabled the pre-training of powerful representation encoders.
These pre-trained encoders are usually first built by upstream suppliers who control sufficient com-
putational resources and then delivered through online model repositories (e.g., Hugging Face) or
Encoder-as-a-Service (EaaS) to downstream suppliers to help them quickly build their own machine
learning (ML) services. Specifically, one can simply use an encoder to encode downstream training
data to informative embeddings and train downstream models upon them with relatively little cost.
These downstream models are eventually provided as service APIs to end users.

Despite the success of this upstream pre-training, downstream quick-building paradigm, many at-
tacks also emerge to threaten pre-trained encoders and further compromise the security and privacy
of downstream ML services. These encoder attacks typically begin by compromising encoders in
the pre-training stage via poisoning (Carlini & Terzis, 2022) or backdooring (Jia et al., 2022). Then,
when an attacked encoder is deployed in a downstream ML service, it will enable the adversary to
manipulate the behavior of the downstream model (Liu et al., 2022a; Tao et al., 2023) or leak private
information of downstream data (Wen et al., 2024; Feng & Tramèr, 2024). To mitigate these attacks,
efforts have been made during the encoder pre-training stage to enhance the robustness of encoders
against adversaries (Noorbakhsh et al., 2024; Tejankar et al., 2023) or perform source tracing when
an attack has occurred (Lv et al., 2024; Cong et al., 2022; Dziedzic et al., 2022).

This paper focuses on a more challenging setting where a clean pre-trained encoder (i.e., not af-
fected by encoder attacks) has already been deployed into the targeted service and the adversary
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only has API access to this service. Under this setting, pervious poisoning/backdooring-based en-
coder attacks, which need to access and modify the pipeline of building downstream ML services, all
become invalid. In this sense, both encoders and downstream ML services seem to be much safer.
Unfortunately, we unveil a new class of encoder privacy attacks named Pre-trained Encoder
Inference (PEI) attack, showing that downstream services and their encoders are still vulner-
able to adversaries from the downstream side even under such a “safer setting”. As shown in
Figure 1, given a targeted downstream ML service, the goal of the new PEI attack is to infer what
pre-trained encoder is secretly used by the downstream model. Once the hidden encoder is revealed,
the adversary can exploit public APIs of the hidden encoder to facilitate other ML attacks against
the targeted downstream service such as model stealing or adversarial attacks more effectively.

API Access

①PEI Attack vs. Hidden Encoder

Targeted Serviceis using Encoder 𝑓∗

Hidden Encoder
𝑓∗

TargetedML Service

DownstreamModel
PEI Attack

TargetedML Service

DownstreamModel
Model Stealing AttackAdversarial Attack......

②PEI-assisted Attack vs. Targeted Service

Hidden Encoder
𝑓∗

PEI-assistedAttack

Adversary

Adversary

Figure 1: Illustration of how the PEI attack can threaten
downstream ML services. Step 1: Using the PEI attack
to reveal the encoder hidden in the targeted downstream
service. Step 2: Exploiting the revealed encoder to con-
duct other ML attacks, e.g., model stealing and adver-
sarial attacks, against the original targeted service.

To launch a PEI attack against a targeted
downstream ML service that is built upon
a hidden encoder f∗, we assume that
the adversary has API accesses to the
targeted service and a set E consisting
of several candidate pre-trained encoders
from online model repositories or EaaSs.
The goal of the PEI adversary is to infer:
(1) whether f∗ ∈ E and (2) which candi-
date from E is the hidden f∗. Realizing
the PEI attack relies on the observation
that for any certain encoder and a pre-
defined embedding, there exist samples
that look different from each other but
enjoy embeddings similar to that pre-
defined one only under such a certain
encoder. Under this observation, to in-
fer whether a given candidate encoder is
used by the targeted service, we propose
to first synthesize a series of PEI attack
samples via minimizing the difference of their embeddings and the pre-defined embedding un-
der this candidate encoder. Then, we evaluate whether these synthesized PEI attack samples can
make the targeted service produce a specified behavior determined by that pre-defined embedding.
Notably, our framework makes no assumptions about downstream tasks, and thus can work in a
downstream-task agnostic manner as long as the PEI attack samples are synthesized.

We conduct experiments on vision encoders used in two downstream tasks: image classification
and multimodal generation (i.e., the LLaVA model (Liu et al., 2023a;b)), to demonstrate the effec-
tiveness of the proposed PEI attack. For each targeted downstream service, we first conduct the
PEI attack against the hidden encoder and demonstrate that the PEI attack successfully reveals
hidden encoders in most targeted services, with a cost as low as an estimated $100 per candidate
encoder. Moreover, our attack never makes false-positive predictions, even when the correct hidden
encoder is not in the candidate set. Then, we study how the hidden encoder revealed by the PEI
attack can facilitate other ML attacks against the targeted service. For the image classification
service, we show that the PEI attack can improve model stealing attacks (Tramèr et al., 2016) in
both accuracy and fidelity by 2 ∼ 20 times. For the multimodal generative service, we analyze
how the revealed encoder can assist in synthesizing adversarial images to stealthily spread false
medical/health information through the targeted service.

Due to space limitations, discussions on related works are included in Appendix B.

2 PRELIMINARIES

2.1 PRE-TRAINED ENCODERS

A pre-trained encoder is a function f : X → E that can encode any sample x ∈ X to an infor-
mative embedding vector f(x). This powerful encoding ability can be used to facilitate build-
ing downstream ML services. Concretely, suppose there is a downstream task-specific dataset
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D = {(xi, yi)}|D|
i=1, where xi ∈ X is the i-th downstream sample and yi ∈ Y is its label. To build

an ML service to handle the downstream task, the service supplier will encode each downstream
sample xi to f(xi), and train a downstream model hθ on these encoded embeddings via solving
minθ

1
|D|

∑
(xi,yi)∈D ℓ(hθ(f(xi)), yi), where ℓ : Y × Y → R+ is a downstream task-dependent

loss function and θ is the downstream model parameter. After that, the downstream ML service will
be made online and provide API access to end users, where the API is powered by the composite
function hθ(f(·)) : X → Y . When a query x comes, the API will return hθ(f(x)) as the response.

2.2 THREAT MODEL

The threat model of the PEI attack consists of two parties: (1) the targeted downstream ML service
g : X → Y , and (2) the PEI adversary.

Targeted downstream ML service g. The targeted service can be seen as a composite function
g(·) := hθ(f

∗(·)), where f∗ is the encoder secretly used in the downstream service and hθ is the
downstream model trained following the pipeline described in Section 2.1. It is notable that this
targeted service g can only be accessed through APIs: for any query sample x from end-users, the
service will only return g(x) as the response. Other operations are not allowed.

Adversary’s goal. The goal of a PEI adversary is to reveal the encoder f∗ hidden by the targeted
service g. Concretely, suppose the adversary holds a set E = {f1, · · · , fN} consisting of N publicly
accessible pre-trained encoders that may from online model repositories or EaaSs. The adversary
aims to: (1) determine whether the hidden f∗ comes from the candidates set E, and (2) if it is
determined that f∗ ∈ E, infer which candidate fi ∈ E is the hidden f∗.

