Under review as submission to TMLR

Towards Understanding Dual BN In Hybrid Adversarial
Training

Anonymous authors
Paper under double-blind review

Abstract

There is a growing concern about applying batch normalization (BN) in adversarial training
(AT), especially when the model is trained on both adversarial samples and clean samples
(termed Hybrid-AT). With the assumption that adversarial and clean samples are from two
different domains, a common practice in prior works is to adopt Dual BN, where BNg4,
and BNjeqn, are used for adversarial and clean branches, respectively. A popular belief for
motivating Dual BN is that estimating normalization statistics of this mixture distribution
is challenging and thus disentangling it for normalization achieves stronger robustness. In
contrast to this belief, we reveal that what makes Dual BN effective mainly lies in its
two sets of affine parameters. Moreover, we demonstrate that the domain gap between
adversarial and clean samples is not very large, which is counter-intuitive considering the
significant influence of adversarial perturbation on the model. We further propose a two-
task hypothesis for a better understanding and improvement of Hybrid-AT. Overall, our
work sheds new light on understanding the mechanism of Dual BN in Hybrid-AT and its
underlying justification.

1 Introduction

Adversarial training (AT) (Ganin et all 2016; Madry et al., [2018; [Shafahi et al., 2019; |Andriushchenko
& Flammarion) |2020; [Bai et al., 2021)) that optimizes the model on adversarial examples is a time-tested
and effective technique for improving robustness against adversarial attack (Qiu et al. 2019; Xu & Yang;
2020; Dong et all 2018; |Zhang et al., 2021b). Beyond classical AT (also termed Madry-AT) (Madry et al.,
2018), a common AT setup is to train the model on both adversarial samples and clean samples (termed
Hybrid-AT) (Goodfellow et al., 2015; [Kannan et al.l [2018; [Xie & Yuille, 2020; Xie et al., 2020a)). Batch
normalization (BN) (loffe & Szegedyl, 2015; [Santurkar et all, [2018} Bjorck et al., [2018; [Li et al.l 2017) has
become a de facto standard component in modern deep neural networks (DNNs) (He et al., 2016; [Huang
et al} 2017; |Zhang et al.l |2019a; |2021a)), however, there is a notable concern regarding how to use BN in the
Hybrid-AT setup. This concern mainly stems from Xie & Yuille| (2020); Xie et al,| (2020a)), which claim the
adversarial and clean samples are from two different domains, and thus a separate BN should be used for
each domain. This technique applying different BN for different domains has been adopted in multiple works
with different names, e.g., Dual BN (Jiang et al., [2020; |[Wang et al.| [2020; 2021) and mixture BN (Xie &
Yuille, [2020). With different names, however, they refer to the same practice of adopting BNy4,, and BNjean
for adversarial and clean samples, respectively. To avoid confusion, we use Dual BN for the remainder of
this work.

Despite the increasing popularity of Dual BN, the mechanism of how Dual BN helps Hybrid-AT remains not
fully clear. Towards a better understanding of this mechanism, we revisit a long-held belief in [Xie & Yuille
(2020); Xie et al.| (2020a). Specifically, it justifies the necessity of Dual BN in Hybrid-AT with the following
claim (quoted from the abstract of |Xie & Yuille| (2020))):

“Estimating normalization statistics of the mizture distribution is challenging” and “disentangling the mizture
distribution for mormalization, i.e., applying separate BNs to clean and adversarial images for statistics
estimation, achieves much stronger robustness."
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The above claim (Xie & Yuille, [2020) emphasizes the necessity of disentangling the normalization statistics
(NS) in Hybrid-AT. The underlying motivation for the above claim is that BN statistics calculated on
clean domain are incompatible with training the model on adversarial domain, and vice versa. Therefore,
Hybrid-AT with single BN suffers from such incompatibility with BN statistics calculated from the mixed
distribution, while Dual BN can avoid the incompatibility through training the clean and adversarial samples
with two BN branches separately. As a preliminary investigation, our work experiments with a new variant
of AT with Cross-BN, namely training the adversarial samples with BN .., and vice versa. Interestingly,
we find that using BN from another domain only has limited influence on the performance. This observation
inspires us to have a closer look at how Dual BN works in Hybrid-AT. Through untwining normalization
statistics (NS) and affine parameters (AP) in Dual BN to include one effect while excluding the other, we
demonstrate that disentangled AP plays the main role in the merit of Dual BN in Hybrid-AT. This finding
refutes the prior claim emphasizing the role of disentangled NS in Dual BN (Xie & Yuille, [2020; Xie et al.|
2020a)), and also inspires us to investigate whether the motivation for Dual BN holds, i.e., the two-domain
hypothesis in [Xie & Yuille| (2020)); Xie et al.| (2020a)).

As the motivation for adopting Dual BN, the two-domain hypothesis assumes that “clean images and adver-
sarial images are drawn from two different domains" (quoted from [Xie & Yuille (2020))). This hypothesis is
verified in Xie & Yuille| (2020) mainly by the visualization of NS, which highlights a large adversarial-clean
domain gap. However, we point out that their visualization has a hidden flaw, which makes their claim
regarding the domain gap between adversarial and clean samples deserve a closer look. Specifically, the vi-
sualization in Xie & Yuille| (2020)) ignores the influence of different AP when calculating NS. After fixing this
hidden flaw, we demonstrate that the adversarial-clean domain gap is not as large as claimed in prior work.
Interestingly, under the same perturbation/noise magnitude, we show that there is no significant difference
between adversarial-clean domain gap and noisy-clean counterpart.

Inspired by the above findings, we propose a two-task hypothesis to replace the two-domain hypothesis in
Xie & Yuille| (2020); Xie et al| (2020a)) for justification on how Dual BN works in Hybrid-AT. Specifically,
we claim that there are two tasks in Hybrid-AT: one task for clean accuracy and the other for robustness.
Therefore, it is difficult for one set of model parameters to achieve both goals. With the two-task hypothesis,
we can generalize Hybrid-AT with Dual BN to various model designs. As a toy example, we show that a
simple Dual Linear model performs similarly with Dual BN. Moreover, to tackle the problem that only one
branch of Dual BN can be adopted during inference, the two-task hypothesis provides more possibilities to
adopt only one set of model parameters while reducing the task discrepancy during the training of Hybrid-AT.

