DUAL-AN: A HIERARCHICAL FRAMEWORK SYNER-GIZES TIME AND FREQUENCY DOMAINS FOR NON-STATIONARY TIME SERIES FORECASTING

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

016

017

018

019

021

023

025

026

027

028

029

031 032 033

034

037

038

040

041

043

044

046

047

048

049

051

052

ABSTRACT

To address the pervasive and challenging issue of non-stationarity in time series forecasting, recent research has primarily focused on time-domain normalization methods that separate non-stationary features using statistical indicators. The proposal of frequency adaptive normalization (FAN) offers a new perspective for separating non-stationary components in the frequency domain. However, existing methods remain confined to a single domain, lacking a synergistic integration of time and frequency domains. To bridge this gap, we introduce Dual-AN, a hierarchical framework that synergizes both time and frequency domains. After utilizing the Fourier transform approach to separate non-stationary factors, we propose a novel sliding window adaptive normalization (SWAN) method to eliminate the local non-stationarity in the residuals. Furthermore, we introduce the statistical prediction module (SPM) to forecast future statistics, which are used to de-normalize the outputs based on the statistics of each window. Dual-AN is a general framework that can be easily integrated into any forecasting model. We evaluate the improvement in forecasting performance of 3 different benchmark models on 8 widely-used datasets. The results show that Dual-AN demonstrates significant performance improvement, with the average prediction error MAE and MSE reduced by 15.92% and 20.72%. In comparison with other existing normalization methods, Dual-AN surpasses all existing methods and achieves state-ofthe-art (SOTA) performance with an average prediction error reduction of 7.69%.

1 Introduction

Time series forecasting is of critical importance in numerous domains, including finance Li & Bastos (2020), medicine Bertozzi et al. (2020), energy Hong et al. (2020), transportation Ermagun & Levinson (2018), meteorology Murphy & Winkler (1984), and electricity Nti et al. (2020). However, traditional machine learning and deep learning approaches often struggle in forecasting tasks due to challenges such as distribution shift Kuang et al. (2020); Cao et al. (2022), which is a phenomenon inherent in non-stationary time series Hyndman & Athanasopoulos (2018). These dynamic properties pose significant obstacles to accurate prediction.

In recent years, the non-stationarity in time series has attracted growing attention. Since the introduction of the reversible normalization method in 2022 Kim et al. (2021), mainstream research has focused on exploiting time-domain statistics to mitigate non-stationary signals Fan et al. (2023); Liu et al. (2023c). More recently, frequency adaptive normalization (FAN) Ye et al. (2024) has opened a new direction by operating in the frequency domain. Instead of the normalization using time-domain statistics, FAN alleviates the impact of non-stationarity by selecting the top K dominant components in the Fourier domain, thereby holistically handling composite non-stationary factors involving both trend and periodic components.

Nevertheless, using only the top K dominant components in the Fourier domain to represent non-stationary information may be insufficient, as residuals often retain local non-stationarity Que et al. (2020), such as transient shocks in traffic data Zheng et al. (2011) or micro-trends in financial series Moon (2013). The residual learning strategy of FAN Ye et al. (2024) overlooks these fine-grained distribution shifts Deldari et al. (2021); Lai et al. (2021), violating the independent and identically

Figure 1: The comparison of our sliding window adaptive normalization (SWAN) and FAN. Our SWAN can eliminate the local non-stationarity in the time series and make it relatively stable at a fine granularity, while FAN cannot.

distributed assumption underlying many deep learning models. Simultaneously, most existing normalization techniques are confined to a single domain. While some end-to-end models have explored joint time-frequency representations Chen et al. (2023); Wu et al. (2022b), a dedicated, model-agnostic normalization framework that synergizes both domains is still lacking. To address this, the **Dual**-domain **Adaptive Normalization** (**Dual-AN**) is proposed, a hierarchical framework designed for universal integration with any forecasting backbone. In contrast to FAN Ye et al. (2024), we introduce a novel sliding window adaptive normalization (SWAN) method to eliminate the local non-stationarity in the residuals to better align with the input characteristics of the model, as illustrated in Figure 1. Additionally, we design a statistical prediction module (SPM) that forecasts future statistics using the statistics from each window to de-normalize the outputs, effectively combining fine-grained time-domain statistical features processing with coarse-grained frequency-domain decomposition. All code and data are available at https://anonymous.4open.science/r/Dual-AN. Our main contributions are summarized as follows:

- A novel, model-agnostic framework is presented that hierarchically addresses non-stationarity in both time and frequency domains. This approach overcomes the limitations of single-domain normalization methods, such as FAN's handling of local non-stationarity in residuals.
- We design a novel Sliding Window Adaptive Normalization (SWAN) method and a Statistical Prediction Module (SPM) that forecasts the future window-level statistics from frequency-domain residuals to de-normalize the outputs, enabling accurate reconstruction in the time domain.
- We conduct extensive experiments on 8 mainstream time series datasets. The results demonstrate
 that Dual-AN consistently improves performance across 3 backbone models, reducing average
 MAE and MSE by up to 15.92% and 20.72%, respectively. Moreover, it outperforms 4 existing
 normalization methods, including FAN, with an average MAE reduction of 7.69%, achieving the
 state-of-the-art (SOTA) performance and underscoring the superiority of our approach.

2 Related Work

2.1 TIME SERIES FORECASTING

Time series forecasting is a critical task across numerous domains. Traditional statistical approaches like ARIMA Box & Jenkins (1968); Zhang (2003) rely on assumptions of stationarity and temporal dependency, which frequently do not hold in real-world scenarios. The advent of deep learning has significantly advanced the field, with architectures including CNNs LeCun et al. (2002); Lea et al. (2017); Liu et al. (2022a); Wang et al. (2023), RNNs/LSTMs Jordan (1997); Du et al. (2021); Lin et al. (2023); Hochreiter & Schmidhuber (1997), Transformers Vaswani et al. (2017); Zhou et al. (2021); Nie et al. (2022); Liu et al. (2023a); Wang et al. (2024b), and MLPs Rosenblatt (1958); Zeng et al. (2023); Das et al. (2023); Wang et al. (2024a); Murad et al. (2025) each contributing distinct strengths. CNN-based methods excel at capturing local patterns but struggle with long-range dependencies and non-stationary data Zheng et al. (2014). RNNs and LSTMs model sequential state transitions effectively but suffer from computational inefficiency and challenges in very long sequences Siami-Namini et al. (2019); Smyl (2020); Salinas et al. (2020); Hewamalage et al. (2021). Transformers leverage self-attention to capture global and cross-variable dependencies, yet face issues with computational complexity and sparse data Zhou et al. (2021). MLP-based models offer simplicity and scale well, but often fall short in modeling complex temporal relationships compared to recurrent or attention-based approaches Zhang et al.; Yi et al. (2023).

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124 125

126 127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143 144 145

146 147

148

149

150

151

152

153

154 155 156

157 158

159

160

161

A crucial challenge across all architectures is handling non-stationary time series exhibiting distribution shifts Petropoulos et al. (2022) with the core of the modeling of time-varying statistical properties, such as trend drift, seasonality, and shift points. Existing approaches include: (a) traditional stabilization via differencing, decomposition, or filtering Box & Jenkins (1968); Zhang (2003); Cleveland et al. (1990); Taylor & Letham (2018); Kalman (1960); (b) implicit modeling using RNNs Hochreiter & Schmidhuber (1997); Cho et al. (2014); Chung et al. (2014), enhanced attention Kitaev et al. (2020), or normalization techniques Ogasawara et al. (2010); Passalis et al. (2019); Deng et al. (2021); Kim et al. (2021); Fan et al. (2023); Liu et al. (2023c); Ye et al. (2024); (c) explicit decomposition architectures, which have recently become prominent—e.g., N-BEATS Oreshkin et al. (2019), ETSformer Woo et al. (2022b), Autoformer Wu et al. (2021), FEDformer Zhou et al. (2022), TimesNet Wu et al. (2022a), Pyraformer Liu et al. (2022b), Crossformer Zhang & Yan (2023), and Koopa Liu et al. (2023b); and (d) emerging trends such as frequency-domain analysis Xu et al. (2023); Yi et al. (2023), distributionally robust learning Woo et al. (2022a); Liu et al. (2022c); Zeng et al. (2023), change-point detection Adams & MacKay (2007); Xu & Zhu (2023), and improved benchmarks and evaluation Makridakis et al. (2018); Zhou et al. (2021); Challu et al. (2023). Despite these advances, modeling non-stationary time series remains an open and highly active research problem due to its practical significance and theoretical challenges.

2.2 NORMALIZATION METHODS AGAINST NON-STATIONARITY

Recent normalization methods have sought to mitigate non-stationarity, a primary obstacle in time series forecasting Ogasawara et al. (2010); Passalis et al. (2019); Deng et al. (2021); Kim et al. (2021); Fan et al. (2023); Liu et al. (2023c); Ye et al. (2024). These can be broadly categorized by their operating domain. Time-domain approaches, such as RevIN Kim et al. (2021)—a form of reversible instance normalization Ulyanov et al. (2016)—and Dish-TS Fan et al. (2023), utilize statistical moments to counteract distribution shifts. SAN Liu et al. (2023c) further refines this by employing adaptive local statistics. While effective against trends, these methods' reliance on statistics often proves insufficient for capturing complex seasonal variations. In contrast, FAN Ye et al. (2024) operates in the frequency domain, isolating dominant components to jointly model trend and seasonality. Despite these advances, a clear dichotomy persists: methods operate largely in either the time domain Kim et al. (2021); Fan et al. (2023); Liu et al. (2023c) or the frequency domain Ye et al. (2024). While another line of research develops end-to-end architectures that jointly process time-frequency information Chen et al. (2023); Wu et al. (2022b), their monolithic, architecturally-specific nature prevents their use as universal modules. This context reveals a critical gap: the lack of a model-agnostic framework that synergizes both domains. The proposed Dual-AN is conceptualized to fill this void. It performs a coarse-grained frequency decomposition followed by a fine-grained, adaptive time-domain normalization on the residual series, offering a versatile tool to enhance any existing forecasting backbone.

3 Dual-AN

The proposed Dual-AN method operates via a hierarchical, dual-domain process to address non-stationarity, as illustrated in Figure 2. Following an initial frequency-domain decomposition that isolates coarse-grained non-stationary signals, two core modules are introduced: the Sliding Window Adaptive Normalization (SWAN) and the Statistical Prediction Module (SPM). SWAN targets the remaining local non-stationarity within the time-domain residuals, while SPM forecasts future window-level statistics to enable precise, adaptive reconstruction of the final prediction. The stationary component is forecasted by a backbone model, whereas the non-stationary component is handled by a dedicated MLP network.

