
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOTOOL: AUTOMATIC SCALING OF TOOL-USE CA-
PABILITIES IN RL VIA DECOUPLED ENTROPY CON-
STRAINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool use represents a critical capability for AI agents, with recent advances focus-
ing on leveraging reinforcement learning (RL) to scale up the explicit reasoning
process to achieve better performance. However, there are some key challenges
for tool use in current RL-based scaling approaches: (a) direct RL training of-
ten struggles to scale up thinking length sufficiently to solve complex problems,
and (b) scaled-up models tend to overthink simpler problems, resulting in sub-
stantial token inefficiency. To address these challenges, we propose a novel train-
ing paradigm that first employs warm-up supervised fine-tuning to help models
distinguish between simple and complex problems, followed by RL that enable
models to automatically determine appropriate reasoning trajectories. Further-
more, to tackle the issue of automatic thinking-length scaling, we discover that
entropy-based optimization objectives effectively maintain model diversity while
successfully unlocking the model’s scaling capabilities. Based on this insight, we
introduce an entropy-based long-short reasoning fusion RL strategy. Our exper-
iments on three benchmarks demonstrate that model successfully achieves auto-
scaling for efficient tool use, achieving significant 9.8% accuracy improvements
while reducing computational overhead by ~81%.

1 INTRODUCTION

Integrating agentic large language models (LLMs) with external tools has emerged as a pivotal
advancement, and has become a defining feature of advanced agentic models (OpenAI, 2025; K2,
2024). It significantly enhances a model’s ability to address complex tasks (Qu et al., 2025; Wang
et al., 2024), and opens up many practical uses across different fields. For example, it supports
the automation of reasoning tasks (Jin et al., 2025; Li et al., 2025b), and enables agent applications
(Zihan et al., 2025; Ouyang et al., 2025). Therefore, research on agentic tool use represents a critical
pathway toward artificial general intelligence. In this task, models respond to queries by dynamically
selecting and invoking relevant tools from an available pool.

Test-time scaling (TTS) is a approach to language modeling that uses extra test-time compute to
improve performance (Muennighoff et al., 2025). Currently, scaling up a model’s explicit reasoning
length via Reinforcement Learning with Verifiable Rewards (RLVR) is a effective to achieve TTS.
Compared to the prevalent Supervised Fine-Tuning (SFT) approach, which imitates reasoning pat-
terns from labeled high-quality examples to teach models using tools (Liu et al., 2024; Zhang et al.,
2024a), RLVR better fosters intrinsic reasoning, rather than making models memorize training tra-
jectories (Chen et al., 2025). It has demonstrated robustness in mathematics (Shao et al., 2024) and
coding (Pan & Liu, 2025), while also driving a paradigm shift from SFT to RL in LLM training.
Thus, exploring suitable scaling strategies is critical to advance effective agentic tool-use.

To this end, we pre-analyze the training paradigm for TTS in tool use, as shown in Figure 1. Under
direct RL training, contrary to mathematical tasks where response length scales with improving
accuracy, we observe that models suffer from reasoning collapse in tool use, a phenomenon where
models fail to sufficiently extend thinking1 length to solve complex problems. More importantly, we

1In this paper, the terms thinking and long reasoning are used interchangeably, both referring to responses
that contain an explicit reasoning process.
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Figure 1: The training paradigms for TTS in tool-use: (a) direct RL enables scaling up response
length as accuracy improves in mathematical tasks; but (b) it fails to scale in tool-use tasks, where
reasoning collapses into short trajectories; (c) scaled-up models (e.g., distillation models) incur
significant token costs, as they require lengthy reasoning trajectories for all queries.

find many tool-use problems can be solved with short reasoning trajectories, yet scaled-up models
generate excessively long trajectories that cause unnecessary resource consumption. Therefore, an
adaptive model that dynamically integrates short and long reasoning is highly desirable.

More analysis in Section 2 reveal that low entropy, which quantifies a model’s response certainty
and exploration capability, leads to insufficient reasoning length, limiting the robustness of LLMs in
tackling hard problems. These findings motivate our proposed method, which decouples long and
short reasoning to prevent dominance interference while incorporating entropy constraints to enable
long-trajectory reasoning. Therefore, we propose a decoupled adaptive entropy constraint strategy
for RL. It first performs warm-up using a constructed mixed dataset of long and short reasoning
trajectories to perceive data difficulty. The strategy decouples the policy loss between short and long
reasoning, then applies varying entropy constraint strengths to regulate the thinking mode while
maintaining concise responses for simple problems. This enables differentiated exploration control
across reasoning modes, with adjusted entropy strength set above a target entropy in long reasoning
to preserve exploration capacity.

Experiments on three benchmarks show: (1) Our ~7B model leads at comparable size models (e.g.,
+11.95% compare to SFT-model). (2) Beyond performance, our auto-scaling model boosts accu-
racy by 9.8% compared to the distilled model and cuts inference token cost by ~81%. Notably, our
model’s thinking rate reaches 45% in complex scenarios but 0% in simple ones. Moreover, visu-
alizations of the training process confirm that our approach generates concise responses for simple
cases while extending reasoning trajectories by 5× for complex questions. This contrast demon-
strates that the model has learned to automatically adjust test-time scales based on sample difficulty,
ultimately supporting improved inference efficiency.

