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Abstract
Large language models possess general linguis-001
tic abilities but acquire language less efficiently002
than humans. This study proposes a method003
for integrating the developmental characteris-004
tics of working memory during the critical pe-005
riod, a stage when human language acquisi-006
tion is particularly efficient, into the training007
process of language models. The proposed008
method introduces a mechanism that initially009
constrains working memory during the early010
stages of training and gradually relaxes this con-011
straint in an exponential manner as learning pro-012
gresses. Targeted syntactic evaluation shows013
that the proposed method outperforms conven-014
tional methods without memory constraints or015
with static memory constraints. These findings016
not only provide new directions for designing017
data-efficient language models but also offer018
indirect evidence supporting the role of the de-019
velopmental characteristics of working mem-020
ory as the underlying mechanism of the critical021
period in language acquisition.022

1 Introduction023

Large language models (LLMs) exhibit general lin-024

guistic abilities comparable to those of humans;025

however, their efficiency in language acquisition026

remains far inferior. It has been noted that LLMs027

require data quantities that are three to four orders028

of magnitude larger than those needed for humans029

to achieve comparable performance across many030

evaluation metrics (Warstadt et al., 2023). This dis-031

parity in data efficiency reflects the current reliance032

of LLMs on scaling and suggests not only a sig-033

nificant potential for improving learning efficiency034

but also the possibility of drawing insights from035

human language processing and acquisition.036

An important theoretical framework for un-037

derstanding the efficiency of human language038

acquisition is the Critical Period Hypothesis039

(CPH) (Lenneberg, 1967). The CPH posits that040

there is a specific period during which language041
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Figure 1: Developmental trajectory of human working
memory

can be acquired efficiently, and that this ability 042

diminishes thereafter. Various studies, including 043

cases of limited first language (L1) exposure dur- 044

ing childhood and age-related effects on second 045

language (L2) acquisition, support the existence of 046

a critical period (CP) (Fromkin et al., 1974; Cur- 047

tiss, 1977; Johnson and Newport, 1989). However, 048

the reasons why children acquire language more 049

efficiently than adults remain partially unresolved. 050

One compelling explanation for the CP in L1 acqui- 051

sition is the Less-is-More Hypothesis (Newport, 052

1990), which argues that children’s cognitive limi- 053

tations (e.g., working memory capacity and atten- 054

tional scope) are advantageous for language learn- 055

ing. According to this hypothesis, children’s lim- 056

ited processing capacities enable them to efficiently 057

extract fundamental patterns and structures (e.g., 058

grammatical rules) from linguistic input, whereas 059

adults, with their greater cognitive capacities, are 060

more likely to be distracted by complex informa- 061

tion, thereby hindering rule acquisition. 062

Inspired by the “Less-is-More” hypothesis, we 063

use language models (LMs) to study the CP for 064

language acquisition, focusing on L1 acquisition 065

and investigating whether integrating human cogni- 066

tive developmental characteristics, particularly the 067
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developmental properties of working memory (Fig-068