3.1 SLIDING WINDOW ADAPTIVE NORMALIZATION (SWAN)

Since there may still be local non-stationarity in the residuals after frequency domain separation, we design a normalization method in the time domain that pays more attention to the local characteristics of the data, namely, sliding window adaptive normalization (SWAN), which uses the dynamic selection and adaptive normalization of the sliding window to standardize the time series data. For multivariate time series, the SWAN process is applied independently to each variable (channel-wise).

Figure 2: The overall architecture of Dual-AN, highlighting its two core modules: Sliding Window Adaptive Normalization (SWAN) and Statistical Prediction Module (SPM). The process begins with Frequency Residual Learning (FRL, see Appendix A.5) to obtain residuals. SWAN then normalizes these residuals to address local non-stationarity, and SPM predicts future statistics for the final denormalization step. Detailed algorithms are provided in Appendix C.1 and C.2.

This approach ensures that the unique statistical properties and scales of each channel are preserved, preventing cross-channel distortion during normalization.

3.1.1 DYNAMIC OPTIMAL WINDOW SIZE SELECTION

In order to determine the size of the dynamic window, we evaluate the local standard deviation of different window sizes to dynamically select the optimal size. For each defined valid candidate window size, we fill the inputs to ensure that it can be applied to every position of the data.

Afterwards, for each window size in the set of the candidate window sizes $\phi = \{12, 24, 48\}$, we compute the local standard deviation. Specifically, for each time step t, calculate the standard deviation σ_{window} of the data in the window at that time step:

$$\sigma_{\text{window}}(i) = \text{std}(x[i:i+\text{window},:]),$$
 (1)

where $i = 1, 2, \dots, L$, then we compute the standard deviation of the local standard deviations over all time steps for that window:

$$SD_{window} = std(\sigma_{window}(i)),$$
 (2)

where $i=1,2,\ldots,L$ and L is the length of the sequence. A lower SD value indicates that the local volatility of the series is more consistent at that specific window scale. Selecting a window size that yields such statistical homogeneity is hypothesized to produce a more uniformly normalized sequence, better satisfying the stationarity assumption required by the downstream forecasting model. While this criterion is heuristic, its empirical effectiveness is validated in Section 4.5.3. A deeper discussion on this selection principle is provided in Appendix F. Finally, the window size with the lowest SD value is selected as the optimal window:

$$W_{\text{Best_window}} = \arg \min_{\phi} SD_{\text{window}}$$
 (3)

3.1.2 SLIDING WINDOW ADAPTIVE NORMALIZATION

After selecting the optimal sliding window size, we use the adaptive normalization method to normalize the inputs according to the selected window size.

First, we pad the data with a padding size of half the window. For each time step i, we use the optimal window size $W_{optimal}$ to calculate the mean and standard deviation of the data in the window:

$$\mu_{window}(i) = \frac{1}{W} \sum_{j=i}^{W} X_j, \tag{4}$$

$$\sigma_{window}(i) = \sqrt{\frac{1}{W} \sum_{j=i}^{W} (X_j - \mu_{window}(i))^2}$$
 (5)

Afterwards, for each time step i, the selected dynamic window size slides across the input sequence, and the central value at each time step is normalized using statistics derived from its own local temporal neighborhood. Specifically, the value at the center is standardized by subtracting the window mean and dividing by the window standard deviation:

$$X_{\text{stat}}(i) = \frac{X(i) - \mu_{\text{window}}(i)}{\sigma_{\text{window}}(i) + \varepsilon}$$
(6)

where $\varepsilon = 1e - 5$ is a small constant to prevent the standard deviation from being zero.

3.2 STATISTICAL PREDICTION MODULE (SPM)

In Section 3.1.2, we retain the mean and standard deviation of each window as statistical indicators in the time domain. In order to reflect the statistical characteristics of the forecasting results, a statistical prediction module (SPM) is designed to forecast the mean and standard deviation for future windows. An MLP architecture is selected for the SPM due to its balance of expressive power as a universal function approximator and computational efficiency. This design is sufficient for predicting the smoother statistical moment sequences while avoiding the substantial overhead of more complex sequential models (e.g., RNNs). The rationale for this design choice is further detailed in Appendix G. The module is formalized as:

$$\widehat{\mu}_{window} = f_2(Concat(f_1(\mu_{window}), X)), \tag{7}$$

$$\widehat{\sigma}_{window} = f_2(Concat(f_1(\sigma_{window}), X))$$
(8)

where f_1 and f_2 represent 2 different multi-layer perceptron (MLP) networks as depicted in Figure 2 and Appendix C.2. Afterwards, the outputs are de-normalized using the predicted statistical indicators to obtain the predicted stationary component results \hat{Y}_{res} :

$$\hat{Y}_{res} = \hat{Y}_{stat} \cdot \hat{\sigma}_{window} + \hat{\mu}_{window}$$
(9)

where Y_{stat} represents the result predicted by the backbone network with the input X_{stat} . Finally, this part will be added to the non-stationary part Y_{non} predicted above to get the final forecasting results Y.

3.3 Loss Functions

The model is optimized via a dual-component loss function that separately supervises the nonstationary and stationary predictions. This structure acts as a powerful regularization mechanism, guiding the model toward a more meaningful decomposition by ensuring both components are independently accurate. An ablation study presented in Appendix H confirms that this dual-objective approach yields superior performance compared to a single loss on the final output. The overall loss function is defined as:

$$\phi, \theta = \arg\min_{\phi, \theta} \sum_{i} \left(\mathcal{L}_{nonstat} + \mathcal{L}_{stat} \right),$$

$$\mathcal{L}_{nonstat} = \left(\mathcal{L}_{\phi}^{nonstat} (\mathbf{Y}_{non}(i), \hat{\mathbf{Y}}_{non}(i)) \right),$$
(10)

$$\mathcal{L}_{nonstat} = \left(\mathcal{L}_{\phi}^{nonstat}(\mathbf{Y}_{non}(i), \hat{\mathbf{Y}}_{non}(i)) \right), \tag{11}$$

$$\mathcal{L}_{stat} = \left(\mathcal{L}_{\theta,\phi}^{stat}(\mathbf{Y}_{stat}(i), \hat{\mathbf{Y}}_{stat}(i)) \right). \tag{12}$$

where ϕ and θ denote the learnable parameters of the forecasting model, and both loss functions are computed using the mean square error (MSE):

$$\mathcal{L}_{MSE} = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$
 (13)

where n is the number of samples, y_i is the ground truth of the i^{th} sample, and \hat{y}_i is the corresponding predicted value.

4 EXPERIMENTS

This study conducts extensive experiments on the Dual-AN method using 8 widely used datasets in the field of time series forecasting to demonstrate its excellent performance.

4.1 EXPERIMENTAL DESIGN

In this section, we introduce the datasets used in the experiments and the experimental settings to ensure the reproducibility of this paper.

Datasets. We use 8 of the most popular open source datasets in the time series field, including (1)ETTh1, (2)ETTh2, (3)ETTm1, (4)ETTm2, (5)Electricity, (6)Exchange Rate, (7)Traffic, and (8)Weather. In the preprocessing stage, we followed the practice in the FAN Ye et al. (2024) method and applied z-score normalization Goodfellow et al. (2016) to all datasets. The training set, validation set, and test set split ratio were set to 7:2:1, while retaining the setting of its hyperparameter K. For detailed properties and characteristics of the datasets, please refer to Appendix B.1.

Experimental Setup. To cover both short-term and long-term forecasts, we set the forecast length $H \in \{96, 168, 336, 720\}$, and all datasets use a fixed input length L = 96. We use the mean absolute error (MAE) and the mean square error (MSE) as metrics to evaluate the performance of the model, which are defined in Appendix B.2. Since Dual-AN is a universal plug-in, it can be applied to any backbone model for forecasting. To verify its effectiveness, we use 3 of the most common time series forecasting models as benchmark models: (1) DLinear Zeng et al. (2023), based on the multi-layer perceptron (MLP) network; (2) Informer Zhou et al. (2021), based on Transformer; (3) SCINet Liu et al. (2022a), based on the convolutional neural network (CNN). For the implementation details, all experiments in this paper are implemented by PyTorch Paszke et al. (2019) and tested in 5 rounds using fixed random seeds $\{1,2,3,4,5\}$ on NVIDIA RTX 4090 GPU (24GB).

4.2 MAIN EXPERIMENTAL RESULTS OF DUAL-AN

We show the MAE and MSE metrics of the baseline model and Dual-AN on 5 datasets in Table 1. Please see Table 6 in the Appendix D.1 for full results of all 8 datasets.

The empirical results, summarized in Table 1, demonstrate that integrating Dual-AN yields substantial and consistent performance gains across all three backbone models and eight benchmark datasets. The framework reduces the average prediction error by up to 15.92% in MAE and 20.72% in MSE, confirming its effectiveness in mitigating the adverse effects of non-stationarity.

A key observation is that the performance improvement is particularly pronounced in long-term fore-casting scenarios. For instance, when applied to the Informer backbone, the error reduction escalates with the prediction horizon, underscoring the framework's capability to preserve long-range temporal dependencies. This enhanced long-term performance is attributed to a virtuous cycle created by Dual-AN: by providing a more stable, stationary input, it enables the backbone model to learn more generalizable temporal patterns, which in turn prevents the error accumulation that typically plagues long-horizon forecasts in non-stationary series. These findings highlight the efficacy of the proposed hierarchical normalization approach, especially for challenging long-horizon forecasting tasks.

4.3 Comparative Experiments With Existing Normalization Methods

To benchmark Dual-AN against its direct peers, we compare it with leading model-agnostic normalization frameworks designed for non-stationarity: FAN Ye et al. (2024), SAN Liu et al. (2023c),

Table 1: Main experimental results with and without Dual-AN. The best results are highlighted in **bold**.

