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Abstract

In this work, we address the challenge of multi-domain translation, where the objective is
to learn mappings between arbitrary configurations of domains within a defined set (such
as (D1, Ds) — D3, Dy — (D1, Ds3), D3 — D1, etc. for three domains) without the need for
separate models for each specific translation configuration, enabling more efficient and flexi-
ble domain translation. We introduce Multi-Domain Diffusion (MDD), a method with dual
purposes: i) reconstructing any missing views for new data objects, and ii) enabling learn-
ing in semi-supervised contexts with arbitrary supervision configurations. MDD achieves
these objectives by exploiting the noise formulation of diffusion models, specifically model-
ing one noise level per domain. Similar to existing domain translation approaches, MDD
learns the translation between any combination of domains. However, unlike prior work,
our formulation inherently handles semi-supervised learning without modification by repre-
senting missing views as noise in the diffusion process. We evaluate our approach through
domain translation experiments on BLANDT, a multi-domain synthetic dataset designed for
challenging semantic domain inversion, the BraTS 2020 dataset, and the CelebAMask-HQ
dataset. The code for MDD and all data are publicly availableﬂ

1 Introduction

A domain is a set of tensors drawn from the same probability distribution p(z), characterized by both
shared features, common across related domains, and domain-specific features, that distinguish it from other
domains. We define domain translation as a function fs, s, : S; — S; that projects the data representations
from a set of source domains S; to a set of target domains S;.

In a scenario with L domains denoted by D = {D,...,Dp}, we aim to obtain a model performing all
translations f such that fg g :S; — S; with S; € P(D), where P(D) represents the power set of D, and
S; = D — S; is the complement of S; within D. Our goal is to develop a model that is not limited to a
specific translation direction, either during training or inference. Any domain should be available to serve
as a condition, while all remaining domains must be part of the generation. Given that S; can be any
subset of D, there are 27 possible translation functions. Figure [1]illustrates this scenario when L = 3 using
the CelebA-HQ (Karras et all |2018|) dataset, where D;, Dy, and D3 represent an image, a sketch, and its
segmentation map, respectively. Specific instances z(*), such as a face (1), are referred to as a view, and
combinations of related views as a data point x = [Jc(l), @), x(3)].

Some translation configurations can be viewed as conditional generation tasks (e.g. face generation, where
multiple faces can be considered valid given a unique sketch). In contrast, others can be viewed as regression
or classification tasks (e.g. a unique semantic segmentation is expected given a face). This paper primarily
focuses on generation and conditional generation configurations.

The MDD framework leverages the noise-removal property of diffusion models (Ho et al., 2020; Song et al.,
2021; Rombach et al.l|2022)) and, like other frameworks, concatenate the domains in the input (Wolleb et al.|
2022)). In contrast to other frameworks, MDD uniquely models semi-supervised information using higher

LOur code is provided in supplementary materials.
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Figure 1: This example considers three domains: photographs of faces, sketches, and semantic segmentation.
Supervision scenarios include full supervision (all domain samples available) and semi-supervised (some
samples missing). As the number of domains increases, achieving full supervision becomes more challenging.
This task can be challenging and tedious, especially when human intervention is required, such as obtaining
a sketch and segmentation for each face. Semi-supervised multi-domain translation aims to reduce the data
collection burden by allowing missing samples.

noise levels for unavailable views and further models different noise levels per domain. During training, views
with higher noise levels, indicating less information, will encourage the model to rely more on less noisy views
to enhance its reconstruction capabilities. This approach transforms the task from simple reconstruction to
complex domain translation learning based on the joint data distribution.

Our main contributions are summarized as:

e We introduce the MDD framework, which incorporates multiple noise levels for each domain. This
diffusion-based framework enables learning in a semi-supervised setting, allowing mapping between multiple
domains.

o We investigate how the noise formulation in MDD can be used to condition the generation process on
missing modalities, given a set of available views.

¢ We conduct a comprehensive evaluation of MDD’s performance on different datasets with different modal-
ities, using both quantitative and qualitative assessments.

2 Related Works

2.1 Domain Translation

Domain translation research has explored various generative models, including GANs (Goodfellow et al.
2014), VAEs (Kingma), [2013), normalizing flows (Rezende & Mohamed), 2015} [Grover et al., [2020; |Sun et al.
2019)), and diffusion models (Sohl-Dickstein et al. 2015). Although approaches like Pix2Pix (Isola et al.
2017), CycleGAN (Zhu et al., 2017), and others (Mayet et al. 2023; Liu et al.,|2017; [Huang et al., [2018; [Lee
et al., |2018; 2019) have demonstrated promising results, they face limitations in multi-modal settings and
exhibit reduced scalability as the number of domains increases. Moreover, both CycleGAN and StarGAN
are designed for unsupervised settings, neglecting the potential benefits of supervised examples. StarGAN
(Choi et all, [2018)) enables translation between domain pairs using a single network for each configuration.
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However, it does not address multi-modal settings, where multiple modalities can be utilized as conditions
simultaneously.

2.2 Domain Translation Using Diffusion Models

Diffusion models offer various conditional generation paradigms. These methods can be broadly categorized
into two groups: those operating in the original high-dimensional pixel space and those operating in the latent
space. Models working in pixel space project the condition onto the target manifold of a pre-trained model
using forward diffusion on the condition (Li et al |2023; Meng et al.,2022al). These approaches leverage the
fact that, for specific translation tasks, condition and generation domain can be visually close (e.g. CBCT
to CT (Li et al.l [2023)). Methods operating in the pixel space face several limitations, including the need to
have conditions and targets close together in the input space, not allowing multiple conditions, and requiring
a careful balance between condition fidelity and generation realism (Meng et al. [2022a). Models working in
latent space use a similar approach. They embed the condition into the latent space of the target domain,
allowing the use of a pre-trained diffusion model (Wang et all 2022; Ramesh et al., [2022; [Lin et al., [2023)).
However, they do not address the issue of multiple conditions and target domains. Recent work on guided
diffusion (Dhariwal & Nichol, [2021; Ho & Salimans| |2021; |Wang et al., 2023} |Cross-Zamirski et al., 2023)) has
explored ways to enhance adherence to condition semantics, but shares similar limitations in multi-modal
settings.

2.3 Conditional Diffusion Models Using Concatenation

Recent approaches have attempted to address the use of multiple conditions or targets simultaneously through
their concatenation (Xie et al., 2024; |Cross-Zamirski et al. |2023; [Saharia et al., |2022a} Lyu & Wang}, 2022;
Saharia et al., |2022b). However, they primarily focus on one-way translation with fixed domains. They do
not address the defined multi-domain translation setting, where any domain can serve as input or output
during generation. Two main approaches have emerged to overcome these limitations: noisy condition and
clean condition methods. Noisy condition: To allow a unified framework without a fixed configuration of
condition and target domains, this class of approaches (Lugmayr et al.,2022; [Sasaki et al.,|2021};|Mariani et al.,
2024)) introduces the concept of adding noise to the condition. During training, the condition is degraded
using the same forward diffusion process, enabling the model to learn to reverse the diffusion process for all
domains using the joint data distribution. For example, RePaint (Lugmayr et al., [2022) applies a matching
noise level between condition and generation and designs a jumping mechanism to maintain generation
faithful to the condition while significantly increasing the generation time.

Multi-Source Diffusion Models for Simultaneous Music Generation and Separation (MSDM)
MSDM (Mariani et al.l [2024) presents an innovative approach utilizing noisy conditions. The method
proposes applying an equivalent amount of noise to both the condition domain and the generated target
domain, enabling multi-domain translation learning in a supervised setting. While this formulation has
demonstrated success in music generation, related applications (Lugmayr et al., 2022; [Meng et al.| |2022a;
Chung et al., [2022; |[Corneanu et alJ [2024)) have highlighted the limitations of noisy conditions and the
necessity for additional mechanisms to synchronize the condition and target domains.

These limitations motivate the exploration of alternative approaches, such as UMM-CSGM, which investi-
gates the use of clean conditioning.

Clean Condition: In contrast, clean condition approaches (Xie et all, [2024; |Cross-Zamirski et al., 2023;
Saharia et al.,|[2022a; |Lyu & Wang), [2022; [Saharia et al.l|2022b) keep the condition clean during both training
and generation. This scheme allows for learning a one-way translation conditioned on a specific domain and
produces successful results. However, it falls short in a multi-domain translation setting, where any domain
can become an input or an output at generation time. Unified Multi-Modal Conditional Score-based
Generative Model (UMM-CSGM): Recently, UMM-CSGM (Meng et al 2022b) has alleviated the
problems of clean and noisy conditioning. It aims to learn a multi-domain medical image completion task
using a multi-in multi-out conditional score network. UMM-CSGM adopts the concept of clean conditioning
and incorporates a code to indicate the conditional configuration by partitioning the domain into noisy
targets or clean conditions.
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While this formulation enables multi-domain translation in a fully supervised context, our work adopts a
different approach by embedding information about conditions and target domains directly into the noise
level modeling during training. Our proposed method inherently facilitates the configuration of missing
modalities and aims to overcome the limitations of previous methods in addressing flexible multi-domain
translation scenarios.

(a) Noisy Condition Translation . .@- (b) Multi-Domain Diffusion (MDD)
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Figure 2: Schematic illustration of Noisy Conditional Diffusion Models vs MDD, for the same
timesteps on CelebAMask-HQ for face generation given sketch and mask conditions. The generation
proceeds from left to right, where & represents the model’s (ep) prediction at noise level I € [0,T]. (a)
MSDM? dMariani et al.L I2024[) employs noisy conditions. At each timestep, the model receives as input both
the current generation with reinjected noise and the noisy condition. Initially, the highly noisy condition
leads the model to predict blurred images and converge toward a data manifold that may not preserve
the conditional features (represented by the blue). As the generation progresses and noise in the condition
decreases, the model gains access to the underlying conditional information and corrects its trajectory, moving
toward the appropriate data manifold (represented by the red area). The diffusion model must continuously
adjust its trajectory to accommodate new information that becomes available as noise decreases. (b) Unlike
noisy conditional models, MDD utilizes clean conditions throughout the generation process (conditional
domains are shown only at the initial timestep for clarity, though they are utilized at each step). This
enables the condition to guide the generation from the initial diffusion steps, resulting in intermediate
generated images that are more strongly influenced by the conditional information. Zoom in for better
details.

