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ABSTRACT

To address the pervasive and challenging issue of non-stationarity in time series
forecasting, recent research has primarily focused on time-domain normalization
methods that separate non-stationary features using statistical indicators. The pro-
posal of frequency adaptive normalization (FAN) offers a new perspective for sep-
arating non-stationary components in the frequency domain. However, existing
methods remain confined to a single domain, lacking a synergistic integration of
time and frequency domains. To bridge this gap, we introduce Dual-AN, a hi-
erarchical framework that synergizes both time and frequency domains. After
utilizing the Fourier transform approach to separate non-stationary factors, we
propose a novel sliding window adaptive normalization (SWAN) method to elim-
inate the local non-stationarity in the residuals. Furthermore, we introduce the
statistical prediction module (SPM) to forecast future statistics, which are used to
de-normalize the outputs based on the statistics of each window. Dual-AN is a
general framework that can be easily integrated into any forecasting model. We
evaluate the improvement in forecasting performance of 3 different benchmark
models on 8 widely-used datasets. The results show that Dual-AN demonstrates
significant performance improvement, with the average prediction error MAE and
MSE reduced by 15.92% and 20.72%. In comparison with other existing normal-
ization methods, Dual-AN surpasses all existing methods and achieves state-of-
the-art (SOTA) performance with an average prediction error reduction of 7.69%.

1 INTRODUCTION

Time series forecasting is of critical importance in numerous domains, including finance Li & Bas-
tos (2020), medicine Bertozzi et al. (2020), energy Hong et al. (2020), transportation Ermagun &
Levinson (2018), meteorology Murphy & Winkler (1984), and electricity Nti et al. (2020). However,
traditional machine learning and deep learning approaches often struggle in forecasting tasks due to
challenges such as distribution shift Kuang et al. (2020); Cao et al. (2022), which is a phenomenon
inherent in non-stationary time series Hyndman & Athanasopoulos (2018). These dynamic proper-
ties pose significant obstacles to accurate prediction.

In recent years, the non-stationarity in time series has attracted growing attention. Since the intro-
duction of the reversible normalization method in 2022 Kim et al. (2021), mainstream research has
focused on exploiting time-domain statistics to mitigate non-stationary signals Fan et al. (2023); Liu
et al. (2023c). More recently, frequency adaptive normalization (FAN) Ye et al. (2024) has opened a
new direction by operating in the frequency domain. Instead of the normalization using time-domain
statistics, FAN alleviates the impact of non-stationarity by selecting the top K dominant components
in the Fourier domain, thereby holistically handling composite non-stationary factors involving both
trend and periodic components.

Nevertheless, using only the top K dominant components in the Fourier domain to represent non-
stationary information may be insufficient, as residuals often retain local non-stationarity Que et al.
(2020), such as transient shocks in traffic data Zheng et al. (2011) or micro-trends in financial series
Moon (2013). The residual learning strategy of FAN Ye et al. (2024) overlooks these fine-grained
distribution shifts Deldari et al. (2021); Lai et al. (2021), violating the independent and identically
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Figure 1: The comparison of our sliding window adaptive normalization (SWAN) and FAN. Our
SWAN can eliminate the local non-stationarity in the time series and make it relatively stable at a
fine granularity, while FAN cannot.

distributed assumption underlying many deep learning models. Simultaneously, most existing nor-
malization techniques are confined to a single domain. While some end-to-end models have explored
joint time-frequency representations Chen et al. (2023); Wu et al. (2022b), a dedicated, model-
agnostic normalization framework that synergizes both domains is still lacking. To address this, the
Dual-domain Adaptive Normalization (Dual-AN) is proposed, a hierarchical framework designed
for universal integration with any forecasting backbone. In contrast to FAN Ye et al. (2024), we
introduce a novel sliding window adaptive normalization (SWAN) method to eliminate the local
non-stationarity in the residuals to better align with the input characteristics of the model, as illus-
trated in Figure 1. Additionally, we design a statistical prediction module (SPM) that forecasts future
statistics using the statistics from each window to de-normalize the outputs, effectively combining
fine-grained time-domain statistical features processing with coarse-grained frequency-domain de-
composition. All code and data are available at https://anonymous.4open.science/r/Dual-AN. Our
main contributions are summarized as follows:

• A novel, model-agnostic framework is presented that hierarchically addresses non-stationarity in
both time and frequency domains. This approach overcomes the limitations of single-domain
normalization methods, such as FAN’s handling of local non-stationarity in residuals.

