

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AUTOTool: AUTOMATIC SCALING OF TOOL-USE CA- PABILITIES IN RL VIA DECOUPLED ENTROPY CON- STRAINTS

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Tool use represents a critical capability for AI agents, with recent advances focusing on leveraging reinforcement learning (RL) to scale up the explicit reasoning process to achieve better performance. However, there are some key challenges for tool use in current RL-based scaling approaches: (a) direct RL training often struggles to scale up thinking length sufficiently to solve complex problems, and (b) scaled-up models tend to overthink simpler problems, resulting in substantial token inefficiency. To address these challenges, we propose a novel training paradigm that first employs warm-up supervised fine-tuning to help models distinguish between simple and complex problems, followed by RL that enable models to automatically determine appropriate reasoning trajectories. Furthermore, to tackle the issue of automatic thinking-length scaling, we discover that entropy-based optimization objectives effectively maintain model diversity while successfully unlocking the model’s scaling capabilities. Based on this insight, we introduce an entropy-based long-short reasoning fusion RL strategy. Our experiments on three benchmarks demonstrate that model successfully achieves auto-scaling for efficient tool use, achieving significant 9.8% accuracy improvements while reducing computational overhead by ~81%.

1 INTRODUCTION

Integrating agentic large language models (LLMs) with external tools has emerged as a pivotal advancement, and has become a defining feature of advanced agentic models (OpenAI, 2025; K2, 2024). It significantly enhances a model’s ability to address complex tasks (Qu et al., 2025; Wang et al., 2024), and opens up many practical uses across different fields. For example, it supports the automation of reasoning tasks (Jin et al., 2025; Li et al., 2025b), and enables agent applications (Zihan et al., 2025; Ouyang et al., 2025). Therefore, research on agentic tool use represents a critical pathway toward artificial general intelligence. In this task, models respond to queries by dynamically selecting and invoking relevant tools from an available pool.

Test-time scaling (TTS) is a approach to language modeling that uses extra test-time compute to improve performance (Muennighoff et al., 2025). Currently, scaling up a model’s explicit reasoning length via Reinforcement Learning with Verifiable Rewards (RLVR) is a effective to achieve TTS. Compared to the prevalent Supervised Fine-Tuning (SFT) approach, which imitates reasoning patterns from labeled high-quality examples to teach models using tools (Liu et al., 2024; Zhang et al., 2024a), RLVR better fosters intrinsic reasoning, rather than making models memorize training trajectories (Chen et al., 2025). It has demonstrated robustness in mathematics (Shao et al., 2024) and coding (Pan & Liu, 2025), while also driving a paradigm shift from SFT to RL in LLM training. Thus, exploring suitable scaling strategies is critical to advance effective agentic tool-use.

To this end, we pre-analyze the training paradigm for TTS in tool use, as shown in Figure 1. Under direct RL training, contrary to mathematical tasks where response length scales with improving accuracy, we observe that models suffer from *reasoning collapse* in tool use, a phenomenon where models fail to sufficiently extend thinking¹ length to solve complex problems. More importantly, we

¹In this paper, the terms *thinking* and *long reasoning* are used interchangeably, both referring to responses that contain an explicit reasoning process.

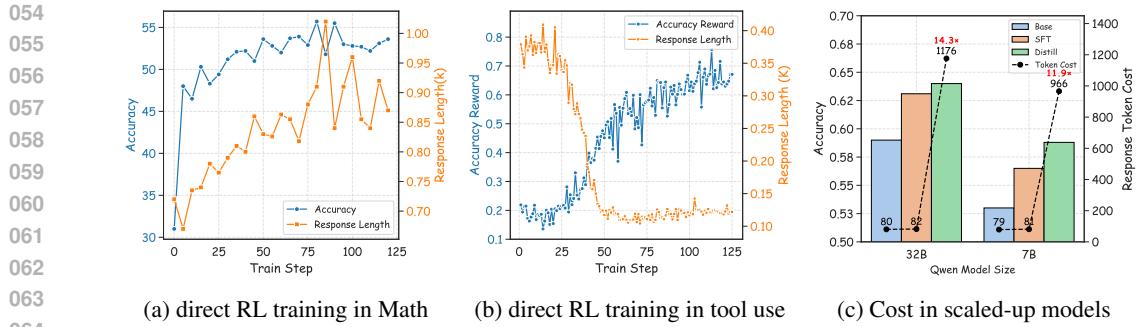


Figure 1: The training paradigms for TTS in tool-use: (a) direct RL enables scaling up response length as accuracy improves in mathematical tasks; but (b) it fails to scale in tool-use tasks, where reasoning collapses into short trajectories; (c) scaled-up models (e.g., distilled models) incur significant token costs, as they require lengthy reasoning trajectories for all queries.

find many tool-use problems can be solved with short reasoning trajectories, yet scaled-up models generate excessively long trajectories that cause unnecessary resource consumption. Therefore, an adaptive model that dynamically integrates short and long reasoning is highly desirable.

More analysis in Section 2 reveal that low entropy, which quantifies a model’s response certainty and exploration capability, leads to insufficient reasoning length, limiting the robustness of LLMs in tackling hard problems. These findings motivate our proposed method, which decouples long and short reasoning to prevent dominance interference while incorporating entropy constraints to enable long-trajectory reasoning. Therefore, we propose a decoupled adaptive entropy constraint strategy for RL. It first performs warm-up using a constructed mixed dataset of long and short reasoning trajectories to perceive data difficulty. The strategy decouples the policy loss between short and long reasoning, then applies varying entropy constraint strengths to regulate the thinking mode while maintaining concise responses for simple problems. This enables differentiated exploration control across reasoning modes, with adjusted entropy strength set above a target entropy in long reasoning to preserve exploration capacity.

Experiments on three benchmarks show: (1) Our $\sim 7B$ model leads at comparable size models (e.g., +11.95% compare to SFT-model). (2) Beyond performance, our auto-scaling model boosts accuracy by 9.8% compared to the distilled model and cuts inference token cost by $\sim 81\%$. Notably, our model’s thinking rate reaches 45% in complex scenarios but 0% in simple ones. Moreover, visualizations of the training process confirm that our approach generates concise responses for simple cases while extending reasoning trajectories by $5\times$ for complex questions. This contrast demonstrates that the model has learned to automatically adjust test-time scales based on sample difficulty, ultimately supporting improved inference efficiency.

2 PRELIMINARY STUDY

In this section, we present extensive experiments to highlight the challenges of achieving test-time scaling for agentic tool use, and thereby motivate our method.

2.1 TASK OVERVIEW

In agentic tool use, the LLM receives a user query q along with candidate tools, represented as $\mathcal{T} = \{t_0, t_1, \dots, t_{|\mathcal{T}|}\}$. The purpose of LLM is to fulfill the user’s intent by executing a specific sequence of tools. We formalize this decision-making process as $y \sim \pi(y | q, s, \mathcal{T})$, where $\pi(\cdot)$ represents the policy model, s denotes the task state (e.g., historical context), and y represents the actions taken by the model, such as selecting or executing tool calls. A review of related work is provided in Appendix A.

Figure 2: Impact of difficulty distributions. *Easy* and *Medium* converged successfully, while *Hard* failed (a, b). However, collapse occurred across all three subsets (c), with the same trend observed in entropy (d). This indicates that data distribution has no correlation with collapse, whereas low entropy exhibits a strong positive correlation.

2.2 TRAINING PARADIGMS ANALYSIS

We analyze training paradigms for scaling reasoning process in tool use, including RL training and SFT with distillation, using Qwen2.5-series models to conduct training on the public *ToolACE* dataset (Liu et al., 2024) and evaluation via *BFCL* (Yan et al., 2024) (details in Section 4.1).

(1) For direct RL, we applied RL (specifically GRPO (Shao et al., 2024)). As shown in Figure 3b, we observe a divergence between the model’s performance and response length: as training steps increased, performance improved while response length decreased sharply. This indicates the reasoning patterns collapsed into short reasoning trajectories, failing to scale-up in test-time. This result contradicts widely accepted findings from training on complex reasoning tasks (e.g., mathematics) (Hugging Face, 2025; Zeng et al., 2025b), as shown in Figure 3a, where we adopt experimental results from Zeng et al. (2025a). The evaluation results presented in Table 1 indicate that performance in complex tool-use scenarios (e.g., Multi-Turn) decreased noticeably compared to the distilled SFT model. This indicates that the reasoning collapse phenomenon limits the model’s robust performance on complex problems.