ure 1), into LMs can facilitate efficient language069

acquisition. Specifically, we propose a method070

for incorporating the exponential increase in work-071

ing memory capacity that corresponds to the CP072

into LMs and analyze its impact on learning ef-073

ficiency. Using a GPT-2 model (Radford et al.,074

2019) trained on a Child-Directed Speech (CDS)075

dataset (Huebner and Willits, 2021), we conduct076

evaluation experiments with Zorro (Huebner et al.,077

2021), a targeted syntactic evaluation benchmark078

specialized for CDS. The results demonstrate that079

a cognitively plausible model, which initially re-080

stricts working memory and gradually relaxes this081

constraint exponentially as training progresses, out-082

performs models without memory constraints or083

with static memory constraints. These findings084

provide new insights into designing data-efficient085

LMs, contributing to the field of natural language086

processing, while also offering indirect evidence087

supporting the role of the developmental character-088

istics of working memory as the underlying mech-089

anism of the CPH in human language acquisition,090

contributing to the field of cognitive science.091

2 Related Work092

2.1 Critical Period for Language Acquisition093

The CPH posits that language acquisition is most094

efficient within a specific developmental window,095

after which it declines. CP effects are observed in096

both L1 and L2 acquisition, suggesting a shared097

underlying mechanism.098

Critical Period for L1 Acquisition Research in099

neurolinguistics and cognitive science suggests that100

there is a biologically determined CP for acquiring101

an L1, beyond which full native-like proficiency102

is unattainable if exposure to language is delayed.103

Studies on late L1 learners, such as deaf individ-104

uals who acquire sign language after early child-105

hood, indicate severe deficits in grammatical pro-106

ficiency compared to those exposed to language107

from birth (Mayberry and Fischer, 1989; Newport,108

1990). These findings suggest that neural plasticity,109

essential for L1 acquisition, diminishes with age,110

limiting the ability to develop full linguistic compe-111

tence. From a theoretical perspective, the existence112

of the CP for L1 acquisition is often attributed to bi-113

ological constraints. Nativist theories propose that114

L1 acquisition relies on an innate language faculty115

that operates most effectively during the CP (Pen-116

field, 1965; Chomsky, 1965; Pinker, 1994). On117

the other hand, empiricist perspectives argue that 118

the decline in L1 learning ability may result from 119

environmental factors, such as a reduced need for 120

language learning mechanisms once fundamental 121

linguistic structures have been internalized (Elman 122

et al., 1996; Seidenberg and Zevin, 2006). Despite 123

extensive research, the precise boundary and mech- 124

anisms of the CP for L1 remain a subject of debate. 125

Critical Period for L2 Acquisition CP effects 126

are also observed in L2 acquisition, where late 127

learners struggle with pronunciation, morphol- 128

ogy, and syntax (Johnson and Newport, 1989; 129

Hartshorne et al., 2018). While biological con- 130

straints play a role, entrenchment—where prior 131

exposure to L1 limits flexibility in learning new 132

linguistic structures— is also a factor (Ellis and 133

Lambon Ralph, 2000; Seidenberg and Zevin, 2006). 134

Although the CP for L2 acquisition is an important 135

topic, this study focuses on the CP for L1 acquisi- 136

tion, since our goal is to design data-efficient LMs 137

by exploring the mechanisms of CP in L1 acquisi- 138

tion. 139

2.2 The Role of Language Models in 140

Acquisition Theories 141

In recent years, computational models have played 142

a crucial role in elucidating the mechanisms of lan- 143

guage acquisition. These models enable controlled 144

investigations of learning mechanisms and environ- 145

ments, which are difficult to achieve with human 146

participants, and they are used to test theoretical 147

claims such as the “poverty of the stimulus” (Clark 148

and Lappin, 2011). For instance, McCoy et al. 149

(2020), Wilcox et al. (2024), and Warstadt et al. 150

(2023) have employed LMs to directly test hy- 151

potheses about language acquisition, demonstrat- 152

ing that such models can provide proof-of-concept 153

evidence for learnability. These studies have at- 154

tracted attention as efforts to deepen theoretical 155

discussions on language acquisition through com- 156

putational modeling, including research on the CP. 157

Constantinescu et al. (2025) investigated CP phe- 158

nomena in L2 acquisition and L1 attrition,1 assum- 159

ing a shared underlying mechanism for CP effects 160

across L1 and L2. They simulated L2 exposure at 161

varying ages to examine how LMs differ from hu- 162

man learners, finding that LMs do not naturally ex- 163

hibit CP effects. To artificially induce such effects, 164

they employed Elastic Weight Consolidation (Kirk- 165

1The phenomenon in which earlier cessation of L1 expo-
sure increases the likelihood of L1 forgetting.
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patrick et al., 2017), a regularization method for166

