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Abstract

In the information era, recommendation systems play a cru-
cial role in mitigating information overload by predicting user
preferences based on historical interactions. However, tradi-
tional recommendation methods often neglect the issue of
selection bias arising from non-random missing data, which
compromises recommendation quality. To address this, exist-
ing approaches such as error imputation-based (EIB), inverse
propensity scoring (IPS), and doubly robust (DR) estimators
have been proposed. While these methods have demonstrated
effectiveness, they suffer from limitations such as sensitivity
to small propensity scores, high variance, and inaccuracies in
error estimation. This paper introduces a novel switch estima-
tor designed to flexibly integrate the strengths of EIB, IPS,
and DR approaches while mitigating their respective weak-
nesses. Specifically, the proposed method employs a principled
Monte Carlo sampling strategy to estimate relative errors in
propensity scores and imputation, enabling adaptive threshold-
based switching between estimators. This approach ensures
robustness to issues arising from small propensity scores and
large imputation errors. Experimental evaluations on three
real-world datasets demonstrate the superior performance and
robustness of the switch estimator in recommendation tasks.
The proposed methodology advances the state-of-the-art by
offering a practical and effective solution to selection bias in
recommendation systems. We conduct experiments on three
real-world datasets to show the effectiveness of our method.

Introduction
In the modern information society, the vast amount of
information, products, and services enrich users’ choices
while simultaneously subjecting them to information over-
load—making it difficult to efficiently access content that best
meets their needs. Recommendation systems, as an effective
tool to alleviate information overload, are widely applied in
areas such as social media, entertainment, short videos, and
e-commerce (Alamdari et al. 2020; Liu et al. 2024; Wang
et al. 2021a, 2020a; Gong et al. 2022). These systems predict
users’ preferences for items by combining user characteris-
tics with historical user-item interaction data (Lu et al. 2015).
However, data collected through traditional methods often
contain selection bias (Chen et al. 2023a). This bias arises
because users’ feedback on user-item interactions tends to be
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biased and selective; that is, users are more inclined to pro-
vide feedback on content they are interested in while ignoring
other content (Pradel, Usunier, and Gallinari 2012). Conse-
quently, recommendation systems often face the problem
of non-random missing input data. Traditional recommen-
dation systems typically focus on model structure and the
accuracy of predicting observed data. However, ignoring the
non-random missingness can significantly enhance the qual-
ity of recommendation (Wang et al. 2018; Marlin and Zemel
2009; Steck 2010a).

To mitigate the adverse effects of selection bias, Steck
(2010a) proposed an error imputation based (EIB) recom-
mendation method, which first imputes the error of missing
data and then uses the observed value and imputed value to
train the prediction model. Schnabel et al. (2016a) proposed
to use inverse propensity scores to reweight each sample with
observed rating. Wang et al. (2019a) proposed to use a doubly
robust (DR) method to combine the advantages of EIB and
IPS with a joint learning algorithm, which is unbiased when
either the imputed errors or propensities are correct for each
user-item pair.

However, the EIB method often requires the imputed error
to be accurate for obtaining optimal prediction; large biases
can lead to significant fluctuations in prediction performance.
The IPS algorithm is highly sensitive to small propensity
scores, and in real-life scenarios, propensity scores calcu-
lated from observed samples often exhibit high variance and
extreme value, especially in sparse real-world datasets. Al-
though the DR method combines the advantages of IPS and
EIB approaches, it is simultaneously affected by the variance
of propensity scores and the bias of estimation errors. This
results in large variance and bias when propensity scores are
small or estimation errors are inaccurate. To alleviate the
issues introduced by the DR estimator, Song et al. (2023)
proposed a recommendation method that selectively adjusts
estimation bias by setting a threshold to discard the "toxic"
imputations by selectively setting the estimation error to zero
for samples with large errors of imputation. However, it does
not consider the impact of small propensity scores on the
model, which is a more practical issue given the sparsity of
real-world data.

Building on the aforementioned methods, this paper pro-
poses a switch estimator that can flexibly switch between
EIB, IPS, and DR based on the imputed errors and propen-



sity scores. This approach aims to combine the advantages
of each method (such as the low variance property of EIB
and low bias property of DR) while avoiding potential issues
caused by small propensity scores and large errors of imputa-
tion. Specifically, inspired by Song et al. (2023), due to we
cannot observe the ground truth propensity and prediction
error for all user-item pairs, we adopt the principled Monte-
Carlo approach to estimate the relative error of estimated
value and real value of propensity and imputation and set
appropriate thresholds to decide which estimator to use. The
main contributions of this paper are summarized below:

• We propose a switch estimator that combines the advan-
tages of EIB, IPS, and DR estimator, which is more robust
to smaller propensity and large errors of imputation.