The model robustness under PGD-10 attack (PGD attack with 10 steps) (Madry et al.|[2018)) and AutoAttack
(AA) (Croce & Hein, [2020) are evaluated in our analysis as the basic experimental settings, with more details
and more specific setup discussed in the context. Overall, considering the increasing interest in adopting
Dual BN in Hybrid-AT, our work comes timely by taking a closer look at Dual BN in Hybrid-AT as well as
its underlying hypothesis for justification. The main findings of our investigation are summarized as follows:

o We refute prior claims by showing that disentangling normalization statistics (NS) plays little role
in explaining the merit of Dual BN over single BN in Hybrid-AT. By contrast, introducing two sets
of affine parameters (AP) is the key factor.

o After pointing out a hidden flaw of NS visualization in prior work, we refute the two-domain hy-
pothesis in prior work by demonstrating the adversarial-clean domain gap is not that large. This
also corroborates our above finding regarding NS disentanglement.

e For justifying the role of two APs, we propose a two-task perspective on Hybrid-AT by perceiving
the two APs as a way to mitigate the two-task conflict. This perspective also shows the possibility
of alternative solutions beyond dual BN, for which we show the effectiveness of a regularization loss.
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2 Problem overview and related work

2.1 Development of adversarial training

Adversarial training. Adversarial training (AT) (Ganin et al. 2016; [Madry et all 2018; |Shafahi et al.,
[2019; |Andriushchenko & Flammarion) |2020; Bai et all) 2021) has been the most powerful defense method
against adversarial attacks, among which Madry-AT (Madry et al| 2018) is a typical method detailed as
follows. Let’s assume D is a data distribution with (z,y) pairs and f(-,0) is a model parametrized by 6. [
indicates cross-entropy loss in classification. Instead of directly feeding clean samples from D to minimize the
risk of E, ,)~p[l(f(x,0),y)], Madry et al.| (2018)) formulates a saddle problem for finding model parameter
f by optimizing the following adversarial risk:

arg m@ln]E(Ly)ND rgleaéil(f(x +6:0),y) (1)

where S denotes the allowed perturbation budget which is a typically I, norm-bounded e. We term the above
adversarial training framework as Classical-AT. It adopts a two-step training procedure (inner maximization
+ outer minimization), and trains the robust model with only adversarial samples. Following the same
procedure, Xie & Yuille (2020); Xie et al.| (2020a) propose to train the robust model with both clean and
adversarial samples, termed as Hybrid-AT. The loss of Hybrid-AT is defined as follows:

Liypria = d(f(2;0),y) + (1 — a)l(f(z + 9;0),y) (2)

where x and z + § indicate clean and adversarial samples, respectively. « is a hyper-parameter for balancing
the clean and adversarial branches, is set to 0.5 in this work following |Goodfellow et al.| (2015); Xie & Yuille|

(2020).

Development of AT. Since the advent of Classical-AT (Madry et al.l 2018 and Hybrid-AT
[2020; Xie et al., 2020a)), numerous works have attempted to improve AT from various perspectives. From
the data perspective, |[Uesato et al. (2019); |Carmon et al.| (2019); Zhang et al. (2019¢) have independently
shown that unlabeled data can be used to improve the robustness. From the model perspective, AT often
benefits from the increased model capacity of models (Uesato et all 2019} Xie & Yuillel 2020). Xie et al.|
(2020b)); [Pang et al.| (2020); |Gowal et al, (2020)) have investigated the influence and suggested that a smooth
activation function, like parametric softplus, is often but not always (Gowal et all [2020) helpful for AT.
Another branch of studies aims to improve the training efficiency of adversarial training based on PGD
attack, termed as FAST AT (de Jorge et al.l 2022} Jia et al.| [2022b; [Park & Lee| 2021} (Wong et al., |2020}
Andriushchenko & Flammarion| 2020; [Jia et all [2022a)). Specifically, FGSM attack is adopted in [Wong
et al.| (2020); |Andriushchenko & Flammarion| (2020); |de Jorge et al. (2022) to replace PGD attack during
training, which achieves promising robustness with catastrophic overfitting problem tackled. It has been
shown in [Pang et al.| (2020) that the basic training settings in AT can have a significant influence on the
model performance and suggested a set of parameters for fair comparison of AT methods. If not specified,
we follow their suggested parameter settings in [Pang et al.| (2020)).

Experimental setups. In this work, we perform experiments on CIFAR10 (Krizhevsky et al., 2009} [An-|
driushchenko & Flammarion, 2020; [Zhang et al., 2022)) with ResNet18 (Andriushchenko & Flammarion),
2020; Targ et al., 2016; |[Wu et al., [2019; [Li et al.,|2016} |Zhang et al., 2022) and follow the suggested training
setups in [Pang et al.| (2020) unless specified. Specifically, we train the model for 110 epochs. The learning
rate is set to 0.1 and decays by a factor of 0.1 at the epoch 100 and 105. We adopt an SGD optimizer with
weight decay 5 x 1074, For generating adversarial examples during training, we use ¢, PGD attack with
10 iterations and step size @ = 2/255. For the perturbation constraint, e is set to £, 8/255
or 16/255 (Xie & Yuille, [2020). Following Pang et al.| (2020), we evaluate the model robustness under
PGD-10 attack (PGD attack with 10 steps) and AutoAttack (AA) (Croce & Heinl [2020).