3 Multi-Domain Diffusion (MDD) Method

3.1 Diffusion Model

Diffusion models learn a data distribution from a training dataset by inverting a noising process. During
training, the forward diffusion process transforms a data point xo into Gaussian noise x7 ~ A(0,I) in T
steps by creating a series of latent variables x1, ..., xp using the following equation

q(xe|xi—1) = N(243 /1 = Bre—1, Bed) (1)

Where 3; is the defined variance schedule. With oy = 1 — 3, ay = szl a;, and € ~ N(0,I), z; can be
marginalized at a step t from z( using the reparametrization trick

Ty =/ @tCEQ + v 1-— o_zte. (2)
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The reverse denoising process pg(zi_1|xs,t) allows generation from the data distribution by first sampling
from zp ~ N(0,1I) and iteratively reducing the noise in the sequence xr, ..., zo. The model ey(xy,t) is trained
to predict the added noise € to produce the sample z; at time step ¢ using mean square error (MSE):

L =Een(0,1),00,t 160 (Varzo + V1 — ae, t) — €3 (3)

3.2 Existing Issues With Noisy Conditional Diffusion Models
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Figure 3: Illustration comparing (top) noisy condition with MSDM' (Mariani et al., [2024) and
(bottom) clean condition with MDD generation at equivalent timesteps on CelebAMask-HQ for face
translation, conditioned on sketch and semantic segmentation inputs. The noisy condition approach exhibits
mode switching during generation, resulting in inconsistent facial attributes such as gender, hair color, and
length across timesteps. This occurs as the noisy condition model must adjust its trajectory to accommo-
date emerging features from the condition, as illustrated in Fig.[2] In contrast, MDD maintains consistency
throughout the generation process, leading to higher-quality domain translation with coherent feature preser-
vation.

We focus on noisy conditional diffusion models that concatenate different modalities as input to €y, as
detailed in Sec. These models face inherent challenges due to the shared noise level ¢ during forward and
backward diffusion processes across all domains. The fundamental issue arises from the discrepancy between
noise levels of available and unavailable views during training and inference. During training, unavailable
views are replaced with pure noise, while other domains contain varying levels of noise. Consequently, ¢ no
longer accurately represents the true noise distribution across domains.

This discrepancy propagates to the backward diffusion process during inference (illustrated in Figs. and,
where the conditional inputs must be degraded to match the target domain’s noise level (as shown in the
initial steps in (a) Fig. [2| where the sketch and segmentation mask contain significant noise). When the
timestep approaches T', the condition becomes extremely noisy, retaining minimal semantic information. This
degradation causes the generation of the target domain to deviate from the intended semantics, resulting
in the generation traversing different modes as it attempts to align with the gradually revealed conditional
information as noise levels decrease. This phenomenon is demonstrated in Fig. [3] where the noisy condition
produces inconsistent outputs, exhibiting variations in key facial features such as gender, hair color, and
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hair length. RePaint (Lugmayr et all|2022) encounters a similar issue, which it addresses by implementing
a jumping mechanism. This solution involves looping through the same generation steps multiple times to
increase the semantic consistency, but at the cost of increased time and computational complexity.

In contrast, MDD’s approach of modeling distinct timesteps per domain enables the preservation of clean con-
ditional inputs during inference (illustrated in Fig. [2| where the conditions remain noise-free). Consequently,
the generation process maintains greater consistency and is more effectively guided by the conditional in-
formation throughout the diffusion process, as demonstrated in Fig. [3] where the intermediate steps exhibit
stability and manifest the final image features from the early stages of generation. This allows the diffusion
model to focus on refining the sample rather than correcting its trajectory.

3.3 Noise Modeling for Semi-Supervised Multi-Domain Translation
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Figure 4: Training procedure of MDD. This example illustrates the training process across three domains:
Dy (face domain), Dy (sketch domain), and D, (semantic face segmentation). For a given data point x where
D; (sketch) is missing, we substitute it with Gaussian noise A/(0,T) and set its corresponding time step ¢(!)
to 7. In this example, the supervision mask is defined as mg,p = [1,0, 1], and the noise levels are initially
sampled as T = [100, 500,200] (Eq. () or Algorithm [} Line[5). After applying Eq. (6)) (Algorithm[i] Lineg)),
these values become 7 = [100, T', 200].

To address these interconnected problems, MDD introduces an augmented forward and backward diffusion
process. It employs a vector 7 of size L, assigning a separate t(?) for each of the L domains. This approach
allows for more accurate modeling of noise levels across different domains, removing the discrepancy between
noise levels in training and issues of semantic deviation during inference.

The goal of MDD is to remove constraints on predefined conditional domains for semi-supervised domain
translation. During training, x represents the ground truth data point, where x ® m denotes the available
supervised views and & ® (1 — m) denotes the unavailable views, and ® denotes the Hadamard product -
(A® B);; = (A;; x B; ;). The binary supervision mask m indicates the presence or absence of domain
supervision. For instance, in Fig. 4] the mask values are m = [1,0, 1], indicating that the second domain
is missing during training. During generation, x ® m represents the conditional views, while z ® (1 — m)
represents the views to be generated. This is illustrated in Fig. [5] where the mask values are m = [0,1, 1],
indicating that the first domain is being generated from the second and third domains.
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Algorithm 1 MDD training process

1: repeat

2 xo ~ q(x0)

3 Meyp the supervision mask

4: m. € {0,1}* a random conditional mask
5: Teup ~ Uniform({1,..., T}H*E

6 e ~N(0,I)

7 z ~ N(0,T)

8 TZT@(l_msup)+7;up®msup

o0 T=00(1-m)+TOm

10: 7 = arry + 1 — are

11: rTr =20 (1 — msup) + 7 © Msyp

12: Training with loss: £ = |e — eg(z T, 7')||§
13: until convergence

During training, different noise levels are sampled for each domain:
Teup ~ Uniform({1, ..., T})" (4)

encouraging learning the joint data distribution by using less noisy domains to reconstruct noisier ones. In
semi-supervised settings, missing domains are handled by replacing their views with Gaussian noise and
masking their corresponding time steps in 7, where t is replaced with T":

z7 =20 (1 — mgup) + 7 © Mgyp , with z ~ N(0,T) (5)
T=T06 (1 - msup) + 7;up © Msup (6)

The forward diffusion process is applied independently for each view according to T
7 = Vayrg + V1 — are (7)

The loss is computed only on available domains. The training process is illustrated in Fig. [f] using three
domains from the CelebAMask-HQ dataset with sketches. Missing samples are replaced with Gaussian noise,
and their corresponding time steps t() are set to 7. Meanwhile, the supervised domains receive independently
sampled noise levels.

Unless specified otherwise, in addition to Eq. @, MDD training includes an additional step where a subset
of domains is randomly selected as clean, with their associated t set to 0 (¢f. Algorithm [1} line E[)

Algorithm 2 MDD generation process

1. xp NN(O,I)

2: fort=1T,...,1do

3: € NN(O,I)

4: 2~ N(@OI)ift >1,else 2=10

5: ZLcond,p(t) = \/mxcond + \/ 1- dqﬁ(t)e
6: T=to(1l—m)+¢(t)om

7: 7 =2t © (1 = M) + Teond,g(t) @ M

8: Ti_1 = ﬁ (-TT — \/%69(1:7,7')) +o7z
9: end for
10: return xg

This modification allows the network to recognize unavailable views as having a maximum noise level (mod-
eled by T') and replaced by noise. During training, the model sees views with different noise levels, encour-
aging it to exploit more inter-domain dependencies for reconstruction. The training procedure is detailed
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in Algorithm [I] This modification also allows MDD to take input with different noise levels for direct gen-
eration using a clean condition, differing from other work where conditions must have the same noise level
as the target domain or where condition and target domain are predefined. The new generation process is
described in Algorithm [2 and illustrated in Fig. [5|, where ¢(¢) controls the amount of information in the
condition during backward diffusion. Unless specified otherwise, ¢(t) is set to ¢(¢t) = 0 in our results. We
investigate different functions for ¢(¢) in Appendix Intuitively, if ¢(¢) results in a function producing a
higher noise level, the generation will drift further away, allowing it to produce more diverse results at the
cost of less fidelity to the condition.

Similar to previous works on image translation (Meng et al. [2022a)), different ¢ strategies enable achieving a
trade-off between image diversity and faithfulness to the conditioning signal. Applying higher noise levels to
the condition allows the generation process to deviate from a specific unique output, producing more diverse
images in generative tasks where multiple distinct outputs are desired. Conversely, for discriminative tasks
such as semantic segmentation, it is preferable to maintain a low noise level on the condition, ideally 0, to
achieve higher precision in the predicted outputs.

xcond xcond,d)(t)

~dq

N |
forward diffusion

denoising

Next Iteration

Figure 5: Conditional generation procedure of MDD. This example illustrates the training process
across three domains: Dy (face domain), D; (sketch domain), and Do (semantic face segmentation). The first
domain (face) is missing and is considered a target domain to generate, while the other two domains (sketch
and semantic face segmentation) are available and are considered a condition. m is the mask indicating
missing and available domains, and ¢(¢) controls the noise added to the condition.

The MDD approach addresses the multi-domain semi-supervised translation task by modeling an indepen-
dent noise level for each domain. The design of sampling independent noise levels aims to transform the
reconstruction task of noisy condition models into a translation task, wherein cleaner views are utilized to
predict noisier views. This formulation inherently accommodates the semi-supervised setting by represent-
ing missing views as noise. As all views are concatenated in the model input and the model simultaneously
generates all modalities, it eliminates the need for duplications across various input or output configurations.