2 PRELIMINARY STUDY

In this section, we present extensive experiments to highlight the challenges of achieving test-time
scaling for agentic tool use, and thereby motivate our method.

2.1 TASK OVERVIEW

In agentic tool use, the LLM receives a user query q along with candidate tools, represented as
T = {t0, t1, . . . , t|T |}. The purpose of LLM is to fulfill the user’s intent by executing a specific
sequence of tools. We formalize this decision-making process as y ∼ π(y | q, s, T ), where π(·)
represents the policy model, s denotes the task state (e.g., historical context ), and y represents the
actions taken by the model, such as selecting or executing tool calls. A review of related work is
provided in Appendix A.
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Figure 2: Impact of difficulty distributions. Easy and Medium converged successfully, while Hard
failed (a, b). However, collapse occurred across all three subsets (c), with the same trend observed
in entropy (d). This indicates that data distribution has no correlation with collapse, whereas low
entropy exhibits a strong positive correlation.

2.2 TRAINING PARADIGMS ANALYSIS

We analyze training paradigms for scaling reasoning process in tool use, including RL training
and SFT with distillation, using Qwen2.5-series models to conduct training on the public ToolACE
dataset (Liu et al., 2024) and evaluation via BFCL (Yan et al., 2024) (details in Section 4.1).

(1) For direct RL, we applied RL (specifically GRPO (Shao et al., 2024)). As shown in Figure 3b,
we observe a divergence between the model’s performance and response length: as training steps
increased, performance improved while response length decreased sharply. This indicates the rea-
soning patterns collapsed into short reasoning trajectories, failing to scale-up in test-time. This result
contradicts widely accepted findings from training on complex reasoning tasks (e.g., mathematics)
(Hugging Face, 2025; Zeng et al., 2025b), as shown in Figure 3a, where we adopt experimental re-
sults from Zeng et al. (2025a). The evaluation results presented in Table 1 indicate that performance
in complex tool-use scenarios (e.g., Multi-Turn) decreased noticeably compared to the distilled SFT
model. This indicates that the reasoning collapse phenomenon limits the model’s robust performance
on complex problems.

(2) For SFT with distillation, we conducted base SFT and distillation from reasoning LLM
(DeepSeek-AI, 2025b), respectively. As shown in Figure 1c, distilled models showed no notice-
able accuracy gain over the base SFT, but increased output token costs by more than 10×. This
suggests that many agentic tool-use problems can be solved with short reasoning trajectory while
excessive long trajectory leads to unnecessary resource consumption.

2.3 PRE-STUDY ON REASONING PATTERN COLLAPSE.

To investigate the causes of reasoning pattern collapse, we conducted an in-depth analysis of data
difficulty distribution and information entropy.

2.3.1 DATA DISTRIBUTION

Intuitively, we hypothesized that the sample difficulty distribution might exert a critical influence.
Guided by this hypothesis, we used a base model to perform 8 rounds of reasoning on the training
data and calculated pass@8. The resulting distribution (shown in Appendix B) reveals that easy
samples (with 8/8 correct inferences) and hard samples (with 0/8 correct inferences) accounted for
47% and 31.8% of the dataset, respectively, while medium samples made up a smaller proportion.

We then conducted separate RL training runs on these three subsets, evaluated the resulting models,
and reported their training dynamics in Figure 2. Notably, reasoning pattern collapse persisted
across all three subsets: after an initial exploration phase, easy samples led to rapid convergence,
intermediate samples resulted in slower convergence, and hard samples showed no convergence.
These findings indicate that the sample difficulty distribution can slightly reduce convergence speed,
but no correlation with collapse has been observed.

The actor model’s information entropy quantifies its exploration capability during training. As
shown in Figure 2d, entropy decreases rapidly, with dynamics closely aligning with reasoning pat-
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Table 1: Evaluation results on the BFCL benchmark, which includes three sub-metrics: Non-live,
Live, and Multi-Turn (including multi-turn and long-context tool-use scenarios). l denotes target
response length in response constraint, and β denotes coefficients of entropy constraint.

Model Think? Non-Live Live Multi-Turn Overall Acc

Base LLM ✗ 86.46 67.44 7.62 53.69
w/ SFT ✗ 86.65 75.11 6.75 56.90
w/ distilled SFT ✓ 87.35 79.59 16.95 59.23
w/ GRPO ✓ 87.06 78.22 8.38↓8.57 57.81

w/ length constraint
+l = 100 ✓ 87.30 71.23 7.92 55.37
+l = 50 ✓ 87.76 78.43 8.78 58.12
+l = 10 ✓ 89.76 77.33 8.89 58.27

w/ entropy constraint
+β = 1e−2 ✓ 87.47 79.13 9.48 59.33
+β = 5e−2 ✓ 87.21 77.96 10.02 58.91
+β = 1e−1 ✓ 88.32 80.42 15.86↑7.48 61.86
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Figure 3: Training dynamics visualized for entropy constraint (a) and length penalty (b). The entropy
constraint partially increases response length, yet the length penalty does not mitigate low entropy.

tern collapse. Additionally, comparing three subsets, the final converged entropy increases sequen-
tially from simple to complex samples. This reveals: simple problems elicit high certainty in short
reasoning (perceiving extended exploration risks suboptimal solutions); complex problems face in-
herent challenges, with short reasoning advantage dominance further discouraging exploration and
driving default to brief responses. This finding demonstrates a strong positive correlation between
low entropy and collapse.