2.2 Batch normalization in AT

Batch normalization (BN). We briefly summarize how BN works in modern networks. For a certain
layer in the DNN, we denote the feature layers of a mini-batch in the DNN as B = {z!,...,2™}. The feature
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layers are normalized by mean p and standard deviation o as:

M T —
#="—F.y1p8 (3)

where v and 3 indicate the weight and bias in BN, respectively. To be clear, we refer ;1 and ¢ as normalization
statistics (NS), v and f as affine parameters (AP). During training, NS is calculated on the current mini-
batch statistics for the update of model weights. Meanwhile, a running average of NS is recorded in the
whole training process, which is applied for inference after training ends.

Dual BN in AT. There is an increasing interest in investigating BN in the context of adversarial robust-
ness (Awais et al.| [2020; |Cheng et al.,|2020; Nandy et al., 2021} Sitawarin et al.;|Gong et al.,[2022]). This work
focuses on Hybrid-AT with Dual BN (Xie & Yuillel 20205 Xie et al., [2020a) which applies BN jeqn and BNy,
to clean branch and adversarial branch, respectively. Prior work (Xie et al., [2020a)) shows that adversarial
samples can be used to improve recognition (accuracy) by adversarial training where adversarial samples are
normalized by an independent BN4,. Moreover, Xie & Yuille| (2020) has shown that adding clean images in
adversarial training (AT) can significantly decrease robustness performance, where such negative effects can
be alleviated to a large extent by simply normalizing clean samples with an independent BN cqn. Inspired
by their finding, |[Jiang et al|(2020) also adopts Dual BN in adversarial contrastive learning, showing that
single BN performs significantly worse than Dual BN. Beyond Dual BN, triple BN has been attempted in
Fan et al|(2021) for incorporating another adversarial branch. Wang et al.| (2021) has also combined Dual
BN with Instance Normalization to form Dual batch-and-Instance Normalization for improving robustness.
A drawback of applying Dual BN in Hybrid-AT lies in the unknown source of samples during inference,
which makes it difficult to choose the test BN. Prior work (Xie & Yuille, |2020) interprets the necessity of
Dual BN from the perspective of an inherent large adversarial-clean domain gap, which implicitly suggests
disentangling NS (via Dual BN) might be the only solution. Our work revisits how Dual BN works in
Hybrid-AT and finally proposes a new interpretation from a new two-task perspective, which encourages
new directions of overcoming the two-task conflict in Hybrid-AT with appropriate regularization instead of
Dual BN.

3 On the BN induced misalignment

In Hybrid-AT, the model is trained with two branches: a clean branch and an adversarial branch. These
two branches share all model weights but are found to require independent BN modules, i.e., Dual BN (Xie
& Yuillel 2020; Xie et al., [2020a). At test time, only a single branch can be used by choosing either BN 4,
or BNgjean. The adversarial branch (with BN,4,) is adopted in |Xie & Yuille| (2020) for prioritizing high
model robustness, while BN .4 is adopted in [Xie et al.| (2020a)) for only considering clean accuracy.

However, swapping the BN during inference, i.e., adopting Table 1: Test accuracy (%) of Hybrid-AT
BN¢jean for robustness and BN,q4, for clean accuracy, leads to with Dual BN. BN jeqn leads to almost zero
a significant performance drop. As shown in Table [} BN¢eqn rtobustness under both perturbation bud-
leads to almost zero robustness during inference. This interest- gets (e): 8/255 and 16/255.

ing phenomenon inspires us to investigate the following ques- Setups Clean PGD-10 AA

€
o . e ., . . 8/255 | Dual BN (BNag,) | 82.77  51.33  46.19
tion: will BNjean achieve robustness if it is trained with the Dual BN (BNown) | 9491 0.32 0.10
(
(

adversarial branch, and vice versa? For facilitating discussion 16/255 | Dual BN (BN,g,) | 61.84 31.67 23.14

of the above misalignment, we introduce a new term Cross- Dual BN (BNeiean) | 9418 000 0.00

BN which refers to adopting BNgjeqn for the adversarial branch or BN,g4, for the clean branch. With a
similar terminology rule, BN q, for the clean branch or BNy, for the adversarial branch is termed as
Self-BN.

Cross-AT: a preliminary investigation. Before investigating Hybrid-AT with Cross-BN, we first investi-
gate a setting where only adversarial samples are used for model training. Note that it is adversarial branch,
and the baseline model with a Self-BN adopts BN,4,. Cross-AT is conducted by replacing the default BN g,
with a Cross-BN, i.e., BN jcan (see Figure . Specifically, the adversarial samples are normalized by the
BN statistics calculated by clean samples. It should be noted that in Cross-AT, the clean samples are used
only for forward propagation to get the BN statistics, and the model weights are updated only by the ad-
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Figure 2: Clean accuracy and robustness (PGD10 Accuracy) of Cross-AT during training. In Cross-AT, the
adversarial samples are normalized by the BN statistics calculated by clean samples. Interestingly, Cross-AT
yield comparable robustness to original Self-BN(BNg, ).

Table 2: Test accuracy of Cross-Hybrid-AT (e = 16/255). In Cross-Hybrid-AT, the adversarial branch is
normalized by BN cqn, and the clean branch is normalized by BN,4,. Experimental results show that Cross-
Hybrid-AT achieves comparable results to Hybrid-AT with vanilla Dual BN.

Model Training | Test Clean PGD-10 AA
Hybrid-AT Dual BN | BNgao 61.84 31.67 22.51
Cross-Hybrid-AT | Dual BN | BNgean | 59.56 31.25 22.40
Hybrid-AT Single BN 93.70 29.86 0.48

versarial branch. Interestingly, although the adversarial branch is normalized by BNclean, Figure [2| shows
that Cross-AT achieves comparable performance as the baseline model with Self-BN(BN,g4, ).

Cross-Hybrid-AT: Hybrid-AT with Cross-BN. P neide fhe netwerk
Here, for the Dual BN in Hybrid-AT, we replace the de- cem _.