Models	s	DLi	near	+Dua	ıl-AN	Info	rmer	+Dua	ıl-AN	SCI	Net	+Dua	ıl-AN
Metrics	s	MAE	MSE										
	96	0.237	0.110	0.236	0.110	0.298	0.160	0.238	0.111	0.264	0.128	0.237	0.112
ETTh2	168	0.254	0.127	0.250	0.125	0.331	0.191	0.252	0.127	0.292	0.156	0.249	0.125
E11112	336	0.271	0.138	0.264	0.138	0.347	0.208	0.276	0.147	0.305	0.167	0.262	0.137
	720	0.316	0.179	0.280	0.157	0.413	0.291	0.337	0.208	0.339	0.201	0.284	0.156
	96	0.203	0.080	0.199	0.078	0.226	0.091	0.199	0.079	0.206	0.079	0.199	0.078
ETTm2	168	0.220	0.093	0.219	0.093	0.251	0.112	0.220	0.093	0.226	0.094	0.219	0.093
ETTIIIZ	336	0.245	0.114	0.242	0.113	0.283	0.140	0.245	0.114	0.262	0.122	0.242	0.113
	720	0.270	0.142	0.264	0.139	0.347	0.212	0.277	0.147	0.297	0.153	0.264	0.139
	96	0.277	0.195	0.265	0.181	0.376	0.277	0.244	0.148	0.296	0.188	0.254	0.159
Electricity	168	0.272	0.183	0.265	0.176	0.371	0.269	0.254	0.159	0.306	0.196	0.256	0.160
Electricity	336	0.294	0.197	0.285	0.190	0.377	0.273	0.270	0.166	0.330	0.214	0.272	0.169
	720	0.333	0.233	0.320	0.223	0.401	0.311	0.302	0.191	0.352	0.240	0.303	0.194
	96	0.387	0.504	0.334	0.403	0.350	0.428	0.323	0.386	0.399	0.471	0.325	0.393
Traffic	168	0.588	0.804	0.333	0.413	0.366	0.457	0.320	0.393	0.377	0.443	0.328	0.408
Hanne	336	0.380	0.504	0.345	0.436	0.414	0.555	0.336	0.425	0.384	0.459	0.345	0.436
	720	0.407	0.532	0.368	0.469	0.656	1.002	0.356	0.448	0.401	0.490	0.368	0.469
	96	0.249	0.180	0.220	0.181	0.299	0.221	0.210	0.172	0.265	0.199	0.211	0.170
Weather	168	0.284	0.237	0.259	0.218	0.363	0.320	0.250	0.211	0.305	0.245	0.252	0.209
	336	0.344	0.304	0.298	0.278	0.439	0.437	0.301	0.270	0.341	0.310	0.293	0.271
	720	0.380	0.358	0.346	0.343	0.496	0.524	0.366	0.349	0.383	0.371	0.331	0.329

Dish-TS Fan et al. (2023), and RevIN Kim et al. (2021). Table 2 summarizes the resulting MAE scores across all settings

Table 2: Averaged MAE performance compared with other normalization methods. The best performance is highlighted in red and the second best performance is <u>underlined</u>. Please see Table 7 in the Appendix D.1 for full results.

Models			DLinear					Informe	r		SCINet				
Methods	Dual-AN	FAN	SAN	Dish-TS	RevIN	Dual-AN	FAN	SAN	Dish-TS	RevIN	Dual-AN	FAN	SAN	Dish-TS	RevIN
ETTh1	0.484	0.484	0.495	0.496	0.498	0.485	0.502	0.582	0.640	0.616	0.487	0.485	0.493	0.514	0.496
ETTh2	0.257	0.257	0.260	0.262	0.268	0.276	0.301	0.324	0.376	0.329	0.258	0.262	0.264	0.291	0.271
ETTm1	0.439	0.440	0.439	0.447	0.457	0.444	0.444	0.470	0.524	0.509	0.438	0.440	0.441	0.463	0.476
ETTm2	0.231	0.231	0.231	0.237	0.238	0.235	0.237	0.241	0.284	0.259	0.231	0.230	0.229	0.249	0.236
Electricity	0.284	0.286	0.300	0.297	0.290	0.267	0.269	0.303	0.329	0.295	0.271	0.277	0.284	0.310	0.267
Exchange	0.268	0.272	0.287	0.360	0.305	0.278	0.295	0.353	0.485	0.349	0.275	0.282	0.290	0.386	0.300
Traffic	0.345	0.347	0.414	0.451	0.484	0.334	0.341	0.407	0.371	0.575	0.342	0.355	0.359	0.402	0.369
Weather	0.281	0.278	0.289	0.319	0.269	0.282	0.287	0.292	0.346	0.277	0.272	0.277	0.285	0.293	0.268
Count (1st)	7	3	2	0	1	7	1	0	0	1	4	1	1	0	2

Dual-AN demonstrates superior performance across most datasets, with the notable exception of the Weather dataset. Here, RevIN Kim et al. (2021) excels, an insightful finding we attribute to this dataset's very weak trend and seasonality (see Appendix B.1). In such scenarios, the benefits of frequency decomposition are marginal, making simpler, moment-based normalization sufficient. This highlights a key characteristic: Dual-AN's strength is most pronounced on series with complex, multi-scale non-stationarity, a common trait in real-world applications. Additionally, we observe a slightly diminished gain on the SCINet Liu et al. (2022a) backbone, likely due to an overlap between its sub-sequence decomposition and SWAN's focus on local patterns.

As shown in Table 2, Dual-AN reduces the average MAE by 1.50% (vs. FAN), 6.30% (vs. SAN), 14.17% (vs. Dish-TS), and 8.79% (vs. RevIN). Excluding the Weather dataset, these improvements are even more significant, reaffirming the strong and consistent performance of our framework.

4.4 ABLATION STUDY

This section evaluates the effectiveness of the two core components of the Dual-AN method, SWAN and SPM. We compare two ablation variants against Dual: "w/o SWAN" removes the sliding window adaptive normalization (SWAN) module, rendering the statistical prediction module (SPM) inactive due to the absence of statistical indicators; "w/o SPM" removes the statistical prediction module (SPM), instead using the original statistics of the inputs directly as the statistical indicators

for de-normalization. Experiments are conducted on ETTh1 and Electricity datasets using Informer and SCINet as backbones, respectively, with MAE and MSE results summarized in Table 3.

Table 3: MAE and MSE indicators of ablation studies. The best results are highlighted in **bold**.

Models	Metrics		ET	Γh1		Electricity					
Models	Meures	96	168	336	720	96	168	336	720		
Dual-AN	MAE	0.431	0.446	0.493	0.579	0.254	0.256	0.272	0.303		
Duai-AN	MSE	0.365	0.386	0.452	0.589	0.159	0.160	0.169	0.194		
w/o SWAN	MAE	0.434	0.465	0.507	0.602	0.258	0.258	0.278	0.312		
W/O S WAIN	MSE	0.367	0.407	0.467	0.617	0.165	0.163	0.175	0.204		
w/o SPM	MAE	0.441	0.472	0.513	0.604	0.264	0.262	0.280	0.305		
	MSE	0.381	0.418	0.473	0.617	0.170	0.166	0.177	0.199		

The results demonstrate that Dual-AN consistently achieves the best performance across all ablation variants, confirming the importance of both the SWAN and SPM modules proposed in this study. The ablation variant w/o SWAN ranks second, slightly outperforming the variant w/o SPM. This performance gap stems from the fact that statistical indicators derived directly from the original time series fail to accurately capture future trends, leading to suboptimal de-normalization and thus degrading forecasting performance.

4.5 MODEL ANALYSIS

In this section, we discuss and analyze the parameters of the model, including the lookback length, horizon length, and the hyperparameter sliding window size.

4.5.1 LOOKBACK AND HORIZON ANALYSIS

We analyze the effects of the lookback and horizon lengths on the forecasting performance of Dual-AN on the Exchange Rate dataset on Informer and SCINet backbones, respectively, compared with FAN, which is the current state-of-the-art (SOTA) normalization method. We illustrate the experimental results in Figure 3, and the lookback and horizon lengths are set to $L \in \{48, 72, 96, 120, 144, 168\}$ and $H \in \{270, 336, 420, 540, 600, 720\}$, while keeping H = 96 and L = 96 respectively.

Figure 3: The MSE indicator of Dual-AN and FAN under different lookback and horizon settings. Please see Table 8 in the Appendix D.1 for full results.

As shown in Figure 3, Dual-AN consistently outperforms FAN across all lookback and horizon lengths. Notably, as the prediction horizon increases from 270 steps to 720 steps, the improvement gains of Dual-AN over FAN gradually increases with the reduction rate of MSE rising from 5.63% to 7.69%, which demonstrates the significant advantages of Dual-AN with the characteristics of coordinating time and frequency domains, especially in long-term time series forecasting.

4.5.2 CANDIDATE WINDOW SIZE

In the sliding window adaptive normalization (SWAN) module of our Dual-AN method, the size of the sliding window is a critical hyperparameter. In order to illustrate the rigor of the experiments in this paper, we rigorously evaluate the impact of different window sizes on our method. We conduct experiments on the ETTm2 dataset using the DLinear backbone for the hyperparameter sliding window size. Since the lookback length is set to L=96, we test 5 reasonable candidate window sizes $W_{exp} \in \{6,12,24,48,72\}$, and record the MAE and MSE indicators in Table 4.

Table 4: MAE and MSE indicators of the different window sizes. The best results are highlighted in **bold**.

Window Size		6		12	2	4	48		72		
Metrics	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	
96	0.19876	0.07819	0.19871	0.07813	0.19887	0.07812	0.19884(4)	0.07805	0.19883(7)	0.07822	
168	0.21911	0.09329(0)	0.21893	0.09329(1)	0.21896	0.09325	0.21983	0.09367	0.21899	0.09327	
336	0.24262	0.11430	0.24252	0.11431	0.24286	0.11447	0.24153	0.11310	0.24275	0.11436	
720	0.26464	0.13932	0.26448	0.13939	0.26446	0.13940	0.26450	0.13929	0.26455	0.13934	
Count (1st)	0	0	2	0	1	1	1	3	0	0	

Experimental results show optimal performance is achieved with window sizes $W \in 12, 24, 48$, a range adopted for the main experiments in Section 3.1. This range effectively balances the trade-off between capturing sufficient context and preserving local temporal patterns. Moreover, the low performance variance across these optimal window sizes highlights Dual-AN's robustness to this hyperparameter choice.

4.5.3 VISUALIZATIONS

Figure 4 visualizes the performance gains of Dual-AN over the Informer backbone. The baseline model frequently fails to capture local extrema, a shortcoming that Dual-AN effectively addresses. This corrective capability is especially pronounced in long-horizon forecasting (H=720), where the framework's advantage is most evident. Further visual comparisons are available in Appendix F

Figure 4: The visual forecasting results of backbone (Informer) and Dual-AN on the Weather dataset across 4 different prediction lengths.