(2) For SFT with distillation, we conducted base SFT and distillation from reasoning LLM (DeepSeek-AI, 2025b), respectively. As shown in Figure 1c, distilled models showed no noticeable accuracy gain over the base SFT, but increased output token costs by more than 10 \times . This suggests that many agentic tool-use problems can be solved with short reasoning trajectory while excessive long trajectory leads to unnecessary resource consumption.

2.3 PRE-STUDY ON REASONING PATTERN COLLAPSE.

To investigate the causes of reasoning pattern collapse, we conducted an in-depth analysis of data difficulty distribution and information entropy.

2.3.1 DATA DISTRIBUTION

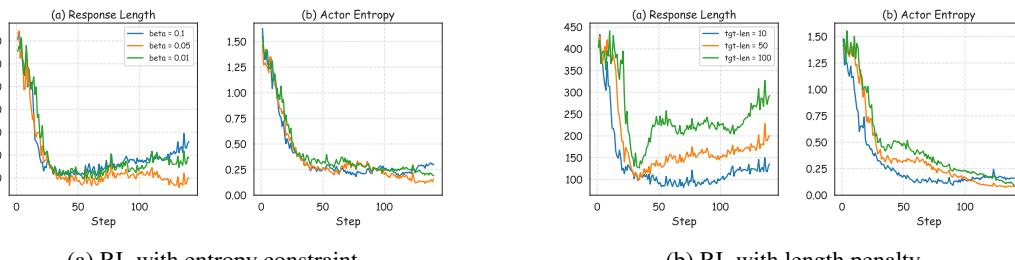
Intuitively, we hypothesized that the sample difficulty distribution might exert a critical influence. Guided by this hypothesis, we used a base model to perform 8 rounds of reasoning on the training data and calculated pass@8. The resulting distribution (shown in Appendix B) reveals that **easy** samples (with 8/8 correct inferences) and **hard** samples (with 0/8 correct inferences) accounted for 47% and 31.8% of the dataset, respectively, while **medium** samples made up a smaller proportion.

We then conducted separate RL training runs on these three subsets, evaluated the resulting models, and reported their training dynamics in Figure 2. Notably, reasoning pattern collapse persisted across all three subsets: after an initial exploration phase, easy samples led to rapid convergence, intermediate samples resulted in slower convergence, and hard samples showed no convergence. These findings indicate that the sample difficulty distribution can slightly reduce convergence speed, but no correlation with collapse has been observed.

The actor model’s information entropy quantifies its exploration capability during training. As shown in Figure 2d, entropy decreases rapidly, with dynamics closely aligning with reasoning pat-

162 Table 1: Evaluation results on the BFCL benchmark, which includes three sub-metrics: Non-live,
 163 Live, and Multi-Turn (including multi-turn and long-context tool-use scenarios). l denotes target
 164 response length in response constraint, and β denotes coefficients of entropy constraint.

166	Model	Think?	Non-Live	Live	Multi-Turn	Overall Acc
167	Base LLM	✗	86.46	67.44	7.62	53.69
168	w/ SFT	✗	86.65	75.11	6.75	56.90
169	w/ distilled SFT	✓	87.35	79.59	16.95	59.23
170	w/ GRPO	✓	87.06	78.22	8.38 _{↓8.57}	57.81
171	w/ length constraint					
172	+ $l = 100$	✓	87.30	71.23	7.92	55.37
173	+ $l = 50$	✓	87.76	78.43	8.78	58.12
174	+ $l = 10$	✓	89.76	77.33	8.89	58.27
175	w/ entropy constraint					
176	+ $\beta = 1e-2$	✓	87.47	79.13	9.48	59.33
177	+ $\beta = 5e-2$	✓	87.21	77.96	10.02	58.91
178	+ $\beta = 1e-1$	✓	88.32	80.42	15.86 _{↑7.48}	61.86



188 Figure 3: Training dynamics visualized for entropy constraint (a) and length penalty (b). The entropy
 189 constraint partially increases response length, yet the length penalty does not mitigate low entropy.
 190

191 tern collapse. Additionally, comparing three subsets, the final converged entropy increases sequen-
 192 tially from simple to complex samples. This reveals: simple problems elicit high certainty in short
 193 reasoning (perceiving extended exploration risks suboptimal solutions); complex problems face in-
 194 herent challenges, with short reasoning advantage dominance further discouraging exploration and
 195 driving default to brief responses. This finding demonstrates a strong positive correlation between
 196 low entropy and collapse.
 197

198 2.3.2 INFORMATION ENTROPY CONSTRAINTS

200 To explore reasoning collapse-entropy connections, we incorporated entropy constraints into the
 201 policy loss function. Inspired by He et al. (2025), we designed a mechanism to maintain the entropy
 202 (e) at a reasonable level throughout training. The entropy loss is defined as:

$$203 \quad loss_k^e = \beta \cdot \mathbb{I}\{e_k \leq tgt_ent\} \quad (1)$$

204 where k is the training step, β is the coefficient, and we set $tgt_ent=0.1$. Notably, the entropy
 205 loss is only activated when $e_k \leq tgt_ent$, ensuring the model's entropy remains lower-bounded
 206 by the target value. For comparative purposes, we also implemented a short-response penalty by
 207 configuring the reward function to penalize response below the target length l . The evaluation results
 208 (presented in Table 1) show that the length constraint did not improve the model's test performance.
 209 In contrast, the entropy constraint yielded partial performance gains (visualizing the training process
 210 in Figure 3). However, the effectiveness is highly sensitive to β : in multi-turn, the maximum positive
 211 gain was achieved when $\beta = 1e-1$, whereas results for other β are comparable to *w/ length*
 212 *constraints*. This sensitivity highlights the difficulty of pre-selecting an optimal entropy coefficient,
 213 indicating that dynamically adjusting β during training is necessary.

214 Therefore, we propose a novel strategy: decoupled adaptive entropy constraints. It decouples en-
 215 tropy constraint for short and long reasoning and adaptively tunes the entropy coefficient, addressing
 both the collapse caused by low entropy and the sensitivity of static coefficients.

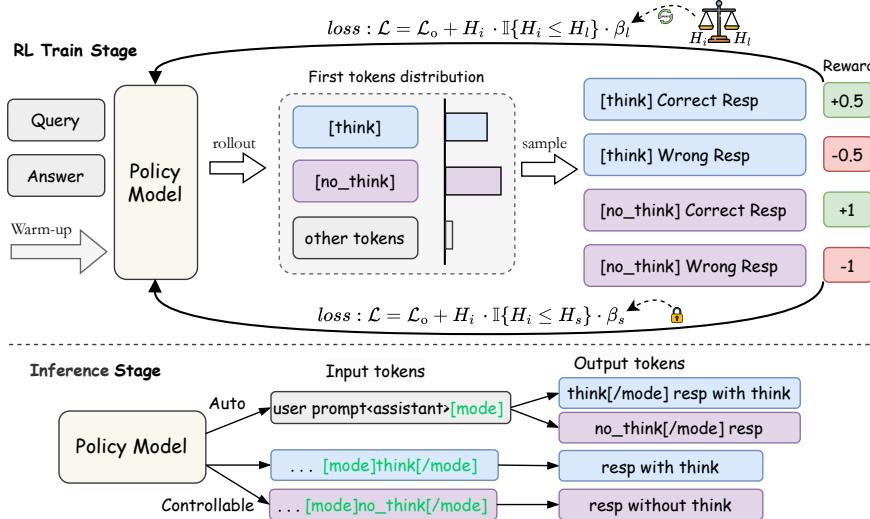


Figure 4: The overview of decoupled adaptive entropy constraint. It achieves automatic scaling by decoupling different reasoning modes through the application of differentiated entropy constraints. Adaptive entropy constraint strength for long reasoning. During the inference, the model can automatically or controllably switch inference modes by pre-pending a **response prefix** in Input tokens.

3 METHODOLOGY

Our method first performs warm-up SFT to perceive sample difficulty (details in 3.1), followed by RLVR training with decoupled adaptive entropy constraints, as shown in Figure 4.