4 Experiments

4.1 Datasets

We validate MDD on three datasets, each containing more than two domains: 1) our proposed BL3NDT
synthetic dataset, 2) the BraTS 2020 (Menze} 2014; Spyridon Bakas et al., [2017; et al., |2019; 2017) medical
dataset with missing modality completion task, and 3) CelebAMask-HQ (Lee et al., 2020) dataset of face
photos and masks, augmented with generated sketches.
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Each dataset is evaluated under varying levels of supervision. Model performance is assessed by removing a
specific number of views from a data point and subsequently regenerating them.

4.1.1 BL3NDT Synthetic Dataset

The Blender 3 Domain Translation (BL3NDT) dataset provides a testbed for multi-domain translation
frameworks with deterministic mapping. Generated using the open-source 3D software Blenderﬂ it consists
of 64x64 image triplets across three domains (cube, pyramid, iscosphere), each containing domain-specific and
common features (Fig. @ Each domain represents an object (cube, pyramid, or icosphere) placed before two
walls and a floor, with controllable viewing angles. Generation parameters include object type, 3D position,
camera angle, object color, floor color, and wall colors. Some parameters are common across domains,
while others (position, camera angle, object color) exhibit semantic inversion between domains (Tab. .
By swapping generative parameters between domains, pixel-to-pixel mapping is eliminated, compelling the
model to learn underlying generative parameters and increasing task difficulty. The dataset comprises 40,500
randomly generated image triplets.

We study the BL3NDT setting with different amounts of supervised data. A percentage of the dataset,
denoted as N%, is considered supervised data points, with the remaining (100-N)% divided equally between
pairs of domains, with N € {100, 70,10, 0}. For example, if N = 40%, 40% of the data is fully supervised, 20%
is (cube, pyramid), 20% is (pyramid, icosphere), and 20% is (cube, icosphere). In addition, the bridge setting
divides the dataset into 50% (cube, pyramid) and 50% (pyramid, icosphere) pairs, by removing the icosphere
from half the data and removing the cube from the other half of the data. We call it bridge translation as
there is never a cube and a corresponding icosphere together. Therefore, producing an icosphere from a
cube requires using a bridge domain: the pyramids. Generation is evaluated using the Mean Average Error
(MAE).

Table 1: Parameters controlling BL3NDT dataset generation. Position, Camera angle, and Object color
semantics are swapped between domains, while floor and wall colors are shared.

Position ~ Camera angle Object color Floor color Wall 1 color Wall 2 color
Cube pl, p2, p3 « a, colorl, color2  rl, gl, bl r2; g2, b2 r3, g3, b3
Pyramid p2, p3, pl 1l—«a colorl, color2, @ rl, gl, bl r2, g2, b2 r3, g3, b3

Icosphere p3, pl,p2 (a+0.5)%1 color2, a, colorl rl, gl, bl r2, g2, b2 r3, g3, b3

4.1.2 CelebAMask-HQ Dataset Augmented With Sketches

Evaluations are conducted on the CelebAMask-HQ dataset at 256x256 resolution. To obtain a setting with
more than two domains, each face is augmented with a corresponding sketch computed using a pre-trained
model (Chen et al., 2018).

The evaluation focuses on face-conditioned generation, as MDD is designed for generation rather than dis-
criminative tasks (e.g. classification, regression, segmentation etc.).

The same supervision settings as BLANDT is used with N=100% and N=0%. The quality of face generation
is evaluated using established metrics from image-to-image translation, the Learned Perceptual Image Patch
Similarity (Zhang et all 2018)(LPIPS) and the Structural Similarity Index Measure (Wang et al., |2004)
(SSIM).

4.1.3 BraTS 2020 Medical Dataset

Evaluations are conducted on the BraTS 2020 (Menze| [2014; [Spyridon Bakas et al., |2017} et al., |2019} [2017)
dataset comprising four MRI modalities (FLAIR, T1, Tlce, and T2), and 3D tumor segmentations. We use
2D slices (256x256) with linear normalization [0,1] and binary semantic segmentation.

%https://www.blender.org/
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Figure 6: Two data points from BL3NDT dataset which provides a synthetic domain translation setup.

As for CelebAMask-HQ, the evaluation focuses on scans generation conditioned on other modalities, since
MDD is designed for generation rather than discriminative tasks.

For BraTS 2020, we evaluate three supervision settings: P100% (fully supervised), P80% (80% probability
of keeping each view xy)), and P50% (50% probability of keeping each view azgl)), and a minimum of two
views are retained for each data point. Removing random scans simulates a realistic scenario where not
all patients have complete scan sets. In the P50% setting, only 3% of the data retain all five modalities,
16% miss one modality, and 81% lack two or more modalities. This heterogeneous setting presents a more
complex and realistic challenge compared to the BL3NDT dataset. Missing modality completion on the
BraT$S 2020 dataset is evaluated using the standard metrics for this task (Meng et al., [2022b; |Li et al., [2023
Xie et al.[, : Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (Wang et al.
2004) (SSIM). For segmentation generation, the Jaccard Index (Jaccard) is reported.

4.2 Implemented Models

Comparison with State-of-the-Art Methods (sota) For evaluation, MDD is compared with two multi-
domain translation paradigms, clean and noisy conditions, which do not specify a condition domain. For the
clean condition paradigm, UMM-CSGM (Meng et al.,[2022b)) training scheme is used as described in Sec.
The MSDM (Mariani et al.,2024) training scheme is used for the noisy condition paradigm, which has shown
competitive quantitative results in music generation and separation. UMM-CSGM uses binary vectors for
flexible conditions and target domain definitions, applying forward diffusion only to the target domain and
keeping the condition domain clean. MSDM applies the forward diffusion process to all domains during
training, bringing them to the same noise level. In MSDM, conditional generation is performed by applying
noise to the condition to match the noise level in the target domains. Since MSDM was initially designed
for music generation, we kept only the noise scheduling for each domain and referred to it as MSDM'. We
refer to these models as ‘sota’ in the different results tables. In a semi-supervised setting, ‘sota’ methods are
only trained on the supervised examples, ignoring semi-supervised data.

Comparison with Uni-Directional Domain Translation Methods In addition to multi-domain meth-
ods, we conduct comparisons with state-of-the-art diffusion translation models that are restricted to a specific
translation direction ( fs,5, 5 — S;) using ControlNet (]Zhang et al.l, |2023b[) in Appendix While Con-
trolNet does not strictly fit the introduced multi-domain translation setting, as it operates only on fixed,
predefined translation directions, we include these comparisons for the sake of completeness.

10
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Table 2: MAE] error (values are given in e-1 order) for different amounts of supervision on the BL3NDT
dataset for cube—(pyramid, icosphere) translation. ‘sota’ refers to the original state-of-the-art methods
without modifications, while ‘ad. refers to our adapted versions of these methods modified to handle semi-
supervised scenarios.

BL3NDT MAE|] 100% 70% 40% 10% 0% Bridge

= MSDMT 1.962 2028 2186 2925 -

2 UMM-CSGM 0.359 0.503 0.852 4.601 - -

— MSDMTN] 1976 1944 1971 2060 2321 3.036

% UMMIN] 0.353 0422 0443 0544 3324 3444
MDD 0.316 0.338 0.361 0.399 0.434 1.199

Adaptation of State-of-the-Art Methods to Semi-Supervised (ad.) To our knowledge, only UMM-
CSGM, MSDM, and the like, are capable of addressing the defined multi-modal domain translation setting.
To evaluate performance in both supervised and semi-supervised scenarios, we note that UMM-CSGM,
MSDM, and ControlNet do not inherently support semi-supervised training. Therefore, we propose modified
variants of each model (UMM[N], MSDMT[N], and ControlNet|N]) that handle missing views by substituting
them with noise. The different results tables refer to these adapted models as ‘ad..

Multi-Domain Diffusion Ablations (ours) To extensively test MDD capabilities, further ablation is
provided by removing the contribution of Eq. , MDD training scheme is adapted to noisy conditions
(named MDDI[NOISY]). 7 is set as T = [t,t,t] during training. During generation, missing domains are
replaced with noise and their ¢ with 7" as specified in Eq. @ Ablation of the additional step in Algorithm
line [9] is also provided (named MDD[RAND)]). The different results tables refer to these adapted models as
‘ours’ and are analyzed in Appendix [B.2

Additional training details are provided in Appendix [A]

4.3 BL3NDT Results

In this section, we demonstrate that MDD effectively performs domain translation on datasets without strong
pixel-to-pixel correspondence between domains. We examine three distinct supervision settings: (1) the fully-
supervised setting, where all data views are available; (2) the semi-supervised setting, where some views are
missing from data points; and (3) the bridge data setting, where certain domains are never simultaneously
present in the training samples.

In Tab. 2l MDD is compared to the different baselines. For all amount of supervision considered, MDD
outperforms every baseline. The lower the supervision (lower N), the more MDD outperforms other baselines.

Supervised performances: For N = 100%, UMM-CSGM, UMM|N], and MDD exhibit comparable low
MAE errors. In contrast, MSDM' and MSDMT[N] demonstrate notably higher MAE error. The similarity
in results for UMM-CSGM, UMMIN], and MDD is expected, as they all utilize a clean condition during the
generation process, and the full supervision allows learning the translation task. The higher MAE errors
observed in MSDM' and MSDM'[N] can be attributed to their noisy condition: the condition is degraded
to the same level as the generation. This creates a disharmony between condition and generation, as the
model cannot leverage the condition during earlier steps. This shows how using a clean condition guides the
generation in the right direction from the start of the diffusion process, resulting in more faithful generations.