Adversary’s capabilities. We assume that the adversary has the following capabilities:

API access to the targeted service. The adversary can query the targeted service g with any sample
x and receive g(x) as the return. It is notable that the adversary has no prior knowledge about the
downstream model hθ and the hidden encoder f∗ and is not allowed to directly interact with or
modify the hidden encoder f∗.

API access to candidate encoders. For each candidate fi ∈ E, the adversary can query it with
any sample x and receive fi(x) as the return. However, the adversary could not access the model
parameter of fi. We argue that the size of the candidate set does not need be too large, as real-
world applications usually tend to use EaaSs/pre-trained encoders provided by a few reputable tech
companies (e.g., OpenAI, Hugging Face, Microsoft, and Google).

3 DESIGNING PRE-TRAINED ENCODER INFERENCE (PEI) ATTACK

3.1 INTUITION OF THE DESIGN

The high-level design of the PEI attack is motivated by the observation that for a certain encoder and
a pre-defined embedding, samples always exist that look different but enjoy embeddings similar to
that pre-defined one only under this encoder. Further, when the encoder is changed, the embeddings
of these samples will again become different. We named such kind of samples as PEI attack samples
corresponding to the certain encoder, and they will be the key ingredient of our attack framework.

The idea is that for a targeted downstream service that is built upon this certain encoder, the cor-
responding PEI attack samples are very likely to make the downstream model produce a specific
behavior determined by the pre-defined embedding. Besides, when the hidden encoder behind the
targeted service is not the aforementioned certain encoder, such a specific behavior is less likely to
be produced by the downstream model. Thus, the adversary can exploit this behavior discrepancy to
perform the PEI attack against downstream ML services.

3.2 GENERAL ATTACK FRAMEWORK

As explained before, finding PEI attack samples for different (candidate) encoders is a vital step
in the PEI attack. In our attack framework, we propose to synthesize such attack samples for each
encoder independently. This results in a two-stage PEI attack design: (1) PEI attack samples
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synthesis stage, and (2) hidden encoder inference stage. The overall implementation of the attack
is presented as Algorithm 1. We now introduce the two stages in detail.

PEI attack samples synthesis stage. In this stage, the adversary collects M1 samples {x(obj)
j }M1

j=1

named objective samples from public data domains. Then, for each encoder-sample pair (fi, x
(obj)
j )

where fi ∈ E is the i-th candidate encoder and x
(obj)
j is the j-th objective sample, the adversary

synthesizes a set of M2 PEI attack samples {x(atk)
i,j,k }

M2

k=1. Each x
(atk)
i,j,k for the pair (fi, x

(obj)
j ) is first

randomly initialized and then obtained via minimizing the below squared loss Li,j ,

Li,j(x
(atk)
i,j,k ) = ∥fi(x(atk)

i,j,k )− fi(x
(obj)
j )∥22. (1)

Intuitively, Eq. (1) aims to make the embeddings of the PEI attack sample x
(atk)
i,j,k and the objective

sample x
(obj)
j under the candidate encoder fi similar to each other in l2-distance. To minimize

Eq. (1), a naive solution is to use gradient descent methods. However, since our threat model only
assumes API access to the candidate encoder fi, the adversary cannot calculate first-order gradients
of Eq. (1), which makes simple gradient descent methods be invalid.

Hidden encoder inference stage. For the encoder f∗ hidden in the targeted downstream ML ser-
vice g(·) := hθ(f

∗(·)), the adversary exploits synthesized PEI attack samples to infer: (1) whether
f∗ ∈ E or not and (2) if so, which fi ∈ E is f∗. We argue that these two goals can be solved simul-
taneously. Concretely, we propose to first calculate N PEI scores ζ1, · · · , ζN for the N candidates,
where each ζi is calculated based on objective samples x

(obj)
1 , · · · , x(obj)

M1
and PEI attack samples

{x(atk)
i,j,k : j ≤M1, k ≤M2} of the candidate fi ∈ E as follows,

ζi =
1

M1M2

M1∑
j=1

M2∑
k=1

ℓsim

(
g(x

(atk)
i,j,k ), g(x

(obj)
j )

)
, (2)

where ℓsim : Y × Y → R+ is a task-dependent function that measures the similarity of behaviors
produced by the targeted service g. A larger output ℓsim(·, ·) means the corresponding two inputs are
more similar to each other. Among the N PEI scores, if there happens to be a single score, denoted
as ζi∗ , that is significantly higher than others, one can thus conclude that f∗ ∈ E and f∗ = fi∗ ,
otherwise conclude f∗ /∈ E. After that, the two PEI attack goals have been accomplished.

Based on the above analysis, the remaining task to complete the PEI attack is to find a way to assess
whether a given PEI score is truly significantly higher than others. Here we adopt a simple yet
efficient one-tailed z-test to realize our goal. Specifically, for each PEI score ζi, if the candidate
encoder fi is not the hidden one f∗, then the score ζi would be relatively low. As a result, we can
check whether ζi is significantly high by testing the following null hypothesis,

H
(i)
0 : The PEI score ζi is NOT calculated based on PEI attack samples for the hidden encoder f∗.

If H(i)
0 is rejected, then ζi will be determined to be significantly high and fi will be inferred as the

hidden f∗. We then construct the following statistic z-score to evaluate the null hypothesis,

zi =
(
ζi − E[ζi′ ]

N
i′=1

)
/
(
SD[ζi′ ]

N
i′=1

)
, (3)

where E[ζi′ ]Ni′=1 and SD[ζi′ ]
N
i′=1 are the mean and the sample standard deviation of the N candidate

PEI scores ζ1, · · · , ζN . If zi is above a chosen threshold, then the null hypothesis H
(i)
0 will be

rejected. We further assume that the distribution of PEI scores calculated based on non-hidden
encoders’ PEI attack samples can be approximated by a normal distribution. In this case, if we
chose zi > 1.7 as the rejection criterion, it will lead to a one-sided p-value, which is also the false-
positive rate, of 4.45%. Since such a p-value is smaller than the typical statistical significance level
(which is 5%), we thus set the criterion as zi > 1.7, leading to the following inference attack,

f̂∗ =

{
fi∗ (|{i : zi > 1.7}| = 1 and zi∗ > 1.7)
∅ (otherwise)

, (4)

where ∅ means that no candidate is inferred as the hidden encoder f∗ by the PEI attack.
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Algorithm 1 PEI Attack Framework

Input: Targeted downstream ML service g, candidate encoders f1, · · · , fN , objective samples
x
(obj)
1 , · · · , x(obj)

M1
, Downstream service behavior similarity function ℓsim.

Output: Encoder f̂∗ inferred via the PEI attack.
1: for i in 1, · · · , N do ▷ PEI Attack Samples Synthesis Stage Started
2: Synthesize {x(atk)

i,j,k }
M2

k=1 via first randomly initializing them and then minimizing Eq. (1)

based on fi, x
(obj)
j , and a zeroth-order optimizer.

