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Abstract

Although current research aims to use and improve deep learning networks by1

applying knowledge about the structure and function of the healthy human brain2

and vice versa, the potential of using such networks to model neurodegenerative3

diseases remains largely understudied. In this work, we present a novel feasibility4

study modeling dementia in silico with deep convolutional neural networks. There-5

fore, deep convolutional neural networks were fully trained to perform visual object6

recognition, and then progressively injured in two distinct ways. More precisely,7

damage was progressively inflicted mimicking neuronal as well as synaptic injury.8

Synaptic injury was applied by randomly deleting weights in the network, while9

neuronal injury was simulated by removing full nodes or filters in the network.10

After each iteration of injury, network object recognition accuracy was evaluated.11

Saliency maps were generated using the uninjured and injured networks and quanti-12

tatively compared using the structural similarity index measure for test set images to13

further investigate the loss of visual cognition. The quantitative evaluation revealed14

cognitive function of the network progressively decreased with increasing injury15

load. This effect was more pronounced for synaptic damage. As damage increased,16

the model focus shifted away from the main objects in the images and became more17

dispersed. This shift in attention was quantitatively evidenced by a decrease in the18

structural similarity index measure comparing the saliency maps of corresponding19

uninjured and injured models, as a function of injury. The results of this study20

provide a promising foundation to develop in silico models of neurodegenerative21

diseases using deep learning networks. The effects of neurodegeneration found22

for the in silico model are especially similar to the loss of visual cognition seen in23

patients with posterior cortical atrophy.24

1 Introduction25

Amidst the current explosion of big data, deep learning models have emerged as integral tools for26

solving many complex classification, regression, and object recognition problems [Lo Vercio et al.,27

2020]. More recently, deep convolutional neural networks (DCNNs) are also increasingly explored28

as potential tools to model information processing in the mammalian brain [Yamins and DiCarlo,29

2016]. This is assumed possible because DCNNs were originally inspired by the neuron and synaptic30

structure found in the mammalian visual cortex [Rawat and Wang, 2017]. To date, studies have31

explored similarities in neural activations between DCNNs and primate brains, and have reported32

positive correlations between responses in specific areas of these models and the primate ventral33

visual stream[Yamins et al., 2014].34

Currently, machine learning research primarily aims to advance the biological similarity of DCNNs35

to produce more brain-like artificial neural network models with the hope of improving their task-36
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specific performance. Meanwhile, computational neuroscience research is primarily interested in37

using DCNNs as a computational model of the healthy brain [Yamins and DiCarlo, 2016, Kriegeskorte,38

2015, Richards et al., 2019, Peters and Kriegeskorte, 2021]. In this research project, we explored39

the potential use of employing DCNNs as in silico models of neurodegenerative diseases, a largely40

unexplored research direction. Specifically, this work provides one of the first proof of concepts of an41

in silico model of posterior cortical atrophy (PCA). PCA is a disorder associated with Alzheimer’s42

disease and is characterized by visual dysfunction such as visual agnosia and simultanagnosia43

[da Silva et al., 2017]. In the case of visual agnosia, patients lose the ability to visually recognize and44

identify familiar objects without losing the ability to see the object. Simultanagnosia is marked by45

failure to perceive multiple visual locations simultaneously or to shift attention from one object to46

another. PCA is caused by the accelerated degeneration and thinning of the associated visual cortices47

(i.e., V1, V2, V3, V4). Since DCNNs were specifically designed for object recognition and modelled48

following information processing in the mammalian brain, neuronal injuries as seen in PCA can be49

intuitively modelled in DCNNs. In this work, synaptic damage was performed by randomly removing50

weights in the trained network, while neuronal damage was modelled by randomly removing nodes,51

including all connecting weights. The effect of the two injury types on visual object recognition52

capabilities was quantitatively and qualitatively analyzed by assessing model accuracy and structural53

differences in saliency maps between healthy and injured models.54

2 Methods and materials55

2.1 Models and data56

This work is based on the VGG19 model pretrained on the ImageNet database described in more57

detail by Russakovsky et al., 2015, which was fine-tuned on the Imagenette database [Russakovsky58

et al., 2015, Howard]. The VGG19 model was selected for this purpose as it has one of the highest59

correlation values when compared to mammalian neuronal activation data, measured using the Brain-60

Score [Schrimpf et al., 2018]. This model contains 16 convolutional layers, with each convolutional61

block followed by a max-pooling layer. The final four layers are fully-connected dense layers; the first62

two containing 1024 neurons, the third 512 neurons, finally followed by a 10-dimensional softmax63

classification layer. The network was optimized using the Adam optimizer and a learning rate of64