2.3.2 INFORMATION ENTROPY CONSTRAINTS

To explore reasoning collapse-entropy connections, we incorporated entropy constraints into the
policy loss function. Inspired by He et al. (2025), we designed a mechanism to maintain the entropy
(e) at a reasonable level throughout training. The entropy loss is defined as:

lossek = β · I{ek ≤ tgt-ent} (1)

where k is the training step, β is the coefficient, and we set tgt-ent=0.1. Notably, the entropy
loss is only activated when ek ≤ tgt-ent, ensuring the model’s entropy remains lower-bounded
by the target value. For comparative purposes, we also implemented a short-response penalty by
configuring the reward function to penalize response below the target length l. The evaluation results
(presented in Table 1) show that the length constraint did not improve the model’s test performance.
In contrast, the entropy constraint yielded partial performance gains (visualizing the training process
in Figure 3). However, the effectiveness is highly sensitive to β: in multi-turn, the maximum positive
gain was achieved when β = 1e − 1, whereas results for other β are comparable to w/ length
constraints. This sensitivity highlights the difficulty of pre-selecting an optimal entropy coefficient,
indicating that dynamically adjusting β during training is necessary.

Therefore, we propose a novel strategy: decoupled adaptive entropy constraints. It decouples en-
tropy constraint for short and long reasoning and adaptively tunes the entropy coefficient, addressing
both the collapse caused by low entropy and the sensitivity of static coefficients.
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Figure 4: The overview of decoupled adaptive entropy constraint. It achieves automatic scaling by
decoupling different reasoning modes through the application of differentiated entropy constraints.
Adaptive entropy constraint strength for long reasoning. During the inference, the model can auto-
matically or controllably switch inference modes by pre-pending a response prefix in Input tokens.

3 METHODOLOGY

Our method first performs warm-up SFT to perceive sample difficulty (details in 3.1), followed by
RLVR training with decoupled adaptive entropy constraints, as shown in Figure 4.

3.1 DATA PREPARATION AND WARM-UP

To support robust general-purpose tool use via RL, we constructed a mixed dataset covering diverse
tool-use scenarios from public sources: ToolACE (Liu et al., 2024), xLAM (Zhang et al., 2024a;
Prabhakar et al., 2025), Hermes Function-Calling (interstellarninja, 2024). More details are provided
in Appendix B. To create a balanced dataset encompassing diverse complexity levels and tool usage
scenarios, we randomly downsampled the raw data. Moreover, we adopted the following strategies
to develop a Public agentic Tool-use dataset (PubTool), as presented in Table 2.

Warm-up Training. To help the model initially perceive data difficulty, we propose SFT for warm-
up training by mixing long and short reasoning data. To construct such mixed thinking data, we
performed multiple inferences (calculating pass@8) on the training data using Qwen2.5-7B-Instruct
(no-thinking model) and Qwen3-32B (thinking model), respectively. For each response turn, we
adopted the ground truth as the label if the no-thinking model’s output was correct; otherwise, we
adopted the thinking model’s answer with explicit long reasoning if it was correct. More Details
of data preparation are shown in Appendix §B. We design an auto-thinking template (details in
Appendix §F) to enable the model to select reasoning modes based on data difficulty. Finally, we
conducted SFT on the base model for warm-up, preparing for subsequent RL scaling.

Quality Refinement for RL data. To efficiently support auto-scaling RL training, we employed the
following data enhancement strategies: First, from data distribution analysis in Section §2.3.1, we
observed that the original dataset was dominated by overly simple and excessively difficult samples.
Overly simple samples offer limited value for RL training and lack generalization, while overly
difficult samples either exceed model capabilities or contain noise. We therefore randomly removed
half of both simple and difficult samples to balance the dataset distribution. Additionally, inspired
by Li et al. (2025a), we prioritized training samples based on their alignment with model learning
trajectories. Specifically, we performed multi-epoch GRPO training on all training data, computed
changes in their reward scores, and calculated each sample’s variance relative to the average reward.
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Table 2: Data statistics of PubTool in data collection and construction. Subscript text in the SFT
data table indicates the thinking rate in all turns.

ToolACE xLAM Hermes Function-Calling

Raw Data 11.3k 65k 7.1k
Downsampled 11.3k 15k 7.1k

PubTool

Processed SFT data RL data
8.2k(9.2%) 7k

Lower variance indicated higher alignment. Through these processes, we downsampled the RL
dataset from 21k to 7k samples. For a detailed analysis of its effects, please refer to Appendix B.

3.2 DECOUPLED ADAPTIVE ENTROPY CONSTRAINTS

To enable automatic scaling in agentic tool use, we propose a decoupled adaptive entropy constraints
strategy for RLVR. The objective policy loss integrates the surrogate objective from native RLVR
(e.g., GRPO) with a mechanism that: (1) decouples entropy regulation between short and long
trajectories; (2) adaptively adjusts the entropy strength in long reasoning trajectories to preserve
exploration capacity.