3: end for
4: for i in 1, · · · , N do ▷ Hidden Encoder Inference Stage Started
5: Calculate the PEI score ζi following Eq. (2) based on g, fi, {x(obj)

j }M1
j=1 and

{x(atk)
i,j,k }

M1,M2

j=1,k=1.
6: end for
7: Calculate z1, · · · , zN following Eq. (3).
8: I ← {i : zi > 1.7}
9: if |I| = 1 then

10: return f̂∗ ← fi∗ ▷ i∗ is the only element in set I .
11: end if
12: return f̂∗ ← ∅

Comparison with existing works. We acknowledge that the idea of synthesizing data of similar
embeddings has also been adopted by (Lv et al., 2024) to design encoder watermarks that can be
verified in downstream services. However, their method is only a watermarking method, while the
PEI is a type of privacy attack against pre-trained encoders. It is also worth noting that (Lv et al.,
2024) is a white-box protection that requires accessing full parameters of pre-trained encoders to
inject watermarks, while our PEI attack is a black-box attack that can work as long as black-box
accesses to candidate encoders and targeted downstream services are provided.

3.3 PEI ATTACK SAMPLES SYNTHESIS FOR VISION ENCODERS

Finally, we show how to apply our PEI attack to threaten vision encoders deployed in downstream
services. The main challenge lies in how to solve the PEI attack sample synthesis objective function
Li,j(x) defined in Eq. (1) in a black-box manner. When candidate encoders f1, · · · , fN are vision
encoders, the function Li,j(x) can be seen as a continuous function for the input image x. Thus,
one can leverage zeroth-order gradient estimation techniques to estimate the gradient of the function
Li,j(x) in a black-box manner and use gradient-based methods to solve Eq. (1). Such methods are
widely adopted to attack black-box vision models (Kariyappa et al., 2021; Truong et al., 2021).

We use the two-point zeroth-order gradient estimation (Liu et al., 2020; Duchi et al., 2015) method
to solve Eq. (1). Concretely, for the objective function Li,j(x) in Eq. (1), its gradient is estimated as

∇xLi,j(x) ≈
dim(X )

S

S∑
s=1

Li,j(x+ ϵµs)− Li,j(x− ϵµs)

2ϵ
µs, (5)

where S is the estimation random sampling number, ϵ > 0 is the estimation perturbation radius, and
{µs}Ss=1 are i.i.d. random vectors in the same shape of X drawn from the unit sphere Sdim(X )−1.
A larger sampling number S will result in a more accurate gradient estimation but a higher encoder
querying budget. We also adopt l∞-norm gradient normalization during the optimization to relieve
the difficulty of turning learning rate η (as now we can explicitly control the maximum pixel updating
values). The overall procedures of solving Eq. (1) for vision encoder are presented as Algorithm 2.

Query budget. We focus on analyzing the black-box query budget of synthesizing PEI attack sam-
ples for single candidates. According to Algorithm 1, the query budget for a single candidate encoder
is O(M1 ·M2 ·C), where O(C) is the query budget for solving Eq. (1). According to Algorithm 2,
solving Eq. (1) for a single vision encoder requires a query budget of O(C) = O(T · 2S). All these
lead to a query budget for synthesizing PEI attack images of O(M1 ·M2 · T · 2S) per candidate
encoder. Experiments in Section 4 and Section 5 show that setting M1 = 10, M2 = 5, T = 100,
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Algorithm 2 Black-box PEI Attack Sample Synthesis (via Solving Eq. (1)) for Vision Encoder

Input: Candidate vision encoder fi, objective image sample x
(obj)
j , random sampling number S,

perturbation radius ϵ > 0, training iteration T , learning rate η.
Output: Synthesized PEI attack sample x

(atk)
i,j,k .

1: Initialize x
(atk)
i,j,k with uniform distribution U [0, 1]dim(X ).

2: Denote Li,j(x) := ∥fi(x)− fi(x
(obj)
j )∥22.

3: for t in 1, · · · , T do
4: Draw S directions µ1, · · · , µS ∼ Sdim(X )−1.
5: Estimate gradient∇xLi,j(x

(atk)
i,j,k ) following Eq. (5) based on ϵ and µ1, · · · , µS .

6: Update x
(atk)
i,j,k via gradient normalization: x

(atk)
i,j,k ← x

(atk)
i,j,k −

η·∇xLi,j(x
(atk)
i,j,k )

∥∇xLi,j(x
(atk)
i,j,k )∥∞

.

7: Clip x
(atk)
i,j,k into the range [0, 1]dim(X ).

8: end for
9: return x

(atk)
i,j,k

and S = 100 is enough to perform an effective PEI attack against vision encoders. This results in
an attack cost estimated based on real-world EaaS prices of no more $100 per candidate encoder.

4 EXPERIMENTS ON IMAGE CLASSIFICATION SERVICES

4.1 EXPERIMENTAL SETUP

Building downstream services. We adopt three downstream image datasets, which are: CIFAR-
10 (Krizhevsky, 2009), SVHN (Netzer et al., 2011), and Food-101 (Bossard et al., 2014). Six
vision encoders from the Hugging Face Model Repository are used as candidates in the PEI attack,
which are: ResNet-34 (HF) (He et al., 2016), ResNet-50 (HF), MobileNetV3 (Howard et al.,
2019), ResNet-34 (MS), ResNet-50 (MS), and CLIP ViT-L/14 (Radford et al., 2021). For each
pair of encoder and downstream dataset, we fix the encoder and train a downstream MLP classifier
on embeddings of downstream data obtained from the encoder. See Appendix C.1 for more details.

PEI attack image synthesis. We randomly select M1 = 10 images from the PASCAL VOC 2012
dataset (Everingham et al., 2012) as the objective samples {x(obj)

i }M1
i=1. They are collected and

presented as Figure 4 in Appendix C.2. For each pair of candidate encoder fi and objective sample
x
(obj)
j , we follow Algorithm 2 to synthesize M2 = 5 PEI attack images {x(atk)

i,j,k }
M2

k=1. Meanwhile,
we set the perturbation radius ϵ as 5.0, the sampling number S as 100, the training iterations number
T as 100, and fix the learning rate to 0.1. The shape of each synthesized PEI attack image is 64×64.

PEI score calculation. To calculate the PEI score ζi via Eq. (2), the adversary needs to have a task-
dependent similarity function ℓsim. In this section, for classification tasks, we leverage the indicator
function 1[·] and calculate the PEI score as ζi = 1

M1M2

∑M1

j=1

∑M2

k=1 1[g(x
(obj)
j ) = g(x

(atk)
i,j,k )].

4.2 RESULTS ANALYSIS OF PEI ATTACK

Classification accuracies of the built 18 image classification services (6 encoders × 3 downstream
datasets) are reported as Table 5 (Appendix C.3). We then study the performance of the PEI attack.

The PEI attack is extremely effective in image classification services. The PEI scores and z-
scores of candidate vision encoders in different image classification services are reported in Table 1,
showing that our PEI attack successfully revealed hidden encoders in 16 out of 18 targeted services.
Further, in most of the successfully attacked cases, the PEI z-score of the correct hidden encoder
can be around 2.0, which is significantly higher than the preset threshold of 1.7.