Semi-supervised performances: As N decreases, an increase in MAE is observed across all models.
This trend is particularly pronounced for the supervised models UMM-CSGM and MSDMT', which do not
utilize samples with missing views. In contrast, it is worth noting that MDD performances only slightly
decrease for N € {70,40,10}. The semi-supervised adaptation MSDMT[N] shows similar results to its
original formulation as N decreases, indicating that the noisy formulation is not well-suited for producing
highly faithful results. For UMM|[N], the performance decrease is more substantial than for MDD, suggesting
that the clean condition is not the sole factor contributing to MDD performances. At N = 0%, all methods

11



Under review as submission to TMLR

Figure 7: Bridge translation on cube—(pyramid, icosphere). The left row shows the condition in
green and the generation in red. The right column shows the ground truth. Each row represents, from
top to bottom, for each time in the backward diffusion process, the cube condition, the current pyramid
translation, the current pyramid L1 map with the ground truth, the current iscophere translation, and the
current icosphere L1 map with the ground truth.

except MDD fail to learn the task. It is possible that sampling ¢ according to Eq. may serve as an
additional form of data augmentation.

Bridge Translation: The cube— (pyramid,icosphere) translation proves challenging, as can be seen in the
qualitative images in Fig. [7] where the L1-map shows some shift of the object position, and in the Tab. [2]
where the Bridge column has the highest error of all supervision setting, with an MAE of 1.199 compared
t0 0.316 for N = 100%. Two factors may explain this: in the early stages of the backward diffusion process,
the pyramid translation is suboptimal and subject to significant noise. In addition, the semantic inversion
makes the generation more sensitive to noise, e.g. a wrong prediction in the pyramid color will also affect
the prediction of the camera angle (see o in Tab. [I]).

The intermediate bridge domain (pyramid) exhibits imperfect generation, with errors propagating to the
subsequent icosphere translation. This challenge parallels the noisy condition issues discussed in Sec. as
the pyramid is unavailable for icosphere construction, similar to noisy translation models that lack access to
the condition at the diffusion process initiation.

This challenge mirrors issues encountered in diffusion-based inpainting, where the condition is initially noisy
(Chung et al. 2022} [Lugmayr et al. [2022; |Zhang et al.l [2023a]). Potential solutions from this field could
be adapted to our context, such as resampling steps for domain synchronization (Lugmayr et al. 2022]) or
additional regularization costs (Zhang et al.| 2023a};|Chung et al.||2022), both approaches introduce additional
computational overhead.

While this issue impacts the MAE on BL3NDT, the usual domain translation tasks do not expect a one-to-one
mapping (e.g. face<ssketch translation), which mitigates the problem in real-world applications.

4.4 CelebAMask-HQ Results

To assess MDD’s capability in generating realistic views for challenging domain-to-domain translation tasks,
we evaluated domain translation between face, sketch, and segmentation mask on the CelebAMask-HQ
dataset. This section considers the (sketch, mask)—face translation and shows that MDD can generate
realistic faces.

12
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The diversity of face generation, sketch generation, and segmentation generation is evaluated in Appendix[B.§|
along with additional quantitative and qualitative results.

As shown by Tab. [3f MDD closely matches LPIPS of UMM][N] in the different supervision settings and
improves on SSIM. MDD significantly outperforms all other methods on both LPIPS and SSIM. In some
instances, the UMM][N] method seems to produce oversaturated results but generally performs better than
MSDMT'[N]. This aligns with findings from other datasets, where the noisy condition paradigm consistently
underperforms compared to the clean condition paradigm.

GT Conditions ControlNet[N] MSDMT[N]  UMMIN] MDD

a

Figure 8: Generated faces given a sketch, mask condition, and the corresponding GT for N=0%.

Table 3: Evaluation metrics for (sketch, segmentation)—face on the CelebAMask-HQ dataset. ‘ad. refers
to our adapted versions of state-of-the-art methods modified to handle semi-supervised scenarios.

CelebAMask-HQ LPIPS] SSIM?
Face 100% 0% 100% 0%
< MSDMT [N] 0.3814 0.3785 0.1483  0.1306
< UMM [N] 0.2930 0.3500 0.2902 0.2177
MDD 0.2305 0.3023 0.4385 0.3381

4.5 BraTS 2020 Results

4.5.1 Missing Modalities Completion

To demonstrate MDD’s flexibility, we evaluate its performance in regenerating each modality on the
BraTS 2020 dataset, establishing that a single trained MDD model successfully handles the generation
of all modalities.

Table [ presents quantitative results for PSNR and SSIM metrics, while Fig. [0] provides qualitative visual
results. Additional quantitative analysis using other metrics (MSE, MAE) is provided in Appendix[B.7 We
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Table 4: Evaluation metrics for T1, Tlce, T2, and Flair, modalities completion on the BraTS 2020 dataset
for different levels of supervision PN%, where N% indicates the probability of keeping a view. ‘sota’ refers
to the original state-of-the-art methods without modifications, while ‘ad.’ refers to our adapted versions of
these methods modified to handle semi-supervised scenarios.

T1 Tlce
PSNR?T SSIMt PSNR?T SSIMt
P100% P80% P50% P100% P80% P50% | P100% P80% P50% P100% P80% P50%
3 MSDMT 21.623 18.583 11.077 0.883 0.735 0.146| 27.159 25.971 19.067 0.911 0.840 0.135
2 UMM-CSGM 22.806 17.769 13.280 0.894 0.680 0.064| 26.947 26.488 26.558 0.910 0.898 0.892
< MSDMT[N] 21.486 21.608 21.456 0.883 0.886 0.822]| 27.056 24.513 16.943 0.887 0.699 0.060
< UMM[N] 22.467 21.720 22.188 0.880 0.891 0.874| 26.956 27.136 26.680 0.892 0.888 0.880
MDD 23.004 23.373 22.928 0.902 0.903 0.892| 27.052 27.567 27.285 0.894 0.909 0.892
T2 Flair
PSNR?T SSIM?T PSNR?T SSIM?t
P100% P80% P50% P100% P80% P50% | P100% P80% P50% P100% P80% P50%
= MSDMT 24.679  21.485 15.844 0.824 0.775 0.090| 22.801 18.829 17.764 0.872 0.785  0.229
% UMM-CSGM 24.706 24.241 23.980 0.813 0.874 0.805| 22.809 22.603 22.059 0.871 0.860 0.833
< MSDMT[N] 25.249 20.895 12.321 0.891 0.701  0.029]| 23.491 21.649 12.366 0.839 0.753  0.042
< UMM[N] 24.726  24.843 24.036  0.882 0.887 0.861| 23.110 23.384 22.726 0.845 0.840 0.827
MDD 25.383 25.716 24.788 0.875 0.894 0.877| 24.173 24.103 23.663 0.876 0.879 0.868

focus primarily on T1 scan generation analysis and observe that our findings generalize to other modalities
(Tab. [4) using only one model, highlighting the flexibility of multi-domain diffusion models compared to
fixed diffusion models, which would require at least one model for each domain.

The existing formulations, MSDM" and UMM-CSGM, demonstrate significant performance degradation
under reduced supervision conditions. Specificallyy, UMM-CSGM’s PSNR on T1 generation decreases sub-
stantially from 22.81 to 13.28 when supervision is reduced from P100% to P50%, highlighting the inherent
difficulty of this task with limited training data (Table . As illustrated in Fig. |§|, these methods fail to gen-
erate clinically acceptable images outside the fully supervised setting. Our adaptation of these formulations
(MSDM'[N] and UMMIN]) improves their resilience to supervision reduction, with both methods maintain-
ing more stable performance metrics when supervision decreases, as evidenced in Tab. @l Notably, MDD
consistently outperforms the adapted UMM][N], despite the latter being specifically designed for missing scan
completion tasks.

4.5.2 Flexibility in the Number of Inputs

MDD demonstrates flexibility in handling both missing modality completion and varying numbers of con-
dition domains during inference. We explore this adaptability through two experiments: missing modalities
completion (focusing on T1 scan generation results here) and semantic segmentation (Appendix , each
with a gradually decreasing number of input modalities.

We gradually remove modalities in the order [Segmentation, T1ce, T2, Flair] and regenerate the missing
domains, focusing on T1 scan generation. Qualitative results are presented in Fig. [I0] and quantitative
results in Tab. Bl

Models with noisy conditions demonstrate limitations in this setup. MSDMT[N]’s PSNR. decreases by ap-
proximately 13% when the number of domains used drops from 4 to 1, compared to only a 4% decrease for
MDD (Tab. . Generated T1 scans from MSDM*[N] are inconsistent when varying the number of condition
domains, as observed in Fig. [10]

Conversely, models with clean conditions perform well. MDD not only outperforms UMMI[N] but also
maintains consistency as the number of available scans decreases. While UMM[N]’s PSNR shows a slight
drop between four scans and one scan, its generation can be less consistent than MDD when the number of
condition domains becomes very small.
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P80% P50% GT

P100%

MSDM'  UMM-CSGM ControlNet[N] MSDM'[N] UMM]N] MDD

Figure 9: Generated T1 scan given all remaining modalities and the corresponding GT for different super-
vision levels.

The superior performance of MDD demonstrates how using different ¢ per domain allows for learning better
data fusion compared to using a binary code (UMM]|N]) or no code at all (MSDMT[N]). MDD effectively
learns the relative information in different domains at each step, extracting data from less noisy domains to
reconstruct the more noisy ones. These results indicate that MDD adapts well to varying numbers of inputs,
particularly when condition domains become scarce. This suggests that MDD could be effectively used for
multimodal data fusion in situations where modalities may be missing during inference, offering a robust
solution for diverse medical imaging scenarios.

Table 5: Evaluation metric for T1 scan generation on the BraTS 2020 dataset while varying the number
of input domains. ‘ad. refers to our adapted versions of state-of-the-art methods modified to handle semi-
supervised scenarios.

BraTS 2020 PSNR? SSIMT
T1 P50% 4dom 3dom 2dom 1dom |4dom 3dom 2dom 1dom
MSDM*[N} 21.456 21.336 20.615 18.711 | 0.822 0.817 0.806 0.752
< UMM|N] 22.188 22.175 22.065 21.758 | 0.874 0.878 0.870 0.852
MDD 22.928 22.934 22.503 22.075| 0.892 0.896 0.887 0.864

5 Limitations and Future Directions

In this section, we discuss some of the potential areas for improvement of MDD.