NET
fault Self-BN with Cross-BN and term it Cross-Hybrid- = L
AT. In Cross-Hybrid-AT, the adversarial branch is nor- Advevsanim _—l S
sample 4’@ .+ Loss

malized by BN eqn, and the clean branch is normalized
by BNygy. As shown in Table[2] BN ¢4y, in Cross-Hybrid- —foard @ XA
AT achieves comparable results to BN,4, in Hybrid-AT. 7
The finding in Cross-Hybrid-AT is consistent with that in
Cross-AT, which indicates that Cross-BN achieves com-
parable results to Self-BN.

Figure 1: Cross-AT: Replacing BN,4, with
BN_jean in the adversarial branch. The adversar-
Implication of the above results. As discussed above, ial samples are normalized by the BN statistics
training the model with Cross-BN leads to a comparable calculated by clean samples.

performance as with Self-BN in Hybrid-AT. However, this finding appears counter-intuitive considering the
results of Hybrid-AT with Single BN. As shown in Table[2} Single BN leads to almost zero robustness (0.48%)
under AA attack. Note that a single BN is calculated by a mixture of clean and adversarial samples. If
calculating BN statistics on either clean examples or adversarial examples can lead to a high robustness, how
come training on BN calculated on hybrid samples leads to an AA robustness close to zero? This motivates
us to investigate how Dual BN works in Hybrid-AT.

4 Understanding how Dual BN works in Hybrid-AT

Towards understanding how Dual BN works in Hybrid-AT, we first revisit the existing claims in [Xie uille
2020)); Xie et al| (2020a)) which emphasize the importance of NS. However, these claims in Xie & Yuille
2020); Xie et al| (2020a) cannot explain our findings in Sec [3] We further investigate how Dual BN works
through untwining NS and AP in Dual BN to include one effect while excluding the other, and propose a
new explanation.
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4.1 Revisiting existing explanation and our conjecture

Existing explanation. It is highlighted in Xie & Yuille| (2020)); Xie et al.| (2020a)) that disentangling NS
is the key to justifying the merit of Dual BN in Hybrid-AT.

The underlying reasoning for disentangling NS is that BN statistics calculated on clean domain are incom-
patible with training the model on adversarial domain, and vice versa. Therefore, Hybrid-AT with single
BN suffers from such incompatibility with the mixed distribution for calculating the normalization statis-
tics. Meanwhile, it is claimed in [Xie & Yuille| (2020]) that this incompatibility can be avoided by Dual BN
through training the clean branch on BNeq, and the adversarial branch on BN,g4,. In Section[3] we conduct
a preliminary investigation of this incompatibility and find that using BN from another domain only has
limited influence on the performance. This finding conflicts with the claims in |[Xie & Yuille| (2020); [Xie
et al.| (2020a)) that emphasize the importance of NS, and inspires us to investigate how Dual BN works in
Hybrid-AT.

On top of the single BN as a default case, Dual BN introduces an auxiliary BN component and causes two
changes: (i) disentangling the mixture distribution for normalization statistics (NS) and (ii) introducing two
sets of affine parameters (AP). Prior works (Xie & Yuille, 2020; Xie et al., 2020a)) mainly highlight the effect
of disentangled NS but pay little attention to that of two sets of AP. Intuitively, disentangling NS avoids
the influence of NS calculated on partial (half) samples from a different branch. However, we show that
NS calculated on full samples from a cross-branch BN leads to comparable performance with that using the
default BN (see Section . Motivated by this observation, in contrast to prior works that attribute the
merit of Dual BN over Single BN in Hybrid-AT to disentangled NS, we establish the following hypothesis:

Conjecture 1. We conjecture that what makes Dual BN more effective than Single BN in Hybrid-AT is
mainly caused by two sets of AP instead of disentangled NS.

4.2 Conjecture verification and additional investigation

Untwining NS and AP in Dual BN. As

ReLU RelLU RelLU ReLU
discussed above, compared with Hybrid-AT with A
Single-BN, Dual BN brings two effects: disentangled P T g o 1 T ,,,,,, :
NSs and two sets of APs. To determine the influence 73::?:: i Z,»ia: i’ ZZZZ gi’:: ;ZZ : gzz:z::
of each effect on the model performance, we design T ”””” T """ T 1 ) '
two setups of experiments to include only one effect "/l;;[v'i;z};;; /chm / ’I'L'a’d’v‘i aduoretomn | Hetoant| thoae
while excluding the other. In Setupl, we only in- {Cadvrcteani | Tdeanil Oody | | Cadvictean | | Tetcant | Tagy
clude the effect of two sets of APs, by applying two
different sets of APs (Badv/Yadv and Beican/Yeican) - G conv conv
in the adversarial and clean branches while using 4 4 4 4
the default mixture distribution for normalization. Tadoy Telean  Tadvs Tclean  Tadv) Telean  Ladvs Tclean
In Setup2, we only include the effect of two sets of (a) Hybrid AT (Default)  (b) Dual BN (c) Setupt (d) Setup2

NSs by only disentangling this mixture distribution

with two different sets of NSs while making BNcican  Figure 3: Illustration of different BN setups for un-

and BNgq, share the same set of APs. The above twining NS and AP in Dual BN of Hybrid-AT.
setups of BNs are summarized in Figure [3] and we discuss the experimental results in Table [3] as follows.

Two sets of AP characterize Dual BN. As shown in Table |3, Dual BN (with BN,4, during inference)
brings significant robustness improvement over the Single BN baseline, which is consistent with findings
in [Xie & Yuille| (2020). Interestingly, under the attack of PGD-10, their robustness gap is not significant,
however, under AA, the Single BN achieves very low robustness (7.03% and 0.48% for e = 8/255 and 16,/255,
respectively). Moreover, Setupl (AP.q,) achieves comparable robustness as that of Dual BN (BN,4,) for
e = 8/255 and 16/255, suggesting two sets of APs alone achieve similar performance as Dual BN for yielding
higher robustness (AP,q4,) than single BN setting. The results collaborate with our conjecture that two sets
of APs are a key factor in improving Hybrid-AT. The effect of two sets of NSs is more nuanced: for a small
perturbation € = 8/255, disentangling mixture distribution is beneficial for boosting the robustness under
strong AA; for a large perturbation € = 16/255, this benefit is less significant. This can be explained by the
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Table 3: Test accuracy (%) of untwining NS and AP in Dual BN. For NSs, 1 indicates mixed distribution
and 2 indicates disentangled distribution for normalization. For APs, 1 indicates single set and 2 indicates
double sets of APs. The subscripts of AP .4, and AP 4, indicate the input data type used during training.
Setupl with two sets of APs achieves comparable results with Dual BN.