0.001. No drop-out was used in the fine tuning of the additional three dense layers. We separately65

trained 25 VGG19 models, each initialized with a different set of weights in the dense layers to66

reduce potential biases.67

Imagenette is a smaller subset of the full ImageNet database and consists of ten easily identifiable68

classes containing both animate and inanimate objects. The train-test split used in this work consisted69

of 9469 and 3925 images, respectively. Images were scaled to dimensions of 224×224×3. Prior to70

damaging the network, the fine-tuned VGG19 performed object classification on the Imagenette test71

set with an accuracy of 94.2% ± 0.006% when averaged across all 25 models. All 25 initial models72

were subjected to increasing rates of progressive synaptic or neuronal injury.73

2.2 Neurodegeneration - Simulated post cortical atrophy74

Synaptic damage was inflicted on the baseline trained models by randomly setting x percent of the75

weights in the model to zero, effectively severing connections between neurons in the model, which76

simulates synaptic injury. The selection of weights that were injured was randomly generated 2577

times, one for each of the 25 models, to reduce the potential bias introduced by the randomization78

process. In each iteration, 1% additional damage was increasingly applied to simulate progressive79

damage. In a second set of experiments, neuronal injury was modelled by progressively removing80

entire nodes from convolutional layers and dense layers of the network. In the convolutional layers,81

nodes are equivalent to filters and in dense layers, a node was considered a unit. When a node was82

removed, all adjacent weights were effectively deleted. Neuronal injury was randomly dispersed83

throughout all convolutional and dense layers and progressively increased with 1% increments.84

2.3 Saliency maps85

In order to further investigate the cognitive decline in the injured networks, saliency maps were86

generated for each iteration of generated injury and compared for all test set images between87
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uninjured and injured networks. Saliency maps are frequently used in computer vision tasks to88

enhance understanding around which parts of an input stimuli a DCNN focuses on to arrive at a89

classification [Simonyan et al., 2014]. In this research, GradCam saliency maps were generated90

for every image in the test set at each injury level. GradCam computes the gradients of the class91

score with respect to activations of the last convolutional block of the network. In this work, the92

experiments used the predicted class as the class score. The structural similarity index measure93

(SSIM) was calculated between the healthy network saliency maps and those generated by the injured94

networks as a means to quantify the shift in attention the network exhibits as a function of injury.95

SSIM is commonly used and a well-accepted metric to compare similarity between images [Bylinskii96

et al., 2019, Wang et al., 2004].97

3 Results98

3.1 Object recognition accuracy99

Synaptic injury nearly immediately led to a decrease in model accuracy. The steepest decline in object100

recognition accuracy was seen between 13% and 23% synaptic injury, while at injury levels of 30%101

and greater, the model performed at chance level of 10% (see Figure 1A). In contrast to this finding,102

model performance retained an object recognition accuracy greater than 90% with neuronal injury103

until it reached damage levels of 79%. The steepest loss of accuracy for neuronal injury occurred104

between 87% and 99% injury. It should be noted that even at 99% injury, the model performed105

considerably better than chance level (see Figure 1B).

Figure 1: A) Model object recognition accuracy as the model underwent 1% increments of progressive
synaptic injury. After 30% injury, the model performed at chance level. B) Model accuracy as
progressive neuronal injury was applied. Model performance does not begin to degrade significantly
until 65% damage. Data are presented as the mean + SD across all runs and all images in the test set.

106

3.2 Saliency maps using predicted class labels107

Visual analysis of saliency maps revealed that attention of the uninjured model was correctly focused108

on sections of the test images that contribute meaningfully to the correct classification (see Figure 2).109

As synaptic damage increased, the focus of the model subtly began to shift away from the relevant110

objects in the images (see Figure 2A). These qualitative results are supported by the quantitative111

results that revealed decreasing structural similarity index measures (SSIM) with increasing injury112

(see Figure 2B) comparing the saliency maps of the uninjured networks to the corresponding saliency113

maps of the injured networks. When calculated and averaged across all images in the test set, the114

average SSIM was reduced from 1.0 to 0.348 ± 0.016 after the first 10% of synaptic injury. Once the115

model was unable to correctly classify which type of object is in a given input stimulus, the ability to116

focus on the relevant parts of the image was largely hindered. The activations within the network117

no longer maximized the probabilities of the correct classes. This impaired result was qualitatively118

evident in the 50% injured saliency map shown in Figure 2. It is also represented in Figure 2C where119

average SSIM is displayed as a function of model accuracy.120

This increasing dissimilarity was much less qualitatively evident when progressive neuronal damage121

was applied (see Figure 3A). Upon visual inspection, the model appeared to retain some accuracy in122

attention focus on the given input stimuli, even at 90% neuronal injury. This retention of attention123

accuracy was also reflected in the average SSIM at 90% injury (0.416 ± 0.027) (Figure 3B). While124
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Figure 2: Attention focus of the model quantified using saliency maps are generated with respect
to the predicted class label. Data are presented as mean + SD across all runs for all images in the
test set. A) Qualitative examination of saliency maps at separate levels of synaptic injury. B) SSIM
calculated between saliency maps as a function of synaptic injury. Between 1% and 20% injury, the
SSIM is severely affected (Identical images are computed at SSIM=1). C) SSIM plotted as a function
of model accuracy.

these effects of degeneration in saliency map similarity and thus, attention focus, were much less125

pronounced in neuronal injury, they are consistent with respect to overall model accuracy, as seen in126

the similarity between Figure 2C and Figure 3C.