• We adopt a principled Monte-Carlo sampling method
for propensity and imputation with a threshold to decide
which estimator to switch.

• We conduct experiments on three real-world datasets to
show the effectiveness of the proposed switch method.

Related Work
Causal Recommendation
Selection bias is one of the most common biases in the rec-
ommender systems (RS) (Luo et al. 2024; Chen et al. 2023b;
Wang et al. 2023c; Wu et al. 2022), resulting in the distribu-
tion of the observed population being different from the target
population. There are many methods proposed to address this
issue (Saito and Nomura 2022; Wang et al. 2022b; Zou et al.
2023; Wang et al. 2024, 2023a; Wu et al. 2023). Specifically,
methods including the IPS, EIB, and DR were proposed
to mitigate the selection bias in RS (Steck 2010b; Saito
2020; Wang et al. 2022a). EIB methods might produce out-
of-bound predictions; while the IPS method may suffer from
large variance with small propensities (Wang et al. 2022a).
DR methods combine the advantages of both the EIB and IPS
methods, guaranteeing unbiasedness if either the error impu-
tation model or propensity model is correctly specified. There
have been quantities of variants of DR methods to improve
the debiasing performance, such as Multi-DR (Zhang et al.
2020), MRDR (Guo et al. 2021), DR-MSE (Dai et al. 2022),
BRD-DR (Ding et al. 2022), SDR (Li, Zheng, and Wu 2023),
TDR (Li et al. 2023b), DR-V2 (Li et al. 2023d), CDR (Song
et al. 2023), KBDR (Li et al. 2024d), N-DR (Li et al. 2024b),
DCE-DR (Kweon and Yu 2024), DT-DR (Zhang et al. 2024),
UIDR (Li et al. 2024c), and OME-DR (Li et al. 2024d). Be-
sides, recent work on debiased recommendations has been
extended to methods using a small amount of unbiased data as
a golden standard to correct the misspecified models (Li et al.
2024a, 2023c; Wang et al. 2021b; Chen et al. 2021; Liu et al.
2022). In addition, Wang et al. (Wang et al. 2020b) and Liu et
al. (Liu et al. 2023) use information bottleneck-based method
and Yang et al. (Yang et al. 2021) and Wang et al. (Wang et al.
2023b) uses adversarial learning for debiasing.

Switch Estimator
Switch estimators are commonly used in fields such as statis-
tical modeling (Fox et al. 2011; Shumway and Stoffer 1991)

and reinforcement learning (Thomas and Brunskill 2016; Co-
manici and Precup 2010). The core idea of switch estimators
is to flexibly switch between different estimation methods
under varying samples or statistical conditions to balance bias
and variance in the estimation process, thereby improving
the accuracy and robustness of the estimates. Common types
of switch estimators include step-switching estimators, adap-
tive switching estimators, and hybrid estimators (Thomas
and Brunskill 2016). Step-switching estimators switch after
a predetermined number of time steps. Farajtabar, Chow, and
Ghavamzadeh (2018) proposed an improved doubly robust
estimator based on fixed time steps. Adaptive switching esti-
mators dynamically adjust based on certain statistics. Tulsyan
et al. (2018) introduced an adaptive switching Bayesian dy-
namic estimator. An and Yang (2017) proposed a novel state
observer with an adaptive switching mechanism by incor-
porating a switch function matrix into the observer design.
Hybrid estimators combine importance sampling and value
function estimation, reducing variance through weighted av-
eraging. Building on this, Jiang and Li (2016) proposed a
doubly robust estimator that combines importance sampling
and value function estimation, effectively reducing estimation
variance while maintaining unbiasedness through weighted
averaging. Dudık et al. (2014) introduced a hybrid switch
estimator that combines importance sampling with regression
model weighting, effectively reducing both bias and variance.