mitigating catastrophic forgetting, thereby mimick-167

ing a maturational decline in plasticity. Their find-168

ings suggest that CP effects are not an inevitable169

outcome of statistical learning but may instead in-170

volve innate mechanisms.171

While this study shares the broader objective172

of enhancing the cognitive plausibility of LMs as173

models of human language acquisition, it differs174

from Constantinescu et al. (2025) in both focus175

and methodology. Rather than modeling CP effects176

through dataset manipulation or post-CP plasticity177

constraints, this study explicitly addresses the de-178

velopmental processes unfolding during the CP179

itself. Specifically, we integrate a mechanism to180

simulate the progressive growth of working mem-181

ory capacity throughout the CP, a factor considered182

crucial for L1 acquisition but previously unmod-183

eled in LM-based research. By incorporating de-184

velopmental constraints, this study aims to provide185

a more fine-grained computational model of early186

L1 acquisition and its cognitive underpinnings, ad-187

vancing the developmental plausibility of LMs.188

3 Language Model with189

Developmentally-plausible Working190

Memory191

3.1 Modeling Developmental Trajectory of192

Human Working Memory193

Human working memory undergoes substantial de-194

velopmental changes, progressing through three195

distinct stages: early childhood to early school196

age (2–7 years), middle childhood to early ado-197

lescence (8–14 years), and post-adolescence (15198

years and older). During early childhood, both199

information retention capacity and processing abil-200

ity improve rapidly, reflecting a significant expan-201

sion of cognitive resources (Cowan et al., 1999;202

Gathercole et al., 2004). This rapid growth be-203

gins to decelerate during middle childhood and204

early adolescence as the brain approaches matu-205

ration (Luna et al., 2004; Gathercole et al., 2004).206

By post-adolescence, working memory capacity207

plateaus, reaching adult-level performance (Sowell208

et al., 2002; Luna et al., 2004).209

Based on these observations, we characterized210

the growth trajectory of working memory, as illus-211

trated in Figure 1, using an exponential model of212

the form y = b− ax (0 < a < 1). In this model, b213

represents the asymptotic upper limit of working214

memory capacity, corresponding to adult-level per-215

formance, while a determines the rate of growth. 216

Specifically, smaller values of a result in steeper 217

early growth, reflecting the rapid cognitive devel- 218

opment observed during early childhood, whereas 219

larger values of a indicate a slower rate of change. 220

This modeling approach is justified for several 221

reasons. First, the horizontal asymptote inherent 222

in the exponential function accurately represents 223

the biological ceiling of adult working memory ca- 224

pacity. Second, the rapid initial increase observed 225

during early childhood is consistent with the steep 226

growth predicted by this exponential form. Finally, 227

alternative models, such as logarithmic or linear 228

growth, fail to account for both the early rapid de- 229

velopment and the eventual plateau: logarithmic 230

models imply unbounded growth, while linear mod- 231

els oversimplify the deceleration phase. Thus, the 232

exponential model y = b − ax offers a concise 233

and biologically plausible representation of the de- 234

velopmental trajectory of human working memory, 235

aligning well with observed patterns and theoretical 236

considerations. 237

3.2 Integrating Human Working Memory 238

into Language Models 239

In this study, Attention with Linear Biases (AL- 240

iBi) (Press et al., 2022) is employed to model the 241

constraints of human working memory. ALiBi is 242

a method for Transformer (Vaswani et al., 2017) 243

models that does not use positional embeddings but 244

instead applies a distance-dependent linear penalty 245

to attention scores. Specifically, the attention score 246

for an input sequence of length L is calculated as 247

follows: 248

Attention Score = softmax
(
qiK

⊤ +m ·B
)
,

B =
[
−(i− 1) −(i− 2) · · · 0

]
.

(1) 249

Here, qi ∈ R1×d, K ∈ RL×d, m ∈ R[0,1], and 250

B ∈ R1×L represent the query, the key, a scalar 251

slope specific to each attention head, and a bias ma- 252

trix encoding the relative distances between queries 253

and keys, respectively, where Bi is defined as the 254

negative absolute difference between the query po- 255

sition i and each key position. The values of m 256

are set geometrically for each head. For example, 257

in an 8-head model, the values of m are assigned 258

as follows: m = 1, 12 ,
1
4 , . . . ,

1
128 . The slope m 259

takes values in the range [0, 1], ensuring a con- 260

sistent interpretation of its influence on attention 261

3



scores. By penalizing attention scores for query-262

key pairs with greater distances, ALiBi introduces263

a recency bias to the model. Originally, ALiBi was264

proposed to enhance the extrapolation capability265

of Transformer models. More recently, Clark et al.266

(2025) has shown that incorporating it into atten-267

tion score computation during training allows for268

the estimation of surprisal patterns resembling hu-269

man reading times. This suggests its potential for270

modeling human-like memory decay and cognitive271

limitations.272

However, since the slope m in ALiBi is fixed for273

each attention head, the approach does not inher-274

ently reflect the developmental increase in working275

memory capacity (i.e., reduced decay) over time276

(Figure 1). Therefore, this study proposes a method,277

DYNAMICLIMIT-EXP, which replicates the devel-278

opmental characteristics of working memory dur-279

ing the CP, specifically its exponential growth. This280

is achieved by exponentially decreasing the slope281

m in ALiBi as training epochs progress. In this282

method, the slope m in the ALiBi mechanism is283

updated at each epoch t as follows:284

mt = m0 · rt, (2)285

where m0 represents the initial slope, r ∈ (0, 1) is286

the decay rate, and t denotes the current epoch. In287

this study, the model’s working memory capacity288

wt is formulated as follows:289

wt := 1−mt. (3)290

This definition establishes a direct relationship291

between the dynamically decaying slope mt and292

the model’s working memory capacity wt. As mt293

decreases exponentially over time, wt, representing294

working memory, grows correspondingly, allowing295

the model to retain broader contextual information296

as training progresses. By mimicking this develop-297

mentally plausible growth of working memory, the298

model prioritizes attention to short-range dependen-299

cies during the early stages of training, gradually300

shifting its focus to long-range dependencies as301

training progresses.302

Furthermore, a key distinction between ALiBi303

and DYNAMICLIMIT-EXP lies in how the slope304

m is assigned across attention heads. While AL-305

iBi applies a fixed per-head bias, enforcing a306

predetermined recency bias throughout training,307

DYNAMICLIMIT-EXP instead shares the slope m308

across all heads. This ensures that the model main-309

tains a globally coherent bias that evolves dynam-310
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Figure 2: Trajectory of working memory capacity for
each model (num. of epochs = 10)

ically over the course of training. In other words, 311

ALiBi imposes a head-specific static recency bias, 312

whereas DYNAMICLIMIT-EXP introduces a dy- 313

namically changing proximity bias that governs 314

the entire learning schedule. This shift enables the 315

model to more accurately simulate the adaptive 316

nature of human working memory development, 317

potentially capturing the CP of cognitive matura- 318

tion. 319

4 Experiments 320

This study explores whether LMs trained from 321

scratch can achieve more efficient L1 acquisition 322

by incorporating the developmental characteristics 323

of human working memory. Specifically, we aim 324

to determine whether this approach can replicate 325

the increased efficiency of L1 acquisition observed 326

during the CP in L1 acquisition, focusing on the 327

developmental advantages before the end of this 328

period. 329

4.1 Configurations 330

Models We used the transformers (Wolf et al., 331

2020) implementation of the GPT-2 (Radford et al., 332

2019) as the base LM. While some studies utilize 333

RoBERTa (Liu et al., 2019) as a base model (Hueb- 334

ner et al., 2021; Warstadt et al., 2023), we se- 335

lected GPT-2 for two primary reasons: (1) its uni- 336

directional (left-to-right) predictions more effec- 337

tively capture human working memory constraints, 338

and (2) GPT-based architectures dominate modern 339

LLMs (OpenAI, 2023; Touvron et al., 2023b). 340

Dataset We used AO-CHILDES (Huebner and 341

Willits, 2021)2 as the training dataset, which is de- 342

rived from the CHILDES dataset (Macwhinney, 343

2https://github.com/UIUCLearningLanguageLab/
AOCHILDES
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Model OVERALL

