

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DUAL-AN: A HIERARCHICAL FRAMEWORK SYNERGIZES TIME AND FREQUENCY DOMAINS FOR NON-STATIONARY TIME SERIES FORECASTING

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

To address the pervasive and challenging issue of non-stationarity in time series forecasting, recent research has primarily focused on time-domain normalization methods that separate non-stationary features using statistical indicators. The proposal of frequency adaptive normalization (FAN) offers a new perspective for separating non-stationary components in the frequency domain. However, existing methods remain confined to a single domain, lacking a synergistic integration of time and frequency domains. To bridge this gap, we introduce Dual-AN, a hierarchical framework that synergizes both time and frequency domains. After utilizing the Fourier transform approach to separate non-stationary factors, we propose a novel sliding window adaptive normalization (SWAN) method to eliminate the local non-stationarity in the residuals. Furthermore, we introduce the statistical prediction module (SPM) to forecast future statistics, which are used to de-normalize the outputs based on the statistics of each window. Dual-AN is a general framework that can be easily integrated into any forecasting model. We evaluate the improvement in forecasting performance of 3 different benchmark models on 8 widely-used datasets. The results show that Dual-AN demonstrates significant performance improvement, with the average prediction error MAE and MSE reduced by 15.92% and 20.72%. In comparison with other existing normalization methods, Dual-AN surpasses all existing methods and achieves state-of-the-art (SOTA) performance with an average prediction error reduction of 7.69%.

1 INTRODUCTION

Time series forecasting is of critical importance in numerous domains, including finance Li & Basitos (2020), medicine Bertozzi et al. (2020), energy Hong et al. (2020), transportation Ermagun & Levinson (2018), meteorology Murphy & Winkler (1984), and electricity Nti et al. (2020). However, traditional machine learning and deep learning approaches often struggle in forecasting tasks due to challenges such as distribution shift Kuang et al. (2020); Cao et al. (2022), which is a phenomenon inherent in non-stationary time series Hyndman & Athanasopoulos (2018). These dynamic properties pose significant obstacles to accurate prediction.

In recent years, the non-stationarity in time series has attracted growing attention. Since the introduction of the reversible normalization method in 2022 Kim et al. (2021), mainstream research has focused on exploiting time-domain statistics to mitigate non-stationary signals Fan et al. (2023); Liu et al. (2023c). More recently, frequency adaptive normalization (FAN) Ye et al. (2024) has opened a new direction by operating in the frequency domain. Instead of the normalization using time-domain statistics, FAN alleviates the impact of non-stationarity by selecting the top K dominant components in the Fourier domain, thereby holistically handling composite non-stationary factors involving both trend and periodic components.

Nevertheless, using only the top K dominant components in the Fourier domain to represent non-stationary information may be insufficient, as residuals often retain local non-stationarity Que et al. (2020), such as transient shocks in traffic data Zheng et al. (2011) or micro-trends in financial series Moon (2013). The residual learning strategy of FAN Ye et al. (2024) overlooks these fine-grained distribution shifts Deldari et al. (2021); Lai et al. (2021), violating the independent and identically

Figure 1: The comparison of our sliding window adaptive normalization (SWAN) and FAN. Our SWAN can eliminate the local non-stationarity in the time series and make it relatively stable at a fine granularity, while FAN cannot.

distributed assumption underlying many deep learning models. Simultaneously, most existing normalization techniques are confined to a single domain. While some end-to-end models have explored joint time-frequency representations Chen et al. (2023); Wu et al. (2022b), a dedicated, model-agnostic normalization framework that synergizes both domains is still lacking. To address this, the **Dual-domain Adaptive Normalization (Dual-AN)** is proposed, a hierarchical framework designed for universal integration with any forecasting backbone. In contrast to FAN Ye et al. (2024), we introduce a novel sliding window adaptive normalization (SWAN) method to eliminate the local non-stationarity in the residuals to better align with the input characteristics of the model, as illustrated in Figure 1. Additionally, we design a statistical prediction module (SPM) that forecasts future statistics using the statistics from each window to de-normalize the outputs, effectively combining fine-grained time-domain statistical features processing with coarse-grained frequency-domain decomposition. All code and data are available at <https://anonymous.4open.science/r/Dual-AN>. Our main contributions are summarized as follows:

- A novel, model-agnostic framework is presented that hierarchically addresses non-stationarity in both time and frequency domains. This approach overcomes the limitations of single-domain normalization methods, such as FAN’s handling of local non-stationarity in residuals.
- We design a novel Sliding Window Adaptive Normalization (SWAN) method and a Statistical Prediction Module (SPM) that forecasts the future window-level statistics from frequency-domain residuals to de-normalize the outputs, enabling accurate reconstruction in the time domain.
- We conduct extensive experiments on 8 mainstream time series datasets. The results demonstrate that Dual-AN consistently improves performance across 3 backbone models, reducing average MAE and MSE by up to 15.92% and 20.72%, respectively. Moreover, it outperforms 4 existing normalization methods, including FAN, with an average MAE reduction of 7.69%, achieving the state-of-the-art (SOTA) performance and underscoring the superiority of our approach.

2 RELATED WORK

2.1 TIME SERIES FORECASTING

Time series forecasting is a critical task across numerous domains. Traditional statistical approaches like ARIMA Box & Jenkins (1968); Zhang (2003) rely on assumptions of stationarity and temporal dependency, which frequently do not hold in real-world scenarios. The advent of deep learning has significantly advanced the field, with architectures including CNNs LeCun et al. (2002); Lea et al. (2017); Liu et al. (2022a); Wang et al. (2023), RNNs/LSTMs Jordan (1997); Du et al. (2021); Lin et al. (2023); Hochreiter & Schmidhuber (1997), Transformers Vaswani et al. (2017); Zhou et al. (2021); Nie et al. (2022); Liu et al. (2023a); Wang et al. (2024b), and MLPs Rosenblatt (1958); Zeng et al. (2023); Das et al. (2023); Wang et al. (2024a); Murad et al. (2025) each contributing distinct strengths. CNN-based methods excel at capturing local patterns but struggle with long-range dependencies and non-stationary data Zheng et al. (2014). RNNs and LSTMs model sequential state transitions effectively but suffer from computational inefficiency and challenges in very long sequences Siami-Namini et al. (2019); Smyl (2020); Salinas et al. (2020); Hewamalage et al. (2021). Transformers leverage self-attention to capture global and cross-variable dependencies, yet face issues with computational complexity and sparse data Zhou et al. (2021). MLP-based models offer simplicity and scale well, but often fall short in modeling complex temporal relationships compared to recurrent or attention-based approaches Zhang et al.; Yi et al. (2023).

A crucial challenge across all architectures is handling non-stationary time series exhibiting distribution shifts Petropoulos et al. (2022) with the core of the modeling of time-varying statistical

108 properties, such as trend drift, seasonality, and shift points. Existing approaches include: (a) traditional stabilization via differencing, decomposition, or filtering Box & Jenkins (1968); Zhang
 109 (2003); Cleveland et al. (1990); Taylor & Letham (2018); Kalman (1960); (b) implicit modeling
 110 using RNNs Hochreiter & Schmidhuber (1997); Cho et al. (2014); Chung et al. (2014), enhanced
 111 attention Kitaev et al. (2020), or normalization techniques Ogasawara et al. (2010); Passalis et al.
 112 (2019); Deng et al. (2021); Kim et al. (2021); Fan et al. (2023); Liu et al. (2023c); Ye et al. (2024); (c)
 113 explicit decomposition architectures, which have recently become prominent—e.g., N-BEATS Ore-
 114 shkin et al. (2019), ETSformer Woo et al. (2022b), Autoformer Wu et al. (2021), FEDformer Zhou
 115 et al. (2022), TimesNet Wu et al. (2022a), Pyraformer Liu et al. (2022b), Crossformer Zhang & Yan
 116 (2023), and Koopa Liu et al. (2023b); and (d) emerging trends such as frequency-domain analy-
 117 sis Xu et al. (2023); Yi et al. (2023), distributionally robust learning Woo et al. (2022a); Liu et al.
 118 (2022c); Zeng et al. (2023), change-point detection Adams & MacKay (2007); Xu & Zhu (2023),
 119 and improved benchmarks and evaluation Makridakis et al. (2018); Zhou et al. (2021); Challu et al.
 120 (2023). Despite these advances, modeling non-stationary time series remains an open and highly
 121 active research problem due to its practical significance and theoretical challenges.
 122

123 2.2 NORMALIZATION METHODS AGAINST NON-STATIONARITY

124 Recent normalization methods have sought to mitigate non-stationarity, a primary obstacle in time
 125 series forecasting Ogasawara et al. (2010); Passalis et al. (2019); Deng et al. (2021); Kim et al.
 126 (2021); Fan et al. (2023); Liu et al. (2023c); Ye et al. (2024). These can be broadly categorized
 127 by their operating domain. Time-domain approaches, such as RevIN Kim et al. (2021)—a form
 128 of reversible instance normalization Ulyanov et al. (2016)—and Dish-TS Fan et al. (2023), utilize
 129 statistical moments to counteract distribution shifts. SAN Liu et al. (2023c) further refines this
 130 by employing adaptive local statistics. While effective against trends, these methods’ reliance on
 131 statistics often proves insufficient for capturing complex seasonal variations. In contrast, FAN Ye
 132 et al. (2024) operates in the frequency domain, isolating dominant components to jointly model
 133 trend and seasonality. Despite these advances, a clear dichotomy persists: methods operate largely
 134 in either the time domain Kim et al. (2021); Fan et al. (2023); Liu et al. (2023c) or the frequency
 135 domain Ye et al. (2024). While another line of research develops end-to-end architectures that
 136 jointly process time-frequency information Chen et al. (2023); Wu et al. (2022b), their monolithic,
 137 architecturally-specific nature prevents their use as universal modules. This context reveals a critical
 138 gap: the lack of a model-agnostic framework that synergizes both domains. The proposed Dual-AN
 139 is conceptualized to fill this void. It performs a coarse-grained frequency decomposition followed
 140 by a fine-grained, adaptive time-domain normalization on the residual series, offering a versatile
 141 tool to enhance any existing forecasting backbone.

144 2.3 MODEL-AGNOSTIC PLUG-IN METHODS

145 Recent works also design model-agnostic plug-in modules that can be seamlessly attached to di-
 146 verse time series forecasting (TSF) backbones. DDN Dai et al. (2024) performs dual-domain dy-
 147 namic normalization via sliding-window statistics in time and frequency domains, while BSA Kang
 148 et al. (2024) introduces a batched spectral attention block to capture long-range dependencies in the
 149 spectral space. SCAM Yang et al. (2025) and HCAN Sun et al. (2025) instead focus on the su-
 150 pervision signal: SCAM corrects noisy labels by self-generated pseudo labels with adaptive masks,
 151 and HCAN adds a hierarchical classification auxiliary head to shape multi-scale representations.
 152 TAFAS Kim et al. (2025) tackles test-time distribution shift by adapting pre-trained forecasters on-
 153 line on unlabeled target streams. Our Dual-AN framework is complementary to these approaches:
 154 it acts as a lightweight, plug-and-play module that explicitly synergizes coarse frequency-domain
 155 decomposition with fine-grained time-domain normalization and future-statistics prediction, aiming
 156 to stabilize non-stationarity at the data level and thus providing a generic improvement that can, in
 157 principle, be combined with the above plug-ins.

158 3 DUAL-AN

159 The proposed Dual-AN method operates via a hierarchical, dual-domain process to address non-
 160 stationarity, as illustrated in Figure 2. Following an initial frequency-domain decomposition that

Figure 2: The overall architecture of Dual-AN, highlighting its two core modules: Sliding Window Adaptive Normalization (SWAN) and Statistical Prediction Module (SPM). The process begins with Frequency Residual Learning (FRL, see Appendix A.5) to obtain residuals. SWAN then normalizes these residuals to address local non-stationarity, and SPM predicts future statistics for the final de-normalization step. Detailed algorithms are provided in Appendix C.1 and C.2.

isolates coarse-grained non-stationary signals, two core modules are introduced: the Sliding Window Adaptive Normalization (SWAN) and the Statistical Prediction Module (SPM). SWAN targets the remaining local non-stationarity within the time-domain residuals, while SPM forecasts future window-level statistics to enable precise, adaptive reconstruction of the final prediction. The stationary component is forecasted by a backbone model, whereas the non-stationary component is handled by a dedicated MLP network.

3.1 SLIDING WINDOW ADAPTIVE NORMALIZATION (SWAN)

Since there may still be local non-stationarity in the residuals after frequency domain separation, we design a normalization method in the time domain that pays more attention to the local characteristics of the data, namely, sliding window adaptive normalization (SWAN), which uses the dynamic selection and adaptive normalization of the sliding window to standardize the time series data. For multivariate time series, the SWAN process is applied independently to each variable (channel-wise). This approach ensures that the unique statistical properties and scales of each channel are preserved, preventing cross-channel distortion during normalization.

3.1.1 DYNAMIC OPTIMAL WINDOW SIZE SELECTION

In order to determine the size of the dynamic window, we evaluate the local standard deviation of different window sizes to dynamically select the optimal size. For each defined valid candidate window size, we fill the inputs to ensure that it can be applied to every position of the data.

Afterwards, for each window size in the set of the candidate window sizes $\phi = \{12, 24, 48\}$, we compute the local standard deviation. Specifically, for each time step t , calculate the standard deviation σ_{window} of the data in the window at that time step:

$$\sigma_{\text{window}}(i) = \text{std}(x[i : i + \text{window}, :]), \quad (1)$$

where $i = 1, 2, \dots, L$, then we compute the standard deviation of the local standard deviations over all time steps for that window:

$$SD_{\text{window}} = \text{std}(\sigma_{\text{window}}(i)), \quad (2)$$

where $i = 1, 2, \dots, L$ and L is the length of the sequence. A lower SD value indicates that the local volatility of the series is more consistent at that specific window scale. Selecting a window size that yields such statistical homogeneity is hypothesized to produce a more uniformly normalized sequence, better satisfying the stationarity assumption required by the downstream forecasting

model. While this criterion is heuristic, its empirical effectiveness is validated in Section 4.5.3. A deeper discussion on this selection principle is provided in Appendix F. Finally, the window size with the lowest SD value is selected as the optimal window:

$$W_{\text{Best_window}} = \arg \min_{\phi} SD_{\text{window}} \quad (3)$$

3.1.2 SLIDING WINDOW ADAPTIVE NORMALIZATION

After selecting the optimal sliding window size, we use the adaptive normalization method to normalize the inputs according to the selected window size.