5 CONCLUSION

In this paper, we propose Dual-AN, a general framework that synergizes time and frequency domains to address non-stationarity in time series forecasting. Its core components, the sliding window adaptive normalization (SWAN) and the statistical prediction module (SPM), respectively eliminate local residual non-stationarity and predict future statistics for de-normalization. Extensive experiments demonstrate that Dual-AN consistently enhances three backbone models, achieving state-of-the-art (SOTA) performance over existing normalization methods. Its feasibility as a lightweight, efficient plug-in is confirmed by a formal complexity analysis (Appendix I). For reproducibility, all source code and data are detailed in Section 6. Limitations and potential future directions are discussed in Appendix J.

6 REPRODUCIBILITY STATEMENT

In full compliance with double-blind review guidelines, we have taken extensive measures to ensure the reproducibility of our work. All source code and data from this study have been uploaded to the supplementary materials and have been made publicly available in an anonymous repository: https://anonymous.4open.science/r/Dual-AN. We have also included instructions for running the code and reproducing the results in the README file. Furthermore, all of these will be publicly released on GitHub immediately after the review process is completed to ensure reproducibility and facilitate future research in the broader field of time series forecasting.

7 ETHICS STATEMENT

We affirm that this work adheres to the ICLR Code of Ethics. All datasets used in this study are publicly available and widely accepted in the time series forecasting community. We conducted no human subject experiments, and all data are anonymized and aggregated, posing no privacy or security risks. Our proposed method, Dual-AN, is a general forecasting framework and does not target sensitive or high-risk applications. However, we acknowledge that time series forecasting models can potentially be misapplied in domains such as surveillance, financial manipulation, or discriminatory decision-making. We strongly discourage any such misuse. The research was conducted with integrity, and we declare no conflicts of interest. All authors have read and complied with the ICLR Code of Ethics.

REFERENCES

- Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detection. *arXiv* preprint *arXiv*:0710.3742, 2007.
- Andrea L Bertozzi, Elisa Franco, George Mohler, Martin B Short, and Daniel Sledge. The challenges of modeling and forecasting the spread of covid-19. *Proceedings of the National Academy of Sciences*, 117(29):16732–16738, 2020.
- George EP Box and Gwilym M Jenkins. Some recent advances in forecasting and control. *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, 17(2):91–109, 1968.
- E Oran Brigham. The fast Fourier transform and its applications. Prentice-Hall, Inc., 1988.
- Defu Cao, Yousef El-Laham, Loc Trinh, Svitlana Vyetrenko, and Yan Liu. A synthetic limit order book dataset for benchmarking forecasting algorithms under distributional shift. In *NeurIPS 2022 Workshop on Distribution Shifts: Connecting Methods and Applications*, 2022.
- Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler Canseco, and Artur Dubrawski. Nhits: Neural hierarchical interpolation for time series forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 6989–6997, 2023.
- Yuxin Chen, Hao Wang, and Zizhao Liu. A joint time-frequency domain transformer for multivariate time series forecasting. *arXiv preprint arXiv:2306.02352*, 2023.
- Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. *arXiv* preprint arXiv:1406.1078, 2014.
- Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. *arXiv preprint arXiv:1412.3555*, 2014.
- Robert B Cleveland, William S Cleveland, Jean E McRae, Irma Terpenning, et al. Stl: A seasonal-trend decomposition. *J. off. Stat*, 6(1):3–73, 1990.
- Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term forecasting with tide: Time-series dense encoder. *arXiv preprint arXiv:2304.08424*, 2023.

- Shohreh Deldari, Daniel V Smith, Hao Xue, and Flora D Salim. Time series change point detection with self-supervised contrastive predictive coding. In *Proceedings of the web conference* 2021, pp. 3124–3135, 2021.
 - Jinliang Deng, Xiusi Chen, Renhe Jiang, Xuan Song, and Ivor W Tsang. St-norm: Spatial and temporal normalization for multi-variate time series forecasting. In *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining*, pp. 269–278, 2021.
 - Yuntao Du, Jindong Wang, Wenjie Feng, Sinno Pan, Tao Qin, Renjun Xu, and Chongjun Wang. Adarnn: Adaptive learning and forecasting of time series. In *Proceedings of the 30th ACM international conference on information & knowledge management*, pp. 402–411, 2021.
 - Alireza Ermagun and David Levinson. Spatiotemporal traffic forecasting: review and proposed directions. *Transport Reviews*, 38(6):786–814, 2018.
 - Wei Fan, Pengyang Wang, Dongkun Wang, Dongjie Wang, Yuanchun Zhou, and Yanjie Fu. Dish-ts: a general paradigm for alleviating distribution shift in time series forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 7522–7529, 2023.
 - Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1. MIT press Cambridge, 2016.
 - Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time series forecasting: Current status and future directions. *International Journal of Forecasting*, 37 (1):388–427, 2021.
 - Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8): 1735–1780, 1997.
 - Tao Hong, Pierre Pinson, Yi Wang, Rafał Weron, Dazhi Yang, and Hamidreza Zareipour. Energy forecasting: A review and outlook. *IEEE Open Access Journal of Power and Energy*, 7:376–388, 2020.
 - Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2018.
 - Michael I Jordan. Serial order: A parallel distributed processing approach. In *Advances in psychology*, volume 121, pp. 471–495. Elsevier, 1997.
 - Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.
 - Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible instance normalization for accurate time-series forecasting against distribution shift. In *International conference on learning representations*, 2021.
 - Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. *arXiv* preprint arXiv:2001.04451, 2020.
 - Kun Kuang, Ruoxuan Xiong, Peng Cui, Susan Athey, and Bo Li. Stable prediction with model misspecification and agnostic distribution shift. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 4485–4492, 2020.
 - Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Hu. Revisiting time series outlier detection: Definitions and benchmarks. In *Thirty-fifth conference on neural information processing systems datasets and benchmarks track (round 1)*, 2021.
 - Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal convolutional networks for action segmentation and detection. In *proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 156–165, 2017.
 - Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 2002.
 - Audeliano Wolian Li and Guilherme Sousa Bastos. Stock market forecasting using deep learning and technical analysis: a systematic review. *IEEE access*, 8:185232–185242, 2020.

- Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Segrnn: Segment recurrent neural network for long-term time series forecasting. *arXiv* preprint arXiv:2308.11200, 2023.
 - Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet: Time series modeling and forecasting with sample convolution and interaction. *Advances in Neural Information Processing Systems*, 35:5816–5828, 2022a.
 - Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting. In # PLACEHOLDER_PARENT_METADATA_VALUE#, 2022b.
 - Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the stationarity in time series forecasting. *Advances in neural information processing systems*, 35: 9881–9893, 2022c.
 - Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer: Inverted transformers are effective for time series forecasting. *arXiv* preprint *arXiv*:2310.06625, 2023a.
 - Yong Liu, Chenyu Li, Jianmin Wang, and Mingsheng Long. Koopa: Learning non-stationary time series dynamics with koopman predictors. *Advances in neural information processing systems*, 36:12271–12290, 2023b.
 - Zhiding Liu, Mingyue Cheng, Zhi Li, Zhenya Huang, Qi Liu, Yanhu Xie, and Enhong Chen. Adaptive normalization for non-stationary time series forecasting: A temporal slice perspective. *Advances in Neural Information Processing Systems*, 36:14273–14292, 2023c.
 - Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition: Results, findings, conclusion and way forward. *International Journal of forecasting*, 34(4):802–808, 2018.
 - Steve Sang-Cheol Moon. Missions from korea 2013: Microtrends and finance. *International Bulletin of Missionary Research*, 37(2):96–98, 2013.
 - Md Mahmuddun Nabi Murad, Mehmet Aktukmak, and Yasin Yilmaz. Wpmixer: Efficient multi-resolution mixing for long-term time series forecasting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 19581–19588, 2025.
 - Allan H Murphy and Robert L Winkler. Probability forecasting in meteorology. *Journal of the American Statistical Association*, 79(387):489–500, 1984.
 - Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022.
 - Isaac Kofi Nti, Moses Teimeh, Owusu Nyarko-Boateng, and Adebayo Felix Adekoya. Electricity load forecasting: a systematic review. *Journal of Electrical Systems and Information Technology*, 7(1):13, 2020.
 - Eduardo Ogasawara, Leonardo C Martinez, Daniel De Oliveira, Geraldo Zimbrão, Gisele L Pappa, and Marta Mattoso. Adaptive normalization: A novel data normalization approach for non-stationary time series. In *The 2010 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–8. IEEE, 2010.
 - Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis expansion analysis for interpretable time series forecasting. *arXiv preprint arXiv:1905.10437*, 2019.
 - Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, and Alexandros Iosifidis. Deep adaptive input normalization for time series forecasting. *IEEE transactions on neural networks and learning systems*, 31(9):3760–3765, 2019.

- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
 - Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, Devon K Barrow, Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J Bessa, Jakub Bijak, John E Boylan, et al. Forecasting: theory and practice. *International Journal of forecasting*, 38(3):705–871, 2022.
 - Xiang Que, Xiaogang Ma, Chao Ma, and Qiyu Chen. A spatiotemporal weighted regression model (stwrv1. 0) for analyzing local non-stationarity in space and time. *Geoscientific Model Development Discussions*, 2020:1–33, 2020.
 - Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. *Psychological review*, 65(6):386, 1958.
 - David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic forecasting with autoregressive recurrent networks. *International journal of forecasting*, 36(3):1181–1191, 2020.
 - Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of lstm and bilstm in forecasting time series. In 2019 IEEE International conference on big data (Big Data), pp. 3285–3292. IEEE, 2019.
 - Slawek Smyl. A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. *International journal of forecasting*, 36(1):75–85, 2020.
 - Sean J Taylor and Benjamin Letham. Forecasting at scale. *The American Statistician*, 72(1):37–45, 2018.
 - Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient for fast stylization. *arXiv preprint arXiv:1607.08022*, 2016.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
 - Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-scale local and global context modeling for long-term series forecasting. In *The eleventh international conference on learning representations*, 2023.
 - Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. *arXiv* preprint arXiv:2405.14616, 2024a.
 - Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jianmin Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting with exogenous variables. *Advances in Neural Information Processing Systems*, 37:469–498, 2024b.
 - Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive learning of disentangled seasonal-trend representations for time series forecasting. *arXiv* preprint arXiv:2202.01575, 2022a.
 - Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential smoothing transformers for time-series forecasting. *arXiv preprint arXiv:2202.01381*, 2022b.
 - Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. *Advances in neural information processing systems*, 34:22419–22430, 2021.
 - Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*, 2022a.