3.1 DATA PREPARATION AND WARM-UP

To support robust general-purpose tool use via RL, we constructed a mixed dataset covering diverse tool-use scenarios from public sources: ToolACE (Liu et al., 2024), xLAM (Zhang et al., 2024a; Prabhakar et al., 2025), Hermes Function-Calling (interstellarninja, 2024). More details are provided in Appendix B. To create a balanced dataset encompassing diverse complexity levels and tool usage scenarios, we randomly downsampled the raw data. Moreover, we adopted the following strategies to develop a Public agentic Tool-use dataset (**PubTool**), as presented in Table 2.

Warm-up Training. To help the model initially perceive data difficulty, we propose SFT for warm-up training by mixing long and short reasoning data. To construct such mixed thinking data, we performed multiple inferences (calculating pass@8) on the training data using Qwen2.5-7B-Instruct (no-thinking model) and Qwen3-32B (thinking model), respectively. For each response turn, we adopted the ground truth as the label if the no-thinking model’s output was correct; otherwise, we adopted the thinking model’s answer with explicit long reasoning if it was correct. More Details of data preparation are shown in Appendix §B. We design an auto-thinking template (details in Appendix §F) to enable the model to select reasoning modes based on data difficulty. Finally, we conducted SFT on the base model for warm-up, preparing for subsequent RL scaling.

Quality Refinement for RL data. To efficiently support auto-scaling RL training, we employed the following data enhancement strategies: First, from data distribution analysis in Section §2.3.1, we observed that the original dataset was dominated by overly simple and excessively difficult samples. Overly simple samples offer limited value for RL training and lack generalization, while overly difficult samples either exceed model capabilities or contain noise. We therefore randomly removed half of both simple and difficult samples to balance the dataset distribution. Additionally, inspired by Li et al. (2025a), we prioritized training samples based on their alignment with model learning trajectories. Specifically, we performed multi-epoch GRPO training on all training data, computed changes in their reward scores, and calculated each sample’s variance relative to the average reward.

270 Table 2: Data statistics of **PubTool** in data collection and construction. Subscript text in the SFT
 271 data table indicates the thinking rate in all turns.

	ToolACE	xLAM	Hermes	Function-Calling
Raw Data	11.3k	65k		7.1k
Downsampled	11.3k	15k		7.1k
PubTool				
Processed	SFT data 8.2k(9.2%)		RL data 7k	

281 Lower variance indicated higher alignment. Through these processes, we downsampled the RL
 282 dataset from 21k to 7k samples. For a detailed analysis of its effects, please refer to Appendix B.

284 3.2 DECOUPLED ADAPTIVE ENTROPY CONSTRAINTS

286 To enable automatic scaling in agentic tool use, we propose a *decoupled adaptive entropy constraints*
 287 strategy for RLVR. The objective policy loss integrates the surrogate objective from native RLVR
 288 (e.g., GRPO) with a mechanism that: (1) decouples entropy regulation between short and long
 289 trajectories; (2) adaptively adjusts the entropy strength in long reasoning trajectories to preserve
 290 exploration capacity.

291 Specifically, let π_θ be the policy, $H_i = -\mathbb{E}_{a \sim \pi_\theta(\cdot|s_i)}[\log \pi_\theta(a|s_i)]$ is the entropy at step i , and
 292 $m_i \in \{0, 1\}$ an indicator variable: equals 1 if the action step is a short trajectory and 0 if it is a long
 293 trajectory. We apply decoupled entropy constraints based on policy model's response trajectory
 294 type: (1) β_s : fixed coefficient for short paths (to prevent excessive exploration), (2) β_l : adaptive
 295 coefficient for long paths (learned dynamically).

296 The sample-level policy loss is defined as:

$$\beta_i = \beta_s \cdot m_i \cdot \mathbb{I}\{H_i \leq H_s\} + \beta_l \cdot (1 - m_i) \cdot \mathbb{I}\{H_i \leq H_l\}, \quad (2)$$

$$\mathcal{L}_p = \frac{1}{N} \sum_{i=1}^N \left[-\min \left(\rho_i \hat{A}_i, \text{clip}(\rho_i, 1 - \epsilon, 1 + \epsilon) \cdot \hat{A}_i \right) - \beta_i H_i \right], \quad (3)$$

301 where β_i adapts the entropy penalty per sample, $\rho_i = \pi_\theta(a_i|s_i)/\pi_{\theta_{\text{old}}}(a_i|s_i)$, H_l and H_s denote
 302 target entropy of long reasoning and short reasoning, and \hat{A}_i is the estimated advantage based on
 303 reward scores in Section 3.3. The key design is the *decoupling* of entropy weights via m_i , enabling
 304 distinct regularization strategies.

305 **Adaptive Entropy Coefficient Loss.** Entropy regularization is highly sensitive to the choice of
 306 coefficient, making it difficult to select an optimal coefficient in advance. This motivates a dynamic
 307 adjustment of the entropy loss coefficient. To automatically adjust the entropy strength for long
 308 trajectories, we introduce an adaptive loss that updates β_l based on the deviation of actual entropy
 309 from a target level. The loss is computed only on steps belonging to long trajectories ($m_i = 0$) and
 310 is defined as:

$$\mathcal{L}_\beta^l = \frac{1}{\sum_j (1 - m_j)} \sum_{i=1}^N (1 - m_i) \cdot \beta_l \cdot (H_i - H_l), \quad (4)$$

311 where H_l is a predefined target entropy. The coefficient β_l is updated by minimizing \mathcal{L}_β^l : if
 312 $H_i < H_l$, β_l increases to encourage exploration; if $H_i > H_l$, it decreases to suppress excessive
 313 randomness. In contrast, β_s remains fixed during training.

321 3.3 AUTO THINKING REWARD MODULE

322 In this module, the model's output is evaluated using a rule-based reward (DeepSeek-AI, 2025a;
 323 Meng et al., 2025) to compute the estimated advantage for the objective loss \mathcal{L}_p . Specifically, for

324 each question q , model generates G completions $\{o_1, o_2, \dots, o_G\}$ using $\pi_{\theta_{\text{old}}}$. This reward module
 325 combines format and answer rewards to score each completion.

326 **Format Reward.** The format reward $\mathcal{R}_{\text{format}}(o_i) \in \{0, 1\}$ evaluates whether the output adheres to
 327 the required structural template. We define two valid reasoning modes: *think* and *no-think*, each
 328 with strict syntactic constraints:
 329

```
[mode]think[/mode] [think]reasoning process here[/think]answer
[mode]no_think[/mode] [no_think]\n[/no_think]answer
```

330 This design encourages explicit reasoning for complex problems via the *think* mode, while allowing
 331 direct generation for simple queries via *no-think*, reducing computational overhead. During the
 332 inference stage, controllable reasoning modes are achieved by prepending special tokens to the
 333 input, as depicted at the bottom of Figure 4.

334 **Answer Reward.** We check the correctness of the tool call by comparing it against the ground-truth
 335 annotation y^* . Tool-call outputs are parsed into structured dictionaries, enabling exact matching
 336 of both the function name and all required arguments. To encourage a balance between reasoning
 337 efficiency and accuracy, we design an asymmetric reward based on the mode (*think* or *no-think*):
 338

$$\mathcal{R}_{\text{answer}}(o_i) = \begin{cases} +1.0, & \text{if } o_i = y^*, \text{no-think}, \\ +0.5, & \text{if } o_i = y^*, \text{think}, \\ -0.5, & \text{if } o_i \neq y^*, \text{think}, \\ -1.0, & \text{if } o_i \neq y^*, \text{no-think}, \end{cases} \quad (5)$$

339 It incentivizes short responses when they are correct, while encouraging long reasoning when mis-
 340 takes occur, prompting more careful processing in uncertain scenarios.
 341

342 4 EXPERIMENTS

343 4.1 EXPERIMENTAL SETUP

344 We use the open-source Qwen2.5-7B-Instruct as our base model. We compared four baseline types:
 345 **Base**, SFT-trained, API-based **Frontier**, and RLVR-trained models. Additionally, we compare the
 346 series of models trained on the base model using *PubTool* data. See Appendix D for more details.