First, we pad the data with a padding size of half the window. For each time step i , we use the optimal window size W_{optimal} to calculate the mean and standard deviation of the data in the window:

$$\mu_{\text{window}}(i) = \frac{1}{W} \sum_{j=i}^W X_j, \quad (4)$$

$$\sigma_{\text{window}}(i) = \sqrt{\frac{1}{W} \sum_{j=i}^W (X_j - \mu_{\text{window}}(i))^2} \quad (5)$$

Afterwards, for each time step i , the selected dynamic window size slides across the input sequence, and the central value at each time step is normalized using statistics derived from its own local temporal neighborhood. Specifically, the value at the center is standardized by subtracting the window mean and dividing by the window standard deviation:

$$X_{\text{stat}}(i) = \frac{X(i) - \mu_{\text{window}}(i)}{\sigma_{\text{window}}(i) + \varepsilon} \quad (6)$$

where $\varepsilon = 1e - 5$ is a small constant to prevent the standard deviation from being zero.

3.2 STATISTICAL PREDICTION MODULE (SPM)

In Section 3.1.2, we retain the mean and standard deviation of each window as statistical indicators in the time domain. In order to reflect the statistical characteristics of the forecasting results, a statistical prediction module (SPM) is designed to forecast the mean and standard deviation for future windows. An MLP architecture is selected for the SPM due to its balance of expressive power as a universal function approximator and computational efficiency. This design is sufficient for predicting the smoother statistical moment sequences while avoiding the substantial overhead of more complex sequential models (e.g., RNNs). The rationale for this design choice is further detailed in Appendix G. The module is formalized as:

$$\hat{\mu}_{\text{window}} = f_2(\text{Concat}(f_1(\mu_{\text{window}}), X)), \quad (7)$$

$$\hat{\sigma}_{\text{window}} = f_2(\text{Concat}(f_1(\sigma_{\text{window}}), X)) \quad (8)$$

where f_1 and f_2 represent 2 different multi-layer perceptron (MLP) networks as depicted in Figure 2 and Appendix C.2. Afterwards, the outputs are de-normalized using the predicted statistical indicators to obtain the predicted stationary component results \hat{Y}_{res} :

$$\hat{Y}_{\text{res}} = \hat{Y}_{\text{stat}} \cdot \hat{\sigma}_{\text{window}} + \hat{\mu}_{\text{window}} \quad (9)$$

where \hat{Y}_{stat} represents the result predicted by the backbone network with the input X_{stat} . Finally, this part will be added to the non-stationary part \hat{Y}_{non} predicted above to get the final forecasting results \hat{Y} .

270 3.3 LOSS FUNCTIONS
271

272 The model is optimized via a dual-component loss function that separately supervises the non-
273 stationary and stationary predictions. This structure acts as a powerful regularization mechanism,
274 guiding the model toward a more meaningful decomposition by ensuring both components are in-
275 dependently accurate. An ablation study presented in Appendix G confirms that this dual-objective
276 approach yields superior performance compared to a single loss on the final output. The overall loss
277 function is defined as:

$$278 \phi, \theta = \arg \min_{\phi, \theta} \sum_i (\mathcal{L}_{nonstat} + \mathcal{L}_{stat}), \quad (10)$$

$$280 \mathcal{L}_{nonstat} = \left(\mathcal{L}_{\phi}^{nonstat}(\mathbf{Y}_{non}(i), \hat{\mathbf{Y}}_{non}(i)) \right), \quad (11)$$

$$282 \mathcal{L}_{stat} = \left(\mathcal{L}_{\theta, \phi}^{stat}(\mathbf{Y}_{stat}(i), \hat{\mathbf{Y}}_{stat}(i)) \right). \quad (12)$$

284 where ϕ and θ denote the learnable parameters of the forecasting model, and both loss functions are
285 computed using the mean square error (MSE):

$$286 287 \mathcal{L}_{MSE} = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n} \quad (13)$$

289 where n is the number of samples, y_i is the ground truth of the i^{th} sample, and \hat{y}_i is the corresponding
290 predicted value.

292 4 EXPERIMENTS
293

294 This study conducts extensive experiments on the Dual-AN method using 8 widely used datasets in
295 the field of time series forecasting to demonstrate its excellent performance.

297 4.1 EXPERIMENTAL DESIGN
298

299 In this section, we introduce the datasets used in the experiments and the experimental settings to
300 ensure the reproducibility of this paper.

302 **Datasets.** We use 8 of the most popular open source datasets in the time series field, including
303 (1)ETTh1, (2)ETTh2, (3)ETTm1, (4)ETTm2, (5)Electricity, (6)Exchange Rate, (7)Traffic, and
304 (8)Weather. In the preprocessing stage, we followed the practice in the FAN Ye et al. (2024) method
305 and applied z-score normalization Goodfellow et al. (2016) to all datasets. The training set, valida-
306 tion set, and test set split ratio were set to 7:2:1, while retaining the setting of its hyperparameter K .
307 For detailed properties and characteristics of the datasets, please refer to Appendix B.1.

308 **Experimental Setup.** To cover both short-term and long-term forecasts, we set the forecast length
309 $H \in \{96, 168, 336, 720\}$, and all datasets use a fixed input length $L = 96$. We use the mean absolute
310 error (MAE) and the mean square error (MSE) as metrics to evaluate the performance of the model,
311 which are defined in Appendix B.2. Since Dual-AN is a universal plug-in, it can be applied to any
312 backbone model for forecasting. To verify its effectiveness, we use 3 of the most common time series
313 forecasting models as benchmark models: (1) DLinear Zeng et al. (2023), based on the multi-layer
314 perceptron (MLP) network; (2) Informer Zhou et al. (2021), based on Transformer; (3) SCINet Liu
315 et al. (2022a), based on the convolutional neural network (CNN). For the implementation details, all
316 experiments in this paper are implemented by PyTorch Paszke et al. (2019) and tested in 5 rounds
317 using fixed random seeds $\{1, 2, 3, 4, 5\}$ on NVIDIA RTX 4090 GPU (24GB).

318 4.2 MAIN EXPERIMENTAL RESULTS OF DUAL-AN
319

320 We show the MAE and MSE metrics of the baseline model and Dual-AN on 5 datasets in Table 1.
321 Please see Table 10 in the Appendix D.2 for full results of all 8 datasets.

322 The empirical results, summarized in Table 1, demonstrate that integrating Dual-AN yields sub-
323 stantial and consistent performance gains across all three backbone models and eight benchmark

324
325
326
Table 1: Main experimental results with and without Dual-AN. The best results are highlighted in
bold.

Models Metrics	DLinear				Informer		SCI-Net		+Dual-AN		
	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	
ETTh2	96	0.237	0.110	0.236	0.110	0.298	0.160	0.238	0.111	0.264	0.128
	168	0.254	0.127	0.250	0.125	0.331	0.191	0.252	0.127	0.292	0.156
	336	0.271	0.138	0.264	0.138	0.347	0.208	0.276	0.147	0.305	0.167
	720	0.316	0.179	0.280	0.157	0.413	0.291	0.337	0.208	0.339	0.201
ETTm2	96	0.203	0.080	0.199	0.078	0.226	0.091	0.199	0.079	0.206	0.079
	168	0.220	0.093	0.219	0.093	0.251	0.112	0.220	0.093	0.226	0.094
	336	0.245	0.114	0.242	0.113	0.283	0.140	0.245	0.114	0.262	0.122
	720	0.270	0.142	0.264	0.139	0.347	0.212	0.277	0.147	0.297	0.153
Electricity	96	0.277	0.195	0.265	0.181	0.376	0.277	0.244	0.148	0.296	0.188
	168	0.272	0.183	0.265	0.176	0.371	0.269	0.254	0.159	0.306	0.196
	336	0.294	0.197	0.285	0.190	0.377	0.273	0.270	0.166	0.330	0.214
	720	0.333	0.233	0.320	0.223	0.401	0.311	0.302	0.191	0.352	0.240
Traffic	96	0.387	0.504	0.334	0.403	0.350	0.428	0.323	0.386	0.399	0.471
	168	0.588	0.804	0.333	0.413	0.366	0.457	0.320	0.393	0.377	0.443
	336	0.380	0.504	0.345	0.436	0.414	0.555	0.336	0.425	0.384	0.459
	720	0.407	0.532	0.368	0.469	0.656	1.002	0.356	0.448	0.401	0.490
Weather	96	0.249	0.180	0.220	0.181	0.299	0.221	0.210	0.172	0.265	0.199
	168	0.284	0.237	0.259	0.218	0.363	0.320	0.250	0.211	0.305	0.245
	336	0.344	0.304	0.298	0.278	0.439	0.437	0.301	0.270	0.341	0.310
	720	0.380	0.358	0.346	0.343	0.496	0.524	0.366	0.349	0.383	0.371

344
345
346 datasets. The framework reduces the average prediction error by up to 15.92% in MAE and 20.72%
347 in MSE, confirming its effectiveness in mitigating the adverse effects of non-stationarity.

348 A key observation is that the performance improvement is particularly pronounced in long-term fore-
349 casting scenarios. For instance, when applied to the Informer backbone, the error reduction escalates
350 with the prediction horizon, underscoring the framework’s capability to preserve long-range tempo-
351 ral dependencies. This enhanced long-term performance is attributed to a virtuous cycle created by
352 Dual-AN: by providing a more stable, stationary input, it enables the backbone model to learn more
353 generalizable temporal patterns, which in turn prevents the error accumulation that typically plagues
354 long-horizon forecasts in non-stationary series. These findings highlight the efficacy of the proposed
355 hierarchical normalization approach, especially for challenging long-horizon forecasting tasks.

356 4.3 COMPARATIVE EXPERIMENTS WITH EXISTING NORMALIZATION METHODS

357
358 To benchmark Dual-AN against its direct peers, we compare it with leading model-agnostic nor-
359 malization frameworks designed for non-stationarity: FAN Ye et al. (2024), SAN Liu et al. (2023c),
360 Dish-TS Fan et al. (2023), and RevIN Kim et al. (2021). Table 2 summarizes the resulting MAE
361 scores across all settings.

362
363 Table 2: Averaged MAE performance compared with other normalization methods. The best per-
364 formance is highlighted in red and the second best performance is underlined. Please see Table 11
365 in the Appendix D.2 for full results.

Models Methods	DLinear				Informer				SCI-Net						
	Dual-AN	FAN	SAN	Dish-TS	RevIN	Dual-AN	FAN	SAN	Dish-TS	RevIN	Dual-AN	FAN	SAN	Dish-TS	RevIN
ETTh1	0.484	0.484	0.495	0.496	0.498	0.485	0.502	0.582	0.640	0.616	0.487	0.485	0.493	0.514	0.496
ETTh2	0.257	0.257	0.260	0.262	0.268	0.276	0.301	0.324	0.376	0.329	0.258	0.262	0.264	0.291	0.271
ETTm1	0.439	0.440	0.439	0.447	0.457	0.444	0.444	0.470	0.524	0.509	0.438	0.440	0.441	0.463	0.476
ETTm2	0.231	0.231	0.231	0.237	0.238	0.235	0.237	0.241	0.284	0.259	0.231	0.230	0.229	0.249	0.236
Electricity	0.284	0.286	0.300	0.297	0.290	0.267	0.269	0.303	0.329	0.295	0.271	0.277	0.284	0.310	0.267
Exchange	0.268	0.272	0.287	0.360	0.305	0.278	0.295	0.353	0.485	0.349	0.275	0.282	0.290	0.386	0.300
Traffic	0.345	0.347	0.414	0.451	0.484	0.334	0.341	0.407	0.371	0.575	0.342	0.355	0.359	0.402	0.369
Weather	0.281	0.278	0.289	0.319	0.269	0.282	0.287	0.292	0.346	0.277	0.272	0.277	0.285	0.293	0.268
Count (1 st)	7	<u>3</u>	2	0	1	7	<u>1</u>	0	0	<u>1</u>	4	1	1	0	<u>2</u>

373
374 Dual-AN demonstrates superior performance across most datasets, with the notable exception of
375 the Weather dataset. Here, RevIN Kim et al. (2021) excels, an insightful finding we attribute to
376 this dataset’s very weak trend and seasonality (see Appendix B.1). In such scenarios, the benefits
377 of frequency decomposition are marginal, making simpler, moment-based normalization sufficient.
378 This highlights a key characteristic: Dual-AN’s strength is most pronounced on series with complex,

378 multi-scale non-stationarity, a common trait in real-world applications. Additionally, we observe a
 379 slightly diminished gain on the SCINet Liu et al. (2022a) backbone, likely due to an overlap between
 380 its sub-sequence decomposition and SWAN’s focus on local patterns.