Nevertheless, while PEI attack sometimes may fail, it does not make false-positive inferences at
all. In each failure case in Table 1, the inferred result of the PEI attack is simply “∅” (which means
no significant candidate is found) rather than a wrong candidate. The capability of avoiding false-
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Table 1: PEI scores and PEI z-scores of candidate encoders on different downstream image classifi-
cation services. If a candidate has z-score that is the only one above the threshold, then it is inferred
as the encoder hidden in the service. Blue color means that the hidden encoder is correctly revealed,
while red color means that the PEI attack fails.

Downstream Task Candidate Encoder PEI Score (%) / PEI z-Score (Threshold = 1.7) Inferred
EncoderDataset Encoder RN34 (HF) RN50 (HF) RN34 (MS) RN50 (MS) MobileNetV3 CLIP ViT-L/14

CIFAR-10

RN34 (HF) 52.0 / 2.04 2.0 / -0.33 0.0 / -0.43 0.0 / -0.43 0.0 / -0.43 0.0 / -0.43 RN34 (HF)
RN50 (HF) 14.0 / -0.28 50.0 / 2.01 10.0 / -0.53 16.0 / -0.15 10.0 / -0.53 10.0 / -0.53 RN50 (HF)
RN34 (MS) 36.0 / -0.82 40.0 / -0.20 54.0 / 1.94 38.0 / -0.51 42.0 / 0.10 38.0 / -0.51 RN34 (MS)
RN50 (MS) 0.0 / -0.77 22.0 / 0.47 2.0 / -0.65 46.0 / 1.81 2.0 / -0.65 10.0 / -0.21 RN50 (MS)

MobileNetV3 0.0 / -0.41 0.0 / -0.41 0.0 / -0.41 0.0 / -0.41 36.0 / 2.04 0.0 / -0.41 MobileNetV3
CLIP ViT-L/14 20.0 / -0.41 20.0 / -0.41 20.0 / -0.41 20.0 / -0.41 20.0 / -0.41 50.0 / 2.04 CLIP ViT-L/14

SVHN

RN34 (HF) 58.0 / 1.98 4.0 / -0.86 14.0 / -0.33 16.0 / -0.23 14.0 / -0.33 16.0 / -0.23 RN34 (HF)
RN50 (HF) 30.0 / -0.28 46.0 / 1.99 30.0 / -0.28 30.0 / -0.28 30.0 / -0.28 26.0 / -0.85 RN50 (HF)
RN34 (MS) 16.0 / -0.40 16.0 / -0.40 36.0 / 1.78 16.0 / -0.40 24.0 / 0.47 10.0 / -1.06 RN34 (MS)
RN50 (MS) 24.0 / 0.70 12.0 / -0.98 16.0 / -0.42 30.0 / 1.54 20.0 / 0.14 12.0 / -0.98 ∅

MobileNetV3 18.0 / 0.00 20.0 / 0.32 24.0 / 0.97 20.0 / 0.32 6.0 / -1.94 20.0 / 0.32 ∅
CLIP ViT-L/14 10.0 / -0.24 10.0 / -0.24 10.0 / -0.24 10.0 / -0.24 8.0 / -0.98 16.0 / 1.95 CLIP ViT-L/14

Food-101

RN34 (HF) 32.0 / 2.04 0.0 / -0.41 0.0 / -0.41 0.0 / -0.41 0.0 / -0.41 0.0 / -0.41 RN34 (HF)
RN50 (HF) 0.0 / -0.67 16.0 / 1.79 0.0 / -0.67 8.0 / 0.56 0.0 / -0.67 2.0 / -0.36 RN50 (HF)
RN34 (MS) 0.0 / -0.41 0.0 / -0.41 6.0 / 2.04 0.0 / -0.41 0.0 / -0.41 0.0 / -0.41 RN34 (MS)
RN50 (MS) 0.0 / -0.41 0.0 / -0.41 0.0 / -0.41 4.0 / 2.04 0.0 / -0.41 0.0 / -0.41 RN50 (MS)

MobileNetV3 0.0 / -0.41 0.0 / -0.41 0.0 / -0.41 0.0 / -0.41 20.0 / 2.04 0.0 / -0.41 MobileNetV3
CLIP ViT-L/14 0.0 / -0.41 0.0 / -0.41 0.0 / -0.41 0.0 / -0.41 0.0 / -0.41 2.0 / 2.04 CLIP ViT-L/14

positive inferences is very useful to adversaries, as they would not need to make meaningless efforts
in tackling false-positive signals. It enables a PEI adversary to try many targets quickly, thus will
have a good chance of finding a victim among them in a short time.
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Figure 2: PEI z-scores of candidates on differ-
ent CIFAR-10 classification services where the
correct hidden encoder is not in the PEI can-
didates set. z-scores that are above the threshold
1.7 are highlighted. Ideally, none of the reported
z-score should go beyond the preset threshold.

The PEI attack seldom makes mistakes when
the correct hidden encoder is not included
in the candidate set. We now turn to analyz-
ing the PEI attack in a more challenging set-
ting where the correct hidden encoder is not
in the candidate set. We take the CIFAR-10
dataset for image classifications as an example.
In each case, we remove the correct hidden en-
coder from the candidates set and then launch
the PEI attack as usual with the remaining can-
didates. The z-scores of different candidates are
presented as Figure 2. Ideally, since the correct
hidden encoder is excluded from the candidate
set, all z-scores of remaining candidates should
not go beyond the preset threshold 1.7 as none
of these candidates are correct. Figure 2 shows
that the PEI attack only makes mistakes in infer-
ring out incorrect candidates in 1 out of 6 cases
on CIFAR-10 (i.e., RN34 (HF)).

The query budget price (per encoder) is low. Based on the query budget equation in Section 3.3,
the exact budget in this part of experiments is 1 million per vision encoder. From Table 7 in Ap-
pendix E, the price of commonly used real-world EaaSs for images is not larger than $0.0001 per
image. So the estimated price of synthesizing PEI attack images would be around $100 per encoder.

Ablation studies. We also conduct experiments to analyze how downstream classifiers and PEI
hyperparameters would affect the performance of the PEI attack. See Appendix C.4 for details.

4.3 CASE STUDY: PEI-ASSISTED MODEL STEALING ATTACK

Finally, we show how the PEI attack can facilitate model stealing attacks (Tramèr et al., 2016;
Orekondy et al., 2019) against downstream image classification services. Given a targeted down-
stream ML service with only API access, the goal of model stealing is to train a stolen model to
replicate the functionality of the targeted service. Thereby, the adversary will first collect a set of
surrogate data and use the targeted service to “label” these data. Then, the stolen model will be
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trained from these surrogate data labeled by the targeted service. When using the PEI attack to fa-
cilitate model stealing, the adversary will instead train a downstream classifier based on the hidden
encoder inferred by the PEI attack as the stolen model.