- Haixu Wu, Jianmin Xu, Jian Wang, and Mingsheng Long. Wavelet-based neural network for time series forecasting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2022b.
 - Peng Xu and Xiatian Zhu. Deepchange: A long-term person re-identification benchmark with clothes change. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 11196–11205, 2023.
 - Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. arXiv preprint arXiv:2307.03756, 2023.
 - Weiwei Ye, Songgaojun Deng, Qiaosha Zou, and Ning Gui. Frequency adaptive normalization for non-stationary time series forecasting. *Advances in Neural Information Processing Systems*, 37: 31350–31379, 2024.
 - Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Longbing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series forecasting. *Advances in Neural Information Processing Systems*, 36:76656–76679, 2023.
 - Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 11121–11128, 2023.
 - G Peter Zhang. Time series forecasting using a hybrid arima and neural network model. *Neurocomputing*, 50:159–175, 2003.
 - T Zhang, Y Zhang, W Cao, J Bian, X Yi, S Zheng, and J Li. Less is more: Fast multivariate time series forecasting with light sampling-oriented mlp structures. arxiv 2022. arXiv preprint arXiv:2207.01186.
 - Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In *The eleventh international conference on learning representations*, 2023.
 - Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon Zhao. Time series classification using multichannels deep convolutional neural networks. In *International conference on web-age information management*, pp. 298–310. Springer, 2014.
 - Zuduo Zheng, Soyoung Ahn, Danjue Chen, and Jorge Laval. Applications of wavelet transform for analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations. *Transportation Research Part B: Methodological*, 45(2):372–384, 2011.
 - Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.
 - Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In *International conference on machine learning*, pp. 27268–27286. PMLR, 2022.

A PRELIMINARIES

In this section, we introduce the basics of this study from the aspects of multivariate time series fore-casting, trend variation and seasonality variation, Fast Fourier Transform (FFT), Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT), and the frequency adaptive normalization (FAN) method Ye et al. (2024).

A.1 MULTIVARIATE TIME SERIES FORECASTING

As for the multivariate time series forecasting, we denote multiple time series as $\mathbf{X}_t \in \mathbb{R}^{N \times L}$, where N is the number of variables of the time series and each time series has a lookback length of L at timestamp t. Then we use the forecasting model \mathcal{F} to predict the future time series $(\hat{\mathbf{X}}_{t+1}, \hat{\mathbf{X}}_{t+2}, ..., \hat{\mathbf{X}}_{t+H})$ based on the historical time series $(\mathbf{X}_{t-L+1}, \mathbf{X}_{t-L+2}, ..., \mathbf{X}_t)$, where H is the horizon length of the future time series. Therefore, we can formulate the multivariate time series forecasting problem as follows:

$$(\hat{\mathbf{X}}_{t+1}, \hat{\mathbf{X}}_{t+2}, ..., \hat{\mathbf{X}}_{t+H}) = \mathcal{F}_{\Theta}(\mathbf{X}_{t-L+1}, \mathbf{X}_{t-L+2}, ..., \mathbf{X}_{t})$$
(14)

where Θ is the parameters of the forecasting model \mathcal{F} .

A.2 TREND AND SEASONALITY VARIATIONS

In order to better describe the properties of the datasets, we need to calculate the trend variation and seasonality variation.

Trend Variation.To capture the global trend change, we calculate the average value of different regions of the dataset. With a time series dataset $\mathbf{X} \in \mathbb{R}^{N \times L}$, where N is the number of inputs and L is the lookback length, we first split it into \mathbf{X}_{train} , \mathbf{X}_{val} , and \mathbf{X}_{test} in chronological order, representing the training dataset, validation dataset, and test dataset, respectively. Then, the trend variation is calculated as follows:

Trend Variation =
$$\left| \frac{\text{Mean}_{N}(\mathbf{X}_{train}) - \text{Mean}_{N}(\mathbf{X}_{val,test})}{\text{Mean}_{N}(\mathbf{X}_{train})} \right|$$
(15)

where $\mathbf{X}_{val,test}$ represents the concatenation of the validation set and the test set. It should be noted that in order to obtain relative results between different datasets, the trend changes need to be normalized by dividing by the mean of the training dataset.

Seasonality Variation. We evaluate seasonal changes by analyzing the Fourier frequency changes of all input instances. Given an input $\mathbf{X} \in \mathbb{R}^{N_i \times L}$, where N_i is the number of inputs and L is the lookback length. We first obtain the FFT results of all inputs, denoted as $Z \in \mathbb{C}^{N_i \times L}$. Then, we calculate the variance between different inputs and normalize the variance by dividing by the mean of each input, as follows:

Seasonality Variation =
$$\frac{\operatorname{Var}_{N_i}[\operatorname{Amp}(Z)]}{\operatorname{Mean}_L(X)}$$
 (16)

where the subscripts indicate the dimension of the operation process.

A.3 FAST FOURIER TRANSFORM (FFT)

In time series forecasting, Fast Fourier Transform (FFT) is often used for frequency domain analysis Brigham (1988). Here, we perform FFT decomposition on the time series $\mathbf{X}_{t}(t=0,1,\ldots,L-1)$ of length L and obtain the frequency domain coefficients:

$$\mathbf{X}_{k} = \sum_{t=0}^{L-1} x_{t} \cdot e^{-i2\pi kt/L},\tag{17}$$

where $k = 0, 1, \dots, L - 1$ and \mathbf{X}_k is a complex number consisting of amplitude \mathbf{A}_k and phase ϕ_k :

$$\mathbf{X}_k = \mathbf{A}_k e^{i\phi_k},\tag{18}$$

$$\mathbf{A}_k = |\mathbf{X}_k|,\tag{19}$$

$$\phi_k = \arg(\mathbf{X}_k). \tag{20}$$

where $|\cdot|$ represents the absolute value operation and $arg(\cdot)$ is the argument function of a complex number, which is used to calculate the phase angle of a complex number in the complex plane.

A.4 DISCRETE FOURIER TRANSFORM (DFT) AND IDFT PROCESS

Based on Section A.3, we introduce the Discrete Fourier Transform (DFT) process and Inverse Discrete Fourier Transform (IDFT) process that can be implemented by Fast Fourier Transform (FFT) Brigham (1988). Given a multivariate time series input \mathbf{X} , we perform a 1-dim Fourier transform on each dimension $\mathbf{X}^{(i)}$ separately, so we illustrate it in vector form. For a discrete time series vector $\mathbf{X} \in \mathbb{R}^L$ with the lookback length of L, we transform it to the Fourier domain by applying a 1-dim DFT, and then we can also transform it back to the Fourier domain using a 1-dim IDFT, which is defined as:

$$DFT : \mathbf{Z}[\omega] = \sum_{t=0}^{L-1} \mathbf{X}[t] \cdot e^{-2\pi i \frac{\omega t}{L}}$$
(21)

IDFT:
$$\mathbf{X}[t] = \frac{1}{L} \sum_{\omega=0}^{T-1} \mathbf{Z}[\omega] \cdot e^{2\pi i \frac{\omega t}{L}}$$
 (22)

where ω is the current frequency, t is the current time step, and \mathbf{Z} is the result of the Fourier transform, which is a complex vector containing real and imaginary parts. Its amplitude and phase can be calculated as follows:

$$\operatorname{Mag}: \mathbf{a}[\omega] = \frac{\sqrt{\operatorname{Re}(\mathbf{Z}[\omega])^2 + \operatorname{Im}(\mathbf{Z}[\omega])^2}}{L}$$
 (23)

$$Pha : \mathbf{p}[\omega] = \tan 2(\operatorname{Im}(\mathbf{Z}[\omega]), \operatorname{Re}(\mathbf{Z}[\omega]))$$
(24)

where $\operatorname{Im}(\mathbf{Z}[\cdot])$ and $\operatorname{Re}(\mathbf{Z}[\cdot])$ represent the imaginary and real parts of the complex number, respectively, and $\operatorname{atan} 2$ is the two-argument form of arctan .

A.5 FREQUENCY ADAPTIVE NORMALIZATION (FAN) METHOD

In this section, we briefly introduce the frequency adaptive normalization (FAN) method Ye et al. (2024). Please refer to the original paper Ye et al. (2024) for specific related functions and variable names.

At each time step, FAN Ye et al. (2024) first removes the first K dominant components in the frequency domain for each input instance. This process is called frequency residual learning (FRL), and then removes X_{non} from the original sequence to obtain the stationary component X_{res} :

$$\mathbf{Z} = \mathrm{DFT}(\mathbf{X}),\tag{25}$$

$$\mathcal{K} = \text{TopK}(\text{Amp}(\mathbf{Z})), \tag{26}$$

$$\mathbf{X}_{non} = \text{IDFT}(\text{Filter}(\mathcal{K}, \mathbf{Z})), \tag{27}$$

$$\mathbf{X}_{res} = \mathbf{X} - \mathbf{X}_{non},\tag{28}$$

The DFT and IDFT processes can be implemented using Fast Fourier Transform (FFT). Afterwards, the prediction backbone g_{θ} uses the stationary component \mathbf{X}_{res} to forecast the stationary part of the output \widehat{Y}_{res} and then reintegrates the removed non-stationary information into the output:

$$\hat{\mathbf{Y}}_{res} = g_{\theta}(\mathbf{X}_{res}),\tag{29}$$

$$\hat{\mathbf{Y}} = \hat{\mathbf{Y}}_{res} + \hat{\mathbf{Y}}_{non},\tag{30}$$

Here, a simple multi-layer perceptron (MLP) model q_{ϕ} is used to directly predict the future values of the composite top K frequency components for D dimensions:

$$\hat{\mathbf{Y}}_{non} = q_{\phi}(\mathbf{X}_{non}, \mathbf{X}) \tag{31}$$

$$= \mathbf{W}_3 \operatorname{ReLU}(\mathbf{W}_2 \operatorname{Concat}(\operatorname{ReLU}(\mathbf{W}_1 \mathbf{X}_{non}), \mathbf{X}))$$
(32)

The above is a brief introduction to the preparation work for this paper. For more details about the FAN method Ye et al. (2024), please refer to the original paper Ye et al. (2024).

B IMPLEMENTATION DETAILS

In this section, we will introduce the specific details of the datasets and the evaluation metrics to help readers better reproduce the experimental results of this paper.