381 As shown in Table 2, Dual-AN reduces the average MAE by 1.50% (vs. FAN), 6.30% (vs. SAN),
 382 14.17% (vs. Dish-TS), and 8.79% (vs. RevIN). Excluding the Weather dataset, these improvements
 383 are even more significant, reaffirming the strong and consistent performance of our framework.
 384

385 **To further illustrate the superiority of the proposed Dual-AN method, we compare it with state-of-
 386 the-art plug-in methods Kang et al. (2024); Dai et al. (2024); Sun et al. (2025); Yang et al. (2025);
 387 Kim et al. (2025) in Table 3 with the average MAE/MSE reduction rate of 15.78%/37.68% (vs.
 388 DDN), 15.60%/36.85% (vs. HCAN), 17.30%/35.12% (vs. BSA), 12.17%/35.36% (vs. SCAM), and
 389 17.81%/33.55% (vs. TAFAS).**

390 **Table 3: Full results of the comparison of Dual-AN with other state-of-the-art plug-in methods on**
 391 **ETTh1, ETTh2, ETTm2, Exchange Rate and Traffic datasets using iTransformer as the backbone.**
 392 **The best performance is highlighted in red and the second best performance is underlined.**

394 Datasets	395 Horizons	396 Metrics	397 iTransformer	398 +Dual-AN	399 +DDN	400 +HCAN	401 +BSA	402 +SCAM	403 +TAFAS
ETTh1	96	MAE	0.444	0.426	0.399	0.402	0.443	0.401	0.443
		MSE	0.378	0.362	0.388	0.379	0.428	<u>0.373</u>	0.438
		MAE	0.489	0.452	<u>0.434</u>	0.427	0.481	0.436	0.489
		MSE	0.431	0.395	<u>0.446</u>	<u>0.432</u>	0.481	<u>0.432</u>	0.492
	192	MAE	0.533	0.486	0.462	0.454	0.521	<u>0.455</u>	0.532
		MSE	0.511	0.441	0.496	0.489	0.538	<u>0.466</u>	0.554
		MAE	0.64	0.569	0.499	0.474	0.62	0.466	0.627
		MSE	0.669	0.574	0.527	<u>0.504</u>	0.698	0.455	0.704
	336	MAE	0.255	0.237	0.345	0.343	0.324	0.342	0.329
		MSE	0.122	0.111	0.297	0.282	<u>0.235</u>	0.293	0.239
		MAE	0.282	0.252	0.397	0.381	<u>0.362</u>	0.393	0.362
		MSE	0.148	0.128	0.382	0.373	0.29	0.373	0.287
	720	MAE	0.3	0.264	0.431	0.426	0.388	0.429	0.386
		MSE	0.167	0.139	0.419	0.42	0.327	0.417	0.326
		MAE	0.362	0.279	0.446	0.435	0.439	0.442	0.425
		MSE	0.482	0.155	0.426	0.423	0.414	0.424	0.393
ETTh2	96	MAE	0.203	0.199	0.265	0.264	0.259	0.264	0.263
		MSE	0.078	0.078	0.181	0.183	<u>0.153</u>	0.179	0.157
		MAE	0.239	0.222	0.303	0.312	0.29	0.302	0.292
		MSE	0.103	0.095	0.246	0.242	0.189	0.241	0.192
	192	MAE	0.247	0.243	0.342	0.355	<u>0.321</u>	0.343	0.324
		MSE	0.114	0.114	0.306	0.306	0.23	0.305	0.235
		MAE	0.277	0.264	0.397	0.401	0.369	0.4	0.366
		MSE	0.144	0.139	0.406	0.41	0.304	0.406	<u>0.301</u>
	336	MAE	0.203	0.199	0.265	0.264	0.259	0.264	0.263
		MSE	0.078	0.078	0.181	0.183	<u>0.153</u>	0.179	0.157
		MAE	0.239	0.222	0.303	0.312	0.29	0.302	0.292
		MSE	0.103	0.095	0.246	0.242	0.189	0.241	0.192
	720	MAE	0.247	0.243	0.342	0.355	<u>0.321</u>	0.343	0.324
		MSE	0.114	0.114	0.306	0.306	0.23	0.305	0.235
		MAE	0.277	0.264	0.397	0.401	0.369	0.4	0.366
		MSE	0.144	0.139	0.406	0.41	0.304	0.406	<u>0.301</u>
ETTm2	96	MAE	0.212	0.164	0.202	0.204	0.211	-	0.208
		MSE	0.081	0.051	<u>0.084</u>	0.084	0.09	-	0.084
		MAE	0.331	0.238	0.297	0.302	0.307	-	0.293
		MSE	0.184	0.102	0.175	0.179	0.185	-	0.165
	192	MAE	0.504	0.324	0.41	0.415	0.43	-	0.389
		MSE	0.398	0.178	0.321	0.322	0.346	-	0.28
		MAE	0.671	0.465	0.7	0.761	0.7	-	0.665
		MSE	0.747	0.331	0.859	0.995	0.861	-	0.773
	336	MAE	0.3	0.297	0.271	0.262	0.273	0.247	0.289
		MSE	0.338	0.349	0.425	0.383	0.393	<u>0.374</u>	0.42
		MAE	0.313	0.294	0.28	<u>0.273</u>	0.281	0.259	0.296
		MSE	0.362	0.353	0.446	0.411	0.417	<u>0.399</u>	0.441
	720	MAE	0.319	0.3	0.291	0.279	0.29	0.269	0.305
		MSE	0.375	0.364	0.459	<u>0.42</u>	0.433	<u>0.419</u>	0.458
		MAE	0.338	0.326	0.311	0.296	0.31	0.291	-
		MSE	0.403	0.395	0.5	<u>0.449</u>	0.47	0.451	-
Count(1st)			-	31	1	2	0	6	0

4.4 ABLATION STUDY

424 This section evaluates the effectiveness of the two core components of the Dual-AN method, SWAN
 425 and SPM. We compare two ablation variants against Dual: “w/o SWAN” removes the sliding window
 426 adaptive normalization (SWAN) module, rendering the statistical prediction module (SPM)
 427 inactive due to the absence of statistical indicators; “w/o SPM” removes the statistical prediction
 428 module (SPM), instead using the original statistics of the inputs directly as the statistical indicators
 429 for de-normalization. Experiments are conducted on ETTh1 and Electricity datasets using Informer
 430 and SCINet as backbones, respectively, with MAE and MSE results summarized in Table 4.
 431

432 Table 4: MAE and MSE indicators of ablation studies. The best results are highlighted in **bold**.
433

434 435 Models	436 Metrics	437 ETTh1				438 Electricity			
		96	168	336	720	96	168	336	720
439 Dual-AN	MAE	0.431	0.446	0.493	0.579	0.254	0.256	0.272	0.303
	MSE	0.365	0.386	0.452	0.589	0.159	0.160	0.169	0.194
440 w/o SWAN	MAE	0.434	0.465	0.507	0.602	0.258	0.258	0.278	0.312
	MSE	0.367	0.407	0.467	0.617	0.165	0.163	0.175	0.204
441 w/o SPM	MAE	0.441	0.472	0.513	0.604	0.264	0.262	0.280	0.305
	MSE	0.381	0.418	0.473	0.617	0.170	0.166	0.177	0.199

442
443 The results demonstrate that Dual-AN consistently achieves the best performance across all ablation
444 variants, confirming the importance of both the SWAN and SPM modules proposed in this study.
445 The ablation variant w/o SWAN ranks second, slightly outperforming the variant w/o SPM. This
446 performance gap stems from the fact that statistical indicators derived directly from the original
447 time series fail to accurately capture future trends, leading to suboptimal de-normalization and thus
448 degrading forecasting performance.

450 4.5 MODEL ANALYSIS

451 In this section, we discuss and analyze the parameters of the model, including the lookback length,
452 horizon length, and the hyperparameter sliding window size.

454 455 4.5.1 LOOKBACK AND HORIZON ANALYSIS

456 We analyze the effects of the lookback and horizon lengths on the forecasting performance of
457 Dual-AN on the Exchange Rate dataset on Informer and SCINet backbones, respectively, com-
458 pared with FAN, which is the current state-of-the-art (SOTA) normalization method. We il-
459 lustrate the experimental results in Figure 3, and the lookback and horizon lengths are set to
460 $L \in \{48, 72, 96, 120, 144, 168\}$ and $H \in \{270, 336, 420, 540, 600, 720\}$, while keeping $H = 96$
461 and $L = 96$ respectively.

474 Figure 3: The MSE indicator of Dual-AN and FAN under different lookback and horizon settings.
475 Please see Table 12 in the Appendix D.2 for full results.

477 As shown in Figure 3, Dual-AN consistently outperforms FAN across all lookback and horizon
478 lengths. Notably, as the prediction horizon increases from 270 steps to 720 steps, the improvement
479 gains of Dual-AN over FAN gradually increases with the reduction rate of MSE rising from 5.63%
480 to 7.69%, which demonstrates the significant advantages of Dual-AN with the characteristics of
481 coordinating time and frequency domains, especially in long-term time series forecasting.

483 484 4.5.2 CANDIDATE WINDOW SIZE

485 In the sliding window adaptive normalization (SWAN) module of our Dual-AN method, the size of
the sliding window is a critical hyperparameter. In order to illustrate the rigor of the experiments

in this paper, we rigorously evaluate the impact of different window sizes on our method. We conduct experiments on the ETTm2 dataset using the DLinear backbone for the hyperparameter sliding window size. Since the lookback length is set to $L = 96$, we test 5 reasonable candidate window sizes $W_{exp} \in \{6, 12, 24, 48, 72\}$, and record the MAE and MSE indicators in Table 5.

Table 5: MAE and MSE indicators of the different window sizes. The best results are highlighted in **bold**.

Window Size	6		12		24		48		72	
Metrics	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE
96	0.19876	0.07819	0.19871	0.07813	0.19887	0.07812	0.19884(4)	0.07805	0.19883(7)	0.07822
168	0.21911	0.09329(0)	0.21893	0.09329(1)	0.21896	0.09325	0.21983	0.09367	0.21899	0.09327
336	0.24262	0.11430	0.24252	0.11431	0.24286	0.11447	0.24153	0.11310	0.24275	0.11436
720	0.26464	0.13932	0.26448	0.13939	0.26446	0.13940	0.26450	0.13929	0.26455	0.13934
Count (1 st)	0	0	2	0	1	1	1	3	0	0

Experimental results show optimal performance is achieved with window sizes $W \in \{12, 24, 48\}$, a range adopted for the main experiments in Section 3.1. This range effectively balances the trade-off between capturing sufficient context and preserving local temporal patterns. Moreover, the low performance variance across these optimal window sizes highlights Dual-AN’s robustness to this hyperparameter choice. [For more discussion of the window size selection, please refer to Appendix F.](#)

4.5.3 VISUALIZATIONS

Figure 4 visualizes the performance gains of Dual-AN over the Informer backbone. The baseline model frequently fails to capture local extrema, a shortcoming that Dual-AN effectively addresses. This corrective capability is especially pronounced in long-horizon forecasting ($H = 720$), where the framework’s advantage is most evident. Further visual comparisons are available in Appendix E.

Figure 4: The visual forecasting results of backbone (Informer) and Dual-AN on the Weather dataset across 4 different prediction lengths.

5 CONCLUSION

In this paper, we propose Dual-AN, a general framework that synergizes time and frequency domains to address non-stationarity in time series forecasting. Its core components, the sliding window adaptive normalization (SWAN) and the statistical prediction module (SPM), respectively eliminate local residual non-stationarity and predict future statistics for de-normalization. Extensive experiments demonstrate that Dual-AN consistently enhances three backbone models, achieving state-of-the-art (SOTA) performance over existing normalization methods. Its feasibility as a lightweight, efficient plug-in is confirmed by a formal complexity analysis (Appendix I). For reproducibility, all source code and data are detailed in Section 6. Limitations and potential future directions are discussed in Appendix K.

540 **6 REPRODUCIBILITY STATEMENT**
541542 In full compliance with double-blind review guidelines, we have taken extensive measures to en-
543 sure the reproducibility of our work. All source code and data from this study have been uploaded
544 to the supplementary materials and have been made publicly available in an anonymous reposi-
545 tory: <https://anonymous.4open.science/r/Dual-AN>. We have also included instructions for running
546 the code and reproducing the results in the README file. Furthermore, all of these will be publicly
547 released on GitHub immediately after the review process is completed to ensure reproducibility and
548 facilitate future research in the broader field of time series forecasting.
549550 **7 ETHICS STATEMENT**
551552 We affirm that this work adheres to the ICLR Code of Ethics. All datasets used in this study are
553 publicly available and widely accepted in the time series forecasting community. We conducted no
554 human subject experiments, and all data are anonymized and aggregated, posing no privacy or secu-
555 rity risks. Our proposed method, Dual-AN, is a general forecasting framework and does not target
556 sensitive or high-risk applications. However, we acknowledge that time series forecasting models
557 can potentially be misapplied in domains such as surveillance, financial manipulation, or discrimi-
558 natory decision-making. We strongly discourage any such misuse. The research was conducted with
559 integrity, and we declare no conflicts of interest. All authors have read and complied with the ICLR
560 Code of Ethics.
561562 **REFERENCES**563
564 Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detection. *arXiv preprint*
565 *arXiv:0710.3742*, 2007.
566 Andrea L Bertozzi, Elisa Franco, George Mohler, Martin B Short, and Daniel Sledge. The challenges
567 of modeling and forecasting the spread of covid-19. *Proceedings of the National Academy of*
568 *Sciences*, 117(29):16732–16738, 2020.
569 George EP Box and Gwilym M Jenkins. Some recent advances in forecasting and control. *Journal*
570 *of the Royal Statistical Society. Series C (Applied Statistics)*, 17(2):91–109, 1968.
571 E Oran Brigham. *The fast Fourier transform and its applications*. Prentice-Hall, Inc., 1988.
572 Defu Cao, Yousef El-Laham, Loc Trinh, Svitlana Vyetrenko, and Yan Liu. A synthetic limit order
573 book dataset for benchmarking forecasting algorithms under distributional shift. In *NeurIPS 2022*
574 *Workshop on Distribution Shifts: Connecting Methods and Applications*, 2022.
575
576 Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler
577 Canseco, and Artur Dubrawski. Nhits: Neural hierarchical interpolation for time series forecast-
578 ing. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 6989–6997,
579 2023.
580
581 Yuxin Chen, Hao Wang, and Zizhao Liu. A joint time-frequency domain transformer for multivariate
582 time series forecasting. *arXiv preprint arXiv:2306.02352*, 2023.
583
584 Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
585 ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
586 for statistical machine translation. *arXiv preprint arXiv:1406.1078*, 2014.
587
588 Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
589 gated recurrent neural networks on sequence modeling. *arXiv preprint arXiv:1412.3555*, 2014.
590
591 Robert B Cleveland, William S Cleveland, Jean E McRae, Irma Terpenning, et al. Stl: A seasonal-
592 trend decomposition. *J. off. Stat*, 6(1):3–73, 1990.
593
594 Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Xue Yuerong, Shu-Tao Xia, and Zexuan Zhu. Ddn:
595 Dual-domain dynamic normalization for non-stationary time series forecasting. *Advances in Neu-*
596 *ral Information Processing Systems*, 37:108490–108517, 2024.

594 Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
595 forecasting with tide: Time-series dense encoder. *arXiv preprint arXiv:2304.08424*, 2023.

596

597 Shohreh Deldari, Daniel V Smith, Hao Xue, and Flora D Salim. Time series change point detection
598 with self-supervised contrastive predictive coding. In *Proceedings of the web conference 2021*,
599 pp. 3124–3135, 2021.

600 Jinliang Deng, Xiusi Chen, Renhe Jiang, Xuan Song, and Ivor W Tsang. St-norm: Spatial and
601 temporal normalization for multi-variate time series forecasting. In *Proceedings of the 27th ACM
602 SIGKDD conference on knowledge discovery & data mining*, pp. 269–278, 2021.