As a case study, here we analyze model stealing attacks against image classification services built
upon the “RN-50 (HF)” encoder. For the returned response of each query, we consider two settings:
(1) “Soft label” setting, where the targeted service will return predicted logits for all classes, and
(2) “hard label” setting, where the targeted service will only return the label of top-1 confidence.
Besides, we focus on three stolen models: (1) Correct model, which is a downstream MLP classifier
trained from the correct hidden encoder “RN-50 (HF)”. (2) Wrong model, which is a downstream
MLP classifier trained from an incorrect candidate encoder “CLIP-ViT/L14”. (3) Scratch model,
which is a ResNet-18 trained from scratch on the downstream dataset. Among the three stolen
models, the correct model is used to simulate the performance of the PEI-assisted model stealing.

Experimental setup. We use 50 thousand images from ImageNet (Deng et al., 2009) as the surro-
gate data. This leads in a query budget of 50 thousand. We follow (Jagielski et al., 2020) to use two
metrics to evaluate the model stealing performance: (1) Accuracy, i.e., the classification accuracy
of the stolen model on downstream test data, and (2) Fidelity, i.e., the rate of downstream test data
for which the stolen and target models have the same top-1 prediction. See Appendix C.5 for details.

Table 2: Model stealing performance of stolen models
on different downstream services. “Correct” is the
classifier with the correct hidden encoder, “Wrong”
is the classifier with the incorrect candidate encoder,
and “Scratch” is the ResNet-18 trained from scratch.

Downstream
Task

Stolen
Model

Soft Label (%) Hard Label (%)
Accuracy Fidelity Accuracy Fidelity

CIFAR-10
Correct 91.48 98.16 89.38 92.80
Wrong 77.35 73.69 72.89 69.12
Scratch 19.41 19.38 15.84 15.82

SVHN
Correct 55.80 62.02 26.61 28.48
Wrong 8.60 8.16 7.38 7.00
Scratch 14.54 14.25 12.14 11.89

Food-101
Correct 62.61 76.35 49.10 54.71
Wrong 29.62 24.14 23.99 20.48
Scratch 2.40 2.49 3.63 3.65

Results analysis. The model stealing re-
sults for different types of stolen models
are presented in Table 2, in which we have
two observations. Firstly, for every tar-
geted downstream service, the model steal-
ing performance of the “correct model” is
2 ∼ 20 times better than the “scratch
model”. Recall that in Section 4.2, our PEI
attack revealed the hidden “RN-50 (HF)”
encoder in every downstream service. This
means that the model stealing adversary
can first leverage our PEI attack to reveal
the correct hidden encoder, and then exploit
this encoder to train a stolen model of bet-
ter performance. Secondly, the model steal-
ing performance of the “correct model” is
also significantly higher than the “wrong
model” in every case. Therefore, to launch a strong model stealing attack, adversaries are better
not randomly picking an encoder from the candidate set to perform the attack. Instead, they can
leverage our PEI attack to reveal the correct hidden encoder before launching model stealing.

5 EXPERIMENTS ON MULTIMODAL GENERATIVE MODEL

5.1 PEI ATTACK AGAINST LLAVA MODEL

Setup. The targeted multimodal generative model is LLaVA-1.5-13B (Liu et al., 2023a), which is
built upon a finetuned Vicuna-1.5-13B language model (Zheng et al., 2023) and the origional CLIP
ViT-L/14-336px vision encoder (Radford et al., 2021). It takes images and texts as inputs and outputs
texts, and thus can be used for multimodal tasks such as chatting or question-answering. Our PEI
attack goal is to reveal the correct vision encoder used by LLaVA-1.5-13B. To this end, we consider
a PEI candidates set consists of seven vision encoders, which are: CLIP ViT-B/16 (Radford et al.,
2021), CLIP ViT-B/32, CLIP ViT-L/14, CLIP ViT-L/14-336px, OpenCLIP ViT-B/32 (Cherti
et al., 2023), OpenCLIP ViT-H/14, and OpenCLIP ViT-L/14. For the synthesis of PEI attack
images, we adopt the same objective images and hyperparameters as that in Section 4.1. For the PEI
score calculation, to evaluate the behavior similarity in Eq. (2), we leverage the question-answering
capability of LLaVA to directly score the similarity between objective image and PEI attack images
(in the range [0, 1]). See Appendix D.2 for details of PEI score calculation.

Results. The PEI attack results are presented in Table 3. From Table 3a, we find that the correct
hidden encoder, i.e., CLIP Vit-L/14-336px, is the only one that has a PEI z-score above the preset
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Instruction: Please read out
the text in this image.

LLaVA: Vaccine is very
dangerous to human beings!

Targeted image that contains preset harmful content.

Instruction: Please read out
the text in this image.

LLaVA: Vaccine is dangerously
toxic to human beings!

Adversarial image synthesized based on PEI-revealed encoder.

Instruction: Please read out
the text in this image.

LLaVA: Hospitals are
creating viruses weapons.

Targeted image that contains preset harmful content.

Instruction: Please read out
the text in this image.

LLaVA: Hospitals are weapons
factories.

Adversarial image synthesized based on PEI-revealed encoder.

Figure 3: Two examples of adversarial attacks against LLaVA with adversarial images synthesized
based on the hidden vision encoder revealed by the PEI attack. These adversarial images contain
visually benign mosaics, but can induce LLaVA to generate predefined false health information.

threshold 1.7. Further, when the correct hidden encoder is not in the PEI candidates set, Table 3b
shows that the PEI attack would not infer out a wrong encoder. All these results indicate that our PEI
attack can effectively reveal hidden encoders in LLaVA while avoiding false-positive predictions.

5.2 CASE STUDY: PEI-ASSISTED ADVERSARIAL ATTACK

Table 3: PEI scores and z-scores
of candidate vision encoders on
the LLaVA-v1.5-13B. If a candi-
date has z-score that is the only one
above the threshold 1.7, then it is in-
ferred as the hidden encoder.

(a) Attack results when the hidden en-
coder is in the PEI candidates set.

Candidate Encoder PEI Score / z-Score

CLIP-ViT-B/16 0.57 / -1.31
CLIP-ViT-B/32 0.66 / 0.62
CLIP-ViT-L/14 0.61 / -0.37
CLIP-ViT-L/14-336px 0.73 / 1.88
OpenCLIP-ViT-B/32 0.62 / -0.23
OpenCLIP-ViT-L/14 0.61 / -0.37
OpenCLIP-ViT-H/14 0.62 / -0.22

(b) Attack results when the hidden en-
coder is NOT in the PEI candidates set.

Candidate Encoder PEI Score / z-Score

CLIP-ViT-B/16 0.57 / -1.62
CLIP-ViT-B/32 0.66 / 1.52
CLIP-ViT-L/14 0.61 / -0.09
OpenCLIP-ViT-B/32 0.62 / 0.13
OpenCLIP-ViT-L/14 0.61 / -0.09
OpenCLIP-ViT-H/14 0.62 / 0.15

Next, we conduct a case study to show how the vision en-
coder revealed by the PEI attack can assist adversarial attacks
against the targeted LLaVA-1.5-13B. We consider an attack
that aims to use visually benign adversarial images to in-
duce LLaVA to generate harmful information. These adver-
sarial images can be used to stealthily spread harmful infor-
mation, as their harmfulness is difficult for humans to detect.