Figure 3: Attention focus of the model quantified using saliency maps are generated with respect
to the predicted class as the neuronal injury is progressively applied. Data are presented as mean +
SD. A) Qualitative examination of saliency maps at separate levels of neuronal injury. B) Changes in
SSIM between saliency maps as injury is applied. SSIM gradually decreases. C) Average SSIM as a
function of accuracy as neuronal damage is progressively applied to the network.

127

4 Discussion128

4.1 Main Findings129

The main finding of this study is that all models eventually become more cognitively impaired with130

respect to their object recognition abilities with progressively increasing amounts of injury. This131

relationship is analogous to cognitive decline seen in patients affected by neurodegenerative diseases,132
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such as Alzheimer’s disease, who experience a loss of object recognition capabilities [Fox et al., 1999,133

Hodges et al., 1995, Jefferson et al., 2006]. Within this context, previous studies have shown that134

patients with Alzheimer’s disease perform poorly on visual search tasks due to inefficiency in shifting135

attention to relevant targets as well as inefficiency in processing information held within a target136

[Tales et al., 2004]. Indeed, our preliminary research in modelling the onset of the neurodegeneration137

of PCA using deep learning models show that DCNNs behave similarly to biological neural networks138

in this respect.139

The difference in how injury was imposed, i.e., synaptically or neuronally, provides crucial insight140

into the development of in silico models of biological phenomena using deep learning models. The141

fragility of the network when exposed to weight-based (synaptic) injury was highlighted in the severe142

decline of model accuracy and attention focus, even at rather small injury levels. When removing143

weights in a randomly dispersed manner in these static, feed-forward networks, the filters in the144

subsequent layers received a widespread lack of meaningful information. Thus, the poor information145

quickly affected the nodes in subsequent layers and, hence, the network’s recognition capabilities.146

This is consistent with biological findings, in that synaptic loss results in less coordinated brain147

activity and may be the ultimate correlate to cognitive deficits due to Alzheimer’s disease [John and148

Reddy, 2021, Kashyap et al., 2019].149

Contrary to the effects of simulated synaptic injury, our results suggest that neuronal pruning has150

less severe effects on the qualitative and quantitative metrics investigated. A likely explanation for151

this finding is that removing a filter from a convolutional layer or a complete unit (neuron) from152

a layer in a deep learning network does not leave the subsequent layers with as much of a lack of153

information. Large convolutional neural networks, such as the VGG19, have proven to be quite robust154

in model compression studies, implying a certain level of redundancy in the network [Han et al.,155

2016]. The neuronal damage results we obtained in this study are similar to what previous machine156

learning literature on network pruning has reported [Hu et al., 2016]. In this stream of experiments,157

we observed that object recognition capabilities mostly remain at a high level until damage levels of158

65% and greater are imposed. These results combined with the slow but yet progressive loss of object159

recognition accuracy is analogous to what patients suffering from PCA experience as a progressive160

loss of visuospatial and visuoperceptual skills [Crutch et al., 2012]. As Alzheimer’s disease is most161

often the underlying pathology of PCA, it has been shown that clinical symptoms of Alzheimer’s162

disease, such as visual cognitive decline, only present when substantial atrophy has occured [Fox163

et al., 1999]. The initial robustness of the human brain to injury is largely due to the extensive number164

of redundant connections that are in place to protect the system from structural breakdown [Kashyap165

et al., 2019]. This type of relationship is consistent and directly evident in the results of the in silico166

neuronal damage modelled in this study.167

4.2 Limitations and future research directions168

The main limitations of this study include the limited dataset that only contains ten classes of relatively169

easily categorizable objects. In order to more accurately model human visual cognition, a larger170

dataset with a more diverse range of class objects will be investigated in the future. Another limitation171

is the explicit difference between the strictly feed-forward structure of the DCNNs used in this work172

and the complex information processing that occurs in biological neural networks. Furthermore,173

the complexities of individual tau patterns and neurodegeneration resulting in different clinical174

symptoms, such as cognitive decline, are still not fully understood [Han et al., 2016]. Thus, building a175

generalized model of neurodegeneration and the subsequent cognitive deficits faces similar challenges.176

The development of this field of work has the potential to lead to positive societal implications by177

increasing understanding around the progression of these diseases. There are currently no foreseen178

negative impacts.179

Crucial future research directions will be to incorporate model retraining between each iteration of180

injury to more accurately capture the inherent neuroplasticity in the degenerating human brain. It is181

expected that this will alleviate some of the extreme results seen in the synaptic injury simulation as182

weights will be able to update and compensate for certain initial amounts of damage. Additionally,183

more detailed evaluation metrics can be employed. Examining optimized networks with little to184

no redundancy will allow for further investigation into the effects of removing individual nodes or185

weights in the network. Finally, a future experimentation will include investigating focal and more186

concentrated neuronal loss, rather than randomly dispersed injury as applied in this study.187
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