603

604 Yuntao Du, Jindong Wang, Wenjie Feng, Sinno Pan, Tao Qin, Renjun Xu, and Chongjun Wang.
605 Adarnn: Adaptive learning and forecasting of time series. In *Proceedings of the 30th ACM inter-
606 national conference on information & knowledge management*, pp. 402–411, 2021.

607

608 Alireza Ermagun and David Levinson. Spatiotemporal traffic forecasting: review and proposed
609 directions. *Transport Reviews*, 38(6):786–814, 2018.

610

611 Wei Fan, Pengyang Wang, Dongkun Wang, Dongjie Wang, Yuanchun Zhou, and Yanjie Fu. Dish-ts:
612 a general paradigm for alleviating distribution shift in time series forecasting. In *Proceedings of
613 the AAAI conference on artificial intelligence*, volume 37, pp. 7522–7529, 2023.

614

615 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
616 MIT press Cambridge, 2016.

617

618 Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time
619 series forecasting: Current status and future directions. *International Journal of Forecasting*, 37
620 (1):388–427, 2021.

621

622 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
623 1735–1780, 1997.

624

625 Tao Hong, Pierre Pinson, Yi Wang, Rafał Weron, Dazhi Yang, and Hamidreza Zareipour. Energy
626 forecasting: A review and outlook. *IEEE Open Access Journal of Power and Energy*, 7:376–388,
627 2020.

628

629 Rob J Hyndman and George Athanasopoulos. *Forecasting: principles and practice*. OTexts, 2018.

630

631 Michael I Jordan. Serial order: A parallel distributed processing approach. In *Advances in psychol-
632 ogy*, volume 121, pp. 471–495. Elsevier, 1997.

633

634 Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

635

636 Bong Gyun Kang, Dongjun Lee, HyunGi Kim, DoHyun Chung, and Sungroh Yoon. Introducing
637 spectral attention for long-range dependency in time series forecasting. *Advances in Neural In-
638 formation Processing Systems*, 37:136509–136544, 2024.

639

640 HyunGi Kim, Siwon Kim, Jisoo Mok, and Sungroh Yoon. Battling the non-stationarity in time
641 series forecasting via test-time adaptation. In *Proceedings of the AAAI Conference on Artificial
642 Intelligence*, volume 39, pp. 17868–17876, 2025.

643

644 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
645 versible instance normalization for accurate time-series forecasting against distribution shift. In
646 *International conference on learning representations*, 2021.

647

648 Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. *arXiv
649 preprint arXiv:2001.04451*, 2020.

650

651 Kun Kuang, Ruoxuan Xiong, Peng Cui, Susan Athey, and Bo Li. Stable prediction with model mis-
652 specification and agnostic distribution shift. In *Proceedings of the AAAI Conference on Artificial
653 Intelligence*, volume 34, pp. 4485–4492, 2020.

654

655 Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. Revisiting
656 time series outlier detection: Definitions and benchmarks. In *Thirty-fifth conference on neural
657 information processing systems datasets and benchmarks track (round 1)*, 2021.

648 Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal convolutional
 649 networks for action segmentation and detection. In *proceedings of the IEEE Conference on*
 650 *Computer Vision and Pattern Recognition*, pp. 156–165, 2017.

651

652 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 653 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 2002.

654

655 Audeliano Wolian Li and Guilherme Sousa Bastos. Stock market forecasting using deep learning
 656 and technical analysis: a systematic review. *IEEE access*, 8:185232–185242, 2020.

657

658 Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Seg-
 659 rn: Segment recurrent neural network for long-term time series forecasting. *arXiv preprint*
 660 *arXiv:2308.11200*, 2023.

661

662 Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
 663 Time series modeling and forecasting with sample convolution and interaction. *Advances in*
 664 *Neural Information Processing Systems*, 35:5816–5828, 2022a.

665

666 Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
 667 Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
 668 casting. In # *PLACEHOLDER_PARENT_METADATA_VALUE*#, 2022b.

669

670 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
 671 the stationarity in time series forecasting. *Advances in neural information processing systems*, 35:
 672 9881–9893, 2022c.

673

674 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 675 itransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint*
 676 *arXiv:2310.06625*, 2023a.

677

678 Yong Liu, Chenyu Li, Jianmin Wang, and Mingsheng Long. Koopa: Learning non-stationary time
 679 series dynamics with koopman predictors. *Advances in neural information processing systems*,
 680 36:12271–12290, 2023b.

681

682 Zhiding Liu, Mingyue Cheng, Zhi Li, Zhenya Huang, Qi Liu, Yanhu Xie, and Enhong Chen. Adap-
 683 tive normalization for non-stationary time series forecasting: A temporal slice perspective. *Ad-*
 684 *vances in Neural Information Processing Systems*, 36:14273–14292, 2023c.

685

686 Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition: Re-
 687 sults, findings, conclusion and way forward. *International Journal of forecasting*, 34(4):802–808,
 688 2018.

689

690 Steve Sang-Cheol Moon. Missions from korea 2013: Microtrends and finance. *International Bul-*
 691 *letin of Missionary Research*, 37(2):96–98, 2013.

692

693 Md Mahmuddun Nabi Murad, Mehmet Aktukmak, and Yasin Yilmaz. Wpmixer: Efficient multi-
 694 resolution mixing for long-term time series forecasting. In *Proceedings of the AAAI Conference*
 695 *on Artificial Intelligence*, volume 39, pp. 19581–19588, 2025.

696

697 Allan H Murphy and Robert L Winkler. Probability forecasting in meteorology. *Journal of the*
 698 *American Statistical Association*, 79(387):489–500, 1984.

699

700 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 701 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022.

702

703 Isaac Kofi Nti, Moses Teimeh, Owusu Nyarko-Boateng, and Adebayo Felix Adekoya. Electricity
 704 load forecasting: a systematic review. *Journal of Electrical Systems and Information Technology*,
 705 7(1):13, 2020.

706

707 Eduardo Ogasawara, Leonardo C Martinez, Daniel De Oliveira, Geraldo Zimbrão, Gisele L Pappa,
 708 and Marta Mattoso. Adaptive normalization: A novel data normalization approach for non-
 709 stationary time series. In *The 2010 International Joint Conference on Neural Networks (IJCNN)*,
 710 pp. 1–8. IEEE, 2010.

702 Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
 703 expansion analysis for interpretable time series forecasting. *arXiv preprint arXiv:1905.10437*,
 704 2019.

705 Nikolaos Passalis, Anastasios Tefas, Juho Kannainen, Moncef Gabbouj, and Alexandros Iosifidis.
 706 Deep adaptive input normalization for time series forecasting. *IEEE transactions on neural net-
 707 works and learning systems*, 31(9):3760–3765, 2019.

708 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 709 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 710 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

711 Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, Devon K
 712 Barrow, Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J Bessa, Jakub Bijak, John E Boylan,
 713 et al. Forecasting: theory and practice. *International Journal of forecasting*, 38(3):705–871,
 714 2022.

715 Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen. A spatiotemporal weighted regression model
 716 (stwrv1. 0) for analyzing local non-stationarity in space and time. *Geoscientific Model Develop-
 717 ment Discussions*, 2020:1–33, 2020.

718 Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization
 719 in the brain. *Psychological review*, 65(6):386, 1958.

720 David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
 721 casting with autoregressive recurrent networks. *International journal of forecasting*, 36(3):1181–
 722 1191, 2020.

723 Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of lstm and bilstm
 724 in forecasting time series. In *2019 IEEE International conference on big data (Big Data)*, pp.
 725 3285–3292. IEEE, 2019.

726 Slawek Smyl. A hybrid method of exponential smoothing and recurrent neural networks for time
 727 series forecasting. *International journal of forecasting*, 36(1):75–85, 2020.

728 Yanru Sun, Zongxia Xie, Dongyue Chen, Emadeldeen Eldele, and Qinghua Hu. Hierarchical classi-
 729 fication auxiliary network for time series forecasting. In *Proceedings of the AAAI Conference on
 730 Artificial Intelligence*, volume 39, pp. 20743–20751, 2025.

731 Sean J Taylor and Benjamin Letham. Forecasting at scale. *The American Statistician*, 72(1):37–45,
 732 2018.

733 Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
 734 gredient for fast stylization. *arXiv preprint arXiv:1607.08022*, 2016.

735 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 736 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 737 tion processing systems*, 30, 2017.

738 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-
 739 scale local and global context modeling for long-term series forecasting. In *The eleventh interna-
 740 tional conference on learning representations*, 2023.

741 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
 742 and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. *arXiv
 743 preprint arXiv:2405.14616*, 2024a.

744 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
 745 min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
 746 with exogenous variables. *Advances in Neural Information Processing Systems*, 37:469–498,
 747 2024b.

756 Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive
 757 learning of disentangled seasonal-trend representations for time series forecasting. *arXiv preprint*
 758 *arXiv:2202.01575*, 2022a.

759 Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
 760 smoothing transformers for time-series forecasting. *arXiv preprint arXiv:2202.01381*, 2022b.

762 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 763 formers with auto-correlation for long-term series forecasting. *Advances in neural information*
 764 *processing systems*, 34:22419–22430, 2021.

765 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
 766 poral 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*,
 767 2022a.

769 Haixu Wu, Jianmin Xu, Jian Wang, and Mingsheng Long. Wavelet-based neural network for time
 770 series forecasting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2022b.

772 Peng Xu and Xiatian Zhu. Deepchange: A long-term person re-identification benchmark with
 773 clothes change. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 774 pp. 11196–11205, 2023.

775 Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. *arXiv*
 776 *preprint arXiv:2307.03756*, 2023.

778 Yuxuan Yang, Dalin Zhang, Yuxuan Liang, Hua Lu, Gang Chen, and Huan Li. Not all data
 779 are good labels: On the self-supervised labeling for time series forecasting. *arXiv preprint*
 780 *arXiv:2502.14704*, 2025.

781 Weiwei Ye, Songgaojun Deng, Qiaosha Zou, and Ning Gui. Frequency adaptive normalization for
 782 non-stationary time series forecasting. *Advances in Neural Information Processing Systems*, 37:
 783 31350–31379, 2024.

785 Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Long-
 786 bing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series
 787 forecasting. *Advances in Neural Information Processing Systems*, 36:76656–76679, 2023.

788 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 789 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 790 11121–11128, 2023.

791 G Peter Zhang. Time series forecasting using a hybrid arima and neural network model. *Neurocom-
 792 puting*, 50:159–175, 2003.

794 T Zhang, Y Zhang, W Cao, J Bian, X Yi, S Zheng, and J Li. Less is more: Fast multivariate
 795 time series forecasting with light sampling-oriented mlp structures. *arxiv* 2022. *arXiv preprint*
 796 *arXiv:2207.01186*.

797 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 798 for multivariate time series forecasting. In *The eleventh international conference on learning*
 799 *representations*, 2023.

801 Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon Zhao. Time series classification using multi-
 802 channels deep convolutional neural networks. In *International conference on web-age information*
 803 *management*, pp. 298–310. Springer, 2014.

804 Zuduo Zheng, Soyoung Ahn, Danjue Chen, and Jorge Laval. Applications of wavelet transform for
 805 analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations. *Transportation*
 806 *Research Part B: Methodological*, 45(2):372–384, 2011.

808 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 809 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
 of the *AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

810
811 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
812 enhanced decomposed transformer for long-term series forecasting. In *International conference*
813 *on machine learning*, pp. 27268–27286. PMLR, 2022.
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 A PRELIMINARIES

866 In this section, we introduce the basics of this study from the aspects of multivariate time series fore-
 867 casting, trend variation and seasonality variation, Fast Fourier Transform (FFT), Discrete Fourier
 868 Transform (DFT) and Inverse Discrete Fourier Transform (IDFT), and the frequency adaptive nor-
 869 malization (FAN) method Ye et al. (2024).

871 A.1 MULTIVARIATE TIME SERIES FORECASTING

873 As for the multivariate time series forecasting, we denote multiple time series as $\mathbf{X}_t \in \mathbb{R}^{N \times L}$,
 874 where N is the number of variables of the time series and each time series has a lookback length
 875 of L at timestamp t . Then we use the forecasting model \mathcal{F} to predict the future time series
 876 $(\hat{\mathbf{X}}_{t+1}, \hat{\mathbf{X}}_{t+2}, \dots, \hat{\mathbf{X}}_{t+H})$ based on the historical time series $(\mathbf{X}_{t-L+1}, \mathbf{X}_{t-L+2}, \dots, \mathbf{X}_t)$, where H
 877 is the horizon length of the future time series. Therefore, we can formulate the multivariate time
 878 series forecasting problem as follows:

$$879 \hat{(\mathbf{X}_{t+1}, \mathbf{X}_{t+2}, \dots, \mathbf{X}_{t+H})} = \mathcal{F}_{\Theta}(\mathbf{X}_{t-L+1}, \mathbf{X}_{t-L+2}, \dots, \mathbf{X}_t) \quad (14)$$

880 where Θ is the parameters of the forecasting model \mathcal{F} .

882 A.2 TREND AND SEASONALITY VARIATIONS

884 In order to better describe the properties of the datasets, we need to calculate the trend variation and
 885 seasonality variation.

886 **Trend Variation.** To capture the global trend change, we calculate the average value of different
 887 regions of the dataset. With a time series dataset $\mathbf{X} \in \mathbb{R}^{N \times L}$, where N is the number of inputs
 888 and L is the lookback length, we first split it into \mathbf{X}_{train} , \mathbf{X}_{val} , and \mathbf{X}_{test} in chronological order,
 889 representing the training dataset, validation dataset, and test dataset, respectively. Then, the trend
 890 variation is calculated as follows:

$$891 \text{Trend Variation} = \left| \frac{\text{Mean}_N(\mathbf{X}_{train}) - \text{Mean}_N(\mathbf{X}_{val,test})}{\text{Mean}_N(\mathbf{X}_{train})} \right| \quad (15)$$

893 where $\mathbf{X}_{val,test}$ represents the concatenation of the validation set and the test set. It should be
 894 noted that in order to obtain relative results between different datasets, the trend changes need to be
 895 normalized by dividing by the mean of the training dataset.

896 **Seasonality Variation.** We evaluate seasonal changes by analyzing the Fourier frequency changes
 897 of all input instances. Given an input $\mathbf{X} \in \mathbb{R}^{N_i \times L}$, where N_i is the number of inputs and L is the
 898 lookback length. We first obtain the FFT results of all inputs, denoted as $Z \in \mathbb{C}^{N_i \times L}$. Then, we
 899 calculate the variance between different inputs and normalize the variance by dividing by the mean
 900 of each input, as follows:

$$901 \text{Seasonality Variation} = \frac{\text{Var}_{N_i}[\text{Amp}(Z)]}{\text{Mean}_L(X)} \quad (16)$$

902 where the subscripts indicate the dimension of the operation process.