c=8/255 c=16/255
Setups NS AP e PGD/—IO AA | Clean PGD/—IO AA
Single BN T 1 | 8806 4975  7.03 | 9370 2986 048
Dual BN (BNug) | 2 2 | 8277 5133 4619 | 61.84  31.67  23.14
Dual BN (BNyean) | 2 2 | 9491 032 010 | 9418  0.00  0.00
Setupl (APoay) 1 2 | 8186 5009 4463 | 60.02 3089  23.43
Setupl (APuean) | 1 2 | 9474 010 004 | 9430 000  0.00
Setup? (NSuqe) 29 1 | 8549 4939 4296 | 5591  21.92  10.64
Setup? (NSeiean) | 2 1 | 89.22 4948 42,95 | 86.35  1.08  0.00

fact that training under e = 16/255 is much harder than e = 8/255. Note that Setup2 (NS,4,) and Setup2
(NS¢iean) achieve comparable robustness for ¢ = 8/255, while they both fail to achieve high robustness for
€ = 16/255 (especially the AA results). Overall, we conclude two sets of APs are sufficient for avoiding the
issue of low robustness against AA in Single BN setting of Hybrid-AT, and achieve comparable performance
as Dual BN.

Further investigation beyond BN. Inspired by above find- Table 4: Effect of dual AP on various types
ing that two sets of AP can achieve comparable results to Dual of normalizations (e = 16/255), where LN,
BN, we further investigate whether this holds in cases beyond GN and IN denote Layer Normalization,
BN where disentangling NS is not applicable. For example, Group Normalization and Instance Normal-
layer normalization (LN) adopts sample-wise NS, and therefore ization, respectively.

s . . . . . Norm | Setups Branch | Clean PGDI10 AA
it is not apphcable to dllsentanglle distribution-wise NS bgtween IN | Smgle AP |/ =19 I8l 1180
two domains. We experiment with dual AP on ResNet with LN Dual AP | AP,;, | 6256 2698 16.90
and the results are reported in Table [dl We observe that with Dual AP | APgean | 8841 0.00  0.00
Dual AP. LN perf nilarly with BN in eith tup (b) GN | Single AP | / 81.85 21.94 1450

ual AP, LN performs similarly wi in either setup Dusl AP | APy [ 7027 2036 1830
and (c) in Figure|3| (see the BN results of Dual BN and Setupl Dual AP | APgean | 9182 000 0.00
in Table [3)). We also investigate other normalization methods N |Single AP |/ 92.55 23.06  1.20
Table M linti d ins lizati Dual AP | AP, | 52.20 2527  16.10

able e.g., group normaliztion and instance normalization, Dual AP | APuea, | 9235 0.00 0.00

which show the same trend with LN and BN.

5 On the domain gap between clean and adversarial samples

A model trained on a source domain performs poorly on a new target domain when there is a domain
shift (Daumé III, 2007 [Sun et al., [2017). With BN as the target, it is common in the literature (Li et al.,
2017; Benz et all 2021; |Schneider et al.l [2020; [Xie & Yuille, [2020; Xie et al, |2020a) to indicate the domain
gap by the difference of NS between two domains. For example, an early work (Li et all [2017) has shown
that adapting NS from the target domain during inference can improve the performance on a new target
domain without retraining the model. This test-time BN adaptation has also been adopted in |Benz et al.
(2021)); |Schneider et al.| (2020) for improving the model robustness against common corruptions by perceiving
them (random noise for instance) as a new domain. With such an understanding, it is straightforward for
prior works (Xie & Yuillel [2020; [Xie et al., 2020a; Jiang et al.l [2020) to also perceive the adversarial domain
as a new domain. Prior work (Xie & Yuillel [2020) attributes the success of Hybrid-AT with Dual BN to
disentangled NS. This claim is motivated by a two-domain hypothesis that clean and adversarial samples
are from two different domains (Xie & Yuille, [2020; Xie et all 2020a). As discussed in Section we have
pointed out that disentangled NS is not what makes Dual BN necessary. This finding further inspires us to
investigate whether the underlying (two-domain) hypothesis for disentangling NS in |[Xie & Yuille| (2020);
Xie et al.| (2020a) holds.

Revisiting the domain gap claimed in prior works. To highlight the two-domain gap, prior work (Xie
& Yuille, 2020) visualizes the difference of NS in BN, 4, and BN jeqn (see Figure 5 of (Xie & Yuille,2020)). We
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Figure 4: Visualization of normalization statistics (NS) by randomly choosing 20 channels and displaying
the NS calculated with different APs. The superscript and subscript of NS refer to the AP and input images
when calculating NS, respectively. For example, NS%" is computed on clean samples with AP,4,. NSs
calculated by the same AP are close to each other, such as NS?4” and NS% calculated by AP,4,, so is
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similar NS%ZZZ and NSgﬂjﬁ” calculated by APcean.-
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Figure 5: Visualization of affine parameters (AP). Randomly chose 20 channels for visualizing AP jcqr and
AP .4, There exists a gap between AP eqn and APgq,.

quote the following sentence from [Xie & Yuille| (2020): “ We observe that clean images and adversarial images
induce significantly different running statistics, though these images share the same set of convolutional filters
for feature extraction". With our analysis in Section. [d] we know that the AP in BNgcq, and BNgyg, are
different. The clean branch and adversarial branch still have different weights, i.e., AP, even though the same
set of convolutional filters are shared. In other words, the significant difference between NS jcq, and NS, g,
is induced by not only the difference between image inputs (clean images v.s. adversarial images) but also
different model (AP) weights. To summarize, the NS difference between BN jeqn and BN, is characterized
by two factors: (a) AP inconsistency and (b) different domain inputs. We discuss the influence of these two
factors on the NS difference as follows.