While MDD effectively handles the fusion of information from multiple domains (Sec. [4.5.2)), the scalability
of combining information from an increasing number of domains within a single latent vector could become
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4 dom 3 dom 2 dom 1 dom GT

UMM|N]  MSDM'[N] MDD UMM[N]  MSDM![N]

MDD

Figure 10: Generated T1 scans given multiple numbers of scans as input for P50%. Zoom in for better
details.

a bottleneck. As the number of domains grows, the efficient integration and representation of multi-domain
information may present computational and architectural challenges. The current architecture could benefit
from more advanced data fusion strategies, particularly those designed for semi-supervised and imbalanced
settings involving numerous domains (Han et al., 2024a). Such advanced fusion mechanisms could enhance
the model’s ability to handle heterogeneous data distributions and varying levels of annotation across do-
mains.

Future work could explore the factorization of encoders and decoders across different modalities to improve
scalability. Specifically, leveraging a powerful, general-purpose pretrained encoder could enable the extrac-
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tion of domain representations without domain-specific training. This unified encoder could be conditioned
on the specific domain it is processing through mechanisms similar to positional embeddings used in trans-
former architectures (Vaswani et al.|[2017)). Similarly, a single decoder could be employed to generate outputs
across all domains using the processed latent code from domain fusion, given a general-purpose pretrained
architecture. However, unlike the encoder, the decoder must be explicitly conditioned on the target domain
since its input (the latent code) is domain-agnostic. This dual approach of shared encoder-decoder architec-
ture with domain conditioning would facilitate scaling to multiple domains without a corresponding linear
increase in model parameters at the encoder and decoder levels. While this approach might be well-suited
for domain translation tasks where each domain can be represented in the same representation space (e.g.
all domains of BL3NDT, BraTS 2020, and CelebAMask-HQ can be represented as images), it would present
significant challenges for more heterogeneous domains such as image and text. In such cases, where the
modalities differ fundamentally in their structure and dimensionality, this approach would not be directly
applicable and would remain an open research challenge.

When working with fundamentally different modalities, MDD requires different encoders and decoders for
each domain type, inherently limiting its scalability to a very large number of domains. A promising
direction lies in the strategic sharing of parameters across different components of the model, leveraging
the inherent similarities between different domains. This could be achieved through parameter sharing
techniques, particularly through mixture-of-experts architectures (Wu et al) [2024; [Han et al) [2024D;
. Such approaches have the potential to efficiently scale to multiple domains while maintaining
parameter efficiency through strategic sharing of weights across different domains. These methods could
significantly reduce the computational overhead typically associated with multi-domain processing while
preserving domain-specific expertise.

Another limitation of this study lies in the evaluation methodology. Although we employed diverse metrics
that are widely accepted in the field, the incorporation of human preference evaluations could have provided
additional valuable insights. However, such studies can be challenging to implement due to the need for
humain annotators and standardized evaluation protocols.

6 Broader Impact Statement

As MDD is a generative framework requiring training datasets, it raises several important ethical consider-
ations. These include concerns regarding image privacy, the inclusiveness of generated images which may
exhibit biases, and the potential for memorization and reproduction of training examples.

MDD leverages synthetic datasets (Sec. containing geometric forms, which inherently circumvents
issues related to data privacy, biases, and inclusiveness. The additional datasets employed in this research are
publicly available, thereby mitigating certain data rights and privacy concerns. Nevertheless, several critical
aspects require careful attention, including potential biases in image generation, demographic representation,
and training data memorization and reproduction.

To address these challenges, we recommend the following measures: First, it is crucial to ensure proper data
usage rights and permissions for all training images. Second, the training dataset should be carefully curated
to represent diverse populations and scenarios, avoiding demographic or contextual biases. Third, thorough
analysis of the generated image distribution should be conducted to detect and address any learned biases or
potential privacy breaches. Additionally, regular auditing of the model’s outputs and systematic evaluation
of its societal impact should be performed to ensure responsible deployment of the technology.

7 Conclusions

We demonstrate that the MDD framework effectively learns multi-modal, multi-domain translation in a semi-
supervised setting by modeling domain-specific noise levels. This approach facilitates domain translation
learning without requiring the definition of a specific condition domain.
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Unlike existing frameworks, MDD can handle a significant number of modalities without substantially in-
creasing model size. Moreover, it exhibits superior information fusion from different modalities, making it
particularly suitable for tasks with a large number of domains.

Our research elucidates how MDD unifies various approaches to applying noise to the condition in domain
translation tasks. We found that maintaining a clean condition during generation yields excellent results,
as it allows leveraging the condition from the start of the diffusion process. Using a noisy condition is
particularly detrimental when tasks involve deterministic mapping, especially when the target domain is a
semantic segmentation map. We attribute this issue to the diffusion model’s need to generate a mean image
without condition information at the start of the generation process, and subsequently correct erroneous
predictions.

Our work integrates seamlessly with existing literature on diffusion frameworks that aim to learn multi-modal
domain translation without defining a specific translation path (Meng et al.,|2022b; Bao et al., 2023} Mariani
et al) [2024) and by applying different noise levels per modality (Meng et al., 2022b; Mariani et al., [2024).
Extending these existing works, we demonstrate that the proposed formulation allows for semi-supervised
conditional domain translation. This can reduce the data burden in settings where data is difficult to acquire,
such as the medical field, and allow for flexible translation with different inputs.
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Supplementary Material

A Implementation Details

A.1 Diffusion Model

During training, we use a linear noise schedule or (le — 4, 2e — 2) and the noise prediction function described
in Sec. The maximum number of diffusion steps T' is 1000. During generation, DDIM (Song et al.|
2021) with 100 steps is used for BLANDT, DDPM (Ho et all 2020 with 1000 steps for BraTS 2020, and
DDPM with 1000 steps for CelebAMask-HQ when faces are part of the generation; otherwise, DDIM with
250 steps for the other CelebAMask-HQ modalities.

A.2 Training Details
A.2.1 Multi-Domain Translation Models

For all multi-domain translation models (MSDMT, UMM-CSGM, and MDD), we employ consistent hyperpa-
rameter settings within each dataset. We utilize the Adam optimizer with an initial learning rate of 7 x 107>
for BraTS 2020 and 2 x 10~° for both BL3NDT and CelebAMask-HQ datasets. The Adam parameters (;
and f9 are set to 0.9 and 0.999, respectively. For BLANDT and BraTS 2020, we implement a learning rate
decay strategy, multiplying the rate by 0.75 every 10 epochs. We employ batch sizes of 128 for BL3NDT,
and 64 for both BraT§S 2020 and CelebAMask-HQ. All models are trained with Exponential Moving Average
(EMA) on model parameters with a decay rate of 0.9999. For BL3NDT, we implement early stopping with
a patience of 40 epochs and a maximum computational budget of 240 epochs. For BraTS 2020, all models
are trained for 200 epochs, while for CelebAMask-HQ, training continues for 2000 epochs.

A.2.2 Uni-Direction Translation Models

For ControlNet implementations (Zhang et al., 2023b)), we use the publicly available code repository and
select each model based on its best validation metrics. For the BL3NDT dataset, we train with an unlocked
decoder for 1000 epochs with a batch size of 128. For BraTS 2020, training proceeds with an unlocked
decoder for 700 epochs using a batch size of 128. For CelebAMask-HQ, we conduct training for 2000 epochs
with a batch size of 1024.

A.3 Data Normalization

For BL3NDT, images are linearly normalized between [-1,1], and no data augmentation is applied.

For BraTS 2020, each 3D scan is independently linearly normalized between [0,1], and the semantic segmen-
tation classes are merged to create a binary segmentation and are one hot encoded with one channel. The
bottom 80 and top 26 slices are removed. Each resulting 3D volume is sliced in the axial axis and resized to
(224, 224).

For CelebAMask-HQ, faces and sketches are linearly normalized in [-1,1], and the 19 classes are one hot
encoded. We resize each modality in (256,256) and use random horizontal flips as data augmentation.

A.4 Model Architecture and Adaptation to Multiple Domains

All models use the same U-Net architecture based on (Ho et al.}|2020) with some modifications to accommo-
date multiple domains and times, illustrated in Fig. We call E the U-Net encoder, B its bottleneck, and
D its decoder. In a setting with L domains, the encoder and decoder are duplicated L-times and function
as in the classical single-domain diffusion setting, i.e. the encoder E() takes as input the modality (") and
the time 7() and produces its embedding e() and a list of skip connections skips(l). The list of embeddings
[e(l), - e(L)] and times 7 is then processed by a bottleneck adapted for multi-domain multi-time, which we
will describe later, to produce the processed embedding emb. Each decoder D® takes as input the processed
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Figure 11: Illustration of the MDD architecture with a UNet backbone on 3 domains. Each domain has its
own encoder E(®) and decoder D that processes modalities individually using their associated timesteps ¢(%).
The embeddings from each modality are concatenated and aggregated for processing through the bottleneck.
Subsequently, the processed embeddings are passed through individual decoders D) with skip connections
from their corresponding encoders E(*) to predict the noise € added to each domain. In the aggregation
network and bottleneck, time embeddings are first flattened, then processed through an MLP for scale-shift
operations, following standard practices.

embedding emb, the list of skips connections skips(l) and time 7®, and predicts the noise map for the
modality () as in the classical single-domain diffusion setting.

To accommodate multiple domains, an aggregation network is added before the bottleneck, taking as input
the list of embeddings [e), ..., e(F)] each of shape (b, ¢, h, w) and times 7. The embeddings are concatenated
on the channel dimension before going through a ConvNextBlock which reduces their dimension from ¢ x L
back to ¢. They are then processed through the bottleneck layers as the original U-Net would.