B.1 Datasets Details

We use 8 widely-used real-world datasets in the time series field, namely the ETT (Electric Transformer Temperature) dataset Zhou et al. (2021), which records the oil temperature and load of power transformers for 2 years from July 2016 to July 2018. The dataset contains 4 subsets, of which (1) ETTh1 and (2) ETTh2 are sampled every hour, and (3) ETTm1 and (4) ETTm2 are sampled every 15 minutes; (5) Electricity, which contains the electricity consumption of 321 customers every 15 minutes for 3 years from July 2016 to July 2019; (6) Exchange Rate, which records the daily exchange rates of 8 countries for 26 years from 1990 to 2016. (7) Traffic, which contains hourly traffic flow on San Francisco highways recorded by 862 sensors for 1 year from 2015 to 2016; (8) Weather, which consists of 21 meteorological indicators, including air temperature and humidity data collected every 10 minutes in 2021. For more detailed properties and characteristics of the datasets, please refer to Table 5.

Table 5: The detailed descriptions of the datasets.

Datasets	Dim	Dataset Size	Frequency	$\mid K$	TV	SV	Information
ETTh1	7	(8545, 2881, 2881)	1 Hour	4	3.839	3.690	Temperature
ETTh2	7	(8545, 2881, 2881)	1 Hour	3	0.154	1.013	Temperature
ETTm1	7	(34465, 11521, 11521)	15 Minutes	11	0.030	3.330	Temperature
ETTm2	7	(34465, 11521, 11521)	15 Minutes	5	0.196	1.648	Temperature
Electricity	321	(18317, 2633, 5261)	1 Hour	2	0.249	0.435	Electricity
Exchange	8	(5120, 665, 1422)	1 Day	3	0.242	2.645	Exchange Rate
Traffic	862	(12185, 1757, 3509)	1 Hour	30	0.068	14.225	Transportation
Weather	21	(36792, 5271, 10540)	10 Minutes	2	0.028	0.387	Weather

As shown in Table 5, Dim represents the dimension of the dataset, which is the number of variables, and the dataset size is listed as (Train, Validation, Test). K is the hyperparameter of the top K amplitude signals proposed in the FAN method Ye et al. (2024). For more details on the hyperparameter K, please refer to the original paper of FAN Ye et al. (2024). Furthermore, TV and SV represent trend variation and seasonality variation, respectively, mentioned in Appendix A.2.

B.2 METRICS DETAILS

Regarding metrics, we use the mean square error (MSE) and mean absolute error (MAE) as evaluation metrics for time series forecasting, which are calculated as follows:

$$MSE = \frac{1}{H} \sum_{i=1}^{H} (X_i - \hat{X}_i)^2$$
 (33)

$$MAE = \frac{1}{H} \sum_{i=1}^{H} |X_i - \hat{X}_i|$$
 (34)

where $X_i, \widehat{X}_i \in \mathbb{R}$ are the ground truth and prediction results of the i^{th} time point in the future and N is the total number of future time points.

C ALGORITHMIC DETAILS OF MODEL DESIGN

In this section, in order to help readers understand the core idea of this paper more clearly, we introduce the specific algorithmic processes of the two major innovations proposed in this paper, sliding window adaptive normalization (SWAN) and statistical prediction Module (SPM).

C.1SLIDING WINDOW ADAPTIVE NORMALIZATION (SWAN)

Regarding the sliding window adaptive normalization (SWAN) module, we describe the specific algorithm flow of dynamic optimal window size selection and sliding window adaptive normalization in Algorithm 1 and Algorithm 2.

Algorithm 1: Dynamic Optimal Window Size Selection

```
Input: The set of the candidate window size W \in \phi_w; the time series data X; and the
       lookback length L
Output: The optimal window size W_{optimal}
```

Initialisation: Initialize the candidate window size set $\phi_w = \{12, 24, 48\}$

2 while $W \in \phi_w$ do

```
Padding the sequence with a size of \frac{W}{2}
3
             for i \leftarrow 1 to L do
4
                    \sigma_{window}(i) = \sqrt{\frac{1}{W} \sum_{j=i}^{W} (X_j - \mu_{window}(i))^2}
6
             \begin{aligned} & \mu_{\sigma} \leftarrow \frac{1}{L} \sum_{i=1}^{L} \sigma_{window}(i) \\ & \sigma_{window} \leftarrow \sqrt{\frac{1}{L} \sum_{i=1}^{L} (\sigma_{window}(i) - \mu_{\sigma})^2} \end{aligned}
```

9 end while

 10 return $W_{optimal} \leftarrow arg \ min_{\phi_w} \ \sigma_{window}$

Algorithm 2: Sliding Window Adaptive Normalization

Input: The optimal window size $W_{optimal}$; the original time series data X; and the lookback length L

Output: The normalized time series data X_{stat}

- **Initialisation:** Define the set of means ϕ_{μ} and the set of standard deviations ϕ_{σ} containing the statistics of each window, and the set of the normalized sequence $\phi_{X_{norm}}$
- ² Padding the sequence with a size of $\frac{W_{optimal}}{2}$
- for i = 1 to L do

```
\sigma_{window}(i) \leftarrow \sqrt{\frac{1}{W} \sum_{j=i}^{W} (X_j - \mu_{window}(i))^2}
X_{\text{stat}}(i) \leftarrow \frac{X(i) - \mu_{\text{window}}(i)}{\sigma_{\text{window}}(i) + \varepsilon}
\phi_{\mu} \leftarrow \phi_{\mu} \cup \{\mu\}
                      \phi_{\mu} \leftarrow \phi_{\mu} \cup \{\mu_{window}(i)\} 
\phi_{\sigma} \leftarrow \phi_{\sigma} \cup \{\sigma_{window}(i)\} 
                       \phi_{X_{stat(i)}} \leftarrow \phi_{X_{stat(i)}} \cup \{X_{stat}(i)\}
10 end for
```

return $X_{stat} \leftarrow \phi_{X_{stat(i)}}$

C.2 STATISTICAL PREDICTION MODULE (SPM)

For the statistical prediction module (SPM), we describe its detailed process in Algorithm 3.

Algorithm 3: Statistical Prediction Module

Input: The statistics μ and σ from the sets ϕ_{μ} and ϕ_{σ} calculated in Algorithm 2; the original time series data X; the stationary part results \hat{Y}^{stat} predicted by the backbone network with the input X_{stat}

Output: The predicted stationary component \widehat{Y}_{res}

- **Initialisation:** Initialize the network structure of f_1 and f_2 , which contain 1 and 2 linear layers respectively, and the ReLU activation function, where L and H represent the lookback and horizon lengths respectively
- $h_{\mu} \leftarrow \text{ReLU}(\text{Linear}_{f_1, L \times 256}(\mu))$
- $sinp_{\mu} \leftarrow \operatorname{Concat}(h_{\mu}, X)$

- $h_{\sigma} \leftarrow \text{ReLU}(\text{Linear}_{f_1, L \times 256}(\sigma))$
- $sinp_{\sigma} \leftarrow \operatorname{Concat}(h_{\sigma}, X)$
- $h_{\mu} \leftarrow \text{ReLU}(\text{Linear}_{f_2, (256+L) \times 512}(inp_{\mu}))$
- $\tau \ \widehat{\mu} \leftarrow \operatorname{Linear}_{f_2, \ 512 \times H}(h_{\mu})$
- $h_{\sigma} \leftarrow \text{ReLU}(\text{Linear}_{f_2, (256+L) \times 512}(inp_{\sigma}))$
- $\widehat{\sigma} \leftarrow \operatorname{Linear}_{f_2, \ 512 \times H}(h_{\sigma})$
- 992 10 return $\hat{\mathbf{Y}}^{\mathrm{res}} \leftarrow \hat{\mathbf{Y}}^{\mathrm{stat}} \cdot \widehat{\boldsymbol{\sigma}} + \widehat{\boldsymbol{\mu}}$

D ADDITIONAL RESULTS

D.1 COMPLETE EXPERIMENTAL RESULTS

Due to the space limitation of the main text, we place the complete experimental results of the 3 backbone models with and without Dual-AN on all 8 datasets in Table 6.

Table 6: Full results of the main experiments with and without Dual-AN. The best results are highlighted in **bold**.

Models	s	DLi	near	+Dua	ıl-AN	Info	rmer	+Dua	ıl-AN	SCI	Net	+Dua	ıl-AN
Metrics	S	MAE	MSE										
	96	0.424	0.368	0.425	0.363	0.598	0.646	0.421	0.357	0.461	0.409	0.420	0.356
ETTL 1	168	0.449	0.398	0.453	0.396	0.694	0.863	0.446	0.386	0.518	0.489	0.452	0.396
ETTh1	336	0.485	0.448	0.487	0.446	0.738	0.950	0.493	0.452	0.574	0.582	0.493	0.450
	720	0.561	0.558	0.573	0.568	0.823	1.106	0.579	0.589	0.645	0.707	0.581	0.581
	96	0.237	0.110	0.236	0.110	0.298	0.160	0.238	0.111	0.264	0.128	0.237	0.112
ETTh2	168	0.254	0.127	0.250	0.125	0.331	0.191	0.252	0.127	0.292	0.156	0.249	0.125
E11112	336	0.271	0.138	0.264	0.138	0.347	0.208	0.276	0.147	0.305	0.167	0.262	0.137
	720	0.316	0.179	0.280	0.157	0.413	0.291	0.337	0.208	0.339	0.201	0.284	0.156
	96	0.380	0.310	0.394	0.334	0.514	0.520	0.401	0.353	0.421	0.355	0.395	0.343
ETTm1	168	0.408	0.354	0.414	0.360	0.563	0.600	0.422	0.377	0.446	0.399	0.414	0.360
EIIIII	336	0.446	0.416	0.455	0.421	0.612	0.690	0.459	0.429	0.489	0.464	0.454	0.421
	720	0.488	0.471	0.492	0.474	0.697	0.849	0.494	0.477	0.553	0.563	0.487	0.465
	96	0.203	0.080	0.199	0.078	0.226	0.091	0.199	0.079	0.206	0.079	0.199	0.078
ETTm2	168	0.220	0.093	0.219	0.093	0.251	0.112	0.220	0.093	0.226	0.094	0.219	0.093
ETTIIIZ	336	0.245	0.114	0.242	0.113	0.283	0.140	0.245	0.114	0.262	0.122	0.242	0.113
	720	0.270	0.142	0.264	0.139	0.347	0.212	0.277	0.147	0.297	0.153	0.264	0.139
	96	0.277	0.195	0.265	0.181	0.376	0.277	0.244	0.148	0.296	0.188	0.254	0.159
Electricity	168	0.272	0.183	0.265	0.176	0.371	0.269	0.254	0.159	0.306	0.196	0.256	0.160
Licetricity	336	0.294	0.197	0.285	0.190	0.377	0.273	0.270	0.166	0.330	0.214	0.272	0.169
	720	0.333	0.233	0.320	0.223	0.401	0.311	0.302	0.191	0.352	0.240	0.303	0.194
	96	0.164	0.052	0.167	0.053	0.532	0.412	0.168	0.055	0.218	0.085	0.167	0.053
Exchange	168	0.219	0.090	0.215	0.087	0.582	0.491	0.217	0.089	0.266	0.126	0.215	0.087
Exchange	336	0.288	0.155	0.291	0.158	0.721	0.847	0.295	0.164	0.337	0.203	0.290	0.156
	720	0.453	0.352	0.398	0.283	0.889	1.210	0.431	0.350	0.502	0.430	0.427	0.312
	96	0.387	0.504	0.334	0.403	0.350	0.428	0.323	0.386	0.399	0.471	0.325	0.393
Traffic	168	0.588	0.804	0.333	0.413	0.366	0.457	0.320	0.393	0.377	0.443	0.328	0.408
Tranic	336	0.380	0.504	0.345	0.436	0.414	0.555	0.336	0.425	0.384	0.459	0.345	0.436
	720	0.407	0.532	0.368	0.469	0.656	1.002	0.356	0.448	0.401	0.490	0.368	0.469
	96	0.249	0.180	0.220	0.181	0.299	0.221	0.210	0.172	0.265	0.199	0.211	0.170
Weather	168	0.284	0.237	0.259	0.218	0.363	0.320	0.250	0.211	0.305	0.245	0.252	0.209
Weather	336	0.344	0.304	0.298	0.278	0.439	0.437	0.301	0.270	0.341	0.310	0.293	0.271
	720	0.380	0.358	0.346	0.343	0.496	0.524	0.366	0.349	0.383	0.371	0.331	0.329