904 A.3 FAST FOURIER TRANSFORM (FFT)

906 In time series forecasting, Fast Fourier Transform (FFT) is often used for frequency domain analysis
 907 Brigham (1988). Here, we perform FFT decomposition on the time series $\mathbf{X}_t (t = 0, 1, \dots, L-1)$
 908 of length L and obtain the frequency domain coefficients:

$$909 \mathbf{X}_k = \sum_{t=0}^{L-1} x_t \cdot e^{-i2\pi kt/L}, \quad (17)$$

912 where $k = 0, 1, \dots, L-1$ and \mathbf{X}_k is a complex number consisting of amplitude \mathbf{A}_k and phase ϕ_k :

$$913 \mathbf{X}_k = \mathbf{A}_k e^{i\phi_k}, \quad (18)$$

$$914 \mathbf{A}_k = |\mathbf{X}_k|, \quad (19)$$

$$916 \phi_k = \arg(\mathbf{X}_k). \quad (20)$$

917 where $|\cdot|$ represents the absolute value operation and $\arg(\cdot)$ is the argument function of a complex
 918 number, which is used to calculate the phase angle of a complex number in the complex plane.

918 A.4 DISCRETE FOURIER TRANSFORM (DFT) AND IDFT PROCESS
919

920 Based on Section A.3, we introduce the Discrete Fourier Transform (DFT) process and Inverse
921 Discrete Fourier Transform (IDFT) process that can be implemented by Fast Fourier Transform
922 (FFT) Brigham (1988). Given a multivariate time series input \mathbf{X} , we perform a 1-dim Fourier
923 transform on each dimension $\mathbf{X}^{(i)}$ separately, so we illustrate it in vector form. For a discrete time
924 series vector $\mathbf{X} \in \mathbb{R}^L$ with the lookback length of L , we transform it to the Fourier domain by
925 applying a 1-dim DFT, and then we can also transform it back to the Fourier domain using a 1-dim
926 IDFT, which is defined as:

$$927 \text{DFT} : \mathbf{Z}[\omega] = \sum_{t=0}^{L-1} \mathbf{X}[t] \cdot e^{-2\pi i \frac{\omega t}{L}} \quad (21)$$

$$930 \text{IDFT} : \mathbf{X}[t] = \frac{1}{L} \sum_{\omega=0}^{T-1} \mathbf{Z}[\omega] \cdot e^{2\pi i \frac{\omega t}{L}} \quad (22)$$

932 where ω is the current frequency, t is the current time step, and \mathbf{Z} is the result of the Fourier trans-
933 form, which is a complex vector containing real and imaginary parts. Its amplitude and phase can
934 be calculated as follows:

$$935 \text{Mag} : \mathbf{a}[\omega] = \frac{\sqrt{\text{Re}(\mathbf{Z}[\omega])^2 + \text{Im}(\mathbf{Z}[\omega])^2}}{L} \quad (23)$$

$$938 \text{Pha} : \mathbf{p}[\omega] = \text{atan} 2(\text{Im}(\mathbf{Z}[\omega]), \text{Re}(\mathbf{Z}[\omega])) \quad (24)$$

939 where $\text{Im}(\mathbf{Z}[\cdot])$ and $\text{Re}(\mathbf{Z}[\cdot])$ represent the imaginary and real parts of the complex number, respec-
940 tively, and $\text{atan} 2$ is the two-argument form of \arctan .

941 A.5 FREQUENCY ADAPTIVE NORMALIZATION (FAN) METHOD
942

943 In this section, we briefly introduce the frequency adaptive normalization (FAN) method Ye et al.
944 (2024). Please refer to the original paper Ye et al. (2024) for specific related functions and variable
945 names.

946 At each time step, FAN Ye et al. (2024) first removes the first K dominant components in the
947 frequency domain for each input instance. This process is called frequency residual learning (FRL),
948 and then removes \mathbf{X}_{non} from the original sequence to obtain the stationary component \mathbf{X}_{res} :
949

$$951 \mathbf{Z} = \text{DFT}(\mathbf{X}), \quad (25)$$

$$952 \mathcal{K} = \text{TopK}(\text{Amp}(\mathbf{Z})), \quad (26)$$

$$954 \mathbf{X}_{non} = \text{IDFT}(\text{Filter}(\mathcal{K}, \mathbf{Z})), \quad (27)$$

$$955 \mathbf{X}_{res} = \mathbf{X} - \mathbf{X}_{non}, \quad (28)$$

956 The DFT and IDFT processes can be implemented using Fast Fourier Transform (FFT). Afterwards,
957 the prediction backbone g_θ uses the stationary component \mathbf{X}_{res} to forecast the stationary part of the
958 output $\hat{\mathbf{Y}}_{res}$ and then reintegrates the removed non-stationary information into the output:
959

$$961 \hat{\mathbf{Y}}_{res} = g_\theta(\mathbf{X}_{res}), \quad (29)$$

$$963 \hat{\mathbf{Y}} = \hat{\mathbf{Y}}_{res} + \hat{\mathbf{Y}}_{non}, \quad (30)$$

964 Here, a simple multi-layer perceptron (MLP) model q_ϕ is used to directly predict the future values
965 of the composite top K frequency components for D dimensions:
966

$$967 \hat{\mathbf{Y}}_{non} = q_\phi(\mathbf{X}_{non}, \mathbf{X}) \quad (31)$$

$$969 = \mathbf{W}_3 \text{ReLU}(\mathbf{W}_2 \text{Concat}(\text{ReLU}(\mathbf{W}_1 \mathbf{X}_{non}), \mathbf{X})) \quad (32)$$

970 The above is a brief introduction to the preparation work for this paper. For more details about the
971 FAN method Ye et al. (2024), please refer to the original paper Ye et al. (2024).

972 **B IMPLEMENTATION DETAILS**
 973

974 In this section, we will introduce the specific details of the datasets and the evaluation metrics to
 975 help readers better reproduce the experimental results of this paper.
 976

977 **B.1 DATASETS DETAILS**
 978

979 We use 8 widely-used real-world datasets in the time series field, namely the ETT (Electric Trans-
 980 former Temperature) dataset Zhou et al. (2021), which records the oil temperature and load of power
 981 transformers for 2 years from July 2016 to July 2018. The dataset contains 4 subsets, of which (1)
 982 ETTh1 and (2) ETTh2 are sampled every hour, and (3) ETTm1 and (4) ETTm2 are sampled every 15
 983 minutes; (5) Electricity, which contains the electricity consumption of 321 customers every 15 min-
 984 utes for 3 years from July 2016 to July 2019; (6) Exchange Rate, which records the daily exchange
 985 rates of 8 countries for 26 years from 1990 to 2016. (7) Traffic, which contains hourly traffic flow on
 986 San Francisco highways recorded by 862 sensors for 1 year from 2015 to 2016; (8) Weather, which
 987 consists of 21 meteorological indicators, including air temperature and humidity data collected ev-
 988 ery 10 minutes in 2021. For more detailed properties and characteristics of the datasets, please refer
 989 to Table 6.
 990

990 Table 6: The detailed descriptions of the datasets.
 991

Datasets	Dim	Dataset Size	Frequency	K	TV	SV	Information
ETTh1	7	(8545, 2881, 2881)	1 Hour	4	3.839	3.690	Temperature
ETTh2	7	(8545, 2881, 2881)	1 Hour	3	0.154	1.013	Temperature
ETTm1	7	(34465, 11521, 11521)	15 Minutes	11	0.030	3.330	Temperature
ETTm2	7	(34465, 11521, 11521)	15 Minutes	5	0.196	1.648	Temperature
Electricity	321	(18317, 2633, 5261)	1 Hour	2	0.249	0.435	Electricity
Exchange	8	(5120, 665, 1422)	1 Day	3	0.242	2.645	Exchange Rate
Traffic	862	(12185, 1757, 3509)	1 Hour	30	0.068	14.225	Transportation
Weather	21	(36792, 5271, 10540)	10 Minutes	2	0.028	0.387	Weather

1000 As shown in Table 6, Dim represents the dimension of the dataset, which is the number of variables,
 1001 and the dataset size is listed as (Train, Validation, Test). K is the hyperparameter of the top K ampli-
 1002 tude signals proposed in the FAN method Ye et al. (2024). For more details on the hyperparameter
 1003 K , please refer to the original paper of FAN Ye et al. (2024). Furthermore, TV and SV represent
 1004 trend variation and seasonality variation, respectively, mentioned in Appendix A.2.
 1005

1006 **B.2 METRICS DETAILS**
 1007

1008 Regarding metrics, we use the mean square error (MSE) and mean absolute error (MAE) as evalua-
 1009 tion metrics for time series forecasting, which are calculated as follows:
 1010

$$1012 \text{MSE} = \frac{1}{H} \sum_{i=1}^H (X_i - \hat{X}_i)^2 \quad (33)$$

$$1015 \text{MAE} = \frac{1}{H} \sum_{i=1}^H |X_i - \hat{X}_i| \quad (34)$$

1019 where $X_i, \hat{X}_i \in \mathbb{R}$ are the ground truth and prediction results of the i^{th} time point in the future and
 1020 N is the total number of future time points.
 1021

1026
1027

C ALGORITHMIC DETAILS OF MODEL DESIGN

1028
1029
1030
1031

In this section, in order to help readers understand the core idea of this paper more clearly, we introduce the specific algorithmic processes of the two major innovations proposed in this paper, sliding window adaptive normalization (SWAN) and statistical prediction Module (SPM).

1032
1033

C.1 SLIDING WINDOW ADAPTIVE NORMALIZATION (SWAN)

1034
1035
1036

Regarding the sliding window adaptive normalization (SWAN) module, we describe the specific algorithm flow of dynamic optimal window size selection and sliding window adaptive normalization in Algorithm 1 and Algorithm 2.

1037

Algorithm 1: Dynamic Optimal Window Size Selection

1038
1039
1040

Input: The set of the candidate window size $W \in \phi_w$; the time series data X ; and the lookback length L

1041

Output: The optimal window size $W_{optimal}$

1042

1 **Initialisation:** Initialize the candidate window size set $\phi_w = \{12, 24, 48\}$

1043

2 **while** $W \in \phi_w$ **do**

1044

3 Padding the sequence with a size of $\frac{W}{2}$

1045

4 **for** $i \leftarrow 1$ **to** L **do**

1046

5 $\sigma_{window}(i) = \sqrt{\frac{1}{W} \sum_{j=i}^W (X_j - \mu_{window}(i))^2}$

1047

6 **end for**

1048

7 $\mu_\sigma \leftarrow \frac{1}{L} \sum_{i=1}^L \sigma_{window}(i)$

1049

8 $\sigma_{window} \leftarrow \sqrt{\frac{1}{L} \sum_{i=1}^L (\sigma_{window}(i) - \mu_\sigma)^2}$

1050

9 **end while**

1051

10 **return** $W_{optimal} \leftarrow \arg \min_{\phi_w} \sigma_{window}$

1052

1053

1054

1055

Algorithm 2: Sliding Window Adaptive Normalization

1056

Input: The optimal window size $W_{optimal}$; the original time series data X ; and the lookback length L

1057

Output: The normalized time series data X_{stat}

1058

1 **Initialisation:** Define the set of means ϕ_μ and the set of standard deviations ϕ_σ containing the statistics of each window, and the set of the normalized sequence $\phi_{X_{norm}}$

1059

2 Padding the sequence with a size of $\frac{W_{optimal}}{2}$

1060

3 **for** $i = 1$ **to** L **do**

1061

4 $\mu_{window}(i) \leftarrow \frac{1}{W} \sum_{j=i}^W X_j$

1062

5 $\sigma_{window}(i) \leftarrow \sqrt{\frac{1}{W} \sum_{j=i}^W (X_j - \mu_{window}(i))^2}$

1063

6 $X_{stat}(i) \leftarrow \frac{X(i) - \mu_{window}(i)}{\sigma_{window}(i) + \epsilon}$

1064

7 $\phi_\mu \leftarrow \phi_\mu \cup \{\mu_{window}(i)\}$

1065

8 $\phi_\sigma \leftarrow \phi_\sigma \cup \{\sigma_{window}(i)\}$

1066

9 $\phi_{X_{stat}(i)} \leftarrow \phi_{X_{stat}(i)} \cup \{X_{stat}(i)\}$

1067

10 **end for**

1068

11 **return** $X_{stat} \leftarrow \phi_{X_{stat}(i)}$

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 C.2 STATISTICAL PREDICTION MODULE (SPM)
10811082 For the statistical prediction module (SPM), we describe its detailed process in Algorithm 3.
10831084 **Algorithm 3:** Statistical Prediction Module
10851086 **Input:** The statistics μ and σ from the sets ϕ_μ and ϕ_σ calculated in Algorithm 2; the original
1087 time series data X ; the stationary part results \hat{Y}^{stat} predicted by the backbone network
1088 with the input X_{stat} 1089 **Output:** The predicted stationary component \hat{Y}_{res} 1090 1 **Initialisation:** Initialize the network structure of f_1 and f_2 , which contain 1 and 2 linear layers
1091 respectively, and the ReLU activation function, where L and H represent the lookback and
1092 horizon lengths respectively
1093 2 $h_\mu \leftarrow \text{ReLU}(\text{Linear}_{f_1, L \times 256}(\mu))$
1094 3 $inp_\mu \leftarrow \text{Concat}(h_\mu, X)$
1095 4 $h_\sigma \leftarrow \text{ReLU}(\text{Linear}_{f_1, L \times 256}(\sigma))$
1096 5 $inp_\sigma \leftarrow \text{Concat}(h_\sigma, X)$
1097 6 $h_\mu \leftarrow \text{ReLU}(\text{Linear}_{f_2, (256+L) \times 512}(inp_\mu))$
1098 7 $\hat{\mu} \leftarrow \text{Linear}_{f_2, 512 \times H}(h_\mu)$
1099 8 $h_\sigma \leftarrow \text{ReLU}(\text{Linear}_{f_2, (256+L) \times 512}(inp_\sigma))$
1100 9 $\hat{\sigma} \leftarrow \text{Linear}_{f_2, 512 \times H}(h_\sigma)$
1101 10 **return** $\hat{Y}^{res} \leftarrow \hat{Y}^{stat} \cdot \hat{\sigma} + \hat{\mu}$

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

D ADDITIONAL RESULTS

D.1 ADDITIONAL EXPERIMENTS RESULTS ON OTHER BACKBONES

We present the experimental results of incorporating our Dual-AN method on 5 datasets with 3 state-of-the-art backbones: (1) MLP-based WPMixer Murad et al. (2025); (2) Transformer-based iTransformer Liu et al. (2023a); (3) CNN-based MICN Wang et al. (2023), in Tables 7, 8, and 9.