Each layer that uses the entire 7 is modified. The T of shape (b, L) is embedded once at the beginning of
the forward pass using the initial time-embedding MLP into a tensor of shape (b, L, tdim), then reshaped
into shape (b, L x tdim). Then, each bottleneck ConvNextBlock time MLP input dimension is modified to
take as input a vector of shape (b, L X tdim) instead of taking a vector of shape (b, tdim).

B Additional Experiments

B.1 Exploring the Noise on Condition Strategy

During MDD training, there is no domain identified as a condition domain or as a target domain, so the
question is how to use the condition during the generation process: should the condition be kept clean (using
Zcond,0, See Algorithm or should it contain the same level of noise as in generation (using Zcona,, See
Algorithm . We experiment on BL3NDT dataset to compare the effect of different noise levels during the
generation process and define four noise strategies for the condition described in Fig. We define ¢, (t)
as the function that allows to obtain the noise level in the condition domains according to the noise level
present in the generated domains.
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Figure 12: Illustration of different ¢.(¢) functions. Evolution of the noise applied to the condition as a
function of the number of transitions made for the target domain. Vanilla diffusion steps have the drawback
of not properly preserving semantic information of the condition and requiring multiple jumps. Skip Noise
diffusion removes information of the condition in the same way as the Vanilla diffusion step, but allows a
cleaner condition at the start, therefore better preserving semantic information from the condition. Constant
noise continuously removes the same amount of information at each step. We found this solution to work
best in practice with a low amount of 20% of the total number of time steps. We also tried applying constant
noise to the condition until the noise level of the target domain caught up with the condition.

Approaches that learn the joint distribution apply the same noise level on each modality during training
(Mariani et al.| 2024) and thus also during generation. This strategy is called Vanilla noise because it closely
follows the original backward diffusion process. When a condition domain is identified, it is often kept clean
during training and generation (Xie et al.l |2024; |Cross-Zamirski et al., 2023 |Saharia et al., 2022a; Lyu &
Wang, 2022)). We identify this strategy as Constant Noise, which can be parameterized by a noise level, a
clean condition is identified as Constant Noise(0). We also explore two additional strategies: Skip Noise,
which is vanilla noise, where the noise applied to the condition is less than that applied to the generation,
and Constant Noise Fading, where the noise remains constant until it catches up with the generation.

For the BL3NDT dataset with the Bridge data setting, we found that the higher the -, the lower the
MAE. This is not surprising, as the higher the ~, the less noisy the condition, allowing the model to use
information from the condition early in the generation process and avoid drifting too far from the correct
semantic. Interestingly, the ¢ Skip Noise function has a low MAE even for a relatively high level of . We
speculate that this noise scheme still allows the diffusion model to focus first on the low-level frequency that
is erased from the condition and, later on, the high-level frequency details.

B.2 Ablation Study

To extensively test MDD capabilities, further ablation is provided by removing the contribution of Eq. ,
MDD training scheme is adapted to noisy conditions (named MDD[NOISY]). 7 is set as T = [t, ¢, t] during
training. During generation, missing domains are replaced with noise and their ¢ with T as specified in
Eq. (6). Ablation of the additional step in Algorithm [I] line [J] is also provided (named MDD[RAND]). The
different results tables refer to these adapted models as ‘ours’.
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Figure 13: Comparison of the MAE] for different ¢, (¢) functions according to the v parameter on BL3NDT
dataset using the Bridge data setting. In general, the smaller the v, the higher the MAE. The smaller ~, the
noisier the condition, and the harder it is for the model to use the information within the condition in the
early steps.

Noisy generation: MDD[NOISY]. Using a noisy condition instead of a clean condition significantly
increases the translation error, as shown in Tab. [6] This is more true for the BL3NDT dataset than for
the other datasets, because the BL3NDT dataset expects a specific output with challenging variable in-
versions between domains. For other datasets, such as BraTS 2020, MDD also consistently outperforms
MDD|NOISY], as shown in Tabs. [13| to

For translation tasks where the target is semantic segmentation, MDD[NOISY] fails the task as shown in
Tabs. [L7] and [19] by producing realistic segmentation but unaligned with the condition, which is consistent
with other noisy condition models such as MSDMT[N] (Fig. . When generating segmentation maps
from other condition domains, MDD[NOISY] (and other noisy condition models) has no mechanism to
distinguish which domain is part of the generation and which is part of the condition; therefore, correcting
the target domain (in this case, the segmentation) becomes particularly challenging. A similar problem has
been reported in other works (Lugmayr et all 2022; |Chung et all 2022)) where the current generation and
condition are not well synchronized. Proposed solutions involve resampling mechanisms (Lugmayr et al.|
2022; |[Chung et al., [2022]), which increases computation time, making prediction of many images impractical
for most institutions.

This validates the assumption that using a clean condition allows diffusion models to leverage the condition
from the early steps of diffusion, leading to more faithful and realistic generations.

Condition vector m.: MDD[RAND)]. Tweaking the noise scheduling during training allows MDD to
better follow a specific set of domains during generation. We found that this formulation is beneficial for
tasks where a specific output is expected, such as the BL3ANDT dataset (Tab. @ and segmentation tasks
(Tabs. [I7]and[19)). For other translation tasks, MDD performs better than MDD[RAND], but with a smaller
metric difference (Tabs. [13] to [L6)).
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Table 6: BL3NDT ablation, MAE] error (values are given in e-1 order) for different amounts of supervision
on the BL3NDT dataset for cube—(pyramid, icosphere) translation.

BL3NDT MAE|  100% 70%  40%  10% 0% Bridge

MDD[NOISY] 1.977 2.001 2.030 2.158 2.740 4.022
» MDD[RAND] 0.616 0.652 0.715 0.803 0.565 1.294
2 MDD 0.316 0.338 0.361 0.399 0.434 1.199

B.3 Sampling Strategy Impact on Diversity

To further validate the flexibility of MDD in modeling different noise levels, we evaluate the noise strategies
presented in Appendix applied to CelebAMask-HQ for face translation with sketch and segmentation
conditions using full supervision. Results are presented in Fig.[[4] For computational efficiency, we employ
DDIM with 100 steps instead of DDPM with 1000 steps. While this results in a slight degradation of LPIPS
compared to the results presented in Tab. [ the performance remains superior to other baselines.

For most ¢, strategies, a modest increase in + leads to decreased image quality (LPIPS) and, notably, without
an increase in image diversity. This phenomenon may be attributed to the initial noise injection removing
important features from the sketch that affect LPIPS computation, while being insufficient to introduce
meaningful diversity in the generation process. Increasing noise injection into the condition enables greater
image diversity, albeit at the cost of image quality, establishing a clear trade-off between these metrics.
Fundamentally, these metrics are inherently antagonistic in domain translation tasks: while we aim to
generate samples that closely match the ground truth, perfect fidelity would result in zero diversity, making
it challenging to optimize both metrics simultaneously.

Further research is needed to develop additional mechanisms for MDD to achieve better control over gen-
eration diversity. One potential approach would be to implement a progressive condition relaxation during
generation, whereby the condition transitions from a fixed constraint to becoming part of the generation
domain. This controlled transition would enable the generated output to gradually deviate from the initial
condition, offering a more structured approach to diversity than simple noise injection.

B.4 Sensitivity to Noise Schedulers

We evaluate MDD’s adaptability to different noise schedulers by examining its performance across multi-
ple scheduling strategies. In our experiments, we employ DDPM for BraTS 2020 and
CelebAMask-HQ datasets, while utilizing DDIM (Song et al., [2021)) for BLANDT to optimize computational
efficiency. Both DDPM and DDIM implement linear noise schedules. We further extend our analysis by
retraining the model with the cosine scheduler (Nichol & Dhariwall [2021]), which provides more gradual noise
application at higher noise levels. Results are presented in Tab. [7] for the Bridge data setting on BL3NDT
and in Tab. [§] for the P50% data setting on BraTS 2020, focusing on T1 scan generation.

MDD demonstrates robust performance across different noise schedulers, with the cosine scheduler achieving
comparable MAE scores to DDIM with a linear scheduler on BL3NDT, and even surpassing previous results
with fewer sampling steps. Similar behavior is observed for the BraTS 2020 dataset, where the cosine
scheduler performs as well as the linear scheduler while requiring only a fraction of the sampling steps.

These findings suggest that MDD is robust to different scheduler choices and could potentially leverage
recent advances in more sophisticated scheduling strategies.

Notably, significantly reducing the number of diffusion steps does not substantially degrade generation per-
formance. For BL3NDT, and particularly for BraTS 2020, reducing the steps from 1000 to 50 produces
minimal differences in SSIM scores. This resilience might be attributed to the mitigation of exposure bias
(Ning et all |2023)) at inference time, where the distribution of inputs typically deviates from the training
distribution and errors accumulate during diffusion steps. Fewer diffusion steps in DDIM may help alleviate
this issue by reducing the cumulative error, while the noise reinjection process in DDPM provides additional
regularization during sampling.
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Figure 14: Trade-off between diversity and LPIPS across different noise sampling strategies ¢. while varying
the noise level parameter «v. Marker sizes correspond to v values, where larger markers indicate lower ~ values,
representing increased noise injection into the condition. Note that v values cannot be directly compared
across different noise sampling strategies ¢, as each strategy implements this parameter distinctly.

Table 7: MDD performance with different noise schedulers on BLANDT Bridge setting for cube— (pyramid,
icosphere) translation.