• We design a novel Sliding Window Adaptive Normalization (SWAN) method and a Statistical
Prediction Module (SPM) that forecasts the future window-level statistics from frequency-domain
residuals to de-normalize the outputs, enabling accurate reconstruction in the time domain.

• We conduct extensive experiments on 8 mainstream time series datasets. The results demonstrate
that Dual-AN consistently improves performance across 3 backbone models, reducing average
MAE and MSE by up to 15.92% and 20.72%, respectively. Moreover, it outperforms 4 existing
normalization methods, including FAN, with an average MAE reduction of 7.69%, achieving the
state-of-the-art (SOTA) performance and underscoring the superiority of our approach.

2 RELATED WORK

2.1 TIME SERIES FORECASTING

Time series forecasting is a critical task across numerous domains. Traditional statistical approaches
like ARIMA Box & Jenkins (1968); Zhang (2003) rely on assumptions of stationarity and temporal
dependency, which frequently do not hold in real-world scenarios. The advent of deep learning has
significantly advanced the field, with architectures including CNNs LeCun et al. (2002); Lea et al.
(2017); Liu et al. (2022a); Wang et al. (2023), RNNs/LSTMs Jordan (1997); Du et al. (2021); Lin
et al. (2023); Hochreiter & Schmidhuber (1997), Transformers Vaswani et al. (2017); Zhou et al.
(2021); Nie et al. (2022); Liu et al. (2023a); Wang et al. (2024b), and MLPs Rosenblatt (1958);
Zeng et al. (2023); Das et al. (2023); Wang et al. (2024a); Murad et al. (2025) each contributing
distinct strengths. CNN-based methods excel at capturing local patterns but struggle with long-range
dependencies and non-stationary data Zheng et al. (2014). RNNs and LSTMs model sequential
state transitions effectively but suffer from computational inefficiency and challenges in very long
sequences Siami-Namini et al. (2019); Smyl (2020); Salinas et al. (2020); Hewamalage et al. (2021).
Transformers leverage self-attention to capture global and cross-variable dependencies, yet face
issues with computational complexity and sparse data Zhou et al. (2021). MLP-based models offer
simplicity and scale well, but often fall short in modeling complex temporal relationships compared
to recurrent or attention-based approaches Zhang et al.; Yi et al. (2023).

A crucial challenge across all architectures is handling non-stationary time series exhibiting dis-
tribution shifts Petropoulos et al. (2022) with the core of the modeling of time-varying statistical
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properties, such as trend drift, seasonality, and shift points. Existing approaches include: (a) tra-
ditional stabilization via differencing, decomposition, or filtering Box & Jenkins (1968); Zhang
(2003); Cleveland et al. (1990); Taylor & Letham (2018); Kalman (1960); (b) implicit modeling
using RNNs Hochreiter & Schmidhuber (1997); Cho et al. (2014); Chung et al. (2014), enhanced
attention Kitaev et al. (2020), or normalization techniques Ogasawara et al. (2010); Passalis et al.
(2019); Deng et al. (2021); Kim et al. (2021); Fan et al. (2023); Liu et al. (2023c); Ye et al. (2024); (c)
explicit decomposition architectures, which have recently become prominent—e.g., N-BEATS Ore-
shkin et al. (2019), ETSformer Woo et al. (2022b), Autoformer Wu et al. (2021), FEDformer Zhou
et al. (2022), TimesNet Wu et al. (2022a), Pyraformer Liu et al. (2022b), Crossformer Zhang & Yan
(2023), and Koopa Liu et al. (2023b); and (d) emerging trends such as frequency-domain analy-
sis Xu et al. (2023); Yi et al. (2023), distributionally robust learning Woo et al. (2022a); Liu et al.
(2022c); Zeng et al. (2023), change-point detection Adams & MacKay (2007); Xu & Zhu (2023),
and improved benchmarks and evaluation Makridakis et al. (2018); Zhou et al. (2021); Challu et al.
(2023). Despite these advances, modeling non-stationary time series remains an open and highly
active research problem due to its practical significance and theoretical challenges.