We synthesize such adversarial examples directly based on
the hidden encoder revealed by our PEI attack. To launch the
attack, we first construct a targeted image that contains pre-
defined harmful plain text content. Then, since the revealed
CLIP encoder is open-source, we can synthesize an adversar-
ial image that has embedding similar to that of the targeted
image in a white-box manner. This will result in an adversar-
ial image that contains benign mosaics but LLaVA can read
out the predefined harmful content from it. See Appendix D.3
for details about the adversarial image synthesis.

Results. Figure 3 presents two examples, in which one can
find that although the adversarial images only contain visu-
ally benign mosaics, LLaVA reads out false medical/health
information from PEI-assisted adversarial images. This ver-
ifies the effectiveness of the PEI-assisted adversarial attack
and further indicates the usefulness and hazards of PEI attack.

6 CONCLUSIONS

We unveiled a new PEI attack that can threaten both deployed pre-trained encoders and downstream
ML services without modifying the service-building pipeline. The goal of the PEI attack is to reveal
encoders hidden in targeted downstream services. Such encoder information can then be used to
threaten original targeted services. We conducted experiments on vision encoders and found that
the PEI attack can effectively: (1) reveal encoders hidden in different downstream services, and (2)
facilitate other ML attacks against targeted services. Our results call for the need to design general
defenses against the new PEI attack to protect downstream ML services.
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A APPENDIX

B RELATED WORKS

Privacy attacks. Existing ML privacy attacks can be roughly divided into two categories, which
are data privacy attacks and model privacy attacks. Concretely, data privacy attacks include mem-
bership inference attacks (MIA) (Shokri et al., 2017; Yeom et al., 2018; Chen et al., 2020a; Carlini
et al., 2022; Xiang et al., 2024a;b) which aim to infer whether a given sample comes from training set
or not, and data reconstruction attacks (DRA) (Fredrikson et al., 2015; Carlini et al., 2021; Geiping
et al., 2020) which aim to extract exact training samples based on model outputs or gradients. Recent
studies find that data privacy attacks can be enhanced through poisoning targeted models (Tramèr
et al., 2022). On the other hand, model privacy attacks focus on extracting private information of
models such as training hyperparameters (Wang & Gong, 2018), architectures (Ippolito et al., 2023;
Oh et al., 2018; Finlayson et al., 2024; Carlini et al., 2024), model parameters (Rolnick & Kording,
2020; Jagielski et al., 2020), and functionalities (Tramèr et al., 2016; Orekondy et al., 2019; Truong
et al., 2021). Our PEI attack also falls under the category of model privacy attacks. Unlike existing
approaches, the PEI attack aims to infer a specific component of the architecture of downstream ML
services, i.e., the used pre-trained encoder.

Privacy attacks against pre-trained encoders. For data privacy attacks, many efforts have been
made to design MIA against encoders. When the pre-training strategy is known, (Liu et al., 2021)
successfully performs membership inference attacks (MIA) against targeted encoder based on mem-
bership scores calculated with the pre-training loss function and shadow training techniques. (He
et al., 2022) extends MIA against semi-supervisedly learned encoders. (Zhu et al., 2024) studies a
more challenging setting where the adversary has no knowledge about pre-training algorithms and
proposes to calculate the embedding similarity between global and local features as the member-
ship score for each sample. Besides, for model privacy attacks, studies mainly focus on stealing
the powerful encoding functionality of encoders. By simply querying the targeted encoder and col-
lecting return embeddings, (Liu et al., 2022b) succeeds in retraining an encoder that reproduces
the functionality of the target with a reasonable query budget. (Sha et al., 2023) adopted a con-
trastive learning-based method to further improve the encoder stealing performance. However, these
data/model privacy attacks can only threaten pre-trained encoders on the upstream side, while our
PEI attack can further threaten downstream ML services.

Encoder attacks against downstream models. To increase the vulnerability of downstream mod-
els, adversaries usually try to attack upstream encoders by manipulating their pre-training stage with
poisoned or backdoored training data. A series of works have studied poisoning/backdooring vision
encoders when the downstream task is image classification. (Carlini & Terzis, 2022) and (Jia et al.,
2022) showed that by injecting trigger patches to the training data, classifiers built upon the back-
doored encoder can effectively misclassify inputs with backdoor triggers to a target label. (Carlini
& Terzis, 2022) further found that only backdooring a significantly modest amount of training data
(around 0.01%) is enough to perform strong attacks. Other advances include (Liu et al., 2022a),
(Zhang et al., 2022) and (Tao et al., 2023). More recent works have started to exploit encoder
backdoor attacks to increase the privacy vulnerability of downstream models built upon backdoored
encoders, for example, making downstream training data more vulnerable to membership inference
attacks (Wen et al., 2024) or data reconstruction attacks (Feng & Tramèr, 2024). However, these at-
tacks usually require detailed information about the downstream tasks, such as the number of classes
in downstream classification tasks or prior knowledge of potential targeted training data, which may
limit their practicality in the real world. As a comparison, our PEI attacks can be performed in a
downstream task-agnostic manner without modifying the pre-training stage of upstream encoders.

C OMITTED DETAILS OF SECTION 4

This section collects additional experimental details omitted from Section 4.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.1 ADDITIONAL EXPERIMENTAL SETUP

Downstream datasets. Three image datasets are used as downstream data: CIFAR-
10 (Krizhevsky, 2009) that consists of 50, 000 training images and 10, 000 test images from 10
classes; SVHN (Netzer et al., 2011) that consists of 73, 257 training images and 26, 032 test images
from 10 classes; and Food-101 (Bossard et al., 2014) that consists of 75, 750 training images and
25, 250 validation images (used as test data) from 101 classes.

Pre-trained encoders. Six vision encoders are adopted as candidates in the PEI attack, which are:
ResNet-34 (HF) (He et al., 2016), ResNet-50 (HF), MobileNetV3 (Howard et al., 2019), ResNet-
34 (MS), ResNet-50 (MS), and CLIP ViT-L/14 (Radford et al., 2021). All these encoders can be
downloaded from the Hugging Face Model Repository. Download links are collected and presented
in Table 4.

Table 4: Download links of pre-trained vision encoders adopted in our experiments.

Model Type Name Link

Vision
Encoder

ResNet-34 (HF) https://huggingface.co/timm/resnet34.a1_in1k

ResNet-50 (HF) https://huggingface.co/timm/resnet50.a1_in1k

ResNet-34 (MS) https://huggingface.co/microsoft/resnet-34

ResNet-50 (MS) https://huggingface.co/microsoft/resnet-50

MobileNetV3 https://huggingface.co/timm/mobilenetv3_large_100.ra_in1k

CLIP ViT-L/14 https://huggingface.co/openai/clip-vit-large-patch14

Building downstream classifiers. For each pair of encoder and dataset, we fix the encoder and
train a downstream classifier based on embeddings of downstream training data obtained from the
encoder. For each service, the classifier is an MLP consisting of three fully-connected layers, where
the dimension of each hidden layer is 512. We use Adam to train the classifier for 10, 000 iterations.
The batch size is set as 512. The learning rate is set as 0.001 and decayed by 0.1 every 4, 000
iterations.