Sampler Number Of Steps MAE]
DDIM Cosine 50 0.974
DDIM Cosine 100 0.979
DDIM Linear 100 1.199

B.5 MDD Computational Analysis

We analyze MDD’s computational characteristics in terms of generation speed, parameter count, floating-
point operations (FLOPs), and multiply-accumulate operations (MACs). FLOPs and MACs are measured
using CalﬂopsEl for a single complete forward pass of the model. Generation time is computed over 50 diffusion
steps for 1 image and averaged across 100 runs on NVIDIA A100 GPU. We denote the time required for
translating between n domains as nDT in seconds. The translation time for n domains using ControlNet
is computed by multiplying the time required for a single domain generation by n, as domains must be
generated sequentially rather than simultaneously. Results are presented in Tab. [0}

The multi-domain translation baselines (MDD, MSDM', UMM-CSGM) demonstrate comparable generation
speeds, as they share a similar UNet backbone architecture and generate all missing domains simultaneously.
Consequently, the generation time for n domains remains constant across these models. In contrast, the
single-domain translation baseline ControlNet, although faster for individual domain generation, may become
less efficient in scenarios requiring multiple output domains, as it necessitates separate generation processes
for each domain.

For n = 1, ControlNet achieves a generation time of 7.5s, approximately 2.7 times faster than MDD (20.1s).
This difference can be attributed to ControlNet operating in the latent space, while MDD operates in the

Shttps://github.com/Mr¥xJ/calculate-flops.pytorch
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Table 8: MDD performance with different noise schedulers on BraTS 2020 P50% setting for T1 scan gener-
ation.

Sampler Number Of Steps PSNR?T  SSIM?T
DDIM Cosine 50 21.699 0.894
DDIM Cosine 100 22.387 0.881
DDPM Linear 1000 22.928 0.892

pixel space. Operating in the latent space could potentially improve MDD’s performance, and we plan to
extend our approach to incorporate latent space operations in future work.

For n = 2, MDD (20.1s) is slightly slower than ControlNet (14.9s), and for n > 3, where MDD is designed
to operate, it outperforms ControlNet in terms of generation time. The efficiency gap between MDD and
uni-domain generation approaches like ControlNet widens as the number of domains increases. For instance,
with n =5, MDD (20.1s) is 1.9 times faster than ControlNet (37.3s).

Additionally, ControlNet’s multi-domain generation (n > 2) relies on using generated domains as conditions
for subsequent generations, which may introduce domain adaptation issues and error accumulation across
multiple generations, potentially limiting its practicality in such scenarios.

Furthermore, though not quantified in our analysis, the storage and training time requirements for Con-
trolNet should be considered, as each translation configuration requires a separate model to be trained and
maintained.

Table 9: Computational complexity comparison across different domain translation methods. We report
parameter count, FLOPs, MACs, and generation time (nDT) in seconds for translating n domains. All
measurements are performed on NVIDIA A100 GPU.

Multi-Domain Translation

Model TFLOPs MACs Params 1DT 2DT 3DT 4DT 5DT
MDD 1.4795 733.556 GMACs 266.639 M 20.1 20.1 20.1 20.1 20.1
UMM-CSGM 1.4795 733.556 GMACs 266.639 M 20.6 20.6 20.6 20.6 20.6
MSDM* 1.4795 733.556 GMACs 266.639 M 20.1 20.1 20.1 20.1 20.1

ControlNet 24.8474  12.4135 TMACs 1.2301 B 7.5 149 224 298 37.3

B.6 Comparison to Model with a Fixed Configuration

We compare MDD with ControlNet (Zhang et al., |2023b)), a diffusion-based domain translation framework
that enables translation from a fixed set of conditional domains to a specific target domain. While Control-
Net is limited to one specific configuration among the 2" possible translation configurations,
making it inherently different from our framework’s flexibility, we include this comparison to demonstrate
the advantages of our approach.

B.6.1 Translation With Complex Semantic Inversion

The translation cube—(pyramid, icosphere) is evaluated. For this purpose, ControlNet requires training two
separate models: one for cube—pyramid and another for cube—icosphere. In the bridge supervision setting
(where 50% of (cube, pyramid) pairs and 50% of (pyramid, icosphere) pairs are available), two distinct mod-
els must be trained: cube—pyramid and pyramid—icosphere. Moreover, for the bridge translation scenario,
using pyramid—icosphere requires generated pyramid images as conditions, which can introduce domain
adaptation challenges due to potential distribution shifts between generated and real images. This demon-
strates a significant limitation of ControlNet, as different models must be trained for different configurations,
whereas MDD efficiently handles all configurations using a single unified model.
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Table 10: Evaluation of translation domain with a fixed-configuration using ControlNet. MAE] error (values
are given in e-1 order) for different amounts of supervision on the BL3NDT dataset for cube—(pyramid,
icosphere) translation.

BL3NDT MAE] 100% 70% 40% 10% 0% Bridge
ControlNet[N] 1.707 1.946 2.116 2.315  2.408 2.390
MDD 0.316 0.338 0.361 0.399 0.434 1.199

Table 11: Evaluation of translation domain with a fixed-configuration using ControlNet. Evaluation metrics
for T1 modality completion on the BraTS 2020 dataset for different levels of supervision PN%, where N%
indicates the probability of keeping a view.

BraT$S 2020 PSNR#} SSIMt

T1 P100% P80% P50% P100% P80% P50%
ControlNet[N] 24.929 24.665 23.968 0.800 0.869 0.832
MDD 23.004 23.373 22.928 0.902  0.903 0.892

We report the MAE results in Tab. Despite training with an unlocked stable diffusion decoder EI, Con-
trolNet[N] fails to effectively solve the translation task. While it generates plausible and visually coherent
images, it struggles significantly with semantic inversion and frequently misassigns colors (Fig. . Specif-
ically, ControlNet|[N] accurately positions the geometric objects but consistently applies incorrect colors to
either the objects or the surrounding walls. Unlocking the full model (encoder, bottleneck, and decoder
instead of just the decoder) resolves this issue but requires much more training time and computations; this
reveals an inherent limitation in ControlNet’s domain translation capabilities. These results suggest that,
unlike MDD, ControlNet’s capabilities are limited to tasks with strong pixel-to-pixel correspondences and
may not be suitable for more complex domain translation tasks requiring semantic understanding.

NN TN
BALL

Condition ControlNet[N] Condition ControlNet[N

Figure 15: Evaluation of translation domain with a fixed-configuration using ControlNet. Translation on
cube—pyramid for N = 100 on BL3NDT.

B.6.2 Missing T1 Completion on BraTS 2020

For the BraT$S 2020 dataset, ControlNet[N] demonstrates strong performance (Fig. [9) when adapted to the
semi-supervised setting, achieving high PSNR values but lower SSIM scores compared to MDD (Tab. .
Since SSIM evaluates the similarity in luminance, contrast, and structural information between images, it
provides a more clinically relevant assessment for medical scan evaluation, where preservation of anatomical
structures is critical for diagnostic purposes.

4https://github.com/111lyasviel/ControlNet/blob/main/docs/train.md#sd_locked
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B.6.3 Face Generation on CelebAMask-HQ

To complement our multi-domain translation evaluation (Sec.[4.4), we assess the (sketch, mask)—face trans-
lation by training one ControlNet[N] for each supervision proportion. For N = 100%, ControlNet[N] gen-
erates realistic images as evidenced by low LPIPS and SSIM metrics (Tab. . It can be observed that
MDD produces better metrics than ControlNet[N], despite ControlNet|[N] leveraging powerful pre-trained
model which, which show MDD capacity to fully utilize the cross-domain information during training. How-
ever, for N = 0%, despite being trained in the same semi-supervised setting as MSDM'[N] and UMM]|N]
(with missing samples replaced by noise), ControlNet[N] fails to adapt effectively to the translation task, as
indicated by significantly higher LPIPS values and poor visual quality (Fig. . This highlights how fixed-
domain translation conditioning mechanisms demonstrate reduced robustness in challenging low-supervision
settings (when no fully supervised training data exists, unlike for the BraTS 2020 setting) without specific
adaptations. In contrast, our model produces highly realistic images even under these constrained conditions
(Fig. , demonstrating superior generalization capabilities.

Table 12: Evaluation of translation domain with a fixed-configuration using ControlNet. Evaluation metrics
for (sketch, segmentation)—face on the CelebAMask-HQ dataset.

CelebAMask-HQ LPIPS] SSIM?

Face 100% 0% 100% 0%
ControlNet|N] 0.2391  0.42780 0.4330 0.1833
MDD 0.2305 0.3023 0.4385 0.3381

B.7 BraTS 2020 Additional Missing Modalities Completion Results

Additional quantitative and qualitative results are provided for all missing modalities on BraT§S 2020 for a
more detailed analysis of the missing modality completion task. Additional results for T1 generation Tab. [I3]
and Fig. [I6] results for Tlce generation Tab. [I4] and Fig. [I7, T2 generation Tab. [If] and Fig. [I8 and Flair
generation Tab. [16]and Fig.[19]are consistent with those presented in the main paper, where MDD performs
strongly on metrics considered.

For segmentation generation Tab. [17] and Fig. we found that noisy generation strategies (MSDMT' and
MSDMT[N]) are unable to perform the task even when a lot of supervision is available (Fig. . It is possible
that at the beginning of the generation, when the condition is noisy, MSDM' and MSDMT[N] are unable to
predict a meaningful "mean" due to the binary and localized nature of the segmentation maps. However,
this effect may be mitigated for scan modalities as it can predict a correct mean image that better represents
the scan modality distribution.

Table 13: Evaluation metrics for T1 modality completion on the BraTS 2020 dataset. To save place, SSIM
values are given in e+1 order, MAE values are given in e-2 order, and MSE values are given in e-3 order.
‘sota’ refers to the original state-of-the-art methods without modifications, while ‘ad.’ refers to our adapted
versions of these methods modified to handle semi-supervised scenarios.