In addition, we report the full results of comparative experiments with existing normalization methods on all 8 datasets in Table 7. For the model parameter experiments on lookback and horizon lengths, we place the complete experimental results in Table 8.

Table 7: Full results of MAE and MSE performance compared with other normalization methods. The best performance is highlighted in red and the second best performance is underlined.

	Mod	de	DLinear Informer								1		SCIN-4				
	Mode Metho		Dual-AN	FAN	DLinear SAN	Dish-TS	RevIN	Dual-AN	FAN	SAN	Dish-TS	RevIN	Dual-AN	FAN	SCINet SAN	Dish-TS	RevIN
		MAE	0.425	0.426	0.432	0.433	0.428	0.421	0.434	0.498	0.556	0.521	0.420	0.427	0.431	0.438	0.438
	96	MSE	0.363	0.362	0.370	0.375	0.375	0.357	0.367	0.466	0.549	0.517	0.356	0.362	0.370	0.382	0.380
_	168	MAE	0.453	0.452	0.460	0.454	0.464	0.446	0.465	0.514	0.601	0.539	0.452	0.454	0.459	0.476	0.470
ETTh1	100	MSE	0.396	0.393	0.404	0.405	0.416	0.386	0.407	0.485	0.642	0.531	0.396	0.395	0.404	0.430	0.425
듄	336	MAE MSE	$\frac{0.487}{0.446}$	0.484 0.435	0.504 0.463	0.505 0.475	0.501 0.476	0.493 0.452	$\frac{0.507}{0.467}$	0.627 0.702	0.662 0.753	0.642 0.735	0.493 0.450	0.487 0.439	0.502 0.461	0.539 0.522	$\frac{0.490}{0.462}$
		MAE	0.573	0.433	0.463	0.473	0.476	0.432	$\frac{0.467}{0.602}$	0.702	0.739	0.763	0.430	0.439	0.461	0.604	0.462
	720	MSE	0.568	0.574	0.579	0.603	0.641	0.589	0.617	0.845	0.739	0.968	0.581	0.575	0.580	0.622	0.620
_	06	MAE	0.236	0.234	0.237	0.237	0.239	0.238	0.256	0.272	0.330	0.309	0.237	0.239	0.238	0.265	0.241
	96	MSE	0.110	0.108	0.112	0.111	0.117	0.111	0.124	0.138	0.196	0.178	0.112	0.112	0.113	0.132	0.115
2	168	MAE	0.250	0.251	0.252	0.255	0.255	0.252	0.269	0.296	0.361	0.317	0.249	0.255	0.252	0.281	0.263
ETTh2		MSE	0.125	0.126	0.128	0.129	0.135	0.127	0.138	0.159	0.234	0.189	0.125	0.130	0.127	0.152	0.140
딢	336	MAE MSE	$\frac{0.264}{0.138}$	0.263 0.132	$\frac{0.264}{0.137}$	0.269 0.138	0.273 0.152	0.276 0.147	0.300	0.310 0.176	0.375 0.254	0.334 0.205	0.262 0.137	0.269 0.142	0.263	0.297 0.165	0.275 0.151
		MAE	0.138	0.132	$\frac{0.137}{0.286}$	0.138	0.132	0.147	0.162	0.176	0.234	0.203	0.137	0.142	0.136	0.163	0.131
	720	MSE	0.250	0.158	0.159	0.165	0.193	0.208	0.256	0.332	0.350	0.223	0.156	0.159	$\frac{0.304}{0.179}$	0.190	0.190
	0.0	MAE	0.394	0.394	0.386	0.407	0.383	0.401	0.389	0.401	0.457	0.446	0.395	0.394	0.389	0.415	0.436
	96	MSE	0.334	0.334	0.311	0.356	0.317	0.353	0.322	0.330	0.445	0.420	0.343	0.333	0.321	0.357	0.423
=	168	MAE	0.414	0.416	0.416	0.421	0.435	0.422	0.417	0.443	0.496	0.470	0.414	0.415	0.422	0.442	0.454
ETTm1	100	MSE	0.360	0.364	0.354	0.373	0.390	0.377	0.362	0.393	0.496	0.457	0.360	0.363	0.367	0.414	0.430
ET	336	MAE	0.455	0.456	0.458	0.459	0.480	0.459	0.462	0.492	0.536	0.524	0.454	0.456	0.454	0.481	0.490
		MSE MAE	$\frac{0.421}{0.492}$	0.423	0.415 0.497	0.433 0.501	0.463	0.429 0.494	0.425	0.460 0.545	0.552 0.608	0.525 0.597	$\frac{0.421}{0.487}$	0.423	0.415 0.498	0.467 0.515	0.486 0.525
	720	MSE	0.492	0.476	0.497	0.301	0.534	0.494	0.483	0.543	0.659	0.597	0.465	0.493	0.498	0.513	0.525
_		MAE	0.199	0.198	0.197	0.207	0.202	0.199	0.198	0.201	0.238	0.210	0.199	0.198	0.197	0.206	0.197
	96	MSE	0.078	0.078	0.077	0.082	0.080	0.079	0.077	0.079	0.105	0.086	0.078	0.078	0.077	0.083	0.077
7	168	MAE	0.219	0.219	0.217	0.222	0.224	0.220	0.219	0.221	0.261	0.235	0.219	0.218	0.217	0.227	0.220
ETTm2	108	MSE	0.093	0.093	0.092	0.094	0.097	0.093	0.092	0.094	0.133	0.105	0.093	0.093	0.093	0.099	0.094
E	336	MAE	0.242	0.241	0.242	0.246	0.250	0.245	0.245	0.249	0.302	0.275	0.242	0.241	0.240	0.258	0.250
_	550	MSE	0.113	0.113	0.114	0.114	0.121	0.114	0.114	0.120	0.169	0.142	0.113	0.113	0.113	0.126	0.122
	720	MAE	0.264	0.264	0.268	0.274	0.277	0.277	0.287	0.293	0.336	0.314	0.264	0.264	0.262	0.303	0.277
_		MSE MAE	0.139 0.265	0.139	0.142	0.144	0.155	0.147 0.244	0.154	0.162	0.207	0.186	0.139	0.139	0.137	0.181	0.155
	96	MSE	0.203	$\frac{0.200}{0.181}$	0.284	0.189	0.198	0.244	0.248	0.280	0.303	0.172	0.254	0.238	0.269	0.185	0.251
È	1.00	MAE	0.265	0.267	0.281	0.273	0.267	0.254	0.252	0.288	0.320	0.279	0.256	0.258	0.272	0.301	0.254
Electricity	168	MSE	0.176	0.177	0.183	0.181	0.184	0.159	0.155	0.178	0.211	0.177	0.160	0.163	0.168	0.200	0.155
ect	336	MAE	0.285	0.288	0.301	0.296	0.289	0.270	0.272	0.312	0.335	0.299	0.272	0.278	0.287	0.312	0.266
回	330	MSE	0.190	0.191	0.198	0.197	0.201	0.166	0.167	0.197	0.222	0.192	0.169	0.175	0.177	0.207	0.162
	720	MAE	0.320	0.322	0.333	0.340	0.329	0.302	0.304	0.332	0.357	0.326	0.303	0.312	0.307	0.336	0.296
		MSE	0.223	0.224	0.231	0.239	0.244	0.191	0.194	0.217	0.249	0.218	0.194	0.204	0.193	0.237	0.188
	96	MAE MSE	0.167 0.053	0.167 0.053	0.166	0.202 0.070	0.164 0.053	0.168 0.055	0.182	0.168 0.055	0.278 0.183	0.223 0.096	0.167 0.053	0.169 0.054	0.166 0.054	0.220 0.087	0.170 0.057
9		MAE	0.033	0.033	0.213	0.277	0.033	0.033	0.239	0.033	0.165	0.295	0.033	0.220	0.213	0.303	0.037
E Si	168	MSE	0.087	0.088	0.087	0.127	0.088	0.089	0.105	0.110	0.279	0.157	0.087	0.092	0.087	0.186	0.089
Exchange	336	MAE	0.291	0.297	0.304	0.332	0.312	0.295	0.329	0.406	0.566	0.375	0.290	0.303	0.305	0.439	0.314
Ω	330	MSE	0.158	0.162	0.171	0.190	0.178	0.164	0.184	0.305	0.603	0.252	0.156	0.165	0.171	0.318	0.183
	720	MAE	0.398	0.406	0.466	0.628	0.526	0.431	0.431	0.599	0.730	0.503	0.427	0.437	0.474	0.583	0.496
	, 20	MSE	0.283	0.292	0.375	0.674	0.440	0.350	0.322	0.591	0.822	0.448	0.312	0.338	0.386	0.534	0.403
	96	MAE	0.334	0.334 0.403	0.374 0.443	0.403	0.556	0.323	0.314	0.323	0.351 0.415	0.372	0.325 0.393	0.340	0.358 0.409	0.391 0.458	0.371
		MSE MAE	0.403 0.333	0.403	$\frac{0.443}{0.517}$	0.513 0.585	0.738 0.598	0.386	0.364 0.319	0.340	0.415	0.455 0.506	0.393	0.393	0.409	0.458	0.434 0.356
Яc	168	MSE	0.333	$\frac{0.334}{0.414}$	0.654	0.796	0.803	0.320	0.319	0.400	0.333	0.746	0.328	0.403	0.348	0.392	0.330
Traffic	226	MAE	0.345	0.346	0.371	0.394	0.379	0.336	0.333	0.403	0.376	0.636	0.345	0.357	0.356	0.403	0.366
Т	336	MSE	0.436	0.437	0.463	0.511	0.520	0.425	0.406	0.518	0.459	1.048	0.436	0.426	0.437	0.498	0.444
	720	MAE	0.368	0.372	0.395	0.420	0.403	0.356	0.397	0.563	0.402	0.786	0.368	0.377	0.375	0.423	0.382
	120	MSE	0.469	0.472	0.497	0.541	0.548	0.448	0.482	0.778	0.489	1.327	0.469	0.454	0.465	0.533	0.473
	96	MAE	0.220	0.214	0.228	0.247	0.216	0.210	0.217	0.219	0.251	0.203	0.211	0.215	0.219	0.234	0.196
		MSE	0.181	0.173	$\frac{0.175}{0.259}$	0.190	0.195	0.172	0.172	0.170	0.190	0.173	0.170	0.170	0.164	0.175	0.164
her	168	MAE MSE	0.259 0.218	$\frac{0.254}{0.210}$	0.258	0.285 0.226	0.242 0.231	0.250 0.211	0.247 0.208	0.253 0.206	0.303 0.255	$\frac{0.248}{0.228}$	0.252	0.253	0.257 0.203	0.270 0.213	0.232 0.207
Weather		MAE	0.218	0.210	0.206	0.226	0.231	0.211	0.208	0.206	0.255	0.228	0.209	0.206	0.203	0.213	0.207
\geq	336	MSE	0.278	$\frac{0.297}{0.274}$	0.312	0.342	0.301	0.301	0.313	0.310	0.364	0.314	0.293	0.268	0.369	0.275	0.285
	700	MAE	0.346	0.345	0.358	0.400	0.327	0.366	0.368	0.379	0.454	0.350	0.331	0.340	0.355	0.355	0.356
	720	MSE	0.343	0.339	0.338	0.366	0.359	0.349	0.360	0.368	0.479	0.386	0.329	0.322	0.331	0.336	0.348
	Count (1^{st})	34	21	12	0	5	41	22	4	0	2	29	14	18	0	14
_								•									