5.1 A hidden flaw leads to a misleading visualization

A hidden flaw in prior visualization of NS. In the default setup of Dual BN, NS, is calculated
on clean samples with AP cqrn, while NS4, is calculated on adversarial samples with AP,4,. In order to
analyze the influence of different AP and domain inputs on the NS, we additionally calculate the NS on clean
samples with AP,4, (denoted as NSadv ) and calculate the NS on adversarial samples with AP ;jcqr (denoted

clean

as NS¢lean) " These two NS are termed re-calibrated NS since the AP and inputs are from different branches.

Following NSZ{E‘}" and NSglde%n to indicate AP choice with the superscript and indicate sample choice with

the subscript, we can also denote vanilla NSeqy as NS%EZ;’ and denote NS4, as NSZ%. Both NSE%?% and

NSZ% are termed as vanilla NS for differentiation. To exclude the influence of AP inconsistency, we intend
to compare NS between clean and adversarial samples with the same AP (the superscript in NS). In other

words, the domain gap is characterized by the difference between NS¢/¢@" and NS¢€a” or that between NS24Y
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Table 5: Evaluation results of re-calibrated NS, ¢ = 16/255. During inference, re-calibrated NS achieves
comparable performance to the default setting.

¢ =8/255 ¢ = 16/255
Setups NS AP PCDI0 AA | PGDI0  AA
NSZ8v AP, | 51.33 46.19 | 31.67 2251
Default NSélean  Apoo| 032 010 | 000  0.00
Swa NSeean AP 4, 171 9.16 | 10.02  9.80
P NS APge, | 000 000 | 045  0.00
| NSWv AP, | 5175 46556 | 32.73  24.40
Re-calibration | voeiean  ap,. | 000 000 | 000 000

and NS  Following the procedures in Xie & Yuille (2020), we plot different types of NS in Figure |4
clean

by randomly sampling 20 channels of the second BN layer in the first residual block. Fig. 4] shows that
there exists a gap between NS¢¢" and NSV which is consistent with the findings in Xie & Yuille (2020).

clean
Moreover, there are two other observations from Figure [d First, if we fix the input samples and calculate

NS with different AP, there exists a large gap, i.e., the gap between NS%™ —and NS¢ ag well as the

clean clean’
adv

gap between NSZ% and N Sfﬁﬁ”. Second, those NSs with the same APs are very close to each other: NS

adv C : clean clean : : :
and NS¢ —are very similar to each other, and the same applies for NS¢ 7" and NS¢¢2". The visualization

results highlight the significance of AP in Dual BN, and is consistent with the finding in Section

adv

014 _

Without considering the influence of AP, the visualization
and conclusions in Xie & Yuille| (2020) might convey a
misleading message. Specifically, the domain gap between
clean samples and adversarial samples is not that large.
The seemingly large domain gap is actually caused by the
AP discrepancy in the dual BN setup. We report the visu-
alization results of AP in Figure [f] for comparison, which
shows a significant gap between AP jeq, and AP 4,. For a
quantitative comparison, we measure the Wasserstein dis-
tance between clean and adversarial branches in different
layers in Figure[6] As shown in Figure[f] the Wasserstein
distance of NS between clean and adversarial branches
is much smaller than the difference of AP for a certain
layer. This finding is consistent with that in Figure [d and

Figure

Inference evaluation with re-calibrated NS. We fur-

ther evaluate the clean accuracy and robustness with re-calibrated NS during inference. Table [5| shows that
given AP,q4,, re-calibrated NSgl”‘?jm achieves a robustness of 51.75%, which is comparable to 51.33% with
NS2dv. Note that the only difference between NS4 and NSZ% is that they are calculated by clean and
adversarial samples, respectively. Moreover, given AP eqn, both NS¢ and NSC,IEZZ yield zero robustness.
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Figure 6: Layer-wise discrepancy visualization.
For all layers, there exists a large distance (higher
than zero) between AP jeqn and AP 4, see v and
B in the figure. However, with the same AP,q,,
the gap between NS4V and NS4 stays almost
zero in all layers, see p and o in the figure.

clean
adv

The results of swapping NS¢€" and NS4 when AP is fixed is also given in Table [5|for comparison. We con-
clude that AP characterizes the large robustness gap between BN jeq, and BNy, during inference, instead
of NS as claimed in [Xie & Yuille (2020). When AP is fixed, the robustness gap between the NS calculated

on clean or adversarial samples is limited to be moderate.

5.2 Adversarial-clean domain gap v.s. noisy-clean domain gap

Table 6: Test accuracy (%) under random noise
and adversarial perturbation during inference.

As suggested in Benz et al| (2021); |[Schneider et al.
(2020), noisy samples (images corrupted by random noise)

can be seen as a domain different from clean samples. Ad- _Noise/ perturbation Size 0  8/255 16/255
versarial perturbation is a worst-case noise for attacking ~ Random noise ) 940 92.7 86.6
the model. Taking a ResNet18 model trained on clean Adversarial perturbation | 940  0.00 0.00

samples for example, we report the performance under adversarial perturbation and random noise (with the
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same magnitude) in Table @ As expected, the model accuracy drops to zero with adversarial perturbation.
Under random noise of the same magnitude, we find that the model performance only drops by a small
margin. Given that the influence of adversarial perturbation on the model performance is significantly larger
than that of random noise, it might be tempting to believe that the adversarial-clean domain gap is much
larger than noisy-clean domain gap.