Table 7: Full results of the WPMixer backbone with and without Dual-AN. The best results are highlighted in **bold**.

Metrics	Models	WPMixer		+Dual-AN	
		MAE	MSE	MAE	MSE
ETTh1	96	0.430 ± 0.002	0.374 ± 0.003	0.426 ± 0.002	0.363 ± 0.002
	168	0.460 ± 0.001	0.411 ± 0.002	0.449 ± 0.004	0.390 ± 0.006
	336	0.485 ± 0.002	0.456 ± 0.003	0.487 ± 0.003	0.446 ± 0.004
	720	0.574 ± 0.007	0.609 ± 0.012	0.571 ± 0.002	0.571 ± 0.003
ETTh2	96	0.239 ± 0.002	0.115 ± 0.002	0.239 ± 0.001	0.113 ± 0.000
	168	0.258 ± 0.002	0.134 ± 0.002	0.256 ± 0.005	0.130 ± 0.002
	336	0.275 ± 0.006	0.151 ± 0.005	0.271 ± 0.005	0.143 ± 0.004
	720	0.302 ± 0.007	0.188 ± 0.008	0.284 ± 0.002	0.160 ± 0.001
ETTm2	96	0.200 ± 0.000	0.079 ± 0.000	0.198 ± 0.001	0.077 ± 0.001
	168	0.220 ± 0.001	0.094 ± 0.000	0.218 ± 0.001	0.092 ± 0.000
	336	0.245 ± 0.001	0.118 ± 0.001	0.242 ± 0.001	0.115 ± 0.001
	720	0.270 ± 0.002	0.150 ± 0.001	0.264 ± 0.000	0.139 ± 0.001
Exchange	96	0.165 ± 0.001	0.054 ± 0.001	0.169 ± 0.001	0.054 ± 0.001
	168	0.214 ± 0.001	0.087 ± 0.001	0.222 ± 0.004	0.091 ± 0.002
	336	0.311 ± 0.004	0.177 ± 0.005	0.283 ± 0.005	0.151 ± 0.003
	720	0.483 ± 0.006	0.384 ± 0.007	0.432 ± 0.009	0.318 ± 0.013
Traffic	96	0.354 ± 0.003	0.440 ± 0.003	0.324 ± 0.001	0.391 ± 0.001
	168	0.353 ± 0.002	0.446 ± 0.003	0.328 ± 0.001	0.405 ± 0.001
	336	0.363 ± 0.002	0.467 ± 0.001	0.340 ± 0.001	0.429 ± 0.002
	720	0.387 ± 0.004	0.497 ± 0.003	0.365 ± 0.000	0.463 ± 0.000

As shown in Table 7, 8, and 9, after adding the Dual-AN method to the WPMixer, iTransformer, and MICN backbones, the average MAE/MSE ratios across all the 5 datasets decrease by 3.40%/7.37%, 9.78%/18.31%, and 4.81%/6.87%, respectively.

1188

1189

1190 Table 8: Full results of the iTransformer backbone with and without Dual-AN. The best results are
1191 highlighted in **bold**.

1192

Models Metrics		iTransformer		+Dual-AN	
		MAE	MSE	MAE	MSE
ETTh1	96	0.444 ± 0.005	0.378 ± 0.007	0.426 ± 0.001	0.362 ± 0.000
	168	0.472 ± 0.009	0.413 ± 0.012	0.449 ± 0.002	0.390 ± 0.003
	336	0.533 ± 0.015	0.511 ± 0.023	0.486 ± 0.003	0.441 ± 0.005
	720	0.640 ± 0.021	0.669 ± 0.043	0.569 ± 0.002	0.574 ± 0.006
ETTh2	96	0.255 ± 0.004	0.122 ± 0.002	0.237 ± 0.001	0.111 ± 0.001
	168	0.271 ± 0.009	0.141 ± 0.006	0.252 ± 0.002	0.128 ± 0.001
	336	0.300 ± 0.020	0.167 ± 0.017	0.264 ± 0.001	0.139 ± 0.001
	720	0.362 ± 0.041	0.482 ± 0.041	0.279 ± 0.002	0.155 ± 0.001
ETTm2	96	0.203 ± 0.005	0.078 ± 0.003	0.199 ± 0.000	0.078 ± 0.000
	168	0.226 ± 0.005	0.094 ± 0.003	0.219 ± 0.000	0.093 ± 0.000
	336	0.247 ± 0.005	0.114 ± 0.003	0.243 ± 0.001	0.114 ± 0.000
	720	0.277 ± 0.004	0.144 ± 0.004	0.264 ± 0.000	0.139 ± 0.000
Exchange	96	0.227 ± 0.021	0.093 ± 0.015	0.168 ± 0.001	0.054 ± 0.001
	168	0.270 ± 0.023	0.131 ± 0.020	0.218 ± 0.002	0.090 ± 0.001
	336	0.390 ± 0.050	0.262 ± 0.063	0.294 ± 0.001	0.161 ± 0.001
	720	0.512 ± 0.096	0.480 ± 0.166	0.409 ± 0.016	0.291 ± 0.017
Traffic	96	0.320 ± 0.013	0.371 ± 0.017	0.319 ± 0.000	0.388 ± 0.001
	168	0.337 ± 0.001	0.408 ± 0.001	0.330 ± 0.000	0.408 ± 0.000
	336	0.350 ± 0.001	0.432 ± 0.001	0.335 ± 0.000	0.427 ± 0.000
	720	0.376 ± 0.002	0.469 ± 0.002	0.357 ± 0.000	0.458 ± 0.000

1213

1214

1215

1216

1217 Table 9: Full results of the MICN backbone with and without Dual-AN. The best results are high-
1218 lighted in **bold**.

1219

Models Metrics		MICN		+Dual-AN	
		MAE	MSE	MAE	MSE
ETTh1	96	0.454 ± 0.001	0.387 ± 0.002	0.420 ± 0.002	0.355 ± 0.002
	168	0.485 ± 0.003	0.433 ± 0.004	0.449 ± 0.003	0.388 ± 0.004
	336	0.551 ± 0.004	0.533 ± 0.007	0.495 ± 0.003	0.453 ± 0.004
	720	0.609 ± 0.003	0.626 ± 0.005	0.580 ± 0.003	0.576 ± 0.005
ETTh2	96	0.239 ± 0.003	0.110 ± 0.002	0.237 ± 0.001	0.111 ± 0.001
	168	0.259 ± 0.002	0.128 ± 0.002	0.248 ± 0.003	0.124 ± 0.001
	336	0.287 ± 0.002	0.148 ± 0.002	0.261 ± 0.003	0.135 ± 0.002
	720	0.338 ± 0.004	0.200 ± 0.005	0.283 ± 0.002	0.155 ± 0.001
ETTm2	96	0.195 ± 0.001	0.074 ± 0.000	0.192 ± 0.001	0.073 ± 0.001
	168	0.215 ± 0.001	0.088 ± 0.000	0.212 ± 0.000	0.088 ± 0.000
	336	0.235 ± 0.001	0.106 ± 0.001	0.239 ± 0.003	0.111 ± 0.003
	720	0.267 ± 0.002	0.136 ± 0.002	0.264 ± 0.001	0.138 ± 0.000
Exchange	96	0.171 ± 0.003	0.056 ± 0.002	0.169 ± 0.002	0.055 ± 0.001
	168	0.217 ± 0.002	0.088 ± 0.002	0.224 ± 0.006	0.092 ± 0.004
	336	0.309 ± 0.002	0.172 ± 0.002	0.298 ± 0.007	0.162 ± 0.004
	720	0.495 ± 0.022	0.417 ± 0.034	0.428 ± 0.023	0.319 ± 0.028
Traffic	96	0.323 ± 0.003	0.380 ± 0.006	0.320 ± 0.002	0.379 ± 0.002
	168	0.334 ± 0.002	0.402 ± 0.003	0.325 ± 0.004	0.402 ± 0.006
	336	0.345 ± 0.006	0.427 ± 0.011	0.342 ± 0.001	0.430 ± 0.001
	720	0.358 ± 0.007	0.446 ± 0.006	0.351 ± 0.001	0.433 ± 0.001

1241

1242 D.2 COMPLETE EXPERIMENTAL RESULTS
12431244 Due to the space limitation of the main text, we place the complete experimental results of the 3
1245 backbone models with and without Dual-AN on all 8 datasets in Table 10.
12461247 Table 10: Full results of the main experiments with and without Dual-AN. The best results are
1248 highlighted in **bold**.
1249

1250	Models	DLinear		+Dual-AN		Informer		+Dual-AN		SCI-Net		+Dual-AN		
		1251 Metrics	MAE	1252 MSE	MAE	MSE	1253 MAE	MSE	1254 MAE	MSE	1255 MAE	MSE	1256 MAE	MSE
1257	ETTh1	96	0.424	0.368	0.425	0.363	0.598	0.646	0.421	0.357	0.461	0.409	0.420	0.356
		168	0.449	0.398	0.453	0.396	0.694	0.863	0.446	0.386	0.518	0.489	0.452	0.396
		336	0.485	0.448	0.487	0.446	0.738	0.950	0.493	0.452	0.574	0.582	0.493	0.450
		720	0.561	0.558	0.573	0.568	0.823	1.106	0.579	0.589	0.645	0.707	0.581	0.581
1258	ETTh2	96	0.237	0.110	0.236	0.110	0.298	0.160	0.238	0.111	0.264	0.128	0.237	0.112
		168	0.254	0.127	0.250	0.125	0.331	0.191	0.252	0.127	0.292	0.156	0.249	0.125
		336	0.271	0.138	0.264	0.138	0.347	0.208	0.276	0.147	0.305	0.167	0.262	0.137
		720	0.316	0.179	0.280	0.157	0.413	0.291	0.337	0.208	0.339	0.201	0.284	0.156
1259	ETTm1	96	0.380	0.310	0.394	0.334	0.514	0.520	0.401	0.353	0.421	0.355	0.395	0.343
		168	0.408	0.354	0.414	0.360	0.563	0.600	0.422	0.377	0.446	0.399	0.414	0.360
		336	0.446	0.416	0.455	0.421	0.612	0.690	0.459	0.429	0.489	0.464	0.454	0.421
		720	0.488	0.471	0.492	0.474	0.697	0.849	0.494	0.477	0.553	0.563	0.487	0.465
1260	ETTm2	96	0.203	0.080	0.199	0.078	0.226	0.091	0.199	0.079	0.206	0.079	0.199	0.078
		168	0.220	0.093	0.219	0.093	0.251	0.112	0.220	0.093	0.226	0.094	0.219	0.093
		336	0.245	0.114	0.242	0.113	0.283	0.140	0.245	0.114	0.262	0.122	0.242	0.113
		720	0.270	0.142	0.264	0.139	0.347	0.212	0.277	0.147	0.297	0.153	0.264	0.139
1261	Electricity	96	0.277	0.195	0.265	0.181	0.376	0.277	0.244	0.148	0.296	0.188	0.254	0.159
		168	0.272	0.183	0.265	0.176	0.371	0.269	0.254	0.159	0.306	0.196	0.256	0.160
		336	0.294	0.197	0.285	0.190	0.377	0.273	0.270	0.166	0.330	0.214	0.272	0.169
		720	0.333	0.233	0.320	0.223	0.401	0.311	0.302	0.191	0.352	0.240	0.303	0.194
1262	Exchange	96	0.164	0.052	0.167	0.053	0.532	0.412	0.168	0.055	0.218	0.085	0.167	0.053
		168	0.219	0.090	0.215	0.087	0.582	0.491	0.217	0.089	0.266	0.126	0.215	0.087
		336	0.288	0.155	0.291	0.158	0.721	0.847	0.295	0.164	0.337	0.203	0.290	0.156
		720	0.453	0.352	0.398	0.283	0.889	1.210	0.431	0.350	0.502	0.430	0.427	0.312
1263	Traffic	96	0.387	0.504	0.334	0.403	0.350	0.428	0.323	0.386	0.399	0.471	0.325	0.393
		168	0.588	0.804	0.333	0.413	0.366	0.457	0.320	0.393	0.377	0.443	0.328	0.408
		336	0.380	0.504	0.345	0.436	0.414	0.555	0.336	0.425	0.384	0.459	0.345	0.436
		720	0.407	0.532	0.368	0.469	0.656	1.002	0.356	0.448	0.401	0.490	0.368	0.469
1264	Weather	96	0.249	0.180	0.220	0.181	0.299	0.221	0.210	0.172	0.265	0.199	0.211	0.170
		168	0.284	0.237	0.259	0.218	0.363	0.320	0.250	0.211	0.305	0.245	0.252	0.209
		336	0.344	0.304	0.298	0.278	0.439	0.437	0.301	0.270	0.341	0.310	0.293	0.271
		720	0.380	0.358	0.346	0.343	0.496	0.524	0.366	0.349	0.383	0.371	0.331	0.329

1275
1276 In addition, we report the full results of comparative experiments with existing normalization methods
1277 on all 8 datasets in Table 11. For the model parameter experiments on lookback and horizon
1278 lengths, we place the complete experimental results in Table 12.
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296

1297

1298 Table 11: Full results of MAE and MSE performance compared with other normalization methods.
1299 The best performance is highlighted in **red** and the second best performance is underlined.
1300