Problem Setup
Let U = {u1, · · · , um} be the users set, I = {i1, · · · , in}
be the item set, and D = U × I be the set of all user-item
pairs. The rating matrix is denoted as R ∈ Rm×n with ru,i
as element. Let ou,i ∈ {0, 1} be the observation indicator
indicating whether the ru,i is observed and xu,i be the feature.
We denote the prediction model as fθ(·) parameterized by θ
and the predicted ratings as r̂u,i = fθ(xu,i). The goal is to
accurately predict ru,i for all user-item pairs, which can be
achieved by minimizing the ideal loss

Lideal(θ) =
1

|D|
∑

(u,i)∈D

L(fθ(xu,i), ru,i) :=
1

|D|
∑

(u,i)∈D

eu,i,

where L(·, ·) is the training loss function such as cross-
entropy loss. However, in practice, we cannot obtain the
complete rating matrix. We denote the set of user-item pairs
with observed ratings as O = {(u, i) | ou,i = 1}. Thus, the
naive method optimizes the average loss over the observed
samples

LN(θ) =
1

|O|
∑

(u,i)∈O

eu,i.

Due to the selection bias, E{LN(θ)} ≠ Lideal(θ) (Schnabel
et al. 2016b; Wang et al. 2019b). Several methods were pro-
posed to unbiasedly estimate the ideal loss, including the EIB,
IPS, DR, and their variants. The loss function of EIB method
is shown below:

LEIB(θ) =
1

|D|
∑

(u,i)∈D

[(1− ou,i)êu,i + ou,i(eu,i)] ,



where êu,i is the error for the imputation model m(xu,i;ϕ),
i.e., êu,i = L(m(xu,i;ϕ), r̂u,i). In addition, the loss function
of the IPS method is

LIPS(θ) =
1

|D|
∑

(u,i)∈D

[
ou,ieu,i
p̂u,i

]
,

where p̂u,i is the estimated propensity score for the true ex-
posure probability pu,i = Pr(ou,i = 1 | xu,i). The loss
function of the vanilla DR method is formulated as

LDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
.

When êu,i = 0, DR degenerates to IPS, and when p̂u,i = 1,
DR degenerates to EIB. The EIB and IPS estimators are the
special case of DR, so we only formulate bias of the DR

Bias [LDR(θ)] =
1

|D|

∣∣∣∣∣∣
∑

(u,i)∈D

(p̂u,i − pu,i)

p̂u,i
(eu,i − êu,i)

∣∣∣∣∣∣ .
(1)

if either the imputation model or the propensity model is
correct, i.e, p̂u,i = pu,i or êu,i = eu,i, the DR estimator is
unbiased. Correspondingly, the variance of DR is

Var [LDR(θ)] =
1

|D|2
∑

(u,i)∈D

pu,i (1− pu,i)

p̂2u,i
(eu,i − êu,i)

2
.

(2)

We can easily to obtain Bias [LEIB] and Var [LEIB] by set-
ting p̂u,i = 1 and Bias [LIPS] and Var [LIPS] by setting
êu,i = 0 for all user-item pairs.

Proposed Method
Distinction of Previous Method
Song et al. (2023) finds that if the imputed error êu,i ex-
tremely deviate from the true prediction error eu,i, the
Bias [LIPS] < Bias [LDR]. To be specific, for those user-
item pairs with |êu,i−eu,i| > eu,i, we can reduce the bias by
clipping the êu,i to zero. The following lemma demonstrates
the relations between eu,i and êu,i

Lemma 1. Given that êu,i and eu,i are independently
drawn from two Gaussian distributions N

(
µ̂u,i, σ̂

2
u,i

)
and

N
(
µu,i, σ

2
u,i

)
, where µ̂u,i, µu,i, σ̂u,i, σu,i are bounded with

|µ̂u,i − µu,i| ≤ εµ,
∣∣σ̂2

u,i − σ2
u,i

∣∣ ≤ ε2σ, 2εµ ≤ µ̂u,i,mµ ≤
µ̂u,i ≤ Mµ and mσ ≤ σ̂u,i ≤ Mσ, for any confidence level
ρ(0 ≤ ρ ≤ 1), the condition P (|êu,i − eu,i| < eu,i) ≥ ρ
holds if

σ̂u,i

µ̂u,i
<

(
√
5Φ−1(ρ) +

2Mµεσ

mσ

(√
5mσ + 2εσ

) + 2
√
5εµ√

5mσ + 2εσ

)−1

where Φ−1(·) denotes the inverse of CDF of the standard
normal distribution.