With Wasserstein distance of NS between different do-

mains as the metric, we compare the adversarial-clean

domain gap with noisy-clean counterpart on the above L ~ = 7,
12 3 456 7 8 91011121314 151617 1819

ResNet18 model trained on clean samples, as shown in Depth of layer

Figure[7] The perturbation and noise magnitude are set g

to 16/255. Interestingly, we observe that there is no sig- Onoisy—ctean

nificant difference between the adversarial-clean domain \——'/\/\fo/\ S

gap and noisy-clean counterpart. In other words, the B U B A R I B TN VSR VR LR TR R Y

adversarial-clean domain gap is not as large as many pern et

might believe considering the strong performance drop

caused by adversarial perturbation.
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Figure 7: Visualization of adversarial-clean do-
main gap and noisy-clean domain gap (perturba-
tion/noise magnitude is set to 16/255).

5.3 Interpreting Hybrid-AT from a two-task
perspective

From two-domain to two-task. Considering the Table 7: Test accuracy of Hybrid-AT with Dual linear,
adversarial-clean domain gap is similar to noisy- € = 16/255. Hybrid-AT with Dual Linear achieves a
clean domain gap as well as a strict constraint on similar trend and comparable results with Dual BN.
allowable perturbation budget, future works investi- Setups Branch Clean PGD10 AA
gating Hybrid-AT are suggested to discard the two- Dual BN BNaay 61.84  31.67 2251
domain hypothesis. Akin to prior work justifying BNeiean 94.18 0.00 0.00
the role of disentangling NSs with the two-domain  pPual Linear | “iP¢@Tado | 60.72 28.84 = 16.50
hypothesis, we provide a two-task hypothesis for jus- Linearcieqn | 91.43 221 1.30
tifying how Dual BN works in Hybrid-AT with a focus on the importance of disentangled APs. Intuitively,
with the two branches in Hybrid-AT, the model weights are trained for two tasks: one for clean accuracy and
the other for robustness. Intuitively, it is difficult for a single same set of parameters to realize two tasks. A
common approach for handling two tasks with a shared backbone is to make the top layers unshared. Here,
we experiment with a shared encoder of single BN but with dual linear classifiers. The results in Table[7]show
that this setup results in similar behavior as Dual BN. Such a phenomenon corroborates that disentangling
APs is equivalent to making partial learnable network weights not shared between the two tasks.

Two sets of APs can be a double-edged sword. yupe 8: Test accuracy of Hybrid-AT (Single BN) with
During inference, whether the test sample is clean K7 10ss. ¢ = 16 /255.

or adversarial is unknown and only a single BN Setups Clean PGDIO  AA
can be adopted. Prioritizing the robustness, prior Single BN 093.70 _ 29.86 0.48
work (Xie & Yuille, |2020) adopts BN,g4, at test time Single BN (with KL loss) | 68.86 33.61 23.60
at the cost of clean accuracy drop. Considering this, Dual BN (BN,4,) 61.84 3167 2251
two sets of APs can be a double-edged sword. Our Dual BN (BNian) 94.18 0.00 0.00

new perspective on Hybrid-AT enables alternative
solutions to mitigate the two-task conflict without resorting to two sets of APs. Here, we experiment with
including an additional regularization loss, which is introduced to minimize the gap between two tasks. As
a concrete example, we add a KL loss on the basic loss of Hybrid-AT in Eq[2] The extra loss is designed
to explicitly minimize the discrepancy between the outputs of adversarial and clean branches. Interestingly,
this simple change improves the AA result of Single BN significantly from 0.48% to 23.60%. Compared
to BNggy (the default branch during inference), Hybrid-AT with KL loss achieves superior performance on
both clean accuracy and robustness. Interestingly, the Hybrid-AT with KL loss reminds us of another AT
framework termed Trades-AT (Zhang et al., [2019b)), which is also trained on hybrid samples and has a KL
loss. This might provide an explanation for the effectiveness of Trades-AT (Zhang et al.,|2019b) by analyzing

10
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the KL term. Admittedly, KL loss on the output is just a naive attempt, but its promising result invites
future works to explore other solutions.

6 Conclusion

We experiment with Cross-AT and demonstrate the compatibility of BN statistics of clean samples with
the adversarial branch, which inspires us to doubt the motivation in prior work for justifying the necessity
of Dual BN in Hybrid AT. We take a closer look at Dual BN and its underlying hypothesis, which yields
two intriguing findings. First, what makes Dual BN effective lies in two sets of affine parameters instead
of disentangled normalization statistics. Second, the adversarial-clean domain gap is not as large as many
might expect and it is similar to its noisy-counterpart under the same perturbation/noise magnitude. In
addition, we propose a new interpretation of Hybrid-AT with Dual BN from the two-task perspective. This
work mainly focuses on providing a new understanding of Dual BN in AT. Understanding BN in other setups
can be interesting future directions.

References

Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adversarial training.
NeurIPS, 2020.

Muhammad Awais, Fahad Shamshad, and Sung-Ho Bae. Towards an adversarially robust normalization
approach. arXiv preprint arXiv:2006.11007, 2020.

Tao Bai, Jingi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial training for
adversarial robustness. arXiv preprint arXiv:2102.01356, 2021.

Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. Revisiting batch normalization for improving
corruption robustness. WACV, 2021.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normalization.
Advances in neural information processing systems, 31, 2018.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C Duchi. Unlabeled data
improves adversarial robustness. NeurIPS, 2019.

Minhao Cheng, Zhe Gan, Yu Cheng, Shuohang Wang, Cho-Jui Hsieh, and Jingjing Liu. Adversarial masking;:
Towards understanding robustness trade-off for generalization. 2020.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In ICML, 2020.

Hal Daumé III. Frustratingly easy domain adaptation. In Association of Computational Linguistics (ACL),
2007.

Pau de Jorge, Adel Bibi, Riccardo Volpi, Amartya Sanyal, Philip HS Torr, Grégory Rogez, and Puneet K
Dokania. Make some noise: Reliable and efficient single-step adversarial training. arXiv preprint
arXiw:2202.01181, 2022.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In CVPR, 2018.

Lijie Fan, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, and Chuang Gan. When does contrastive learning
preserve adversarial robustness from pretraining to finetuning? NeurIPS, 2021.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francois Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. Journal of
Machine Learning Research, 2016.