BraTS§S 2020 PSNR?t SSIM?T MAE] MSEJ|
T1 P100% P80% P50% P100% P80% P50% P100% P80% P50% P100% P80% P50%
8 MSDM' 21.62 18.58 11.08 883 735 146 331 519 1746 6.88 13.86 78.03
2 UMM-CSGM 2149 21.61 21.46 883 8.86 822 334 328 354 710 691 7.15
< MSDMT[N] 22.81 17.77 1328 894 6.80 0.64 292 580 14.76 524 16.71 46.99
< UMMIN] 2247 21.72 2219 880 891 874 3.06 334 318 567 6.73 6.04
MDD[RAND] 23.44 23.15 21.70 884 883 863 2.72 279 332 4.53 484 6.76
» MDD[NOISY] 21.85 21.99 21.61 885 880 878 319 318 330 652 6.32 6.91
3 MDD 23.00 23.37 22.93 9.02 9.03 8.92 284 2.73 2.87 501 4.60 5.10
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Table 14: Evaluation metrics for T1ce modality completion on the BraT$S 2020 dataset. To save place, SSIM
values are given in e-1 order, MAE values are given in e-2 order, and MSE values are given in e-3 order.
‘sota’ refers to the original state-of-the-art methods without modifications, while ‘ad.’ refers to our adapted
versions of these methods modified to handle semi-supervised scenarios.

BraTS 2020 PSNR?T SSIM?T MAE] MSE]
Tlce P100% P80% P50% P100% P80% P50% P100% P80% P50% P100% P80% P50%
8 MSDMT 27.16 2597 19.0v 9.11 840 135 1.69 215 7.14 192 253 1240
2 UMM-CSGM  26.95 26.49 26.56 9.10 8.98 892 1.72 1.88 1.90 202 224 221
< MSDMT[N] 27.06 2451 1694 887 699 060 1.83 2.68 10.10 197 3.54 20.22
< UMMIN] 26.96 27.14 26.68 892 883 880 1.81 1.78 1.89 2.02 193 215

MDD[RAND| 26.82 27.14 26.92 873 859 892 190 1.8 1.76 2.08 1.93 2.03
MDDI|NOISY] 26.98 26.80 26.62 9.09 9.01 9.00 174 181 1.84 2.01 2.09 2.8
MDD 27.05 2v.57 27.28 894 9.09 892 181 1.63 1.73 197 1.75 1.87

ours

Table 15: Evaluation metrics for T2 modality completion on the BraTS 2020 dataset. To save place, SSIM
values are given in e-1 order, MAE values are given in e-2 order, and MSE values are given in e-3 order.
‘sota’ refers to the original state-of-the-art methods without modifications, while ‘ad.’ refers to our adapted
versions of these methods modified to handle semi-supervised scenarios.

BraT$S 2020 PSNR+ SSIM7t MAE] MSE|
T2 P100% P80% P50% P100% P80% P50% P100% P80% P50% P100% P80% P50%
= MSDM? 2468 21.48 1584 824 7.75 090 233 349 11.92 340 7.10 26.03
S UMM-CSGM 24.71 24.24 2398 813 874 805 236 228 259 338 377 4.00
_ MSDM'[N] 2525 2089 1232 891 701 029 211 382 1626 299 814 58.60
& UMM[N] 24.73 24.84 24.04 882 887 861 224 223 246 337 3.28 3.95

MDD[RAND| 24.86 24.54 24.29 864 846 861 220 234 235 3.26 3.52 3.73
MDD[NOISY] 24.01 24.12 2359 876 870 842 234 234 259 397 3.87 438
MDD 25.38 25.72 24.79 875 8.94 8.77 212 1.98 2.23 290 2.68 3.32

ours

B.8 CelebAMask-HQ Additional Translation Results

We provide additional quantitative and qualitative results for (face, mask)—sketch translation in Fig.
and Tab.[18] (face, sketch)—mask in Fig. [22]and Tab. [19] translation and ()—(face, sketch, mask) generation

in Fig.

Table 16: Evaluation metrics for Flair modality completion on the BraTS 2020 dataset. To save place, SSIM
values are given in e-1 order, MAE values are given in e-2 order, and MSE values are given in e-3 order.
‘sota’ refers to the original state-of-the-art methods without modifications, while ‘ad.’” refers to our adapted
versions of these methods modified to handle semi-supervised scenarios.

BraTS 2020 PSNR?t SSIM?T MAE] MSEJ|
Flair P100% P80% P50% P100% P80% P50% P100% P80% P50% P100% P80% P50%
3 MSDMT 22.80 18.83 17.76 872 78 229 285 501 724 525 13.10 16.74
2 UMM-CSGM 22.81 22.60 22.06 8.71 860 833 285 3.00 332 524 549 6.22
< MSDMT[N] 23.49 21.65 1237 839 753 042 279 353 16.28 448  6.84 57.99
< UMMIN] 23.11 2338 22.73 845 840 827 289 285 3.06 489 459 534

MDD[RAND| 24.38 2391 23.09 843 844 838 248 260 287 3.65 4.06 491
MDDINOISY] 22.83 22.86 22.16 8.66 8.66 856 290 290 3.16 521 518 6.07
MDD 24.17 24.10 23.66 8.76 8.79 8.68 2.45 2.45 2.61 383 3.89 4.30

ours
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Table 17: Evaluation metrics for Mask modality completion on the BraTS 2020 dataset. ‘sota’ refers to the
original state-of-the-art methods without modifications, while ‘ad. refers to our adapted versions of these
methods modified to handle semi-supervised scenarios.

BraTS 2020 Jaccard?t
Segmentation P100% P80% P50%
8 MSDMT 0.056 0.049 0.000
2 UMM-CSGM 0.755 0.072  0.002
< MSDMT [N] 0.055 0.066 0.071
2 UMM|N] 0.727 0770 0.713
MDD[RAND)] 0.752 0.734 0.695
» MDDINOISY] 0.061 0.057 0.059
3 MDD 0.788  0.788 0.763

GT

MSDM'  UMM-CSGM ControlNet[N] MSDM'[N] UMM]N] MDD

Figure 16: Examples of generated T1 scan given all remaining modalities, and the corresponding GT for
different levels of supervision.

The diversity of face generation is evaluated in different settings: (sketch, mask)—face generation Fig.
and mask— (face, sketch) Fig. 25| where we calculate the Diversity Score over the generated faces Tab.

The translation results for sketch and mask generation are consistent with those presented in the main
paper, and on the BraTS 2020 dataset, MDD models perform strongly. For the semantic segmentation task,
MSDMT[N] performs better than on the BraTS 2020 dataset while still achieving the lowest Jaccard. This
can be explained by the fact that a correct "mean" prediction is easier for the CelebAMask-HQ dataset, since
the segmentations for different images are similar (the faces are centered, often have the same angles etc.).

We found that the noisy condition model, MSDMT[N], has the best diversity score for the generated faces
but the worst generation quality. Using a noisy condition allows the model to avoid using it at the beginning
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P80% P50% GT

P100%

MSDM'  UMM-CSGM  MSDM'[N]

Figure 17: Examples of generated T1lce scan given all remaining modalities, and the corresponding GT for
different levels of supervision.

of the generation process and use a noisy condition later in the diffusion process. This allows the generated
faces to drift further away from the condition, producing more diverse images. In the case of MSDMT[N],
while it has the higher diversity, it also has the worst generation quality according to Tab.

Table 18: Evaluation metrics for (Face, Mask)—Sketch on the CelebAMask-HQ dataset. ‘ad. refers to our
adapted versions of state-of-the-art methods modified to handle semi-supervised scenarios.

CelebAMask-HQ PSNR1 SSIM?T
Sketch 100% 0% 100% 0%
< MSDMT [N] 17.298 16.652 0.3875 0.3739
< UMM|N] 18.576 16.872 0.4371 0.3897
»  MDDI[RAND] 17.526  17.071  0.3903  0.3715
g MDD 20.402 18.259 0.5055 0.4219
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P80% P50% GT

P100%

MSDM!  UMM-CSGM  MSDM'[N]

UMMI[N] MDD

Figure 18: Examples of generated T2 scan given all remaining modalities, and the corresponding GT for

different levels of supervision.

Table 19: Evaluation metrics for (Face, Sketch)—Mask on the CelebAMask-HQ dataset. ‘ad. refers to our
adapted versions of state-of-the-art methods modified to handle semi-supervised scenarios.

CelebAMask-HQ

Mask
. MSDM'N]
= UMMIN]
%  MDD[RAND]
3 MDD

Jaccard?t
100% 0%
0.4476  0.4731
0.7378  0.7131
0.6978  0.6704
0.7536 0.7133

Table 20: Diversity of Face generation metrics for (Sketch, Mask)—Face generation and Mask— (Face,
Sketch) on the CelebAMask-HQ dataset. ‘ad. refers to our adapted versions of state-of-the-art methods

modified to handle semi-supervised scenarios.

CelebAMask-HQ (S,M)—(F) DSt (M)—(S,F) DSt

Face Diversity 100% 0% 100% 0%
= MSDMT[N] 19.883 18.625 19.896 18.726
< UMMIN] 19.668 18.213 20.305 18.564
© MDD[RAND] 16.518 16.028 17.502 16.614
5 MDD 19.524 15.842 19.177 15.786
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P80% P50% GT

P100%

MSDM? UMM-CSGM  MSDM'[N UMMIN] MDD

Figure 19: Examples of generated Flair scan given all remaining modalities, and the corresponding GT for
different levels of supervision.
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P80% P50%

P100%

MSDM?' UMM-CSGM  MSDM'[N] UMM|N] MDD

Figure 20: Generated segmentation given all remaining modalities. Orange represents true positives, red
false negatives, and blue false positives.
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Figure 21: Examples of generated sketches given a face and a mask, and the corresponding GT for N=0%.
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Conditions MSDMT[N] UMM[N] MDD[RAND] MDD

(LS

Figure 22: Examples of generated masks given a face and a sketch, and the corresponding GT for N=0%.
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Figure 23: Examples of unconditional generation ()—(Face,Sketch,Mask) for MDD N=100%.
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GT Conditions

Figure 24: Examples of diversity face generation (sketch,mask)—face for MDD N=100%.
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GT Condition

£ S
f a) 5\
- I

\ 1‘:;»'«3
Figure 25: Examples of diversity face and sketch generation Mask— (Face, Sketch) for MDD N=100%.
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