D-N AGR

S-V AGR

ANA. AGR

ARG. STR

BINDING

CASE
ELLIPSIS

FILLER. GAP

IRREGULAR

ISLAND

LOCAL. ATR

QUANTIFIERS

NPI

NOLIMIT 56.5 49.8 49.7 49.9 44.8 61.8 70.8 73.3 72.1 51.7 61.7 47.1 47.9 53.9
STATICLIMIT 56.8 50.2 49.9 49.8 44.4 60.5 70.3 71.4 74.7 52.2 62.9 45.3 52.3 54.4
DYNAMICLIMIT-LINEAR 61.6 51.0 49.6 49.5 64.3 60.3 88.6 47.6 90.8 53.0 57.0 47.9 56.8 84.3
DYNAMICLIMIT-EXP 62.2 50.8 50.0 49.6 67.7 58.7 95.2 43.1 93.6 52.2 53.6 51.3 57.6 85.0

Table 1: Accuracy (%) of models trained on AO-CHILDES dataset. OVERALL represents the macro average of the
scores across all grammar items.

Model OVERALL

D-N AGR

S-V AGR

ANA. AGR

ARG. STR

BINDING

CASE
ELLIPSIS

FILLER. GAP

IRREGULAR

ISLAND

LOCAL. ATR

QUANTIFIERS

NPI

NOLIMIT 54.7 50.3 50.0 47.2 68.4 62.6 73.4 60.8 42.9 53.4 51.1 42.7 41.2 42.6
STATICLIMIT 54.7 50.4 50.0 47.1 73.7 61.2 87.4 57.3 56.1 52.3 53.0 40.8 42.0 38.9
DYNAMICLIMIT-LINEAR 58.6 50.0 50.5 48.4 71.9 58.8 96.9 38.7 82.7 51.6 57.9 59.6 41.5 53.4
DYNAMICLIMIT-EXP 59.1 49.8 50.4 46.0 71.5 59.3 97.7 37.4 86.5 51.1 58.0 60.5 42.2 53.9

Table 2: Accuracy (%) of models trained on Wikipedia dataset. OVERALL represents the macro average of the
scores across all grammatical items.

2000) and records CDS from conversations be-344

tween children and adults. AO-CHILDES con-345

tains 5 million words of speech directed at English-346

speaking children aged 1–6 years and controls for347

external factors such as age group, speaker varia-348

tion, and situational context. As a preprocessing349

step, following Haga et al. (2024), all sentences350

were converted to lowercase, and sentences shorter351

than three words were excluded. Since the AO-352

CHILDES dataset contains only about 5 million353

words, training a standard GPT-2 model would354

likely result in overfitting. To mitigate this, we355

followed existing studies on small language mod-356

els (SLMs) trained with CDS datasets (Huebner357

et al., 2021; Haga et al., 2024) and constructed an358

SLM with 4 layers, 4 attention heads, and 256 em-359

bedding dimensions for the base model. Details of360

the training configuration for the base model are361

provided in Appendix A.362

Furthermore, to determine whether the CP ef-363

fect stems from exposure to specific linguistic364

stimuli, such as CDS, or from the model’s cog-365

nitive developmental properties independent of in-366

put, we conducted a complementary experiment367

using Wikipedia (written language, adult-oriented)368

as training data. Following Huebner et al. (2021),369

500,000 sentences were randomly sampled from370

the English Wikipedia corpus. We used the latest371

version of Wikipedia, as of January 2025, 3 and372

preprocessed it using WikiExtractor.4373

3https://dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.xml.bz2

4https://github.com/attardi/wikiextractor

Evaluation We evaluate the grammatical abili- 374

ties of these models using a developmentally in- 375

spired targeted syntactic evaluation benchmark, 376

Zorro (Huebner et al., 2021). Zorro is designed for 377

assessing the syntactic and grammatical knowledge 378

of LMs in child-directed language and consists of 379

13 mid-level categories and 23 subcategories. Each 380

subcategory contains 2,000 sentence pairs, with 381

one grammatically acceptable and one unaccept- 382

able sentence per pair. Below is an example of 383

a minimal pair from the “Subject-verb agreement 384

(S-V AGR)” category:5 385

(1) a. The lie on the foot is flat. 386

b. *The lies on the foot is flat. 387

By inputting both the acceptable and unaccept- 388

able sentence into the model and calculating the 389

proportion of pairs where the model assigns a 390

higher probability to the acceptable sentence, we 391

obtain the grammaticality judgment score (Accu- 392

racy). In this study, we report scores for each mid- 393

level category (henceforth, grammatical items) as 394

well as their macro-average. 395

4.2 Baselines 396

We prepared the following three baseline models to 397

precisely analyze the learning effects of different 398

working memory limitation strategies: 399

• NOLIMIT: A model with no memory con- 400

straints. Working memory remains constant 401

5See Appendix B for the full list of grammatical categories.
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Model OVERALL

D-N AGR

S-V AGR

ANA. AGR

ARG. STR

BINDING

CASE
ELLIPSIS

FILLER. GAP

IRREGULAR

ISLAND

LOCAL. ATR

QUANTIFIERS

NPI

AO-CHILDES
DYNAMICLIMIT-EXP (↑) 62.2 50.8 50.0 49.6 67.7 58.7 95.2 43.1 93.6 52.2 53.6 51.3 57.6 85.0
DYNAMICLIMIT-EXP (↓) 56.5 49.9 49.7 50.1 44.7 61.9 70.6 73.3 72.0 51.8 61.9 47.0 48.1 54.1
∆ (↑, ↓) 5.7 0.9 0.3 -0.5 23.0 -3.2 24.6 -30.1 21.6 0.4 -8.3 4.4 9.5 30.8