2.2 NORMALIZATION METHODS AGAINST NON-STATIONARITY

Recent normalization methods have sought to mitigate non-stationarity, a primary obstacle in time
series forecasting Ogasawara et al. (2010); Passalis et al. (2019); Deng et al. (2021); Kim et al.
(2021); Fan et al. (2023); Liu et al. (2023c); Ye et al. (2024). These can be broadly categorized
by their operating domain. Time-domain approaches, such as RevIN Kim et al. (2021)—a form
of reversible instance normalization Ulyanov et al. (2016)—and Dish-TS Fan et al. (2023), utilize
statistical moments to counteract distribution shifts. SAN Liu et al. (2023c) further refines this
by employing adaptive local statistics. While effective against trends, these methods’ reliance on
statistics often proves insufficient for capturing complex seasonal variations. In contrast, FAN Ye
et al. (2024) operates in the frequency domain, isolating dominant components to jointly model
trend and seasonality. Despite these advances, a clear dichotomy persists: methods operate largely
in either the time domain Kim et al. (2021); Fan et al. (2023); Liu et al. (2023c) or the frequency
domain Ye et al. (2024). While another line of research develops end-to-end architectures that
jointly process time-frequency information Chen et al. (2023); Wu et al. (2022b), their monolithic,
architecturally-specific nature prevents their use as universal modules. This context reveals a critical
gap: the lack of a model-agnostic framework that synergizes both domains. The proposed Dual-AN
is conceptualized to fill this void. It performs a coarse-grained frequency decomposition followed
by a fine-grained, adaptive time-domain normalization on the residual series, offering a versatile
tool to enhance any existing forecasting backbone.

2.3 MODEL-AGNOSTIC PLUG-IN METHODS

Recent works also design model-agnostic plug-in modules that can be seamlessly attached to di-
verse time series forecasting (TSF) backbones. DDN Dai et al. (2024) performs dual-domain dy-
namic normalization via sliding-window statistics in time and frequency domains, while BSA Kang
et al. (2024) introduces a batched spectral attention block to capture long-range dependencies in the
spectral space. SCAM Yang et al. (2025) and HCAN Sun et al. (2025) instead focus on the su-
pervision signal: SCAM corrects noisy labels by self-generated pseudo labels with adaptive masks,
and HCAN adds a hierarchical classification auxiliary head to shape multi-scale representations.
TAFAS Kim et al. (2025) tackles test-time distribution shift by adapting pre-trained forecasters on-
line on unlabeled target streams. Our Dual-AN framework is complementary to these approaches:
it acts as a lightweight, plug-and-play module that explicitly synergizes coarse frequency-domain
decomposition with fine-grained time-domain normalization and future-statistics prediction, aiming
to stabilize non-stationarity at the data level and thus providing a generic improvement that can, in
principle, be combined with the above plug-ins.

3 DUAL-AN

The proposed Dual-AN method operates via a hierarchical, dual-domain process to address non-
stationarity, as illustrated in Figure 2. Following an initial frequency-domain decomposition that
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Figure 2: The overall architecture of Dual-AN, highlighting its two core modules: Sliding Window
Adaptive Normalization (SWAN) and Statistical Prediction Module (SPM). The process begins with
Frequency Residual Learning (FRL, see Appendix A.5) to obtain residuals. SWAN then normalizes
these residuals to address local non-stationarity, and SPM predicts future statistics for the final de-
normalization step. Detailed algorithms are provided in Appendix C.1 and C.2.

isolates coarse-grained non-stationary signals, two core modules are introduced: the Sliding Win-
dow Adaptive Normalization (SWAN) and the Statistical Prediction Module (SPM). SWAN targets
the remaining local non-stationarity within the time-domain residuals, while SPM forecasts future
window-level statistics to enable precise, adaptive reconstruction of the final prediction. The sta-
tionary component is forecasted by a backbone model, whereas the non-stationary component is
handled by a dedicated MLP network.

3.1 SLIDING WINDOW ADAPTIVE NORMALIZATION (SWAN)

Since there may still be local non-stationarity in the residuals after frequency domain separation, we
design a normalization method in the time domain that pays more attention to the local characteris-
tics of the data, namely, sliding window adaptive normalization (SWAN), which uses the dynamic
selection and adaptive normalization of the sliding window to standardize the time series data. For
multivariate time series, the SWAN process is applied independently to each variable (channel-wise).
This approach ensures that the unique statistical properties and scales of each channel are preserved,
preventing cross-channel distortion during normalization.