Models Methods	DLinear					Informer					SCINet					
	Dual-AN	FAN	SAN	Dish-TS	RevIN	Dual-AN	FAN	SAN	Dish-TS	RevIN	Dual-AN	FAN	SAN	Dish-TS	RevIN	
ETTh1	96	MAE <u>0.425</u> MSE <u>0.363</u> <u>0.362</u>	0.432	0.433	0.428	0.421	0.434	0.498	0.556	0.521	0.420	0.427	0.431	0.438	0.438	
	168	MAE <u>0.453</u> MSE <u>0.396</u> <u>0.393</u>	0.460	0.454	0.464	0.446	0.465	0.514	0.601	0.539	0.452	0.454	0.459	0.476	0.470	
	336	MAE <u>0.487</u> MSE <u>0.446</u> <u>0.435</u>	0.504	0.505	0.501	0.493	0.507	0.627	0.662	0.642	0.493	0.487	0.502	0.539	0.490	
	720	MAE <u>0.573</u> MSE <u>0.568</u> <u>0.574</u>	0.584	0.590	0.598	0.579	0.602	0.689	0.739	0.763	0.581	0.572 <u>0.579</u>	0.604	0.584	0.584	
	96	MAE <u>0.236</u> MSE <u>0.110</u> <u>0.108</u>	0.234	0.237	0.237	0.238	0.256	0.272	0.330	0.309	0.237	0.239	0.238	0.265	0.241	
	168	MAE <u>0.250</u> MSE <u>0.125</u> <u>0.126</u>	0.252	0.255	0.255	0.252	0.269	0.296	0.361	0.317	0.249	0.255	0.252	0.281	0.263	
ETTh2	336	MAE <u>0.264</u> MSE <u>0.138</u> <u>0.132</u>	0.264	0.269	0.273	0.276	0.300	0.310	0.375	0.334	0.262	0.269	0.263	0.297	0.275	
	720	MAE <u>0.280</u> MSE <u>0.157</u> <u>0.158</u>	0.286	0.288	0.303	0.337	0.378	0.416	0.436	0.354	0.284 <u>0.284</u>	0.304	0.321	0.305	0.305	
	96	MAE <u>0.394</u> MSE <u>0.334</u> <u>0.334</u>	0.394	0.386	0.407	0.383	0.401	0.457	0.446	0.395	0.394 <u>0.389</u>	0.415	0.436	0.436	0.436	
	168	MAE <u>0.414</u> MSE <u>0.360</u> <u>0.364</u>	0.416 <u>0.416</u>	0.421	0.435	0.422	0.417	0.443	0.496	0.470	0.414 <u>0.415</u>	0.422	0.442	0.442	0.454	
	336	MAE <u>0.455</u> MSE <u>0.421</u> <u>0.423</u>	0.458	0.459	0.480	0.459	0.462	0.492	0.536	0.524	0.454 <u>0.456</u>	0.454 <u>0.454</u>	0.481	0.490	0.490	
	720	MAE <u>0.492</u> MSE <u>0.474</u> <u>0.476</u>	0.497	0.501	0.530	0.494	0.506	0.545	0.608	0.597	0.487 <u>0.495</u>	0.498	0.515	0.525	0.525	
ETThm1	96	MAE <u>0.394</u> MSE <u>0.334</u> <u>0.334</u>	0.394	0.386	0.407	0.383	0.401	0.457	0.446	0.395	0.394 <u>0.389</u>	0.415	0.436	0.436	0.436	
	168	MAE <u>0.414</u> MSE <u>0.360</u> <u>0.364</u>	0.416 <u>0.416</u>	0.421	0.435	0.422	0.417	0.443	0.496	0.470	0.414 <u>0.415</u>	0.422	0.442	0.442	0.454	
	336	MAE <u>0.455</u> MSE <u>0.421</u> <u>0.423</u>	0.458	0.459	0.480	0.459	0.462	0.492	0.536	0.524	0.454 <u>0.456</u>	0.454 <u>0.454</u>	0.481	0.490	0.490	
	720	MAE <u>0.492</u> MSE <u>0.474</u> <u>0.476</u>	0.497	0.501	0.530	0.494	0.506	0.545	0.608	0.597	0.487 <u>0.495</u>	0.498	0.515	0.525	0.525	
	96	MAE <u>0.199</u> MSE <u>0.078</u> <u>0.078</u>	0.198 <u>0.197</u>	0.207	0.202	0.199	0.198	0.201	0.238	0.210	0.199	0.198 <u>0.197</u>	0.206	0.197	0.206	
	168	MAE <u>0.219</u> MSE <u>0.093</u> <u>0.092</u>	0.217 <u>0.217</u>	0.222	0.224	0.220	0.219	0.221	0.261	0.235	0.219	0.218 <u>0.217</u>	0.227	0.220	0.220	
ETThm2	336	MAE <u>0.242</u> MSE <u>0.113</u> <u>0.113</u>	0.242	0.246	0.250	0.245	0.245	0.249	0.302	0.275	0.242	0.241 <u>0.240</u>	0.240	0.258	0.250	
	720	MAE <u>0.264</u> MSE <u>0.139</u> <u>0.139</u>	0.264	0.268	0.274	0.277	0.277	0.287	0.293	0.336	0.314	0.264 <u>0.262</u>	0.303	0.303	0.277	
	96	MAE <u>0.265</u> MSE <u>0.181</u> <u>0.181</u>	0.284	0.278	0.273	0.244	0.248	0.280	0.303	0.275	0.254	0.258	0.269	0.289	0.251	
	168	MAE <u>0.265</u> MSE <u>0.176</u> <u>0.177</u>	0.281	0.273	0.267	0.254	0.252	0.288	0.320	0.279	0.256	0.258	0.272	0.301	0.254	
	336	MAE <u>0.285</u> MSE <u>0.190</u> <u>0.191</u>	0.288	0.301	0.296	0.270	0.272	0.312	0.335	0.299	0.272	0.278	0.287	0.312	0.266	
	720	MAE <u>0.285</u> MSE <u>0.223</u> <u>0.224</u>	0.288	0.301	0.296	0.270	0.272	0.312	0.335	0.299	0.272	0.278	0.287	0.312	0.266	
Electricity	96	MAE <u>0.265</u> MSE <u>0.181</u> <u>0.181</u>	0.284	0.278	0.273	0.244	0.248	0.280	0.303	0.275	0.254	0.258	0.269	0.289	0.251	
	168	MAE <u>0.265</u> MSE <u>0.176</u> <u>0.177</u>	0.281	0.273	0.267	0.254	0.252	0.288	0.320	0.279	0.256	0.258	0.272	0.301	0.254	
	336	MAE <u>0.285</u> MSE <u>0.190</u> <u>0.191</u>	0.288	0.301	0.296	0.270	0.272	0.312	0.335	0.299	0.272	0.278	0.287	0.312	0.266	
	720	MAE <u>0.285</u> MSE <u>0.223</u> <u>0.224</u>	0.288	0.301	0.296	0.270	0.272	0.312	0.335	0.299	0.272	0.278	0.287	0.312	0.266	
	96	MAE <u>0.167</u> MSE <u>0.053</u> <u>0.053</u>	0.167	0.166	0.202	0.164	0.168	0.168	0.278	0.223	0.167	0.169	0.166	0.220	0.170	
	168	MAE <u>0.215</u> MSE <u>0.087</u> <u>0.088</u>	0.217	0.213	0.277	0.216	0.217	0.239	0.364	0.295	0.215	0.220	0.213	0.303	0.218	
Exchange	336	MAE <u>0.291</u> MSE <u>0.158</u> <u>0.162</u>	0.297	0.304	0.332	0.295	0.329	0.406	0.566	0.375	0.290	0.303	0.305	0.439	0.314	
	720	MAE <u>0.398</u> MSE <u>0.283</u> <u>0.292</u>	0.406	0.466	0.628	0.526	0.431	0.431	0.599	0.730	0.503	0.427	0.474	0.583	0.496	
	96	MAE <u>0.334</u> MSE <u>0.403</u> <u>0.403</u>	0.334	0.374	0.403	0.556	0.323	0.314 <u>0.323</u>	0.351	0.372	0.325	0.340	0.358	0.391	0.371	
	168	MAE <u>0.333</u> MSE <u>0.413</u> <u>0.414</u>	0.334	0.517	0.585	0.598	0.320	0.319	0.340	0.355	0.506	0.328	0.346	0.348	0.392	0.356
	336	MAE <u>0.345</u> MSE <u>0.436</u> <u>0.437</u>	0.346	0.371	0.394	0.379	0.336	0.333	0.403	0.376	0.636	0.345	0.357	0.356	0.403	0.366
	720	MAE <u>0.366</u> MSE <u>0.469</u> <u>0.472</u>	0.375	0.420	0.403	0.356	0.397	0.563	0.402	0.786	0.368	0.377	0.375	0.423	0.382	
Traffic	96	MAE <u>0.220</u> MSE <u>0.181</u> <u>0.173</u>	0.228	0.247	0.216	0.210	0.217	0.219	0.251	0.203	0.211	0.215	0.219	0.234	0.196	
	168	MAE <u>0.259</u> MSE <u>0.218</u> <u>0.206</u>	0.258	0.285	0.242	0.250	0.247	0.253	0.303	0.248	0.252	0.253	0.257	0.270	0.232	
	336	MAE <u>0.298</u> MSE <u>0.278</u> <u>0.274</u>	0.292	0.312	0.342	0.290	0.301	0.315	0.316	0.376	0.306	0.293	0.299	0.309	0.314	0.288
	720	MAE <u>0.346</u> MSE <u>0.328</u> <u>0.339</u>	0.358	0.400	0.327	0.366	0.368	0.379	0.454	0.350	0.331	0.340	0.355	0.355	0.356	0.356
	96	MAE <u>0.343</u> MSE <u>0.343</u> <u>0.339</u>	0.343	0.358	0.366	0.359	0.349	0.360	0.368	0.479	0.386	0.329	0.322	0.331	0.336	0.348
	168	MAE <u>0.218</u> MSE <u>0.218</u> <u>0.218</u>	0.218	0.226	0.231	0.211	0.208	0.206	0.255	0.228	0.209	0.206	0.203	0.213	0.207	0.207
Weather	336	MAE <u>0.278</u> MSE <u>0.274</u> <u>0.277</u>	0.278	0.293	0.301	0.270	0.287	0.279	0.364	0.314	0.271	0.268	0.269	0.275	0.285	0.285
	720	MAE <u>0.346</u> MSE <u>0.343</u> <u>0.339</u>	0.345	0.358	0.400	0.327	0.366	0.368	0.379	0.454	0.350	0.331	0.340	0.355	0.355	0.356
	96	MAE <u>0.220</u> MSE <u>0.181</u> <u>0.173</u>	0.228	0.247	0.216	0.210	0.217	0.219	0.251	0.203	0.211	0.215	0.219	0.234	0.196	0.196
	168	MAE <u>0.259</u> MSE <u>0.218</u> <u>0.206</u>	0.258	0.285	0.242	0.250	0.247	0.253	0.303	0.248	0.252	0.253	0.257	0.270	0.232	0.232
	336	MAE <u>0.298</u> MSE <u>0.278</u> <u>0.274</u>	0.292	0.312	0.342	0.290	0.301	0.315	0.316	0.376	0.306	0.293	0.299	0.309	0.314	0.288
	720	MAE <u>0.346</u> MSE <u>0.328</u> <u>0.339</u> </td														

1350
1351 D.3 MODEL EFFICIENCY

1352 In terms of model efficiency, we compared the prediction performance, number of parameters, and
 1353 training speed of Dual-AN and other normalization methods on the Traffic dataset on the Informer
 1354 backbone with a prediction length of $H = 720$. The results are shown in Figure 5. With the training
 1355 speed of Dual-AN no more than 3% different from that of other methods and the average number of
 1356 parameters no more than 5%, the average MAE metric is improved by 33.71% and the average MSE
 1357 metric is improved by 41.74%, which highlights the excellent performance of our Dual-AN model
 1358 in balancing effect and efficiency. Although compared with the existing most advanced method,
 1359 FAN, the reduction ratio can also reach 7.05% and 10.30%, which further demonstrates the superior
 1360 performance and high efficiency of the Dual-AN method proposed in this paper.

1370
1371 Figure 5: Model efficiency comparison of Dual-AN, FAN, SAN, Dish-TS, and RevIN.
1372
1373
1374
1375
1376
1377

1378 To further illustrate the model efficiency of the Dual-AN method, we present a comparison of its
 1379 training and testing times with other normalization methods in Table 13.
1380

1381 Table 13: The comparison of training time (single epoch) and testing time for 5 runs with fixed seeds
 1382 of the pure backbone with and without the Dual-AN method and other normalization methods.
1383

Method	Training Time	Testing Time
Backbone	96.4539 ± 1.2890	13.6083 ± 0.4669
+Dual-AN	119.6488 ± 3.0048	14.6919 ± 0.3710
+FAN	97.4063 ± 1.8296	13.6021 ± 0.6503
+SAN	101.7588 ± 1.2157	15.1279 ± 0.3996
+Dish-TS	98.5975 ± 1.5698	13.7292 ± 0.7178
+RevIN	97.2728 ± 1.6602	13.7905 ± 0.1818

1392 The results clearly show that the training and inference times of Dual-AN are highly competitive
 1393 with those of existing standardized baselines. Therefore, model complexity does not pose a practical
 1394 concern and can be safely regarded as negligible in deployment.
1395

1396 E FORECAST SHOWCASES
1397

1398 To visualize the performance of our proposed Dual-AN method and since the FAN method Ye et al.
 1399 (2024) is the most advanced among the existing methods, we illustrate the visual forecasting results
 1400 of Dual-AN compared with FAN Ye et al. (2024) on the ETTh1 dataset with the Informer backbone
 1401 in Figure 6.
1402

1403 As shown in Figure 6, in extreme cases of the time series (such as maximum and minimum val-
 1404 ues), Dual-AN can more accurately capture the local trends of the time series, demonstrating the

1417
1418 Figure 6: The visual forecasting results of 336 steps of (a) Dual-AN and (b) FAN on the ETTh1
1419 dataset with the Informer backbone.

1420
1421 significant advantages of the sliding window adaptive normalization (SWAN) module at a fine gran-
1422 ularity, while furthermore making more accurate forecasting of future trends through the statistical
1423 prediction module (SPM).

1424 In addition, we show the visual forecasting results of the baseline model (Informer) and the Dual-AN
1425 method proposed in this paper on the ETTh1 dataset in Figure 7, which once again corroborate the
1426 significant advantages of Dual-AN in capturing future local trends in both short-term and long-term
1427 forecasting.

1443
1444 Figure 7: The visual forecasting results of backbone (Informer) and Dual-AN on the ETTh1 dataset
1445 across 4 different prediction lengths.