Wikipedia
DYNAMICLIMIT-EXP (↑) 59.1 49.8 50.4 46.0 71.5 59.3 97.7 37.4 86.5 51.1 58.0 60.5 42.2 53.9
DYNAMICLIMIT-EXP (↓) 52.9 50.4 50.1 47.4 68.7 62.3 74.4 60.2 44.2 53.2 51.7 42.7 40.6 42.2
∆ (↑, ↓) 6.1 -0.6 0.3 -1.4 2.9 -3.0 23.3 -22.8 42.3 -2.2 6.3 17.8 1.7 11.7

Table 3: Performance difference when changing the direction of the cognitive constraints in DYNAMICLIMIT-EXP

from the early stages of training, simulating402

the mature working memory observed post-403

adolescence. This configuration is equivalent404

to a vanilla GPT-2 (Radford et al., 2019).405

• STATICLIMIT: A model applying standard406

ALiBi (Press et al., 2022) during attention407

score calculation, where memory constraints408

remain fixed throughout training.409

• DYNAMICLIMIT-LINEAR: A model in410

which the ALiBi slope m decreases linearly411

over the course of training.412

To ensure a fair comparison between the linear413

and exponential growth curves of working mem-414

ory, we controlled the initial and final values of415

working memory capacity wt in DYNAMICLIMIT-416

LINEAR and DYNAMICLIMIT-EXP to be as similar417

as possible. Specifically, we set the number of418

training epochs to 10 and configured both models419

with an initial slope of m = 1.0 and a final slope of420

m = 0.0. Figure 2 illustrates the trajectory of work-421

ing memory capacity for each model. All models422

were trained using three different seeds, and we423

report the average results across these runs.424

4.3 Results425

Developmentally-plausible working memory426

shapes the CP for L1 acquisition Table 1427

presents the accuracy of each model trained on the428

AO-CHILDES. Compared to NOLIMIT and STAT-429

ICLIMIT, which do not account for developmen-430

tal changes in working memory, DYNAMICLIMIT-431

LINEAR and DYNAMICLIMIT-EXP, which sim-432

ulate its gradual growth, achieve significantly433

higher overall performance. Among them,434

DYNAMICLIMIT-EXP attains the highest overall435

accuracy, supporting the effectiveness of a cogni-436

tively plausible mechanism. The comparable per-437

formance of STATICLIMIT to NOLIMIT suggests438

that the gradual introduction of working memory 439

constraints throughout training is crucial, rather 440

than their static application. These results indicate 441

that DYNAMICLIMIT-EXP effectively replicates 442

the CP effect observed in human L1 acquisition. 443

The CP depends on the child’s learning algo- 444

rithm, not the input stimulus Table 2 presents 445

the accuracy of models trained on Wikipedia, 446

showing trends similar to those observed in Ta- 447

ble 1, where the models were trained on AO- 448

CHILDES. Specifically, DYNAMICLIMIT-LINEAR 449

and DYNAMICLIMIT-EXP outperform NOLIMIT 450

and STATICLIMIT in overall accuracy, with 451

DYNAMICLIMIT-EXP achieving the highest perfor- 452

mance, further supporting the efficacy of incorpo- 453

rating developmental working memory constraints. 454

These findings suggest that the CP effect does not 455

depend solely on exposure to specific linguistic 456

stimuli (e.g., CDS) but rather on the learning algo- 457

rithm itself, which mirrors human cognitive devel- 458

opment. 459

This result aligns with existing research (Feng 460

et al., 2024), which has reported that child lan- 461

guage input is not uniquely valuable for training 462

LMs. This finding suggests that our method is 463

applicable to LLM pretraining, as they typically 464

use non-CDS datasets such as Common Crawl and 465

Wikipedia (Touvron et al., 2023a). 466

5 Analysis 467

5.1 Testing the “Less-is-more” Hypothesis 468

with Reversed Cognitive Constraints 469

A key question arising from the results (§4) is 470

whether DYNAMICLIMIT-EXP’s superior perfor- 471

mance stems from the “Less-is-more” hypothe- 472

sis (Newport, 1990)—i.e., the gradual growth of 473

working memory—or from unintended side effects. 474

In other words, does the gradual change in working 475
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(a) NOLIMIT (b) DYNAMICLIMIT-EXP