Table 8: Full results of the model parameter experiments on lookback and horizon lengths compared with FAN. The best results are highlighted in **bold**.

Parameters			Lookb	ack (L)			Horizon (H)						
Lengths	48	72	96	120	144	168	270	336	420	540	600	720	
MAE (Dual-AN)	0.174	0.171	0.168	0.167	0.170	0.170	0.271	0.290	0.319	0.353	0.330	0.427	
MAE (FAN)	0.194	0.193	0.182	0.179	0.189	0.178	0.280	0.303	0.324	0.360	0.355	0.437	
MSE (Dual-AN)	0.057	0.056	0.055	0.055	0.055	0.055	0.134	0.156	0.191	0.219	0.202	0.312	
MSE (FAN)	0.073	0.072	0.061	0.060	0.063	0.060	0.142	0.165	0.196	0.228	0.216	0.338	

D.2 MODEL EFFICIENCY

In terms of model efficiency, we compared the prediction performance, number of parameters, and training speed of Dual-AN and other normalization methods on the Traffic dataset on the Informer backbone with a prediction length of H = 720. The results are shown in Figure 5. With the training speed of Dual-AN no more than 3% different from that of other methods and the average number of parameters no more than 5%, the average MAE metric is improved by 33.71% and the average MSE metric is improved by 41.74%, which highlights the excellent performance of our Dual-AN model in balancing effect and efficiency. Although compared with the existing most advanced method, FAN, the reduction ratio can also reach 7.05% and 10.30%, which further demonstrates the superior performance and high efficiency of the Dual-AN method proposed in this paper.

Figure 5: Model efficiency comparison of Dual-AN, FAN, SAN, Dish-TS, and RevIN.

E FORECAST SHOWCASES

To visualize the performance of our proposed Dual-AN method and since the FAN method Ye et al. (2024) is the most advanced among the existing methods, we illustrate the visual forecasting results of Dual-AN compared with FAN Ye et al. (2024) on the ETTh1 dataset with the Informer backbone in Figure 6.

Figure 6: The visual forecasting results of 336 steps of (a) Dual-AN and (b) FAN on the ETTh1 dataset with the Informer backbone.

As shown in Figure 6, in extreme cases of the time series (such as maximum and minimum values), Dual-AN can more accurately capture the local trends of the time series, demonstrating the

significant advantages of the sliding window adaptive normalization (SWAN) module at a fine granularity, while furthermore making more accurate forecasting of future trends through the statistical prediction module (SPM).

In addition, we show the visual forecasting results of the baseline model (Informer) and the Dual-AN method proposed in this paper on the ETTh1 dataset in Figure 7, which once again corroborate the significant advantages of Dual-AN in capturing future local trends in both short-term and long-term forecasting.

Figure 7: The visual forecasting results of backbone (Informer) and Dual-AN on the ETTh1 dataset across 4 different prediction lengths.

F FURTHER DISCUSSION ON THE WINDOW SIZE SELECTION PRINCIPLE

The criterion for dynamic window selection, which minimizes the standard deviation of local standard deviations (Equation 2), is rooted in the principle of seeking maximum statistical homogeneity at a given temporal scale. The underlying hypothesis is that an optimal normalization window should span a region where the series' intrinsic volatility is most stable. A stable volatility profile leads to more consistent scaling factors (mean and standard deviation), which in turn transforms the input into a sequence that more closely approximates a stationary process—a key assumption for many predictive models. While alternative criteria, such as those based on information theory (e.g., Minimum Description Length) or spectral entropy, could offer more theoretical grounding, the proposed heuristic provides a computationally efficient and empirically robust solution, as demonstrated by the analysis in Section 4.5.2. A rigorous theoretical exploration of optimal windowing strategies is a promising direction for future work.

G DESIGN RATIONALE FOR THE STATISTICAL PREDICTION MODULE (SPM)

The selection of an MLP architecture for the SPM (Section 3.2) was a deliberate design choice balancing expressive power against computational cost. The SPM's task is to predict future window-level statistics—a sequence-to-sequence regression problem. Although more complex architectures like RNNs or Transformers could be employed, they would introduce significant parameter overhead and computational latency. Crucially, the sequences of statistical moments (mean and standard deviation) are typically much smoother and less noisy than the raw time series data. Consequently, an MLP, as a universal function approximator, possesses sufficient expressive capacity to model these smoother dynamics effectively. This was confirmed during preliminary experiments, where replacing the MLP with an LSTM yielded only marginal performance gains at the cost of a substantial increase in training time, thus justifying the current, more efficient design. This ensures that Dual-AN remains a lightweight and broadly applicable plug-in.

H ABLATION STUDY ON LOSS FUNCTION COMPONENTS

To validate the effectiveness of the dual-component loss function described in Section 3.3, an additional ablation study was conducted. The full model, optimized with the combined loss $(\mathcal{L}_{nonstat} + \mathcal{L}_{stat})$, is compared against a variant trained with a single loss function applied only to the final prediction (i.e., MSE on the final output \hat{Y}). As shown in Table 9, explicitly supervising both the non-stationary and stationary components leads to improved forecasting accuracy. This result supports the hypothesis that the dual loss acts as a valuable regularizer, guiding the model toward a more meaningful and effective decomposition of the time series, which ultimately enhances prediction quality.

Table 9: Ablation study on loss function components on the ETTh1 dataset with the Informer backbone (H=336).

Loss Configuration	MAE	MSE
Single Loss on Final Prediction $(\mathcal{L}(\hat{Y}, Y))$	0.501	0.462
Dual Loss $(\mathcal{L}_{nonstat} + \mathcal{L}_{stat})$	0.493	0.452

I COMPUTATIONAL COMPLEXITY ANALYSIS

The computational overhead introduced by Dual-AN stems from the SWAN and SPM modules. Let N be the number of variables, L be the lookback length, and W_{opt} be the optimal window size.

- SWAN: The primary cost is the calculation of sliding window statistics. A naive implementation has a time complexity of $\mathcal{O}(L \cdot W_{opt} \cdot N)$. However, this can be optimized to $\mathcal{O}(L \cdot N)$ using moving average algorithms. The space complexity is $\mathcal{O}(L \cdot N)$ to store the statistics for each time step.
- **SPM**: The complexity is determined by its MLP layers. For the structure described in Appendix C.2, the complexity is independent of the sequence length and depends only on the hidden dimensions, which are fixed hyperparameters. Thus, its complexity is $\mathcal{O}(N)$.

The total additional time complexity is therefore approximately $\mathcal{O}(L \cdot N)$. This is linear with respect to the input sequence length and does not alter the dominant complexity of most modern backbone models (e.g., $\mathcal{O}(L^2 \cdot N)$ for standard Transformers or $\mathcal{O}(L \cdot \log L \cdot N)$ for Informer). This analysis confirms that Dual-AN is a computationally feasible plug-in for a wide range of applications without introducing a new performance bottleneck.

J LIMITATIONS AND FUTURE WORK

Based on the comprehensive framework and experimental results presented in this paper, we identify several limitations and suggest promising avenues for future work. First, the current implementation of the sliding window adaptive normalization (SWAN) module relies on a pre-defined set of

candidate window sizes, which may not be optimal for all types of time series. Although Dual-AN exhibits robustness across various window sizes, integrating an adaptive mechanism to dynamically determine window size during training could further improve model flexibility and generalization. Second, while Dual-AN achieves significant improvements across multiple backbones and datasets, its performance on series with extremely low trend and seasonality variations (e.g., Weather) remains less competitive compared to specialized methods like RevIN Kim et al. (2021). This suggests that a more nuanced integration of time and frequency domains may be necessary for such scenarios. Future work will focus on developing automated window size selection algorithms and designing backbone-specific variants of Dual-AN to enhance its applicability and performance. Addressing these aspects will further establish Dual-AN as a versatile and powerful framework for non-stationary time series forecasting.