347 **Evaluation Dataset.** The following benchmarks are used for evaluation: (1) **BFCL** (Yan et al.,
 348 2024) provides a comprehensive dataset comprising 4k+ instances (updating), consisting of *Non-*
 349 *live* (with expert-curated simple tools), *Live* (with user-contributed complex tools), *Multi-turn* (with
 350 multi-turn & multi-step tool use) samples. (2) **API-Bank** (Li et al., 2023), which consists of 314
 351 tool-use dialogues and 753 API calls. This dataset evaluates a models' abilities to correctly invoke a
 352 known API (L-1) based on a query and to retrieve and call APIs from a tool list (L-2). (3) **ACEBench**
 353 (Chen et al., 2025) is a 2k-entry benchmark for assessing agentic tool use, using its summary score
 354 in "normal" evaluation type (covering single-turn and multi-turn scenarios).
 355

356 4.2 OVERALL PERFORMANCE

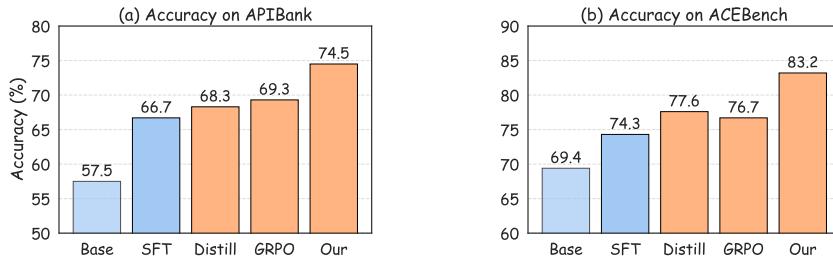
357 The overall performance of models are shown in Table 3 and Figure 5. Firstly, the results indicate
 358 that our model consistently achieves corresponding best performance at comparable scales (~7B).
 359 For instance, compared to PubTool-SFT, AutoTool-7B with automatic think achieving +11.95 point
 360 improvement. And relative to Base model, it also has a remarkable boost with +16.43%. Secondly,
 361 our model demonstrated its more superiority in challenging scenarios (e.g., achieves +28.5% im-
 362 provement compare to PubTool-SFT in *Multi-turn*). This demonstrates that our method realizes a
 363 strong robustness enhancement in complex scenarios.
 364

365 Moreover, our model outperforms most SFT-trained and RLVR-trained models in BFCL, and
 366 demonstrates comparable performance with the frontier models. It also shows consistent advan-
 367 tageous performance on API-Bank and ACEBench compared with baselines in Figure 5. For example,
 368 on ACEBench, our model achieves a 6.5 improvement compared to GRPO and a 5.9 improvement
 369 compared to Distilled. Finally, in the inference controllable mode, when forced to think, the overall
 370

378 performance is on par with auto think; when forced not to think, the effect on *Multi-turn* is significantly improved compared to no-think models (e.g., PubTool-SFT).
 379
 380

381 Table 3: Comparison on the BFCL benchmark. *Overall Acc* denotes the average performance on
 382 three subsets. ^{*} indicates a single-turn tool use model; [†] denotes models trained on *PubTool* data
 383 with a specific method. The subscript denotes the thinking rate.
 384

Type	Model	Non-Live	Live	Multi-Turn	Overall Acc
♣Base	LLaMA-3.1-8B-Instruct	84.21	61.08	9.62	50.87
	Qwen2.5-7B-Instruct	86.46	67.44	7.62	53.69
	Qwen2.5-32B-Instruct	85.81	74.23	17.75	59.67
♥Frontier	GPT-4o-2024-11-20	87.67	79.88	43.00	70.42
	o3-2025-04-16	81.42	73.43	56.12	70.32
	Gemini-2.5-Pro	89.54	76.83	30.62	65.48
♦SFT	Hammer2.1-7b(Lin et al., 2024)	88.65	75.11	23.50	61.83
	ToolACE-8B(Liu et al., 2024)	87.54	78.59	7.75	58.42
	xLAM-7b-r(Zhang et al., 2024a)	81.06	75.22	10.00	54.75
	PubTool-SFT [†]	88.98	77.28	9.68	58.17
	PubTool-Distilled [†]	87.73	78.64	15.65	60.30
♠RLVR	DeepSeek-R1-0528	75.20	77.30	38.88	63.79
	Qwen3-8B(Team, 2025a)	88.81	78.54	33	66.34
	QwQ-32B(Team, 2025b)	87.33	75.61	14.50	58.30
	Tool-N1-7B [*] (Zhang et al., 2025b)	89.25	80.38	-	-
	ToolRL-7B(Qian et al., 2025)	82.21	74.90	18.12	58.38
	PubTool-GRPO [†]	88.87	78.93	10.77	60.13
♣Ours	AutoTool-7B [†]	89.76 _{0%}	80.22 _{4.8%}	38.18 _{45%}	70.12 _{9.7%}
	+ <i>think</i>	89.86	80.43	39.28	70.71
	+ <i>no-think</i>	87.36	78.60	27.63	63.34



416 Figure 5: Performance of methods using training data *PubTool* on APIBank and ACEBench.
 417
 418

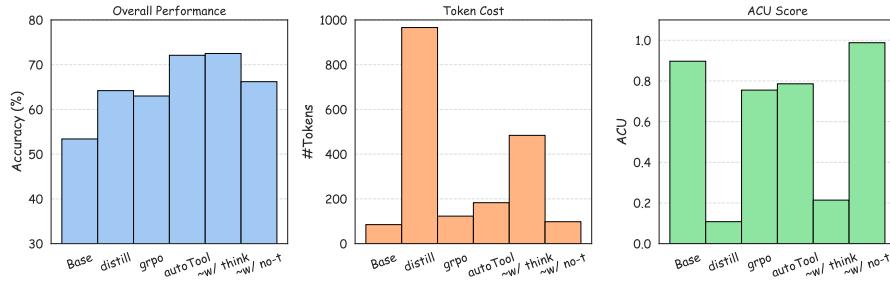
419 4.3 DEEP ANALYSIS STUDY

420 4.3.1 ABLATION STUDY

421 To evaluate the effectiveness of key components in our method, we conducted an ablation study
 422 with the following variations: (1) Replaced the adaptive entropy coefficient with a fixed one (*w/o*
 423 *adapt coeff*); (2) Replaced the decoupling loss with a unified loss with fixed entropy constraint (*w/o*
 424 *decouple*); (3) Removed data quality refinement (*w/o data refine*). We also included Qwen2.5-7B-
 425 Instruct as a Base Model for comparison. As shown in Table 4, compared with the baseline, our full
 426 model delivers a significant improvement of 16.43 points in Overall performance. All components
 427 are essential to our method, and removing any component causes clear performance drops: (1)
 428 *w/o data refine* brings the largest 6.43% Overall reduction, highlighting high-quality data as a core
 429 foundation. (2) *w/o adapt coeff* leads to a 10.53% Multi-turn decline, proving its value in stabilizing
 430 multi-round interactions; (3) *w/o decouple* results in a 2.34% Overall drop, showing decoupling
 431 avoids objective interference.

432 Table 4: The strategy ablation performance (\uparrow = increase, \downarrow = decrease, values are relative percentage
 433 changes from the *Our (w/ all)* model).