Switch Estimator
First, we find that if p̂u,i ∈ (0, pu,i/2), the absolute value
of (p̂u,i − pu,i)/p̂u,i is greater than 1. Thus, the bias of
the EIB estimator on this user-item pair is less than the
DR estimator. Thus, we propose to switch the DR estima-
tor to the EIB estimator in this scenario. Due to we can-
not obtain the true propensity pu,i for all user-item pairs.
Inspired by Song et al. (2023), we propose the principled
Monte Carlo sampling method to control the probability of
P (p̂u,i < pu,i/2). Specifically, assuming a normal distribu-
tion for propensity score is unreasonable because the range
of it is between 0 and 1. Thus, we assume the uniform distri-
bution Unif(αu,i, 1− βu,i). Because some users may have
overall greater propensities than other users. Thus, we can
derive the following theorem for the propensity. In addition,
to consider the user heterogeneity, thus we set the propensity
threshold at the user level to derive a tighter bound.
Theorem 1. Given that p̂u,i and pu,i are independently
drawn from two uniform distributions Unif(α̂u,i, 1 − β̂u,i)

and Unif(αu,i, 1 − βu,i), where α̂u,i, αu,i, β̂u,i, βu,i are
lower bounded with C1,u and upper bounded with C2,u,
αu,i + βu,i ≥ γu, α/2 < 1 − β̂, for any confidence level
ρ(0 < ρ < 1), the condition P (p̂u,i < pu,i/2) < ρ holds if
α̂u,i/β̂u,i < η, where η = 1/C2,u − 4/C1,u

(1−γu)ρ
− 1

Before the proof, we first introduce the following lemma:
Lemma 2. Suppose X follows a uniform distribution in [a, b],
and Y follows a uniform distribution in [c, d]. The difference
Z = X−Y has a PDF defined over the interval [a−d, b−c].
The PDF is given by

fZ(z) =


z−(a−d)

(b−a)(d−c) , for a− d ≤ z < c− b
(b−c)−z

(b−a)(d−c) , for c− b ≤ z ≤ b− c

0, otherwise.

This is a symmetric triangular distribution if b− a = d− c,
or an asymmetric triangular distribution otherwise.

Proof. Denote p̂u,i − pu,i/2 as zu,i, from the above lemma,
we have the density function of zu,i. Then we can derive the
probability of P (zu,i < 0) based on the bounded parameters,

i.e., |α̂u,i − αu,i/2| ≤ εα,u,
∣∣∣β̂u,i − βu,i/2

∣∣∣ ≤ εβ,u.
Specifically, we can calculate the following integration

P (zu,i < 0) =

∫ α/2−(1−β̂)

α̂−(1−β)/2

2 ∗ u− α̂+ (1− β) /2(
1− β̂ − α̂

)
(1− β − α)

du

+

∫ 0

α/2−(1−β̂)
2 ∗ 1− β̂ − α/2− u(

1− β̂ − α̂
)
(1− β − α)

du

We first solve the first part (denoted as I1):
Denote ulower

1 = α̂ − 1−β
2 and uupper

1 = α
2 − (1 − β̂), we

get:

I1 =
1

(1− β̂ − α̂)(1− β − α)

(
uupper
1 − ulower

1

)2



Table 1: Performance on AUC, NDCG@K, and F1@K on Coat, Yahoo! R3 and KuaiRec. The best and the second best results
are bolded and underlined, where * means statistically significant results (p-value ≤ 0.05) using the paired-t-test.

Coat Yahoo! R3 KuaiRec
Method AUC NDCG@5 F1@5 AUC NDCG@5 F1@5 AUC NDCG@20 F1@20

Naive 0.703±0.006 0.605±0.012 0.467±0.007 0.673±0.001 0.635±0.002 0.306±0.002 0.753±0.001 0.449±0.002 0.124±0.002