3.1.1 DYNAMIC OPTIMAL WINDOW SIZE SELECTION

In order to determine the size of the dynamic window, we evaluate the local standard deviation of
different window sizes to dynamically select the optimal size. For each defined valid candidate
window size, we fill the inputs to ensure that it can be applied to every position of the data.

Afterwards, for each window size in the set of the candidate window sizes ϕ = {12, 24, 48}, we
compute the local standard deviation. Specifically, for each time step t , calculate the standard devi-
ation σwindow of the data in the window at that time step:

σwindow(i) = std(x[i : i + window, :]), (1)

where i = 1, 2, . . . , L, then we compute the standard deviation of the local standard deviations over
all time steps for that window:

SDwindow = std(σwindow(i)), (2)

where i = 1, 2, . . . , L and L is the length of the sequence. A lower SD value indicates that the
local volatility of the series is more consistent at that specific window scale. Selecting a window
size that yields such statistical homogeneity is hypothesized to produce a more uniformly normal-
ized sequence, better satisfying the stationarity assumption required by the downstream forecasting
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model. While this criterion is heuristic, its empirical effectiveness is validated in Section 4.5.3. A
deeper discussion on this selection principle is provided in Appendix F. Finally, the window size
with the lowest SD value is selected as the optimal window:

WBest window = arg minϕ SDwindow (3)

3.1.2 SLIDING WINDOW ADAPTIVE NORMALIZATION

After selecting the optimal sliding window size, we use the adaptive normalization method to nor-
malize the inputs according to the selected window size.

First, we pad the data with a padding size of half the window. For each time step i , we use the optimal
window size Woptimal to calculate the mean and standard deviation of the data in the window:

µwindow(i) =
1

W

W∑
j=i

Xj , (4)

σwindow(i) =

√√√√ 1

W

W∑
j=i

(Xj − µwindow(i))2 (5)

Afterwards, for each time step i, the selected dynamic window size slides across the input sequence,
and the central value at each time step is normalized using statistics derived from its own local tem-
poral neighborhood. Specifically, the value at the center is standardized by subtracting the window
mean and dividing by the window standard deviation:

Xstat(i) =
X(i)− µwindow(i)

σwindow(i) + ε
(6)

where ε = 1e− 5 is a small constant to prevent the standard deviation from being zero.

3.2 STATISTICAL PREDICTION MODULE (SPM)

In Section 3.1.2, we retain the mean and standard deviation of each window as statistical indicators
in the time domain. In order to reflect the statistical characteristics of the forecasting results, a
statistical prediction module (SPM) is designed to forecast the mean and standard deviation for
future windows. An MLP architecture is selected for the SPM due to its balance of expressive
power as a universal function approximator and computational efficiency. This design is sufficient
for predicting the smoother statistical moment sequences while avoiding the substantial overhead
of more complex sequential models (e.g., RNNs). The rationale for this design choice is further
detailed in Appendix G. The module is formalized as:

µ̂window = f2(Concat(f1(µwindow), X)), (7)
σ̂window = f2(Concat(f1(σwindow), X)) (8)

where f1 and f2 represent 2 different multi-layer perceptron (MLP) networks as depicted in Fig-
ure 2 and Appendix C.2. Afterwards, the outputs are de-normalized using the predicted statistical
indicators to obtain the predicted stationary component results Ŷres:

Ŷres = Ŷstat · σ̂window + µ̂window (9)

where Ŷstat represents the result predicted by the backbone network with the input Xstat. Finally,
this part will be added to the non-stationary part Ŷnon predicted above to get the final forecasting
results Ŷ .
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3.3 LOSS FUNCTIONS

The model is optimized via a dual-component loss function that separately supervises the non-
stationary and stationary predictions. This structure acts as a powerful regularization mechanism,
guiding the model toward a more meaningful decomposition by ensuring both components are in-
dependently accurate. An ablation study presented in Appendix G confirms that this dual-objective
approach yields superior performance compared to a single loss on the final output. The overall loss
function is defined as:

ϕ, θ = argmin
ϕ,θ

∑
i

(Lnonstat + Lstat) , (10)

Lnonstat =
(
Lnonstat
ϕ (Ynon(i), Ŷnon(i))

)
, (11)

Lstat =
(
Lstat
θ,ϕ (Ystat(i), Ŷstat(i))

)
. (12)

where ϕ and θ denote the learnable parameters of the forecasting model, and both loss functions are
computed using the mean square error (MSE):

LMSE =

∑n
i=1(yi − ŷi)

2

n
(13)

where n is the number of samples, yi is the ground truth of the ith sample, and ŷi is the corresponding
predicted value.