Models	Non-live	Live	Multi-turn	Overall
Base Model	86.46	67.44	7.62	53.69
Our (w/ all)	89.76	80.22	38.18	70.12
w/o. <i>data refine</i>	88.22 $\downarrow 1.54$	73.29 $\downarrow 6.93$	26.84 $\downarrow 11.34$	63.69 $\downarrow 6.43$
w/o. <i>decouple</i>	87.35 $\downarrow 2.41$	75.98 $\downarrow 4.24$	27.65 $\downarrow 10.53$	64.23 $\downarrow 5.89$
w/o. <i>adapt coeff</i>	88.73 $\downarrow 1.03$	78.73 $\downarrow 1.49$	32.14 $\downarrow 6.04$	67.78 $\downarrow 2.34$



443 Figure 6: Inference efficiency analysis results, including performance, token cost, ACU.
 444
 445
 446
 447
 448
 449
 450
 451

452 4.3.2 INFERENCE EFFICIENCY ANALYSIS

453 Given the trade-off between reasoning path length, model size ($\sim B$), and performance, we introduce
 454 a new metric, Accuracy per Computation Unit (ACU), to better capture this balance and assess
 455 model inference efficiency (Ma et al., 2025). It is defined as:

$$456 \text{ACU} = \frac{\text{Accuracy}}{\#\text{Params} \times \#\text{Tokens}} \quad (6)$$

457 Since the ACU value typically falls within the range of 10^{-5} to 10^{-3} , we report it in units of 10^3 for
 458 improved readability. In addition, we report the thinking rates of our model across all submetrics.
 459

460 The experimental results are summarized in Figure 6. From the results, we observe that AutoTool
 461 achieves the second-best overall performance: it reduces token cost significantly by 81%, requiring
 462 only about ~ 183 tokens compared to the distilled model (~ 966 tokens). Notably, with the forced
 463 no-think inference mode, AutoTool attains the optimal ACU score (0.97), demonstrating excellent
 464 inference efficiency. Even with the think inference mode, it still delivers the highest accuracy while
 465 cutting the token cost by half relative to the distilled model. Additionally, Table 3 shows that the our
 466 model’s thinking rate reaches 45% in the Multi-Turn scenario but 0% in the No-Live scenario. The
 467 training process visualized in Appendix Section C shows our model extends reasoning trajectories
 468 for complex questions by $\times 5$, while enabling concise responses for simple ones. This suggests
 469 the model has learned to automatically adjust the test-time scale based on sample difficulty, which
 470 effectively supports the improvement of inference efficiency.
 471

472 5 CONCLUSION

473 This study focused on addressing challenges in integrating agentic LLMs with tools by optimizing
 474 the RLVR paradigm. Our research first identified two critical issues: excessive resource con-
 475 sumption caused by unnecessary long-trajectory reasoning, and the *reasoning collapse* phenom-
 476 enon under the direct RL training, hindering effective scaling. To solve these, we proposed a decou-
 477 pled adaptive entropy constraint strategy, which enables the model to automatically adjust reasoning
 478 scales based on problem difficulty, thereby balancing performance and inference efficiency. Exper-
 479 iments on three benchmarks confirmed the strategy’s effectiveness, boosting accuracy while cutting
 480 inference token cost significantly. This work advances RL-based agentic tool-use training and pro-
 481 vides a practical auto-scaling solution for efficiently handling tasks.
 482

486
487
ETHICS STATEMENT488
489
490
491
492
493
494
495
This work strictly adheres to the ICLR Code of Ethics: it involves no human subjects, uses datasets
496 compliant with original licensing agreements (ensuring privacy and legal compliance), and avoids
497 discriminatory biases in experimental design/results; all authors confirm adherence, with no con-
498 flicting sponsorships.
499500
501
REPRODUCIBILITY STATEMENT
502
503
504
505506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
For reproducibility, key details are referenced across the main text (methodology Section 3.2, exper-
imental setup Section 4.1), appendix (hyperparameters Section D, data processing details Section B,
full prompt Section F), and supplementary materials (anonymous source code). We ensure data
splits, random seeds, and environment configurations are explicitly stated, allowing researchers to
independently verify our findings under identical conditions.501
502
REFERENCES503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool learning?
arXiv e-prints, pp. arXiv–2501, 2025.
Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. *arXiv preprint
arXiv:2211.12588*, 2022.
DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025a. URL <https://arxiv.org/abs/2501.12948>.
DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025b. URL <https://arxiv.org/abs/2501.12948>.
Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A case study
on ppo and trpo. *arXiv preprint arXiv:2005.12729*, 2020.
Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. *arXiv preprint
arXiv:2505.13379*, 2025.
Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.
Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang,
Fuxiang Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng,
Bo An, Yang Liu, and Yahui Zhou. Skywork open reasoner 1 technical report. *arXiv preprint
arXiv:2505.22312*, 2025.
Shijue Huang, Hongru Wang, Wanjun Zhong, Zhaochen Su, Jiazhan Feng, Bowen Cao, and Yi R
Fung. Adactrl: Towards adaptive and controllable reasoning via difficulty-aware budgeting. *arXiv
preprint arXiv:2505.18822*, 2025.
Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.
Teknium interstellarninja. Hermes-function-calling-dataset-v1, 2024. URL <https://huggingface.co/NousResearch/hermes-function-calling-v1>.
Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. *arXiv preprint arXiv:2503.09516*, 2025.

540 Kimi K2. Kimi-researcher: End-to-end rl training for emerging agentic capabilities. <https://moonshotai.github.io/Kimi-Researcher/>, 2024. Accessed: 2025-09-10.

541

542

543 Angeliki Lazaridou, Elena Gribovskaya, Wojciech Stokowiec, and Nikolai Grigorev. Internet-
544 augmented language models through few-shot prompting for open-domain question answering.
545 *arXiv preprint arXiv:2203.05115*, 2022.

546 Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
547 Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. In
548 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp.
549 3102–3116, 2023.

550

551 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling. *arXiv preprint*
552 *arXiv:2502.11886*, 2025a.

553

554 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. *arXiv preprint*
555 *arXiv:2503.23383*, 2025b.

556

557 Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
558 Zhou, Cheng Cheng, Yin Zhao, et al. Hammer: Robust function-calling for on-device language
models via function masking. *arXiv preprint arXiv:2410.04587*, 2024.

559

560 Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
561 Gan, Zhengying Liu, Yuanqing Yu, et al. Toolace: Winning the points of llm function calling.
562 *arXiv preprint arXiv:2409.00920*, 2024.

563

564 Xinyin Ma, Guangnian Wan, Rupeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
565 compressible chain-of-thought tuning. *arXiv preprint arXiv:2502.09601*, 2025.

566

567 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian Shi,
568 Wenhui Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment with
rule-based large-scale reinforcement learning. *CoRR*, 2025.

569

570 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
571 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
572 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

573

574 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
575 Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.

576

577 OpenAI. o3. <https://openai.com/index/introducing-deep-research/>, 2025.
578 Accessed: Sep 10, 2025.

579

580 Jie Ouyang, Ruiran Yan, Yucong Luo, Mingyue Cheng, Qi Liu, Zirui Liu, Shuo Yu, and Daoyu
581 Wang. Training powerful llm agents with end-to-end reinforcement learning, 2025. URL <https://github.com/0russwest0/Agent-R1>.

582

583 Zhenyu Pan and Han Liu. Metaspacial: Reinforcing 3d spatial reasoning in vlms for the metaverse.
584 *arXiv preprint arXiv:2503.18470*, 2025.

585

586 Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgona, Shiyu Wang, Zhiwei
587 Liu, Haolin Chen, Thai Hoang, et al. Apigen-mt: Agentic pipeline for multi-turn data generation
via simulated agent-human interplay. *arXiv preprint arXiv:2504.03601*, 2025.

588

589 Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
590 Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. *arXiv preprint arXiv:2504.13958*,
591 2025.

592

593 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. In *The Twelfth International Conference on Learning Representations*, 2023.

594 Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-
 595 Rong Wen. Tool learning with large language models: A survey. *Frontiers of Computer Science*,
 596 19(8):198343, 2025.

597

598 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 599 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

600

601 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 602 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 603 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

604

605 Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen Roller, Megan Ung,
 606 Moya Chen, Kushal Arora, Joshua Lane, et al. Blenderbot 3: a deployed conversational agent that
 607 continually learns to responsibly engage. *arXiv preprint arXiv:2208.03188*, 2022.

608

609 Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang, Ao Luo, Shijian Wang, Qingyun Wu, and
 610 Chi Wang. Adaptive in-conversation team building for language model agents. *arXiv preprint*
arXiv:2405.19425, 2024.

611

612 Qwen Team. Qwen3 technical report, 2025a. URL <https://arxiv.org/abs/2505.09388>.

613

614 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL
<https://qwenlm.github.io/blog/qwq-32b/>.

615

616 Jiaqi Wang, Kevin Qinghong Lin, James Cheng, and Mike Zheng Shou. Think or not? selective rea-
 617 soning via reinforcement learning for vision-language models. *arXiv preprint arXiv:2505.16854*,
 618 2025.

619

620 Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
 621 cutable code actions elicit better llm agents. In *Forty-first International Conference on Machine*
622 Learning, 2024.