11



Under review as submission to TMLR

Xinyu Gong, Wuyang Chen, Tianlong Chen, and Zhangyang Wang. Sandwich batch normalization: A
drop-in replacement for feature distribution heterogeneity. In WAC'V, 2022.

Tan J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
In ICLR, 2015.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering the limits of
adversarial training against norm-bounded adversarial examples. arXiv preprint arXiv:2010.03593, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected convolu-
tional networks. In CVPR, 2017.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

Xiaojun Jia, Yong Zhang, Xingxing Wei, Baoyuan Wu, Ke Ma, Jue Wang, and Xiaochun Cao. Prior-guided
adversarial initialization for fast adversarial training. In Computer Vision-ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 253-27, 2022, Proceedings, Part IV, pp. 567—-584. Springer, 2022a.

Xiaojun Jia, Yong Zhang, Baoyuan Wu, Jue Wang, and Xiaochun Cao. Boosting fast adversarial training
with learnable adversarial initialization. IEFE Transactions on Image Processing, 2022b.

Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. Robust pre-training by adversarial contrastive
learning. NeurIPS, 2020.

Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing. arXiv preprint
arXiv:1808.06373, 2018.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. ., 2009.

Sihan Li, Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Demystifying resnet. arXiv preprint
arXiv:1611.01186, 2016.

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normalization for
practical domain adaptation. ICLR workshp, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In ICLR, 2018.

Jay Nandy, Sudipan Saha, Wynne Hsu, Mong Li Lee, and Xiao Xiang Zhu. Adversarially trained models
with test-time covariate shift adaptation. arXiv preprint arXiv:2102.05096, 2021.

Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu. Bag of tricks for adversarial training.
arXiv preprint arXiv:2010.00467, 2020.

Geon Yeong Park and Sang Wan Lee. Reliably fast adversarial training via latent adversarial perturbation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. T758-7767, 2021.

Shilin Qiu, Qihe Liu, Shijie Zhou, and Chunjiang Wu. Review of artificial intelligence adversarial attack and
defense technologies. Applied Sciences, 2019.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normalization
help optimization? In NeurIPS, 2018.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias Bethge.
Improving robustness against common corruptions by covariate shift adaptation. NeurIPS, 2020.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In NeurIPS, 2019.

12



Under review as submission to TMLR

Chawin Sitawarin, Arvind Sridhar, and David Wagner. Improving the accuracy-robustness trade-off for
dual-domain adversarial training.

Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation alignment for unsupervised domain adaptation. In
Domain Adaptation in Computer Vision Applications. 2017.

Sasha Targ, Diogo Almeida, and Kevin Lyman. Resnet in resnet: Generalizing residual architectures. arXiv
preprint arXiv:1605.08029, 2016.

Jonathan Uesato, Jean-Baptiste Alayrac, Po-Sen Huang, Robert Stanforth, Alhussein Fawzi, and Pushmeet
Kohli. Are labels required for improving adversarial robustness? NeurIPS, 2019.

Haotao Wang, Tianlong Chen, Shupeng Gui, Ting-Kuei Hu, Ji Liu, and Zhangyang Wang. Once-for-all adver-
sarial training: In-situ tradeoff between robustness and accuracy for free. arXiv preprint arXiv:2010.11828,
2020.

Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, and Zhangyang Wang. Aug-
max: Adversarial composition of random augmentations for robust training. NeurIPS, 2021.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training. ICLR,
2020.

Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel. Wider or deeper: Revisiting the resnet model for
visual recognition. Pattern Recognition, 2019.

Cihang Xie and Alan Yuille. Intriguing properties of adversarial training at scale. ICLR, 2020.

Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and Quoc V Le. Adversarial examples
improve image recognition. In CVPR, 2020a.

Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, and Quoc V Le. Smooth adversarial training. arXiv
preprint arXiv:2006.14556, 2020b.

Cong Xu and Min Yang. Adversarial momentum-contrastive pre-training. arXiv preprint arXiv:2012.13154,
2020.

Chaoning Zhang, Francois Rameau, Seokju Lee, Junsik Kim, Philipp Benz, Dawit Mureja Argaw, Jean-
Charles Bazin, and In So Kweon. Revisiting residual networks with nonlinear shortcuts. In BMVC;
2019a.

Chaoning Zhang, Philipp Benz, Dawit Mureja Argaw, Seokju Lee, Junsik Kim, Francois Rameau, Jean-
Charles Bazin, and In So Kweon. Resnet or densenet? introducing dense shortcuts to resnet. In WACYV,
2021a.

Chaoning Zhang, Philipp Benz, Chenguo Lin, Adil Karjauv, Jing Wu, and In So Kweon. A survey on
universal adversarial attack. IJCAI 2021b.

Chaoning Zhang, Kang Zhang, Chenshuang Zhang, Axi Niu, Jiu Feng, Chang D Yoo, and In So Kweon.
Decoupled adversarial contrastive learning for self-supervised adversarial robustness. In Computer Vision—
ECCYV 2022: 17th European Conference, Tel Aviv, Israel, October 253-27, 2022, Proceedings, Part XXX,
pp. 725-742. Springer, 2022.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan.
Theoretically principled trade-off between robustness and accuracy. In ICML, 2019b.

Jingfeng Zhang, Bo Han, Gang Niu, Tongliang Liu, and Masashi Sugiyama. Where is the bottleneck of
adversarial learning with unlabeled data? arXiv preprint arXiv:1911.08696, 2019c.

13



	Introduction
	Problem overview and related work
	Development of adversarial training
	Batch normalization in AT

	On the BN induced misalignment
	Understanding how Dual BN works in Hybrid-AT
	Revisiting existing explanation and our conjecture
	Conjecture verification and additional investigation

	On the domain gap between clean and adversarial samples
	A hidden flaw leads to a misleading visualization
	Adversarial-clean domain gap v.s. noisy-clean domain gap
	Interpreting Hybrid-AT from a two-task perspective

	Conclusion