Specifically, let πθ be the policy, Hi = −Ea∼πθ(·|si)[log πθ(a|si)] is the entropy at step i, and
mi ∈ {0, 1} an indicator variable: equals 1 if the action step is a short trajectory and 0 if it is a long
trajectory. We apply decoupled entropy constraints based on policy model’s response trajectory
type: (1) βs: fixed coefficient for short paths (to prevent excessive exploration), (2) βl: adaptive
coefficient for long paths (learned dynamically).

The sample-level policy loss is defined as:

βi = βs ·mi · I{Hi ≤ Hs}+ βl · (1−mi) · I{Hi ≤ Hl}, (2)

Lp =
1

N

N∑
i=1

[
−min

(
ρiÂi, clip(ρi, 1− ϵ, 1 + ϵ) · Âi

)
− βiHi

]
, (3)

where βi adapts the entropy penalty per sample, ρi = πθ(ai|si)/πθold(ai|si), Hl and Hs denote
target entropy of long reasoning and short reasoning, and Âi is the estimated advantage based on
reward scores in Section 3.3. The key design is the decoupling of entropy weights via mi, enabling
distinct regularization strategies.

Adaptive Entropy Coefficient Loss. Entropy regularization is highly sensitive to the choice of
coefficient, making it difficult to select an optimal coefficient in advance. This motivates a dynamic
adjustment of the entropy loss coefficient. To automatically adjust the entropy strength for long
trajectories, we introduce an adaptive loss that updates βl based on the deviation of actual entropy
from a target level. The loss is computed only on steps belonging to long trajectories (mi = 0) and
is defined as:

Ll
β =

1∑
j(1−mj)

N∑
i=1

(1−mi) · βl · (Hi −Hl), (4)

where Hl is a predefined target entropy. The coefficient βl is updated by minimizing LL
β : if

Hi < Hl, βl increases to encourage exploration; if Hi > Hl, it decreases to suppress excessive
randomness. In contrast, βs remains fixed during training.

3.3 AUTO THINKING REWARD MODULE

In this module, the model’s output is evaluated using a rule-based reward (DeepSeek-AI, 2025a;
Meng et al., 2025) to compute the estimated advantage for the objective loss Lp. Specifically, for

6
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each question q, model generates G completions {o1, o2, . . . , oG} using πθold . This reward module
combines format and answer rewards to score each completion.

Format Reward. The format reward Rformat(oi) ∈ {0, 1} evaluates whether the output adheres to
the required structural template. We define two valid reasoning modes: think and no-think, each
with strict syntactic constraints:

[mode]think[/mode][think]reasoning process here[/think]answer
[mode]no_think[/mode][no_think]\n[/no_think]answer

This design encourages explicit reasoning for complex problems via the think mode, while allowing
direct generation for simple queries via no-think, reducing computational overhead. During the
inference stage, controllable reasoning modes are achieved by prepending special tokens to the
input, as depicted at the bottom of Figure 4.

Answer Reward. We check the correctness of the tool call by comparing it against the ground-truth
annotation y∗. Tool-call outputs are parsed into structured dictionaries, enabling exact matching
of both the function name and all required arguments. To encourage a balance between reasoning
efficiency and accuracy, we design an asymmetric reward based on the mode (think or no-think):

Ranswer(oi) =


+1.0, if oi = y∗, no-think,
+0.5, if oi = y∗, think,
−0.5, if oi ̸= y∗, think,
−1.0, if oi ̸= y∗, no-think,

(5)

It incentivizes short responses when they are correct, while encouraging long reasoning when mis-
takes occur, prompting more careful processing in uncertain scenarios.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We use the open-source Qwen2.5-7B-Instruct as our base model. We compared four baseline types:
Base, SFT-trained , API-based Frontier, and RLVR-trained models. Additionally, we compare the
series of models trained on the base model using PubTool data. See Appendix D for more details.

Evaluation Dataset. The following benchmarks are used for evaluation: (1) BFCL (Yan et al.,
2024) provides a comprehensive dataset comprising 4k+ instances (updating), consisting of Non-
live (with expert-curated simple tools), Live (with user-contributed complex tools), Multi-turn (with
multi-turn & multi-step tool use) samples. (2) API-Bank (Li et al., 2023), which consists of 314
tool-use dialogues and 753 API calls. This dataset evaluates a models’ abilities to correctly invoke a
known API (L-1) based on a query and to retrieve and call APIs from a tool list (L-2). (3) ACEBench
(Chen et al., 2025) is a 2k-entry benchmark for assessing agentic tool use, using its summary score
in "normal" evaluation type (covering single-turn and multi-turn scenarios).

4.2 OVERALL PERFORMANCE

The overall performance of models are shown in Table 3 and Figure 5. Firstly, the results indicate
that our model consistently achieves corresponding best performance at comparable scales (~7B).
For instance, compared to PubTool-SFT, AutoTool-7B with automatic think achieving +11.95 point
improvement. And relative to Base model, it also has a remarkable boost with +16.43%. Secondly,
our model demonstrated its more superiority in challenging scenarios (e.g., achieves +28.5% im-
provement compare to PubTool-SFT in Multi-turn). This demonstrates that our method realizes a
strong robustness enhancement in complex scenarios.