623

624 Shijie Xia, Yiwei Qin, Xuefeng Li, Yan Ma, Run-Ze Fan, Steffi Chern, Haoyang Zou, Fan Zhou,
 625 Xiangkun Hu, Jiahe Jin, et al. Generative ai act ii: Test time scaling drives cognition engineering.
arXiv preprint arXiv:2504.13828, 2025.

626

627 Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
 628 Joseph E. Gonzalez. Berkeley function calling leaderboard. 2024.

629

630 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 631 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at
 scale. *arXiv preprint arXiv:2503.14476*, 2025.

632

633 Yuanqing Yu, Zhefan Wang, Weizhi Ma, Zhicheng Guo, Jingtao Zhan, Shuai Wang, Chuhan Wu,
 634 Zhiqiang Guo, and Min Zhang. Steptool: A step-grained reinforcement learning framework for
 635 tool learning in llms. *arXiv preprint arXiv:2410.07745*, 2024.

636

637 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 638 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv*
preprint arXiv:2503.18892, 2025a.

639

640 Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model
 641 and 8k examples: Emerging reasoning with reinforcement learning is both effective and efficient.
 642 <https://hkust-nlp.notion.site/simplerl-reason>, 2025b. Notion Blog.

643

644 Yirong Zeng, Xiao Ding, Yuxian Wang, Weiwen Liu, Wu Ning, Yutai Hou, Xu Huang, Bing Qin,
 645 and Ting Liu. Boosting tool use of large language models via iterative reinforced fine-tuning.
arXiv preprint arXiv:2501.09766, 2025c.

646

647 Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
 learn when to think. *arXiv preprint arXiv:2505.13417*, 2025a.

648 Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
 649 Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng, Tulika Awalgaonkar, Rithesh
 650 Murthy, Eric Hu, Zeyuan Chen, Ran Xu, Juan Carlos Niebles, Shelby Heinecke, Huan Wang,
 651 Silvio Savarese, and Caiming Xiong. xlam: A family of large action models to empower ai agent
 652 systems. *arXiv preprint arXiv:2409.03215*, 2024a.

653 Shaokun Zhang, Jieyu Zhang, Dujian Ding, Mirian Hipolito Garcia, Ankur Mallick, Daniel Madri-
 654 gal, Menglin Xia, Victor Rühle, Qingyun Wu, and Chi Wang. Ecoact: Economic agent determines
 655 when to register what action. *arXiv preprint arXiv:2411.01643*, 2024b.

656 Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu,
 657 Zhiding Yu, and Guilin Liu. Nemotron-research-tool-n1: Tool-using language models with rein-
 658 forced reasoning. *arXiv preprint arXiv:2505.00024*, 2025b.

659 Wang Zihan, Wang Kangrui, Wang Qineng, Zhang Pingyue, Li Linjie, Yang Zhengyuan, Jin Xing,
 660 Yu Kefan, Minh Nhat Nguyen, Liu Licheng, Eli Gottlieb, Yiping Lu, Cho Kyunghyun, Wu Jiajun,
 661 Fei-Fei Li, Wang Lijuan, Choi Yejin, and Li Manling. Ragen: Understanding self-evolution in
 662 llm agents via multi-turn reinforcement learning, 2025. URL <https://arxiv.org/abs/2504.20073>.

666 USE OF LLM

667 LLMs (GPT-4o) were only used as general-purpose tools to draft baseline literature summaries and
 668 proofread minor grammar, no LLM contributed to core ideation, algorithm development, analysis,
 669 or writing, and all LLM-assisted content was verified for accuracy/integrity. No LLM is eligible for
 670 authorship.

673 A RELATED WORK

675 A.1 AGENTIC TOOL-USE

676 Enhancing LLMs with external tools has emerged as a pivotal direction for addressing complex tasks
 677 in open domains (Qu et al., 2025; Wang et al., 2024). Typical applications include integrating LLMs
 678 with search engines (Zhang et al., 2024b; Lazaridou et al., 2022; Shuster et al., 2022), calculators
 679 (Nakano et al., 2021), and Python interpreters (Wang et al., 2024; Song et al., 2024; Chen et al.,
 680 2022). Three common paradigms are widely adopted for training tool-use LLMs: (1) SFT: imitates
 681 the reasoning patterns from labeled high-quality examples, enabling models to learn standard tool-
 682 use workflows (Liu et al., 2024; Zhang et al., 2024a; Qin et al., 2023; Prabhakar et al., 2025). (2)
 683 RL with direct preference optimization: aligns model tool-use behavior with human intentions by
 684 optimizing against human preference signals (Zeng et al., 2025c; Yu et al., 2024). (3) RL with
 685 Verifiable Rewards (RLVR): as a novel approach, leverages scalable test-time inference and utilizes
 686 verifiable signals as rewards to refine the model’s tool-use decisions (Li et al., 2025b).

688 A.2 RL SCALE-UP

689 Reinforcement learning (RL) has gained traction as a more scalable and generalizable training
 690 paradigm. Models like R1-Zero leverage group relative policy optimization (GRPO) (Shao et al.,
 691 2024) to unlock the model’s reasoning capabilities at test time (DeepSeek-AI, 2025a; Yu et al.,
 692 2025). This R1-style reasoning paradigm, marking a shift from train-time scaling to test-time scal-
 693 ing (Muennighoff et al., 2025; Xia et al., 2025), has demonstrated success in mathematics (Shao
 694 et al., 2024), coding (Pan & Liu, 2025), and agentic tool use (Feng et al., 2025; Jin et al., 2025).

695 Recently, several works have explored automatic scaling , i.e., enabling models to adaptively select
 696 the optimal reasoning mode based on problem difficulty (Fang et al., 2025; Zhang et al., 2025a;
 697 Huang et al., 2025; Wang et al., 2025). In agentic tool-use tasks, auto-scaling is particularly critical:
 698 many such problems can be solved with short reasoning, whereas excessively long reasoning leads
 699 to unnecessary resource consumption. While RL-based scaling for tool use in open-domain rea-
 700 soning has been investigated (Zhang et al., 2025b; Qian et al., 2025), RL with auto-scaling remains
 701 unexplored in agentic tool use.

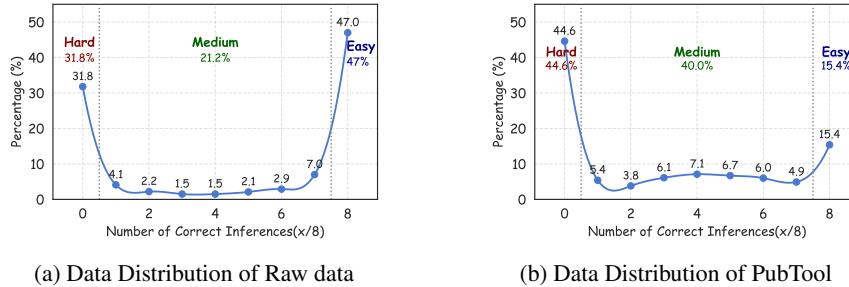
702 B DETAILS IN DATA PREPARATION

704 **Source of Training Data Details.** The raw data was sourced as follows:

- 706 • ToolACE (Liu et al., 2024): A general tool-use dataset teaching models when to invoke
707 tools vs. respond directly, enhancing multi-step decision-making.
- 708 • xLAM (Zhang et al., 2024a; Prabhakar et al., 2025): A compositional dataset requiring one
709 or more tool calls per turn. We mixed the original 60k xLAM with its multi-turn variant
710 APIGen-MT-5k (Prabhakar et al., 2025).
- 711 • Hermes Function-Calling (interstellarninja, 2024): Designed to train LLMs in function
712 calls and structured output from natural language. We extracted function call-related
713 samples.

714 The dataset features various conversational scenarios where AI agents are required to interpret
715 queries and execute appropriate single or multiple function calls. In Section 2, data distillation
716 employs Deepseek-R1-0528 (DeepSeek-AI, 2025a). Subsequently, in Section §3.1, to mitigate model
717 bias by aligning with a no-think model, data distillation is carried out using Qwen3-32B (Team,
718 2025a).