Figure 3: Embedded space at each learning stage for NOLIMIT and DYNAMICLIMIT-EXP (FILLER. GAP)

memory enhance information capacity, dynami-476

cally shifting the model’s focus across epochs and477

ultimately aiding rule generalization? To test this,478

we introduce a cognitively implausible language479

model, referred to as “DYNAMICLIMIT-EXP (↓)”,480

which shares the same slope trajectory as our pro-481

posed DYNAMICLIMIT-EXP (↑) 6 but with its direc-482

tion reversed, such that working memory capacity483

decreases over time. Specifically, DynamicLimit-484

Exp (↑) is set to m0 = 1.0, r = 0.6 (the same485

setting as in §4), while DynamicLimit-Exp (↓) is486

set to m0 = 0.01, r = 1.668 to achieve a nearly487

symmetrical curve.7488

Table 3 provides evidence supporting the Less-489

is-more hypothesis, as DYNAMICLIMIT-EXP (↑)490

consistently outperformed the cognitively implau-491

sible DYNAMICLIMIT-EXP (↓). The observed per-492

formance gap, particularly in grammatical items493

requiring both local and non-local dependencies494

(e.g., CASE, ARG. STR, and FILLER-GAP), sug-495

gests that the gradual growth of working memory is496

crucial for grammatical learning and generalization,497

as it enables the early extraction of basic patterns498

followed by the progressive acquisition of complex499

rules. These findings indicate that the superior per-500

formance of DYNAMICLIMIT-EXP (↑) is primarily501

driven by the developmental trajectory of working502

memory growth rather than unintended side effects503

of dynamic shifts in memory focus.504

Incidentally, from the series of experimental re-505

sults, along with those in §4 (Table 1 and 2), NO-506

LIMIT and DYNAMICLIMIT-EXP (↓) consistently507

outperform DYNAMICLIMIT-EXP (↑) in ELLIP-508

SIS, as exemplified by the following cases:509

6This section adopts this notation for simplicity.
7Since setting the initial slope m0 = 0.0 prevents wt

from being updated in Equation (2), we set it this way for
computational reasons.

Entropy Mean Distance

Epoch 1 5 10 1-5 5-10 1-10

NoLimit 5.36 5.17 5.19 91.30 28.50 66.28
DynamicLimit-Exp 5.40 5.30 5.39 69.25 70.63 101.92

Table 4: Embedded space analysis of NOLIMIT and
DYNAMICLIMIT-EXP at each stage: distribution diver-
sity and distribution distance.

(2) a. Mark fixed one worn canal, and Roger 510

fixed more. 511

b. *Mark fixed one canal, and Roger fixed 512

more worn. 513

Since resolving ELLIPSIS involves maintaining 514

long-range dependencies, DYNAMICLIMIT-EXP 515

(↑) may struggle due to its initial memory con- 516

straints. This suggests that grammatical items like 517

ELLIPSIS require substantial memory from the 518

early stages of training, and thus, our proposed 519

method may not be optimal for learning such struc- 520

tures. Alternative workarounds, such as dynam- 521

ically adjusting memory allocation or hybrid ap- 522

proaches, may be necessary to address this limita- 523

tion. 524

5.2 Development of Feature Extraction 525

Capabilities 526

Figure 3 visualizes the clustering structure of final- 527

layer embeddings using t-SNE (van der Maaten and 528

Hinton, 2008) for FILLER.GAP, a grammatical 529

items where gradual memory expansion yielded 530

significant performance improvements in both AO- 531

CHILDES and Wikipedia datasets, as highlighted 532

in the previous results (§4.3 and §5.1). In NOLIMIT 533

(Figure 3a), the embedding clusters initially expand 534

between Epoch 1 and Epoch 5, but by Epoch 10, 535
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they appear to contract and overlap more, suggest-536

ing a stagnation in representation learning. The537

clusters become less distinguishable, which may538

indicate a loss of diversity in the learned represen-539

tations. In contrast, DYNAMICLIMIT-EXP (Fig-540

ure 3b) maintains a more structured and progres-541

sive evolution of embeddings. The clusters remain542

well-separated throughout training, with clear dis-543

tinctions between different epochs. This suggests544

that the model continuously refines its representa-545

tions without excessive compression, preserving546

the diversity necessary for robust generalization.547

To quantitatively analyze these differences, Ta-548

ble 4 reports key statistical measures, including en-549

tropy (distribution diversity) and mean Euclidean550

distance (inter-cluster separation).8 Regarding en-551

tropy, NOLIMIT shows a decreasing trend, re-552

flecting reduced distribution diversity and potential553

over-clustering. In contrast, DYNAMICLIMIT-EXP554

preserves consistently higher entropy, indicating a555

balanced representation that avoids excessive com-556

pression. For mean Euclidean distance, NOLIMIT557

undergoes substantial change between Epoch 1 and558

Epoch 5 but stagnates thereafter, suggesting lim-559

ited refinement. DYNAMICLIMIT-EXP, however,560

maintains large distances across epochs, reflecting561

continuous structural reorganization.562

The differences also highlight the role of563

isotropy. NOLIMIT exhibits increasing anisotropy,564

with embedding clusters becoming overly compact565

by Epoch 10, which may hinder generalization. In566

contrast, DYNAMICLIMIT-EXP maintains a more567

isotropic distribution, as indicated by stable en-568

tropy, allowing for more flexible and structured569

representation learning. These findings align with570

recent work on syntactic smoothing, which sug-571

gests that reducing anisotropy enhances the ability572

to generalize across linguistic contexts (Diehl Mar-573

tinez et al., 2024). Thus, the increased isotropy574

observed in DYNAMICLIMIT-EXP provides strong575

evidence that gradual memory expansion facili-576

tates structured representation learning and syn-577

tactic generalization.9578

5.3 Influence of Input Stimulus Length579

We analyze how sentence length affects the perfor-580

mance of NOLIMIT and DYNAMICLIMIT-EXP. To581

assess their adaptability, we created four Wikipedia-582

based datasets, each with 500,000 sentences in583

8The appendix C shows how to calculate each measure.
9We also analyzed CASE, which exhibited the same trend

as FILLER.GAP (as shown in Appendix D).