Moreover, our model outperforms most SFT-trained and RLVR-trained models in BFCL, and
demonstrates comparable performance with the frontier models. It also shows consistent advanta-
geous performance on API-Bank and ACEBench compared with baselines in Figure 5. For example,
on ACEBench, our model achieves a 6.5 improvement compared to GRPO and a 5.9 improvement
compared to Distilled. Finally, in the inference controllable mode, when forced to think, the overall
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performance is on par with auto think; when forced not to think, the effect on Multi-turn is signifi-
cantly improved compared to no-think models (e.g., PubTool-SFT).

Table 3: Comparison on the BFCL benchmark. Overall Acc denotes the average performance on
three subsets. * indicates a single-turn tool use model; † denotes models trained on PubTool data
with a specific method. The subscript denotes the thinking rate.

Type Model Non-Live Live Multi-Turn Overall Acc

♣Base
LLaMA-3.1-8B-Instruct 84.21 61.08 9.62 50.87
Qwen2.5-7B-Instruct 86.46 67.44 7.62 53.69
Qwen2.5-32B-Instruct 85.81 74.23 17.75 59.67

♥Frontier
GPT-4o-2024-11-20 87.67 79.88 43.00 70.42
o3-2025-04-16 81.42 73.43 56.12 70.32
Gemini-2.5-Pro 89.54 76.83 30.62 65.48

♦SFT

Hammer2.1-7b(Lin et al., 2024) 88.65 75.11 23.50 61.83
ToolACE-8B (Liu et al., 2024) 87.54 78.59 7.75 58.42
xLAM-7b-r(Zhang et al., 2024a) 81.06 75.22 10.00 54.75
PubTool-SFT† 88.98 77.28 9.68 58.17
PubTool-Distilled† 87.73 78.64 15.65 60.30

♠RLVR

DeepSeek-R1-0528 75.20 77.30 38.88 63.79
Qwen3-8B(Team, 2025a) 88.81 78.54 33 66.34
QwQ-32B(Team, 2025b) 87.33 75.61 14.50 58.30
Tool-N1-7B*(Zhang et al., 2025b) 89.25 80.38 - -
ToolRL-7B(Qian et al., 2025) 82.21 74.90 18.12 58.38
PubTool-GRPO† 88.87 78.93 10.77 60.13

♠Ours
AutoTool-7B† 89.760% 80.224.8% 38.1845% 70.129.7%

+ think 89.86 80.43 39.28 70.71
+ no-think 87.36 78.60 27.63 63.34
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Figure 5: Performance of methods using training data PubTool on APIBank and ACEBench.

4.3 DEEP ANALYSIS STUDY

4.3.1 ABLATION STUDY

To evaluate the effectiveness of key components in our method, we conducted an ablation study
with the following variations: (1) Replaced the adaptive entropy coefficient with a fixed one (w/o
adapt coeff ); (2) Replaced the decoupling loss with a unified loss with fixed entropy constraint (w/o
decouple); (3) Removed data quality refinement (w/o data refine). We also included Qwen2.5-7B-
Instruct as a Base Model for comparison. As shown in Table 4, compared with the baseline, our full
model delivers a significant improvement of 16.43 points in Overall performance. All components
are essential to our method, and removing any component causes clear performance drops: (1)
w/o data refine brings the largest 6.43% Overall reduction, highlighting high-quality data as a core
foundation. (2) w/o adapt coeff leads to a 10.53% Multi-turn decline, proving its value in stabilizing
multi-round interactions; (3) w/o decouple results in a 2.34% Overall drop, showing decoupling
avoids objective interference.
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Table 4: The strategy ablation performance (↑ = increase, ↓ = decrease, values are relative percentage
changes from the Our (w/. all) model).

Models Non-live Live Multi-turn Overall

Base Model 86.46 67.44 7.62 53.69

Our (w/. all) 89.76 80.22 38.18 70.12
w/o. data refine 88.22 ↓1.54 73.29 ↓6.93 26.84 ↓11.34 63.69 ↓6.43
w/o. decouple 87.35 ↓2.41 75.98 ↓4.24 27.65 ↓10.53 64.23 ↓5.89
w/o. adapt coeff 88.73 ↓1.03 78.73 ↓1.49 32.14 ↓6.04 67.78 ↓2.34
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Figure 6: Inference efficiency analysis results, including performance, token cost, ACU.

4.3.2 INFERENCE EFFICIENCY ANALYSIS

Given the trade-off between reasoning path length, model size (~B), and performance, we introduce
a new metric, Accuracy per Computation Unit (ACU), to better capture this balance and assess
model inference efficiency (Ma et al., 2025). It is defined as:

ACU =
Accuracy

#Params ×#Tokens
(6)

Since the ACU value typically falls within the range of 10−5 to 10−3, we report it in units of 103 for
improved readability. In addition, we report the thinking rates of our model across all submetrics.

The experimental results are summarized in Figure 6. From the results, we observe that AutoTool
achieves the second-best overall performance: it reduces token cost significantly by 81%, requiring
only about ~183 tokens compared to the distilled model (~966 tokens). Notably, with the forced
no-think inference mode, AutoTool attains the optimal ACU score (0.97), demonstrating excellent
inference efficiency. Even with the think inference mode, it still delivers the highest accuracy while
cutting the token cost by half relative to the distilled model. Additionally, Table 3 shows that the our
model’s thinking rate reaches 45% in the Multi-Turn scenario but 0% in the No-Live scenario. The
training process visualized in Appendix Section C shows our model extends reasoning trajectories
for complex questions by ×5, while enabling concise responses for simple ones. This suggests
the model has learned to automatically adjust the test-time scale based on sample difficulty, which
effectively supports the improvement of inference efficiency.