719 **Data Processing Pipeline & Distribution Details.** We obtained PubTool from raw data through
720 following data processing workflow: (1) We randomly downsampled xLAM to balance the sample
721 sizes across the three datasets. (2) We removed overly simple and excessively difficult samples;
722 Figure 7 shows the raw-data distribution of successful reasoning counts (pass@8). Guided by this
723 distribution, we partitioned the data into hard (31.8%), medium (21.2%), and easy (47%) subsets
724 (Figure 7a) and re-balanced the difficulty distribution accordingly. (3) For RL data, we further
725 refined the set by prioritizing samples that align closely with the model’s current learning trajectory
726 (details in the next paragraph). For comparison, we visualized the PubTool distribution in the same
727 way (Figure 7b). We observed that the original corpus is concentrated in the easy and hard extremes,
728 whereas PubTool peaks in the hard subset and is sparse in the easy subset. We argue that training
729 on data of moderately high difficulty better elicits the model’s test-time scaling capability (He et al.,
730 2025).



731 (a) Data Distribution of Raw data

732 (b) Data Distribution of PubTool

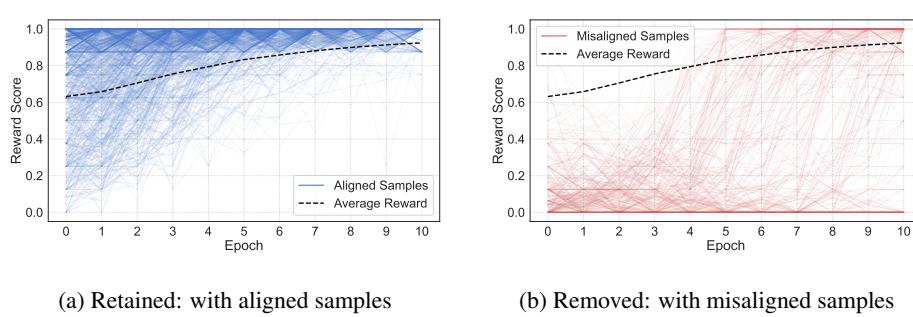
733 Figure 7: The number of correct inferences distribution with performing 8 rounds of reasoning on
734 the raw training data (a). The distribution of PubTool after data processing (b).

735 **RL Data Refine Details.** In the second phase of data processing, we prioritize training
736 samples by their alignment with model learning trajectories, measured through the
737 variance of reward scores from the mean, lower variance indicates better alignment.
738 Better alignment corresponds to lower variance of reward scores, defined as:

$$739 \text{Var}(r) = \frac{1}{n-1} \sum_{i=1}^n (r_i - \mu_r)^2, \quad \mu_r = \frac{1}{n} \sum_{i=1}^n r_i$$

740 where lower $\text{Var}(r)$ indicates better alignment. This sampling result is illustrated in Figure 8. From
741 the figure, we observe that the average reward ranges between 0.7 and 0.9, with aligned samples
742 showing higher scores in the upper-left region and misaligned samples displaying lower scores.

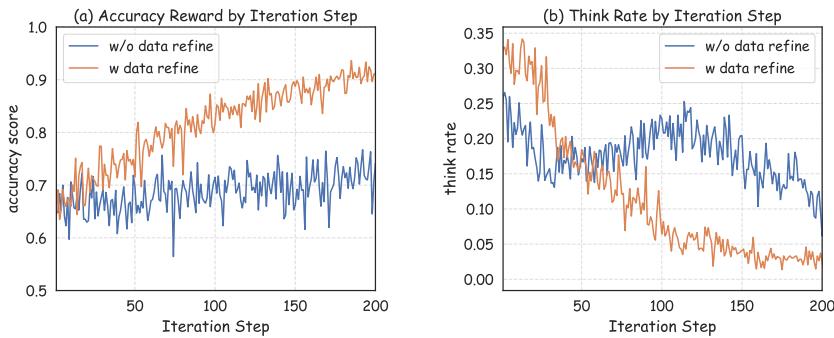
743 **Effectiveness of Data Refinement.** We experimentally verified its effectiveness. After warm-up
744 SFT, Figure 9 shows GRPO training processes with and without data refinement. Results indicate



767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

Figure 8: We retain aligned samples (i.e., those with low variance (a)) and remove misaligned samples (i.e., those with high variance (b)).

771 data refinement increases accuracy reward score by +15%, reduces training fluctuation variance, and enhances stability. Additionally, the model’s thinking rate converged to a lower level, indicating improved memory capacity. BFCL evaluation results show GRPO with data refinement reached 66.82%, versus 60.78% without, an improvement of +6.04%. These enhancements are attributed to data refinement filtering substantial noise while retaining high-contribution samples.



788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 9: RL training processes (with and without data refinement) are shown, along with accuracy scores and thinking rates.

C VISUALIZATION OF TRAINING DYNAMICS

To demonstrate auto-scaling effects, we visualized the training process (Figure 10). As training progressed, accuracy improved while the thinking rate gradually decreased to 5%, indicating fewer problems required long reasoning, suggesting enhanced intrinsic tool-using capabilities. Additionally, response length and entropy achieved decoupled control: think mode enabled 500% longer reasoning trajectories than no-think mode, with corresponding higher actor entropy reflecting greater exploration tendency. These visualizations confirm that training enhanced tool-using abilities and successfully enabled auto test-time scaling based on problem difficulty and model proficiency.

D COMPLEMENTARY EXPERIMENTS

D.1 MORE IMPLEMENTATION DETAILS

The experiments were executed using the publicly accessible training framework MindSpeed-RL², an end-to-end reinforcement learning acceleration framework based on the Ascend ecosystem. The BFCL is an evolving benchmark and we utilized the version checked out on June 14, 2025. For the

²<https://gitee.com/ascend/MindSpeed-RL>

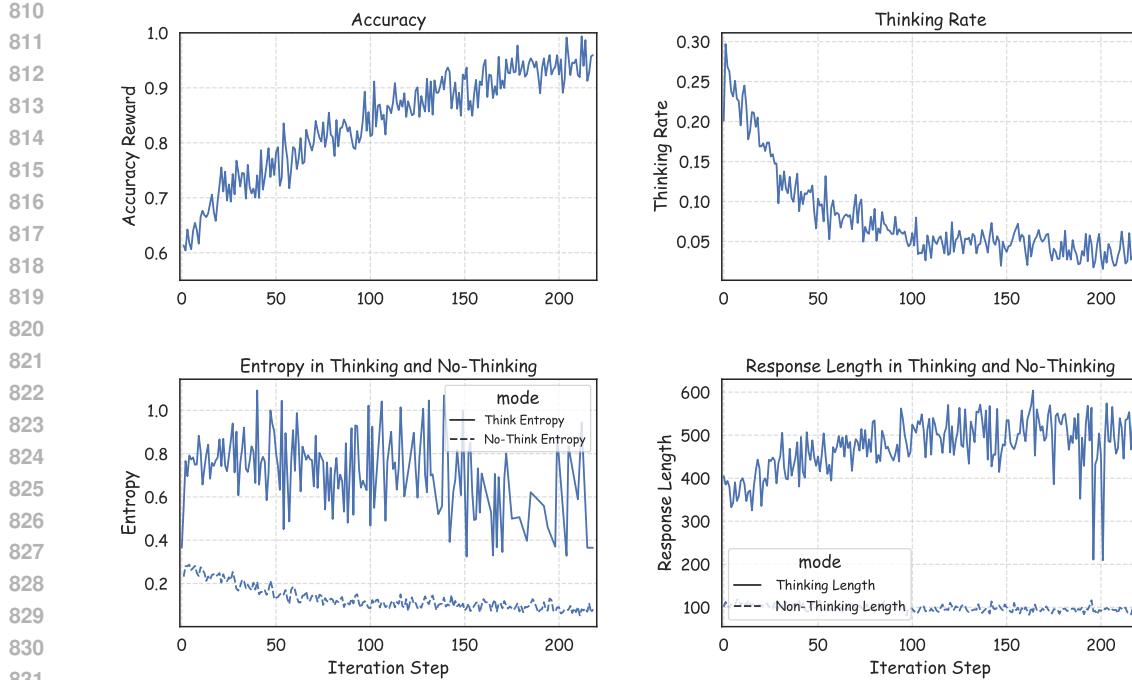


Figure 10: The visualization of training dynamics.

training model, we selected the best performance checkpoint on the valid dataset. In the Test-time Scale paradigms analysis (§2), we used an instruct model for SFT and a base model for GRPO. We employ a full-parameter training strategy for all SFT. In baseline trained on PubTool data, we trained on the complete dataset using specific methods (e.g., SFT, Distilled SFT, and GRPO). In the PubTool-GRPO training, we adopted the widely used think prompt pattern, which follows the format: <think> reasoning process here </think><answer> answer here </answer>. Each RL training run for the 7B model completed within 4 hours on a cluster of 32 Ascend 910b NPUs (configured as 4 nodes \times 8 NPUs). The hyperparameters used are detailed in Table 5.