Dataset NOLIMIT DYNAMICLIMIT-EXP

[5,10] 47.2 46.8
[11,50] 47.0 58.7
[51,100] 40.6 42.5
[101, 150] 37.3 40.8

Table 5: Accuracy in Zorro when the length of the
sentence is changed

length ranges: [5,10], [11,50], [51,100], and 584

[101,150]. 585

The results in Table 5 reveal notable differences 586

in model performance. For shorter sentences in 587

the [5,10] range, NOLIMIT achieves slightly higher 588

accuracy compared to DYNAMICLIMIT-EXP. How- 589

ever, in the [11,50] range, DYNAMICLIMIT-EXP 590

significantly outperforms NOLIMIT, achieving 591

58.7 compared to 47.0. This suggests that 592

DYNAMICLIMIT-EXP excels at handling moder- 593

ately long sentences, likely due to its ability to 594

dynamically adjust working memory. For longer 595

sentences in the [51,100] and [101,150] ranges, 596

DYNAMICLIMIT-EXP consistently outperforms 597

NOLIMIT. 598

These findings highlight the benefits of dynamic 599

working memory expansion in facilitating rule gen- 600

eralization and contextual adaptation across diverse 601

sentence lengths. While NOLIMIT exhibits com- 602

petitive performance on short sentences, its stag- 603

nation on longer sentences underscores its lim- 604

ited ability to generalize complex patterns. Con- 605

versely, DYNAMICLIMIT-EXP’s consistent perfor- 606

mance across varying sentence lengths supports 607

its suitability for grammatical items requiring the 608

processing of both short and long contexts. 609

6 Conclusion 610

This study proposed a method for integrating 611

the developmental trajectory of human working 612

memory into the training process of LMs, in- 613

spired by the Less-is-More hypothesis. The pro- 614

posed method, DYNAMICLIMIT-EXP, initially re- 615

stricts working memory and gradually relaxes it 616

exponentially during training. Experiments on 617

both AO-CHILDES and Wikipedia showed that 618

DYNAMICLIMIT-EXP improves grammatical learn- 619

ing efficiency compared to conventional methods 620

without memory constraints or with static memory 621

constraints. These findings suggest not only pro- 622

vide new approaches for developing data-efficient 623

LMs but also offer indirect evidence supporting the 624

CPH in human language acquisition. 625
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Limitations626

Scalability. One limitation of this study is the627

constrained scale of the experimental setup. The628

primary goal of this study is to computationally629

replicate the CP in L1 acquisition, as discussed in630

cognitive science (Lenneberg, 1967; Fromkin et al.,631

1974; Curtiss, 1977; Johnson and Newport, 1989).632

Following previous studies (Huebner et al., 2021;633

Haga et al., 2024), we designed the experiment634

to be as ecologically valid as possible by training635

an SLM using CDS. While this controlled setting636

allows for a more precise analysis and simulation637

of the Less-is-More hypothesis, it remains unclear638

how our findings contribute to the data efficiency639

of LLMs. The experimental results with Wikipedia640

(Table 2, 3, 5) provide a promising outlook in this641

direction, but further investigation with larger mod-642

els and datasets is necessary to determine the effec-643

tiveness and limitations of the proposed approach.644

Language. In this experiment, we investigated645

the replication of the CP effect in L1 acquisition646

using English. However, since the CP effect is ob-647

served across various languages (Patkowski, 1980;648

Johnson and Newport, 1989), it remains to be tested649

whether the proposed approach is effective in mul-650

tilingual environments. To our knowledge, there is651

currently no targeted syntactic evaluation specifi-652

cally designed for CDS across different languages,653

such as Zorro. Zorro was developed based on654

BLiMP (Warstadt et al., 2020), an adult-oriented655

targeted syntactic evaluation for English, and re-656

cent studies have proposed multilingual versions of657

BLiMP (e.g., JBLiMP (Someya and Oseki, 2023)658

for Japanese and CLiMP (Xiang et al., 2021) for659

Chinese). Therefore, developing CDS-specific ver-660

sions based on these multilingual BLiMPs could661

help address this limitation.662
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A Details of the Training Configuration893

for the Base Models894

Table 6 shows the training settings of the base895

model. For the experiment, a single NVIDIA RTX896

A5000 (24GB) GPU was used, and the training897

time for each run was approximately one hour.898

Hyperparameter Value
Model Architecture GPT-2
Number of Layers 4
Number of Attention Heads 4
Embedding Dimension 256
Dropout Rate 0.1
Learning Rate (η) 5× 10−6

Weight Decay 0.01
Batch Size 512
Gradient Accumulation Steps 2
Total Epochs 20
Maximum Sequence Length 32
Learning Rate Scheduler Cosine with Restarts
Warm-up Steps 10% of Total Steps
Optimizer AdamW
Optimizer Parameters β = (0.9, 0.999), ϵ = 1e`08
Tokenizer Trained on CHILDES
Early Stopping Tolerance 1 Epoch
Evaluation Metric Perplexity

Table 6: Training Configuration (Hyperparameters) for
the GPT-2 Model.