C.2 PEI OBJECTIVE IMAGES

For the PEI attack against vision encoders, we randomly sampled 10 images from the PASCAL
VOC 2012 dataset (Everingham et al., 2012) as the objective image samples. They are presented in
Figure 4.

Figure 4: The 10 objective images used in the PEI attack against vision encoders.
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Figure 5: Rates of different PEI attack results on CIFAR-10, SVHN, and Food-101 datasets. Rates
of attack success, false-negative, and false-positive are colored differently.

C.3 DOWNSTREAM UTILITIES OF IMAGE CLASSIFICATION

We collect and present the classification accuracy of downstream image classification services built
on different downstream data and pre-trained encoders. The results of downstream image classifica-
tion services are reported in Table 5.

Table 5: Test accuracy (%) of downstream image classification services built upon different pre-
trained encoders.

Downstream
Dataset

Upstream Pre-trained Encoder

RN34 (HF) RN50 (HF) RN34 (MS) RN50 (MS) MobileNetV3 CLIP ViT-L/14

CIFAR-10 91.24 91.88 90.44 91.05 91.34 98.11
SVHN 62.93 67.22 60.99 69.67 71.23 82.58

Food-101 64.40 68.66 63.26 68.67 71.20 94.66

C.4 ABLATION STUDIES OF SECTION 4.2

This section collects ablation studies omitted from Section 4.2.

Effect of downstream classifier initialization. The PEI attack in Table 1 is conducted against
single downstream classifiers. Yet, it remains unknown how it would be affected by the random
initialization of these classifiers. To investigate this, for each dataset-encoder pair, we retrain 5
downstream models, perform the PEI attack against all of them, and report rates of attack success,
false-negative, and false-positive in Figure 5.

From the figure, we have two observations. Firstly, PEI attacks never made false-positive infer-
ences in all analyzed cases. As explained in the previous section, this capability is useful for PEI
adversaries to quickly find victims from a large number of targeted services. Secondly, in most
of the cases (except two cases “RN34 (MS) + SVHN”, and “MobileNetV3 + SVHN”), the attack
achieved consistent results, i.e., either attack success or false-positive, with a possibility of at least
80%, in 16 out of 18 analyzed cases. This suggests that the PEI attack is generally insensitive to the
initialization of downstream classifiers in image classification services.

Effect of downstream classifier architectures. So far, the architecture of downstream classifiers
used in image classification services is fixed to a 3-layer MLP with a width of 512. We now ana-
lyze how the architecture of this classifier would affect the PEI attack performance. The analysis is
conducted on two cases: “RN34 (HF) + CIFAR-10” and “RN50 (MS) + CIFAR-10”. For each case,
we build classification services with the targeted encoder and four different downstream classifiers:
MLP-1, MLP-2, MLP-3, and MLP-4. Here, “MLP-x” denotes an MLP architecture of x layers,
where dimensions of all hidden layers (if it has) are fixed to 512. The training of these downstream
classifiers follows that described in Section C.1. After that, we attack each service with PEI attack
samples originally used in Section 4.2. PEI z-scores are reported in Figure 6. From the figure,
we find that the downstream classifier architecture has little effect on attacks against targeted ser-
vices: the PEI z-scores of each candidate are almost the same across different downstream classifier
architectures, and the PEI attack always revealed the correct hidden encoder.
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Figure 6: PEI z-scores of candidates on classification services with downstream classifiers of 4
different architectures. z-scores of different services are in different colors.

Effect of the zeroth-order gradient estimation on the PEI attack image synthesis. According
to Eq. (5), the gradient estimation accuracy depends on the random sampling number S. We thus
vary S in the set {25, 50, 75, 100, 120} (in Section 4, S = 100) to see how the attack performance
would change. This study is conducted on “RN34 (HF) + CIFAR-10” and “RN50 (MS) + CIFAR-
10”. PEI z-scores of different encoders under different S are plotted in Figure 7. For the first
case (Figure 7a), the sampling number S has little effect on PEI z-scores, while the z-score of the
correct hidden encoder always stays in high level (around 2.0). For the second case (Figure 7b),
as S increases, the PEI z-score of the correct encoder significantly increases, while those of other
candidates remain at low levels. These imply that when the PEI attack is weak, it can benefit from a
large sampling number S. However, since a large S would increase the query budget, the adversary
needs to carefully trade-off between the attack utility and efficiency.
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Figure 7: PEI z-scores of candidates on image classification services with different gradient estima-
tion sampling number S (see Algorithm 2) varies in {25, 50, 75, 100, 125}.

C.5 ADDITIONAL EXPERIMENTAL DETAILS OF SECTION 4.3

This section collects omitted experimental details of the PEI-assisted model stealing in Section 4.3.

Building stolen models. We train every stolen model via Adam for 10, 000 iterations, where the
batch size is 64 and the learning rate is initialized as 0.001 and decayed by 0.1 every 4, 000 iterations.
The surrogate data is constructed from 50 thousand images randomly selected from the validation
set of ImageNet (Deng et al., 2009), which results in a query budget of 50 thousand.

D OMITTED DETAILS OF SECTION 5

This section collects additional experimental details omitted from Section 5.

D.1 PRE-TRAINED MODELS DOWNLOAD LINKS

The targeted downstream multimodal generative model is LLaVA-1.5-13B (Liu et al., 2023a;b),
which is built upon a finetuned Vicuna-1.5-13B language model (Zheng et al., 2023) and the ori-
gional CLIP ViT-L/14-336px vision encoder (Radford et al., 2021). We adopt seven vision encoders
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to form the PEI candidates set, which are: CLIP ViT-B/16 (Radford et al., 2021), CLIP ViT-B/32,
CLIP ViT-L/14, CLIP ViT-L/14-336px, OpenCLIP ViT-B/32 (Cherti et al., 2023), OpenCLIP
ViT-H/14, and OpenCLIP ViT-L/14. All these models can be downloaded from the HUgging Face
Model Repository. Download links are collected and presented in Table 6.

Table 6: Download links of pre-trained models adopted in Section 5.