5 CONCLUSION

This study focused on addressing challenges in integrating agentic LLMs with tools by optimiz-
ing the RLVR paradigm. Our research first identified two critical issues: excessive resource con-
sumption caused by unnecessary long-trajectory reasoning, and the reasoning collapse phenomenon
under the direct RL training, hindering effective scaling. To solve these, we proposed a decou-
pled adaptive entropy constraint strategy, which enables the model to automatically adjust reasoning
scales based on problem difficulty, thereby balancing performance and inference efficiency. Exper-
iments on three benchmarks confirmed the strategy’s effectiveness, boosting accuracy while cutting
inference token cost significantly. This work advances RL-based agentic tool-use training and pro-
vides a practical auto-scaling solution for efficiently handling tasks.
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USE OF LLM

LLMs (GPT-4o) were only used as general-purpose tools to draft baseline literature summaries and
proofread minor grammar, no LLM contributed to core ideation, algorithm development, analysis,
or writing, and all LLM-assisted content was verified for accuracy/integrity. No LLM is eligible for
authorship.

A RELATED WORK

A.1 AGENTIC TOOL-USE

Enhancing LLMs with external tools has emerged as a pivotal direction for addressing complex tasks
in open domains (Qu et al., 2025; Wang et al., 2024). Typical applications include integrating LLMs
with search engines (Zhang et al., 2024b; Lazaridou et al., 2022; Shuster et al., 2022), calculators
(Nakano et al., 2021), and Python interpreters (Wang et al., 2024; Song et al., 2024; Chen et al.,
2022). Three common paradigms are widely adopted for training tool-use LLMs: (1) SFT: imitates
the reasoning patterns from labeled high-quality examples, enabling models to learn standard tool-
use workflows (Liu et al., 2024; Zhang et al., 2024a; Qin et al., 2023; Prabhakar et al., 2025). (2)
RL with direct preference optimization: aligns model tool-use behavior with human intentions by
optimizing against human preference signals (Zeng et al., 2025c; Yu et al., 2024). (3) RL with
Verifiable Rewards (RLVR): as a novel approach, leverages scalable test-time inference and utilizes
verifiable signals as rewards to refine the model’s tool-use decisions (Li et al., 2025b).

A.2 RL SCALE-UP

Reinforcement learning (RL) has gained traction as a more scalable and generalizable training
paradigm. Models like R1-Zero leverage group relative policy optimization (GRPO) (Shao et al.,
2024) to unlock the model’s reasoning capabilities at test time (DeepSeek-AI, 2025a; Yu et al.,
2025). This R1-style reasoning paradigm, marking a shift from train-time scaling to test-time scal-
ing (Muennighoff et al., 2025; Xia et al., 2025), has demonstrated success in mathematics (Shao
et al., 2024), coding (Pan & Liu, 2025), and agentic tool use (Feng et al., 2025; Jin et al., 2025).

Recently, several works have explored automatic scaling , i.e., enabling models to adaptively select
the optimal reasoning mode based on problem difficulty (Fang et al., 2025; Zhang et al., 2025a;
Huang et al., 2025; Wang et al., 2025). In agentic tool-use tasks, auto-scaling is particularly critical:
many such problems can be solved with short reasoning, whereas excessively long reasoning leads
to unnecessary resource consumption. While RL-based scaling for tool use in open-domain rea-
soning has been investigated (Zhang et al., 2025b; Qian et al., 2025), RL with auto-scaling remains
unexplored in agentic tool use.
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B DETAILS IN DATA PREPARATION

Source of Training Data Details. The raw data was sourced as follows:

• ToolACE (Liu et al., 2024): A general tool-use dataset teaching models when to invoke
tools vs. respond directly, enhancing multi-step decision-making.

• xLAM (Zhang et al., 2024a; Prabhakar et al., 2025): A compositional dataset requiring one
or more tool calls per turn. We mixed the original 60k xLAM with its multi-turn variant
APIGen-MT-5k (Prabhakar et al., 2025).

• Hermes Function-Calling (interstellarninja, 2024): Designed to train LLMs in function
calls and structured output from natural language. We extracted function call-related sam-
ples.

The dataset features various conversational scenarios where AI agents are required to interpret
queries and execute appropriate single or multiple function calls. In Section 2, data distillation em-
ploys Deepseek-R1-0528 (DeepSeek-AI, 2025a). Subsequently, in Section §3.1, to mitigate model
bias by aligning with a no-think model, data distillation is carried out using Qwen3-32B (Team,
2025a).