B Details of Grammatical Items in Zorro899

Table 8 shows the full list of grammatical categories900

in Zorro. Examples are taken from Table 5 in the901

original paper (Huebner et al., 2021).902

C Analysis of Distributional Changes in903

t-SNE Space Across Training Epochs904

This section explains in detail the analysis of the905

entropy and average distance of embeddings pro-906

jected into the t-SNE space for different learning907

epochs.908

C.1 Entropy Calculation909

To quantify the distribution of embeddings, a 2D910

histogram is constructed using a fixed grid (50×50911

bins). The probability distribution P is obtained912

by normalizing the histogram. The entropy is then913

computed as:914

H(P ) = −
∑
i

Pi logPi, (4)915

where Pi is the probability of each bin. Higher916

entropy suggests a more uniform distribution,917

whereas lower entropy indicates clustering.918

Entropy Mean Distance

Epoch 1 5 10 1-5 5-10 1-10

NoLimit 5.30 5.23 5.30 75.47 12.26 87.62
DynamicLimit-Exp 5.29 5.30 5.34 59.91 37.68 97.59

Table 7: Embedded space analysis of NOLIMIT and
DYNAMICLIMIT-EXP at each stage: cluster expansion,
distribution diversity, and distribution distance.

C.2 Mean Distance Between Epochs 919

To analyze shifts in embedding distributions across 920

epochs, we compute the Euclidean distance be- 921

tween the mean embedding vectors of different 922

epochs: 923

D(X,Y ) = ∥µX − µY ∥, (5) 924

where µX and µY are the mean vectors at different 925

epochs. Larger distances imply greater shifts in the 926

learned representation. 927

D Development of Feature Extraction 928

Capabilities in CASE 929

Figure 4 visualizes the clustering structure of fi- 930

nal layer embeddings using t-SNE for CASE. The 931

embedding space visualizations reveal distinct pat- 932

terns between NOLIMIT and DYNAMICLIMIT-EXP 933

across training epochs. In NOLIMIT, the embed- 934

ding clusters expand between Epoch 1 and Epoch 935

5 but contract significantly by Epoch 10, suggest- 936

ing stagnation in representation learning. In con- 937

trast, DYNAMICLIMIT-EXP maintains structured 938

evolution throughout training, with well-separated 939

clusters that reflect progressive refinement. 940

Regarding entropy, NOLIMIT shows a slight 941

decrease over time, reflecting reduced distribu- 942

tion diversity as training progresses. In contrast, 943

DYNAMICLIMIT-EXP maintains or slightly in- 944

creases entropy, suggesting a balanced emphasis 945

on both basic patterns and diverse features, even 946

in later training stages. For mean Euclidean dis- 947

tances between clusters, NOLIMIT exhibits large 948

distances between Epoch 1 and Epoch 5 but demon- 949

strates minimal evolution between Epoch 5 and 950

Epoch 10. This stagnation may highlight the 951

model’s failure to effectively generalize new rules. 952

DYNAMICLIMIT-EXP, on the other hand, main- 953

tains substantial distances across epochs, indicating 954

continuous embedding evolution and refinement 955

throughout training. 956
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Category Subcategory Acceptable Sentence Unacceptable Sentence

noun-across_1_adjective look at this purple thing . look at this purple things .D-N AGR noun-between_neighbors this color must be white . this colors must be white .

verb-across_prepositional_phrase the lie on the foot is flat . the lies on the foot is flat .
verb-across_relative_clause the book that i like is poor . the books that i like is poor .
verb-in_question_with_aux where does the horse go ? where does the horses go ?S-V AGR

verb-in_simple_question where is the way ? where is the ways ?

ANA.AGR pronoun_gender will Mark want himself ? will Mark want herself ?

dropped_argument give me the poor boat . the poor boat gives me .
swapped_arguments he made the slave her label . the slave made her label he .ARG.STR
transitive Philip thinks . Philip affected .

BINDING principle_a Ben thinks about himself calling this fuel . Ben thinks about himself called this fuel .

CASE subjective_pronoun i brought the wolf my hill . the wolf brought i my hill .

ELLIPSIS n_bar Mark fixed one worn canal and Roger fixed more . Mark fixed one canal and Roger fixed more worn .

wh_question_object Laura married the dinner that the wolf could close . Laura married what the dinner could close the wolf .FILLER.GAP wh_question_subject Laura ended the finger that can make boats . Laura ended who the finger can make boats .

IRREGULAR verb Michael chose the good one some time ago . Michael chosen the good one some time ago .

adjunct_island who should William have without watching the baby ? who should William have the baby without watching ?ISLAND coordinate_structure_constraint who must Philip and the dinosaur turn ? who must Philip turn and the dinosaur ?

LOCAL.ATR in_question_with_aux is the whale getting the person ? is the whale gets the person ?

matrix_question does her boat ever play with the growth ? her boat does ever play with the growth ?NPI only_npi_licensor only Mark ever finds some suit . even Mark ever finds some suit .

existential_there there are many books about soft birds . there are most books about soft birds .QUANTIFIERS superlative no pig could stand on top of more than six days . no pig could stand on top of at least six days .

Table 8: Explanation of each grammatical category in Zorro.

(a) NOLIMIT (b) DYNAMICLIMIT-EXP

Figure 4: Embedded space at each learning stage for NOLIMIT and DYNAMICLIMIT-EXP (CASE)
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