Model Type Name Link

Vision
Encoder

CLIP ViT-B/16 https://huggingface.co/openai/clip-vit-base-patch16

CLIP ViT-B/32 https://huggingface.co/openai/clip-vit-base-patch32

CLIP ViT-L/14 https://huggingface.co/openai/clip-vit-large-patch14

CLIP ViT-L/14-336px https://huggingface.co/openai/clip-vit-large-patch14-336

OpenCLIP ViT-B/32 https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K

OpenCLIP ViT-H/14 https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K

OpenCLIP ViT-L/14 https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K

LLaVA (Liu et al., 2023a;b) LLaVA-1.5-13B https://huggingface.co/llava-hf/llava-1.5-13b-hf

D.2 PEI SCORE CALCULATION

To calculate PEI scores following Eq. (2), one has to carefully design how to calculate the behavior
similarity ℓsim(g(x

(atk)
i,j,k ), g(x

(obj)
j )) between PEI attack image x

(atk)
i,j,k and x

(obj)
j for the LLaVA

model g. To this end, we propose calculating the behavior similarity by directly questioning LLaVA
about the similarity between objective and attack images (in the range [0, 1]). Specifically, we ask
LLaVA with the following prompt template:

USER: <image>\n<image>\nScore the similarity (in the range [0,1], higher
score means more similar) of the given two images\nASSISTANT:

where the two “<image>” in the prompt are placeholders for input images. We then construct the
function ℓask(·, ·) : X × X → [0, 1] that maps the two (ordered) images to a similarity score based
on LLaVA and the above prompt. The eventual similarity function ℓsim in Eq. (2) is defined as
follows,

ℓsim(g(x
(atk)
i,j,k ), g(x

(obj)
j )) :=

1

2

(
ℓask(x

(atk)
i,j,k , x

(obj)
j ) + ℓask(x

(obj)
j , x

(atk)
i,j,k )

)
.

D.3 PEI-ASSISTED ADVERSARIAL EXAMPLE SYNTHESIS

To synthesize adversarial examples based on the PEI-revealed vision encoder (i.e., CLIP ViT-L/14-
336px), we propose to minimize their embedding difference with that of a targeted image containing
preset harmful text content. Specifically, we aim to minimize the squared loss defined by embed-
dings of the adversarial image and targeted image. Since the hidden CLIP model is an open-source
model, one can further leverage first-order gradient descent to optimize the objective squared loss.
We use sign gradient to minimize the objective loss for 2, 000 iterations, in which the learning rate is
fixed to 0.01. Besides, to further improve the success rate of obtaining valid PEI-assisted adversarial
images, for each targeted image, we will first synthesize 16 candidate adversarial images, and then
choose a single image that enjoys the best attack performance among them as the eventual output.

E PRICES OF ENCODER-AS-A-SERVICE IN THE WILD

To better estimate the cost of conducting PEI attacks in the wild, here we collect and list the prices
of some common real-world EaaSs in Table 7. Combined with analyses in Sections 4 and 5, the
estimated price of the PEI attack is no more than $100 per encoder.
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https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K
https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K
https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K
https://huggingface.co/llava-hf/llava-1.5-13b-hf
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Table 7: Pricing data of vision EaaSs in the wild.

Type Supplier Model Name Price Link

Vision
Encoder

Vertex AI
(by Google)

multimodalembeddings $0.0001 / Image Input https://cloud.google.com/vertex-ai/generative-
ai/pricing
Accessed Date: 2025-05

Azure AI
(by Microsoft)

Image Embeddings $0.10 / 1,000 Transactions https://azure.microsoft.com/en-
us/pricing/details/cognitive-services/computer-
vision/ Accessed Date: 2025-05

voyage-multimodal-3
(by Voyage AI)

Image Embeddings $0.03 / 1,000 Images
(200px × 200px)

https://docs.voyageai.com/docs/pricing#multimodal-
embeddings
Accessed Date: 2025-05

F POTENTIAL DEFENSES

Finally, in this section, we discuss several potential defenses against the PEI attack.

F.1 TRANSFORMING PEI ATTACK SAMPLES

A possible direction of defending the PEI attack is to perform data transformation on PEI attack sam-
ples before feeding them to the protected downstream service to sanitize their harmfulness. While
many existing filtering-based methods (Liao et al., 2018; Nie et al., 2022) could be used to remove
malicious information in PEI attack samples, they may also reduce model performance on clean
data. Meanwhile, a series of works also focus on making adversarial examples robust to data trans-
formation (Athalye et al., 2018; Fu et al., 2022; Chen et al., 2023). As a preliminary investigation,
here we analyze a simple plug-and-play and downstream task-agnostic sample sanitizing methods
for vision encoders.

A plug-and-play preprocessing defense for vision encoders. As PEI attack samples can some-
what be seen as adversarial examples (Goodfellow et al., 2015), one may naturally seek to adopt
defenses originally proposed for adversarial attacks to tackle the new PEI attack. As a preliminary
investigation, here we adopt a task-agnostic and plug-and-play method named JPEG defense (Guo
et al., 2017) to protect targeted services from PEI attack. Concretely, for each query image, the
service supplier will first process it with the canonical JPEG compressing algorithm before feeding
it into the real downstream service g. As JPEG compression is found to be effective in destroying
harmful information in adversarial images (Guo et al., 2017; Dziugaite et al., 2016), it might also
be able to mitigate hazards of PEI attack images. We conduct case studies on image classification
services “RN34 (HF) + CIFAR-10” and “RN50 (MS) + CIFAR-10”.

The results of JPEG defense against the vanilla PEI attack are presented in Figure 8, in which we
plot z-scores of different candidates with and without the JPEG defense (denoted as “Origin” and
“JPEG-Def” respectively). We find that the JPEG defense effectively defeats the PEI attack: in all
cases, under the JPEG defense, the PEI z-scores of the correct hidden encoder are suppressed to
low levels and no candidate goes beyond the preset threshold 1.7. But we also discovered a simple
method to bypass the defense for PEI attack: we rescale each PEI attack image from 64 × 64 to
512× 512 before sending them to the target service. Results are also presented in Figure 8 (denote
as “JPEG-Def vs. Resize-512”), which show that this rescaling approach enables the PEI attack to
succeed again in all analyzed cases. We deduce this is because resizing an attack image to a larger
scale can prevent local features that contain malicious information from being compressed by JPEG
defense.

F.2 DETECTING PEI ATTACK SAMPLES

Another potential direction is to leverage Out-of-distribution (OOD) detection to identify and drop
malicious queries toward protected ML services. For image data, a series of detection methods (Tran
et al., 2018; Pang et al., 2018; Dong et al., 2021; Li & Li, 2017; Roth et al., 2019) against adversarial
images or backdoor images could be applied to defend against the PEI attack. However, PEI attack
samples can also be made stealth to bypass potential detection defenses. For example, for image
data, one may be able to exploit detection bypassing methods originally designed for adversarial
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(b) RN50 (MS) + CIFAR-10.

Figure 8: PEI z-scores of candidates on image classification services. (1) “Origin”: original PEI
attack results. (2) “JPEG-Def”: results of PEI attack vs. JPEG defense. (3) “JPEG-Def vs. Resize-
512”: results of PEI attack strengthened by resizing (to 512× 512) vs. JPEG defense.

images (Bryniarski et al., 2022; Carlini & Wagner, 2017; Hendrycks et al., 2021) to PEI attack
images.

F.3 ARCHITECTURE RESISTANCE

More reliable defenses may be re-designing the pipeline of building downstream ML services to
make them natively robust to the PEI attack. For example, as the current PEI attack assumes that the
targeted downstream service is built upon a single encoder, one may leverage multiple upstream en-
coders to build a single service to bypass the attack. The idea of using multiple pre-trained encoders
has already been adopted to improve the downstream model performance (e.g., SDXL (Podell et al.,
2023)). Our results suggest that apart from improving performance, there is a great need to use
multiple encoders for the sake of downstream model security.
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