Baselines (1) *Base Model*: the original model without additional training (e.g., Qwen2.5-series, LLaMA3.1-series). (2) *SFT-trained Model*: ToolACE-8B (trained on the full ToolACE dataset (Liu et al., 2024)), xLAM-series (trained on the full xLAM dataset (Zhang et al., 2024a)), and Hammer-series (trained on xLAM with function masking (Lin et al., 2024)). (3) *API-based* closed-source frontier models (e.g., GPT-series, Gemini-series). (4) *RLVR-trained Model*: models trained using GRPO as the RL paradigm, such as QwQ-32B (Team, 2025b), Qwen3-series (Team, 2025a), Tool-N1 series (single-turn tool-use models trained on mixed ToolACE and xLAM data (Zhang et al., 2025b)), and ToolRL (trained in subset of mixed ToolACE and xLAM data (Qian et al., 2025)).

E HYPERPARAMETER ANALYSIS

Model performance appears sensitive to target entropies and the initial choice of penalty coefficient β . To identify a suitable target entropy for entropy constraints, we conducted a hyperparameter analysis.

F PROMPT DESIGN FOR AUTO THINK

To explore a suitable prompt design for Auto Think, we conducted a preliminary analysis of the four kind of prompts listed below:

864	Hyperparameter	Value	Hyperparameter	Value
865	Data Configuration		RL Optimization	
866	Global Batch Size	128	Learning Rate	1e-6
867	Max Prompt Length	12000	LR Decay Style	constant
868	Max Response Length	2048	Mini Batch Size	128
869	Micro Batch Size	4	KL Loss Used	False
870	Train Steps	200		
871	Rollout Configuration		Entropy Constraints	
872	Rollout Name	vllm	Clip Higher ϵ	0.28
873	GPU Memory Utilization	0.5	Think Target Entropy H_l	0.2
874	Number of Rollouts	8	No-Think Target Entropy H_s	0.1
875	Temperature	1.0	Init Adaptive Coefficient β_l	0.1
876	Tensor Model Parallel Size	1	Fixed Coefficient β_s	0.1
877	Top_P	1.0		

Table 5: The configurations for RL training with GRPO.

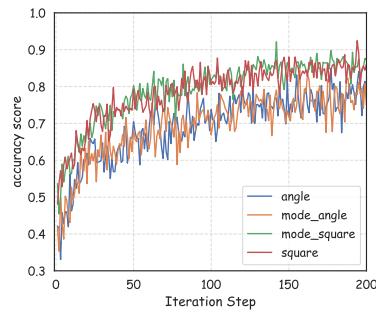
- Controlled reasoning mode with square tags: `[mode]no_think[/mode] [no_think] [/no_think] [tool_call] tool calls here [/tool_call]`
- Uncontrolled reasoning mode with square tags: `[no_think]\n[/no_think] [tool_call] tool calls here [/tool_call]`
- Controlled reasoning mode with angle tags: `<mode>no_think</mode> <no_think> \n </no_think> <tool_call> tool calls here </tool_call>`
- Uncontrolled reasoning mode with angle tags: `<no_think>\n</no_think> <tool_call> tool calls here </tool_call>`

We trained the model starting from Qwen2.5-7B-Instruct using the original GRPO algorithm with PubTool LRL data. Their training processes and evaluation results are presented in Figure 11. From the results, two key observations emerge: (1) Square tags ([]) exhibit better adaptability than angle tags (<>). This may be because the model used angle tags for segmentation in the pre-training phase, reusing these tags for a different purpose (reasoning mode control) is likely to cause signal interference. (2) Additionally, the explicit "reasoning mode" prefix does not obviously affect performance. The evaluation results show that the controlled reasoning mode with square tags achieves the best performance; thus, we adopt this prompt design for auto scaling.

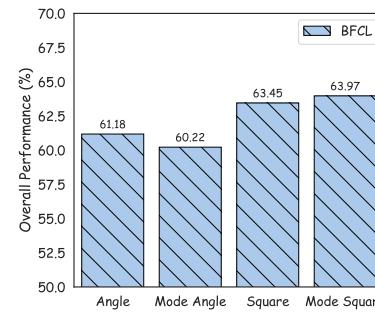
G LIMITATION AND FUTURE WORK

Despite promising results in tool-use scenarios, our method has latent concerns to clear. First, we only tested it on a specific model size, future work should verify its scalability across different model scales (e.g., 3B, 13B, 32B parameters) and architecture series, e.g., LLaMA-series. Second, our method's generalizability beyond tool-use tasks is unproven. It is valuable to evaluate its performance on other complex reasoning tasks (e.g., mathematics, logical deduction) to confirm if it can similarly enhance reasoning steps or reduce computational costs. Third, our method currently relies on a specific RL algorithm. Future research should test its compatibility with other RL algorithms (e.g., PPO (Schulman et al., 2017; Engstrom et al., 2020) and DAPO (Yu et al., 2025)) to verify if the decoupled entropy constraint strategy is effective across different algorithmic paradigms. We will address these limitations in future work.

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971



(a) Accuracy Reward by Iteration Step



(b) Performance Comparison of Four Prompt Design

Figure 11: Visualization of training processes and evaluation results for four prompt designs.

972
973
974
975
976
977

978 **The Full System Prompt for Automatic Think in RL**
979

980 You are an advanced function composition agent. Your goal is to solve user queries efficiently.
981 In the multi-turn dialogue loop: the interaction is a cycle: You **[tool_call]**, you receive a
982 **[tool_response]**, and you MUST use that new information to plan your next step.
983

Tools
984 You are provided with function signatures within **[tools]** and **[/tools]** tags:
985 **[tools] {functions} [/tools]**
986

Action Phase
987 1. Choose an Action Mode: For every turn, you MUST start your response by choosing an
988 action mode (think vs no_think) based on the task's complexity.
989 - think: Use for complex reasoning. Enclose your detailed thought process within **[think]** and
990 **[/think]** tags.
991 - no_think: Use for simple, straightforward tasks. You MUST use an empty, self-closing
992 block: **[no_think]\n[/no_think]**.
993 Your response MUST begin by enclosing the selected mode name within **[mode]** and **[/mode]**
994 tags.
995 2. Decide on an Action Path: After that, you must choose ONE of the following two paths:
996

Path A: Call Functions
997 WHEN: The user's intent is tool-related and you have all required functions and parameters.
998 The tool_calls field is a JSON object with function names and arguments within **[tool_call]** and
999 **[/tool_call]** XML tags. i.e., **[tool_call] [{"name": <function-name>, "arguments": <args-json-object>}, {"name": <function-name2>, "arguments": <args-json-object2>}, ...] [/tool_call]**
1000

EXAMPLE:
1002 **[mode]no_think[/mode] [no_think]\n[/no_think] [tool_call] tool calls here [/tool_call]**
1003 EXAMPLE:
1004 **[mode]think[/mode] [think] reasoning process here [/think] [tool_call] tool calls here [/tool_call]**
1005

Path B: Respond Directly to the User
1006 WHEN: You need to provide a natural language text response. This happens in three main
1007 scenarios:
1008 (1) After receiving tool execution feedback enclosed within **[tool_response]** and **[/tool_response]**
1009 tags, continue to respond to user queries based on this feedback.
1010 (2) The user's query is general conversation and not related to any tool.
1011 (3) Ask for more information if the given conversational context lacks the required functions or
1012 parameters.
1013

EXAMPLE:
1014 **[mode]no_think[/mode] [no_think]\n[/no_think] natural language sentences you talk with user**
1015 EXAMPLE:
1016 **[mode]think[/mode] [think] reasoning process here [/think] natural language sentences you talk**
1017 **with user**

1018
1019
1020
1021
1022
1023
1024
1025

Figure 12: System Prompt Design for Automatic Scaling Tool-Use in Multi-Turn Dialogue.