Data Processing Pipeline & Distribution Details. We obtained PubTool from raw data through
following data processing workflow: (1) We randomly downsampled xLAM to balance the sample
sizes across the three datasets. (2) We removed overly simple and excessively difficult samples;
Figure 7 shows the raw-data distribution of successful reasoning counts (pass@8). Guided by this
distribution, we partitioned the data into hard (31.8%), medium (21.2%), and easy (47%) subsets
(Figure 7a) and re-balanced the difficulty distribution accordingly. (3) For RL data, we further
refined the set by prioritizing samples that align closely with the model’s current learning trajectory
(details in the next paragraph). For comparison, we visualized the PubTool distribution in the same
way (Figure 7b). We observed that the original corpus is concentrated in the easy and hard extremes,
whereas PubTool peaks in the hard subset and is sparse in the easy subset. We argue that training
on data of moderately high difficulty better elicits the model’s test-time scaling capability (He et al.,
2025).
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Figure 7: The number of correct inferences distribution with performing 8 rounds of reasoning on
the raw training data (a). The distribution of PubTool after data processing (b).

RL Data Refine Details. In the second phase of data processing, we prioritize train-
ing samples by their alignment with model learning trajectories, measured through the
variance of reward scores from the mean, lower variance indicates better alignment.
Better alignment corresponds to lower variance of reward scores, defined as:

Var(r) =
1

n− 1

n∑
i=1

(ri − µr)
2, µr =

1

n

n∑
i=1

ri

where lower Var(r) indicates better alignment. This sampling result is illustrated in Figure 8. From
the figure, we observe that the average reward ranges between 0.7 and 0.9, with aligned samples
showing higher scores in the upper-left region and misaligned samples displaying lower scores.

Effectiveness of Data Refinement. We experimentally verified its effectiveness. After warm-up
SFT, Figure 9 shows GRPO training processes with and without data refinement. Results indicate
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(a) Retained: with aligned samples
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Figure 8: We retain aligned samples (i.e., those with low variance (a) ) and remove misaligned
samples (i.e., those with high variance (b)).

data refinement increases accuracy reward score by +15%, reduces training fluctuation variance,
and enhances stability. Additionally, the model’s thinking rate converged to a lower level, indicating
improved memory capacity. BFCL evaluation results show GRPO with data refinement reached
66.82%, versus 60.78% without, an improvement of +6.04%. These enhancements are attributed to
data refinement filtering substantial noise while retaining high-contribution samples.
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Figure 9: RL training processes (with and without data refinement) are shown, along with accuracy
scores and thinking rates.

C VISUALIZATION OF TRAINING DYNAMICS

To demonstrate auto-scaling effects, we visualized the training process (Figure 10). As training
progressed, accuracy improved while the thinking rate gradually decreased to 5%, indicating fewer
problems required long reasoning, suggesting enhanced intrinsic tool-using capabilities. Addition-
ally, response length and entropy achieved decoupled control: think mode enabled 500% longer rea-
soning trajectories than no-think mode, with corresponding higher actor entropy reflecting greater
exploration tendency. These visualizations confirm that training enhanced tool-using abilities and
successfully enabled auto test-time scaling based on problem difficulty and model proficiency.

D COMPLEMENTARY EXPERIMENTS

D.1 MORE IMPLEMENTATION DETAILS

The experiments were executed using the publicly accessible training framework MindSpeed-RL2,
an end-to-end reinforcement learning acceleration framework based on the Ascend ecosystem. The
BFCL is an evolving benchmark and we utilized the version checked out on June 14, 2025. For the

2https://gitee.com/ascend/MindSpeed-RL
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Figure 10: The visualization of training dynamics.

training model, we selected the best performance checkpoint on the valid dataset. In the Test-
time Scale paradigms analysis (§2), we used an instruct model for SFT and a base model for
GRPO. We employ a full-parameter training strategy for all SFT. In baseline trained on PubTool
data, we trained on the complete dataset using specific methods (e.g., SFT, Distilled SFT, and
GRPO). In the PubTool-GRPO training, we adopted the widely used think prompt pattern, which fol-
lows the format: <think> reasoning process here </think><answer> answer
here </answer>. Each RL training run for the 7B model completed within 4 hours on a cluster
of 32 Ascend 910b NPUs (configured as 4 nodes × 8 NPUs). The hyperparameters used are detailed
in Table 5.

Baselines (1) Base Model: the original model without additional training (e.g., Qwen2.5-series,
LLaMA3.1-series). (2) SFT-trained Model: ToolACE-8B (trained on the full ToolACE dataset (Liu
et al., 2024)), xLAM-series (trained on the full xLAM dataset (Zhang et al., 2024a)), and Hammer-
series (trained on xLAM with function masking (Lin et al., 2024)). (3) API-based closed-source
frontier models (e.g., GPT-series, Gemini-series). (4) RLVR-trained Model: models trained using
GRPO as the RL paradigm, such as QwQ-32B (Team, 2025b), Qwen3-series (Team, 2025a), Tool-
N1 series (single-turn tool-use models trained on mixed ToolACE and xLAM data (Zhang et al.,
2025b)), and ToolRL(trained in subset of mixed ToolACE and xLAM data (Qian et al., 2025)).

E HYPERPARAMETER ANALYSIS

Model performance appears sensitive to target entropies and the initial choice of penalty coefficient
β. To identify a suitable target entropy for entropy constraints, we conducted a hyperparameter
analysis.