1458 F FURTHER DISCUSSION ON THE WINDOW SIZE SELECTION PRINCIPLE
1459

1460 The criterion for dynamic window selection, which minimizes the standard deviation of local stan-
1461 dard deviations (Equation 2), is rooted in the principle of seeking maximum statistical homogeneity
1462 at a given temporal scale. The underlying hypothesis is that an optimal normalization window should
1463 span a region where the series’ intrinsic volatility is most stable. A stable volatility profile leads to
1464 more consistent scaling factors (mean and standard deviation), which in turn transforms the input
1465 into a sequence that more closely approximates a stationary process—a key assumption for many
1466 predictive models. While alternative criteria, such as those based on information theory (e.g., Mini-
1467 mum Description Length) or spectral entropy, could offer more theoretical grounding, the proposed
1468 heuristic provides a computationally efficient and empirically robust solution, as demonstrated by
1469 the analysis in Section 4.5.2. A rigorous theoretical exploration of optimal windowing strategies is
1470 a promising direction for future work.

1471 To further illustrate the robustness of our dynamic window selection mechanism, we have expanded
1472 Table 5 in Table 14 to show the experimental results under a wider range of window size selection
1473 scenarios.

1474 Table 14: The MAE and MSE experimental results of different window sizes. The best results are
1475 highlighted in **bold**.

Window Size	Metrics	96	168	336	720	Count (1st)
6	MAE	0.19876	0.21911	0.24262	0.26464	0
	MSE	0.07819	0.09329(0)	0.11430	0.13932	0
12	MAE	0.19871	0.21893	0.24252	0.26448	2
	MSE	0.07813	0.09329(1)	0.11431	0.13939	0
24	MAE	0.19887	0.21896	0.24286	0.26446	1
	MSE	0.07812	0.09325	0.11447	0.13940	1
36	MAE	0.19886	0.21947	0.24293	0.26466	0
	MSE	0.07823	0.09349	0.11454	0.13958	0
48	MAE	0.19884(4)	0.21983	0.24153	0.2645	1
	MSE	0.07805	0.09367	0.11310	0.13929	3
60	MAE	0.19876	0.21916	0.24283	0.26467	0
	MSE	0.07823	0.09326	0.11460	0.13944	0
72	MAE	0.19883(7)	0.21899	0.24275	0.26455	0
	MSE	0.07822	0.09327	0.11436	0.13934	0
Mean±Std	MAE	0.19881±0.00006	0.21921±0.00033	0.24258±0.00048	0.26457±0.00009	-
	MSE	0.07817±0.00007	0.09336±0.00016	0.11424±0.00052	0.13939±0.00010	-

1490 As can be seen from Table 14, the standard deviations of MAE and MSE indices are all within
1491 0.0005 under different window sizes across all 4 horizons, indicating that the differences between
1492 different window sizes are negligible.

1493 F.1 THEORETICAL JUSTIFICATION FOR WINDOW SIZE SELECTION

1494 In this section, we provide a theoretical justification for the dynamic window size selection criterion
1495 used in our Dual-AN module. We demonstrate that selecting the window size W to minimize the
1496 standard deviation of the sliding volatility estimates corresponds to optimizing the Bias-Variance
1497 trade-off under the assumption of local stationarity.

1500 F.1.1 PROBLEM FORMULATION

1501 Let the residual time series r_t (after frequency decomposition) be modeled as a **Locally Stationary**
1502 **Process (LSP)**:

$$r_t = \sigma(t) \cdot \epsilon_t, \quad \epsilon_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1) \quad (35)$$

1503 where $\sigma(t)$ is a deterministic, slowly varying (or piecewise constant) volatility function, and ϵ_t
1504 represents stationary Gaussian noise.

1505 Our goal is to estimate the local volatility $\sigma(t)$ using a sliding window estimator $\hat{\sigma}_{t,W}$ with window
1506 size W :

$$\hat{\sigma}_{t,W} = \sqrt{\frac{1}{W} \sum_{i=t-W+1}^t r_i^2} \quad (36)$$

1512 The selection criterion proposed in the paper minimizes the temporal fluctuation of this estimator:
 1513

$$1514 \quad 1515 \quad 1516 \quad \mathcal{L}(W) = \text{StdDev}_t [\hat{\sigma}_{t,W}] = \sqrt{\frac{1}{T} \sum_{t=1}^T (\hat{\sigma}_{t,W} - \bar{\sigma}_W)^2} \quad (37)$$

1517 F.1.2 BIAS-VARIANCE TRADE-OFF ANALYSIS

1519 The fluctuation metric $\mathcal{L}(W)$ is influenced by two competing sources of error: sampling variance
 1520 (dominant at small W) and estimation bias (dominant at large W near change points).
 1521

1522 **Case 1: Small Window Size (Variance Domination)** Consider a locally stationary segment
 1523 where the true volatility is constant, $\sigma(t) = \sigma_0$. For a window size W , the empirical variance
 1524 $\hat{\sigma}_{t,W}^2$ follows a scaled Chi-squared distribution:

$$1525 \quad 1526 \quad 1527 \quad \hat{\sigma}_{t,W}^2 \sim \frac{\sigma_0^2}{W} \chi_W^2 \quad (38)$$

1528 Using the standard approximation for the variance of the standard deviation estimator for Gaussian
 1529 data, the variance of the estimator itself is inversely proportional to W :

$$1530 \quad 1531 \quad \text{Var}(\hat{\sigma}_{t,W}) \approx \frac{\sigma_0^2}{2W} \quad (39)$$

1532 **Implication:** When W is small, the estimator $\hat{\sigma}_{t,W}$ is highly sensitive to the noise ϵ_t . Even if the
 1533 underlying $\sigma(t)$ is constant, the estimated sequence will fluctuate wildly solely due to sampling
 1534 noise. This results in a high value of $\mathcal{L}(W)$. Increasing W effectively suppresses this noise.
 1535

1536 Consider a non-stationary transition where the volatility steps from σ_1 to σ_2 at time τ . If W is large
 1537 relative to the local scale, the window will span across the change point for a long duration. During
 1538 this transition, the estimator $\hat{\sigma}_{t,W}$ is a mixture of the two regimes. The expectation of the estimator
 1539 becomes:

$$1540 \quad \mathbb{E}[\hat{\sigma}_{t,W}^2] \approx \alpha\sigma_1^2 + (1 - \alpha)\sigma_2^2 \quad (40)$$

1541 where α represents the proportion of the window in the first regime. **Implication:** An excessively
 1542 large W creates a "smearing" effect, introducing a bias that manifests as a slow, high-amplitude ramp
 1543 in the estimator sequence as it slides across regimes. This structural variation contributes to the total
 1544 fluctuation $\mathcal{L}(W)$. Furthermore, overly large windows fail to capture local adaptive characteristics,
 1545 violating the local stationarity assumption.
 1546

1548 F.1.3 CONCLUSION

1549 Our criterion $\min_W \mathcal{L}(W)$ effectively identifies the optimal scale by balancing these two factors:
 1550

- 1551 1. It penalizes **undersized windows** where the signal is drowned out by the high variance of
 1552 the estimator ($1/W$ term).
- 1553 2. It penalizes **oversized windows** (implicitly) by favoring the scale where the estimator sta-
 1554 bilizes within homogeneous segments without smoothing out necessary structural changes.

1555 Thus, the selected window size represents the *characteristic scale of stationarity* for the given
 1556 dataset, ensuring robust normalization.
 1557

1560 G DESIGN RATIONALE FOR THE STATISTICAL PREDICTION MODULE (SPM)

1561 The selection of an MLP architecture for the SPM (Section 3.2) was a deliberate design choice bal-
 1562 ancing expressive power against computational cost. The SPM's task is to predict future window-
 1563 level statistics—a sequence-to-sequence regression problem. Although more complex architectures
 1564

like RNNs or Transformers could be employed, they would introduce significant parameter overhead and computational latency. Crucially, the sequences of statistical moments (mean and standard deviation) are typically much smoother and less noisy than the raw time series data. Consequently, an MLP, as a universal function approximator, possesses sufficient expressive capacity to model these smoother dynamics effectively. This was confirmed during preliminary experiments, where replacing the MLP with an LSTM yielded only marginal performance gains at the cost of a substantial increase in training time, thus justifying the current, more efficient design. This ensures that Dual-AN remains a lightweight and broadly applicable plug-in.

H ABLATION STUDY ON LOSS FUNCTION COMPONENTS

To validate the effectiveness of the dual-component loss function described in Section 3.3, an additional ablation study was conducted. The full model, optimized with the combined loss ($\mathcal{L}_{nonstat} + \mathcal{L}_{stat}$), is compared against a variant trained with a single loss function applied only to the final prediction (i.e., MSE on the final output \hat{Y}). As shown in Table 15, explicitly supervising both the non-stationary and stationary components leads to improved forecasting accuracy. This result supports the hypothesis that the dual loss acts as a valuable regularizer, guiding the model toward a more meaningful and effective decomposition of the time series, which ultimately enhances prediction quality.

Table 15: Ablation study on loss function components on the ETTh1 dataset with the Informer backbone (H=336).

Loss Configuration	MAE	MSE
Single Loss on Final Prediction ($\mathcal{L}(\hat{Y}, Y)$)	0.501	0.462
Dual Loss ($\mathcal{L}_{nonstat} + \mathcal{L}_{stat}$)	0.493	0.452

I COMPUTATIONAL COMPLEXITY ANALYSIS

The computational overhead introduced by Dual-AN stems from the SWAN and SPM modules. Let N be the number of variables, L be the lookback length, and W_{opt} be the optimal window size.

- **SWAN:** The primary cost is the calculation of sliding window statistics. A naive implementation has a time complexity of $\mathcal{O}(L \cdot W_{opt} \cdot N)$. However, this can be optimized to $\mathcal{O}(L \cdot N)$ using moving average algorithms. The space complexity is $\mathcal{O}(L \cdot N)$ to store the statistics for each time step.
- **SPM:** The complexity is determined by its MLP layers. For the structure described in Appendix C.2, the complexity is independent of the sequence length and depends only on the hidden dimensions, which are fixed hyperparameters. Thus, its complexity is $\mathcal{O}(N)$.

The total additional time complexity is therefore approximately $\mathcal{O}(L \cdot N)$. This is linear with respect to the input sequence length and does not alter the dominant complexity of most modern backbone models (e.g., $\mathcal{O}(L^2 \cdot N)$ for standard Transformers or $\mathcal{O}(L \cdot \log L \cdot N)$ for Informer). This analysis confirms that Dual-AN is a computationally feasible plug-in for a wide range of applications without introducing a new performance bottleneck.

J PRACTICAL GUIDANCE FOR CHOOSING NORMALIZATION METHODS

To make Dual-AN easier to apply in practice, we provide a simple rule-of-thumb on when to prefer Dual-AN over simpler normalization schemes such as RevIN. Following FAN (?), we characterize

1620 Table 16: Practical guidance for choosing normalization methods based on dataset characteristics.
 1621 TV and SV are computed as in FAN Ye et al. (2024). “Avg. gain vs RevIN” is the relative MAE
 1622 reduction of Dual-AN compared with RevIN, averaged over three backbones and four horizons as
 1623 shown in Table 2.

Dataset	TV	SV	Variation level	Avg. MAE gain vs RevIN (%)	Recommended normalization
ETTh1	3.839	3.690	High	9.6%	Dual-AN (recommended)
ETTh2	0.154	1.013	Moderate	8.9%	Dual-AN (recommended)
ETTm1	0.030	3.330	High	8.4%	Dual-AN (recommended)
ETTm2	0.196	1.648	Moderate	4.9%	Dual-AN / RevIN (both acceptable)
Electricity	0.249	0.435	Moderate	3.5%	Dual-AN / RevIN (both acceptable)
Exchange	0.242	2.645	Moderate	13.9%	Dual-AN (recommended)
Traffic	0.068	14.225	High	28.5%	Dual-AN (strongly recommended)
Weather	0.028	0.387	Low	-2.6%	RevIN (near-stationary series)

1632
 1633 each dataset by:

1634 - **Trend Variation (TV)**, which measures the distributional shift of the global trend across the
 1635 train/validation/test splits;
 1636 - **Seasonality Variation (SV)**, which measures how much the spectral (seasonal) components
 1637 change across these splits.

1638 Larger TV or SV indicates stronger non-stationarity in the time or frequency domain, respectively.
 1639 For each dataset, we further compute the average MAE improvement of Dual-AN over RevIN,

$$\Delta_{\text{MAE}} = \frac{\text{MAE}_{\text{RevIN}} - \text{MAE}_{\text{Dual-AN}}}{\text{MAE}_{\text{RevIN}}} \times 100\%,$$

1640 averaged over the three backbones (DLinear, Informer, SCINet) and four prediction horizons using
 1641 the results in Table 2.

1642 Based on TV/SV, we divide series into three regimes:

1643 - **Low variation**: $\text{TV} < 0.05$ and $\text{SV} < 0.5$ (close to stationary);
 1644 - **High variation**: $\text{TV} \geq 1.0$ or $\text{SV} \geq 3.0$ (strong trend/seasonality shifts);
 1645 - **Moderate variation**: all remaining cases.

1646 Table 16 summarizes the statistics and our recommended normalization choice for each benchmark
 1647 dataset. In short, Dual-AN is clearly preferred for moderate or high variation, while RevIN is slightly
 1648 better on datasets that are nearly stationary in both trend and seasonality (e.g., Weather).

1649 K LIMITATIONS AND FUTURE WORK

1650 Based on the comprehensive framework and experimental results presented in this paper, we identify
 1651 several limitations and suggest promising avenues for future work. First, the current implementa-
 1652 tion of the sliding window adaptive normalization (SWAN) module relies on a pre-defined set of
 1653 candidate window sizes, which may not be optimal for all types of time series. Although Dual-AN
 1654 exhibits robustness across various window sizes, integrating an adaptive mechanism to dynamically
 1655 determine window size during training could further improve model flexibility and generalization.
 1656 Second, while Dual-AN achieves significant improvements across multiple backbones and datasets,
 1657 its performance on series with extremely low trend and seasonality variations (e.g., Weather) re-
 1658 mains less competitive compared to specialized methods like RevIN Kim et al. (2021). This sug-
 1659 gests that a more nuanced integration of time and frequency domains may be necessary for such
 1660 scenarios. Future work will focus on developing automated window size selection algorithms and
 1661 designing backbone-specific variants of Dual-AN to enhance its applicability and performance. Ad-
 1662 dressing these aspects will further establish Dual-AN as a versatile and powerful framework for
 1663 non-stationary time series forecasting.