IPS 0.717±0.007 0.617±0.009 0.473±0.008 0.678±0.001 0.638±0.002 0.318±0.002 0.755±0.004 0.452±0.010 0.131±0.004

SNIPS 0.714±0.012 0.614±0.012 0.474±0.009 0.683±0.002 0.639±0.002 0.316±0.002 0.754±0.003 0.453±0.004 0.126±0.003

ASIPS 0.719±0.009 0.618±0.012 0.476±0.009 0.679±0.003 0.640±0.003 0.319±0.003 0.757±0.005 0.474±0.007 0.130±0.005

IPS-V2 0.726±0.005 0.627±0.009 0.479±0.008 0.685±0.002 0.646±0.003 0.320±0.002 0.764±0.001 0.476±0.003 0.135±0.003

KBIPS 0.714±0.003 0.618±0.010 0.474±0.007 0.676±0.002 0.642±0.003 0.318±0.002 0.763±0.001 0.463±0.007 0.134±0.002

AKBIPS 0.732±0.004 0.636±0.006 0.483±0.006 0.689±0.001 0.658±0.002 0.324±0.002 0.766±0.003 0.478±0.009 0.138±0.003

DR 0.718±0.008 0.623±0.009 0.474±0.007 0.684±0.002 0.658±0.003 0.326±0.002 0.755±0.008 0.462±0.010 0.135±0.005

DR-JL 0.723±0.005 0.629±0.007 0.479±0.005 0.685±0.002 0.653±0.002 0.324±0.002 0.766±0.002 0.467±0.005 0.136±0.003

MRDR-JL 0.727±0.005 0.627±0.008 0.480±0.008 0.684±0.002 0.652±0.003 0.325±0.002 0.768±0.005 0.473±0.007 0.139±0.004

DR-BIAS 0.726±0.004 0.629±0.009 0.482±0.007 0.685±0.002 0.653±0.002 0.325±0.003 0.768±0.003 0.477±0.006 0.137±0.004

DR-MSE 0.727±0.007 0.631±0.008 0.484±0.007 0.687±0.002 0.657±0.003 0.327±0.003 0.770±0.003 0.480±0.006 0.140±0.003

MR 0.724±0.004 0.636±0.006 0.481±0.006 0.691±0.002 0.647±0.002 0.316±0.003 0.776±0.005 0.483±0.006 0.142±0.003

TDR 0.714±0.006 0.634±0.011 0.483±0.008 0.688±0.003 0.662±0.002 0.329±0.002 0.772±0.003 0.486±0.005 0.140±0.003

TDR-JL 0.731±0.005 0.639±0.007 0.484±0.007 0.689±0.002 0.656±0.004 0.327±0.003 0.772±0.003 0.489±0.005 0.142±0.003

StableDR 0.735±0.005 0.640±0.007 0.484±0.006 0.688±0.002 0.661±0.003 0.329±0.002 0.773±0.001 0.491±0.003 0.143±0.003

DR-V2 0.734±0.007 0.639±0.009 0.487±0.006 0.690±0.002 0.660±0.005 0.328±0.002 0.773±0.003 0.488±0.006 0.142±0.004

KBDR 0.730±0.003 0.631±0.005 0.482±0.006 0.682±0.002 0.648±0.003 0.323±0.002 0.765±0.004 0.460±0.006 0.138±0.003

AKBDR 0.745±0.004 0.645±0.008 0.493±0.007 0.692±0.002 0.661±0.002 0.328±0.002 0.782±0.003 0.498±0.008 0.147±0.003

CDR 0.743±0.004 0.657±0.006 0.495±0.005 0.691±0.002 0.660±0.002 0.326±0.003 0.775±0.004 0.490±0.009 0.145±0.003

Switch 0.741±0.002 0.666∗
±0.004 0.501∗

±0.004 0.708∗
±0.003 0.674∗

±0.003 0.337∗
±0.002 0.788∗

±0.003 0.500±0.004 0.146±0.003

Then we solve the second part (denoted as I2):
Denote ulower

2 = α
2 − (1− β̂) and uupper

2 = 0, we get:

I2 =
3

(1− β̂ − α̂)(1− β − α)
(ulower

2 )2

Then we get the final results with I1 + I2. We know all
ulower
1 , uupper

1 , and ulower
2 are less than 1, thus

I1 + I2 <
4/C1,u

(1− γu)
(
1/C2,u − 1− α̂/β̂

) < ρ,

which means that

α̂/β̂ < 1/C2,u − 4/C1,u

(1− γu) ρ
− 1

Then, due to the large user number, instead of pre-specified,
we parameterize the η into a neural network h(xu,i). In ad-
dition, we also parameterize the η in Lemma 1 into a neural
network g(xu,i). Inspired by Song et al. (2023), we adopt a
Monto Carlo sampling strategy. Specifically, we first estimate
µ̂u,i, σ̂u,i, α̂u,i, β̂u,i for estimating the mean and variance of
the imputation and propensity scores by we applying dropout
10 times on the imputation model and propensity model (i.e.,
randomly omitting 50% of the dimensions of embeddings)
and then calculate the mean and variance of êu,i and p̂u,i
from the dropout model. Then we filter the "toxic" imputation
and propensity score based on the condition σ̂ui

µ̂ui
< g(xu,i)

and α̂u,i

β̂u,i
< h(xu,i). We jointly learn the propensity filter-

ing threshold with the propensity model in the propensity

learning stage, and learn the imputation filtering threshold,
prediction model, and the imputation model in the prediction
model learning stage.