F PROMPT DESIGN FOR AUTO THINK

To explore a suitable prompt design for Auto Think, we conducted a preliminary analysis of the four
kind of prompts listed below:
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Hyperparameter Value Hyperparameter Value

Data Configuration RL Optimization

Global Batch Size 128 Learning Rate 1e-6
Max Prompt Length 12000 LR Decay Style constant
Max Response Length 2048 Mini Batch Size 128
Micro Batch Size 4 KL Loss Used False
Train Steps 200

Rollout Configuration Entropy Constraints

Rollout Name vllm Clip Higher ϵ 0.28
GPU Memory Utilization 0.5 Think Target Entropy Hl 0.2
Number of Rollouts 8 No-Think Target Entropy Hs 0.1
Temperature 1.0 Init Adaptive Coefficient βl 0.1
Tensor Model Parallel Size 1 Fixed Coefficient βs 0.1
Top_P 1.0

Table 5: The configurations for RL training with GRPO.

• Controlled reasoning mode with square tags: [mode]no_think[/mode] [no_think] \n
[/no_think] [tool_call] tool calls here [/tool_call]

• Uncontrolled reasoning mode with square tags: [no_think]\n[/no_think] [tool_call] tool
calls here [/tool_call]

• Controlled reasoning mode with angle tags: <mode>no_think</mode> <no_think> \n
</no_think> <tool_call> tool calls here </tool_call>

• Uncontrolled reasoning mode with angle tags: <no_think>\n</no_think> <tool_call>
tool calls here </tool_call>

We trained the model starting from Qwen2.5-7B-Instruct using the original GRPO algorithm with
PubTool LRL data. Their training processes and evaluation results are presented in Figure 11. From
the results, two key observations emerge: (1) Square tags ([]) exhibit better adaptability than an-
gle tags (<>). This may be because the model used angle tags for segmentation in the pre-training
phase, reusing these tags for a different purpose (reasoning mode control) is likely to cause signal
interference. (2) Additionally, the explicit "reasoning mode" prefix does not obviously affect per-
formance. The evaluation results show that the controlled reasoning mode with square tags achieves
the best performance; thus, we adopt this prompt design for auto scaling.

G LIMITATION AND FUTURE WORK

Despite promising results in tool-use scenarios, our method has latent concerns to clear. First, we
only tested it on a specific model size, future work should verify its scalability across different
model scales (e.g., 3B, 13B, 32B parameters) and architecture series, e.g., LLaMA-series. Second,
our method’s generalizability beyond tool-use tasks is unproven. It is valuable to evaluate its perfor-
mance on other complex reasoning tasks (e.g., mathematics, logical deduction) to confirm if it can
similarly enhance reasoning steps or reduce computational costs. Third, our method currently relies
on a specific RL algorithm. Future research should test its compatibility with other RL algorithms
(e.g., PPO (Schulman et al., 2017; Engstrom et al., 2020) and DAPO (Yu et al., 2025)) to verify if
the decoupled entropy constraint strategy is effective across different algorithmic paradigms. We
will address these limitations in future work.
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Figure 11: Visualization of training processes and evaluation results for four prompt designs.
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The Full System Prompt for Automatic Think in RL

You are an advanced function composition agent. Your goal is to solve user queries efficiently.
In the multi-turn dialogue loop: the interaction is a cycle: You [tool_call], you receive a
[tool_response], and you MUST use that new information to plan your next step.

# Tools
You are provided with function signatures within [tools] and [/tools] tags:
[tools] {functions} [/tools]

# Action Phase
1. Choose an Action Mode: For every turn, you MUST start your response by choosing an
action mode (think vs no_think) based on the task’s complexity.
no - think: Use for complex reasoning. Enclose your detailed thought process within [think] and
[/think] tags.
no - no_think: Use for simple, straightforward tasks. You MUST use an empty, self-closing
block: [no_think]\n[/no_think].
Your response MUST begin by enclosing the selected mode name within [mode] and [/mode]
tags.

2. Decide on an Action Path: After that, you must choose ONE of the following two paths:

## Path A: Call Functions
WHEN: The user’s intent is tool-related and you have all required functions and parameters.
The tool_calls field is a JSON object with function names and arguments within [tool_call] and
[/tool_call] XML tags. i.e., [tool_call] [{"name": <function-name>, "arguments": <args-json-
object>}, {"name": <function-name2>, "arguments": <args-json-object2>}, ...] [/tool_call]

EXAMPLE:
[mode]no_think[/mode] [no_think]\n[/no_think] [tool_call] tool calls here [/tool_call]
EXAMPLE:
[mode]think[/mode] [think] reasoning process here [/think] [tool_call] tool calls here [/tool_call]

## Path B: Respond Directly to the User
WHEN: You need to provide a natural language text response. This happens in three main
scenarios:
(1) After receiving tool execution feedback enclosed within [tool_response] and [/tool_response]
tags, continue to respond to user queries based on this feedback.
(2) The user’s query is general conversation and not related to any tool.
(3) Ask for more information if the given conversational context lacks the required functions or
parameters.

EXAMPLE:
[mode]no_think[/mode] [no_think]\n[/no_think] natural language sentences you talk with user
EXAMPLE:
[mode]think[/mode] [think] reasoning process here [/think] natural language sentences you talk
with user

Figure 12: System Prompt Design for Automatic Scaling Tool-Use in Multi-Turn Dialogue.
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