Finally, the switch estimator can be formulated as:

LSwitch(θ) =


LIPS(θ),

σ̂ui

µ̂ui
> g(xu,i),

LEIB(θ),
α̂u,i

β̂u,i

> h(xu,i),

LDR(θ), Otherwise.

Experiments
Datasets. We conduct the experiments on three real-world
datasets, namely Coat (Schnabel et al. 2016b), Yahoo!
R3 (Schnabel et al. 2016b), and KuaiRec (Gao et al. 2022),
which are widely used in debiased RS because all of them
include both biased data and unbiased data. Coat dataset
consists of 6,960 biased ratings in the training set and 4,640
unbiased ratings in the test set from 290 users and 300 items.
The Yahoo! R3 dataset includes 311,704 biased ratings and
54,000 unbiased from 15,400 users and 1,000 items. Each
rating in both datasets are five-scale. We binarize them by
letting ratings greater than two to 1 and 0 otherwise. Addi-
tionally, we use an industrial dataset KuaiRec with 4,676,570
records for video watching ratio of 1,411 users and 3,327
videos. We binarize the records by letting values greater than
two be 1 and 0 otherwise.

Baselines. We use matrix factorization as the backbone,
and compare our method with the following baselines
for comprehensive evaluations: Naive method (Marlin and
Zemel 2009), IPS-based methods including IPS (Schnabel



et al. 2016b), SNIPS (Schnabel et al. 2016b), ASIPS (Saito
2020), IPS-V2 (Li et al. 2023d), KBIPS (Li et al. 2024d) and
AKBIPS (Li et al. 2024d), and DR-based methods including
DR (Saito 2020), DR-JL (Wang et al. 2019c), MRDR (Guo
et al. 2021), DR-BIAS (Dai et al. 2022), DR-MSE (Dai
et al. 2022), MR (Li et al. 2023a), TDR (Li et al. 2023b),
TDR-JL (Li et al. 2023b), StableDR (Li, Zheng, and Wu
2023), DR-V2 (Li et al. 2023d), KBDR (Li et al. 2024d),
AKBDR (Li et al. 2024d) and CDR (Song et al. 2023).

Training Protocols and Details. We tune learning rate
in {0.01, 0.05} and weight decay in {1e − 6, 5e − 6, 1e −
5, . . . , 1e − 3, 5e − 3}. We use the same hyperparameter
search space and follow the results in Li et al. (2024d). In
addition, following the previous studies (Guo et al. 2021;
Saito 2020; Li et al. 2023d), We evaluate the prediction per-
formance with three widely adopted evaluation metrics: AUC,
NDCG@K (N@K), and F1@K, and we set K = 5 on Coat
and Yahoo! R3 datasets, and K = 20 on KuaiRec dataset.

Experiment Results. Table 1 shows the experiment re-
sults on all three datasets. The switch estimator consistently
outperformed EIB, IPS, and DR based methods across all
datasets. Note that in the Yahoo dataset which has the highest
sparsity (2%), the switch estimator demonstrated superior
performance, which is due to the robustness of the small
propensity and large error of imputations.

Conclusions
In this paper, we have proposed a novel switch estimator for
recommendation systems, designed to address the challenges
posed by selection bias, small propensity scores, and large
errors of imputation. By combining the strengths of existing
methods—error imputation-based (EIB), inverse propensity
scoring (IPS), and doubly robust (DR)—our approach offers
a flexible solution that adapts to the varying conditions of
real-world data. The use of a principled Monte Carlo sam-
pling technique allows for the estimation of relative errors
in both propensity scores and imputed values, enabling the
model to switch between different estimators based on the
characteristics of the data. One limitation and future direction
is to investigate more flexible switch method, instead of using
Monte Carlo Dropout method with a threshold.
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