4 EXPERIMENTS

This study conducts extensive experiments on the Dual-AN method using 8 widely used datasets in
the field of time series forecasting to demonstrate its excellent performance.

4.1 EXPERIMENTAL DESIGN

In this section, we introduce the datasets used in the experiments and the experimental settings to
ensure the reproducibility of this paper.

Datasets. We use 8 of the most popular open source datasets in the time series field, including
(1)ETTh1, (2)ETTh2, (3)ETTm1, (4)ETTm2, (5)Electricity, (6)Exchange Rate, (7)Traffic, and
(8)Weather. In the preprocessing stage, we followed the practice in the FAN Ye et al. (2024) method
and applied z-score normalization Goodfellow et al. (2016) to all datasets. The training set, valida-
tion set, and test set split ratio were set to 7:2:1, while retaining the setting of its hyperparameter K.
For detailed properties and characteristics of the datasets, please refer to Appendix B.1.

Experimental Setup. To cover both short-term and long-term forecasts, we set the forecast length
H ∈ {96, 168, 336, 720}, and all datasets use a fixed input length L = 96. We use the mean absolute
error (MAE) and the mean square error (MSE) as metrics to evaluate the performance of the model,
which are defined in Appendix B.2. Since Dual-AN is a universal plug-in, it can be applied to any
backbone model for forecasting. To verify its effectiveness, we use 3 of the most common time series
forecasting models as benchmark models: (1) DLinear Zeng et al. (2023), based on the multi-layer
perceptron (MLP) network; (2) Informer Zhou et al. (2021), based on Transformer; (3) SCINet Liu
et al. (2022a), based on the convolutional neural network (CNN). For the implementation details, all
experiments in this paper are implemented by PyTorch Paszke et al. (2019) and tested in 5 rounds
using fixed random seeds {1, 2, 3, 4, 5} on NVIDIA RTX 4090 GPU (24GB).

4.2 MAIN EXPERIMENTAL RESULTS OF DUAL-AN

We show the MAE and MSE metrics of the baseline model and Dual-AN on 5 datasets in Table 1.
Please see Table 10 in the Appendix D.2 for full results of all 8 datasets.

The empirical results, summarized in Table 1, demonstrate that integrating Dual-AN yields sub-
stantial and consistent performance gains across all three backbone models and eight benchmark
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Table 1: Main experimental results with and without Dual-AN. The best results are highlighted in
bold.

Models DLinear +Dual-AN Informer +Dual-AN SCINet +Dual-AN
Metrics MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTh2

96 0.237 0.110 0.236 0.110 0.298 0.160 0.238 0.111 0.264 0.128 0.237 0.112
168 0.254 0.127 0.250 0.125 0.331 0.191 0.252 0.127 0.292 0.156 0.249 0.125
336 0.271 0.138 0.264 0.138 0.347 0.208 0.276 0.147 0.305 0.167 0.262 0.137
720 0.316 0.179 0.280 0.157 0.413 0.291 0.337 0.208 0.339 0.201 0.284 0.156

ETTm2

96 0.203 0.080 0.199 0.078 0.226 0.091 0.199 0.079 0.206 0.079 0.199 0.078
168 0.220 0.093 0.219 0.093 0.251 0.112 0.220 0.093 0.226 0.094 0.219 0.093
336 0.245 0.114 0.242 0.113 0.283 0.140 0.245 0.114 0.262 0.122 0.242 0.113
720 0.270 0.142 0.264 0.139 0.347 0.212 0.277 0.147 0.297 0.153 0.264 0.139

Electricity

96 0.277 0.195 0.265 0.181 0.376 0.277 0.244 0.148 0.296 0.188 0.254 0.159
168 0.272 0.183 0.265 0.176 0.371 0.269 0.254 0.159 0.306 0.196 0.256 0.160
336 0.294 0.197 0.285 0.190 0.377 0.273 0.270 0.166 0.330 0.214 0.272 0.169
720 0.333 0.233 0.320 0.223 0.401 0.311 0.302 0.191 0.352 0.240 0.303 0.194

Traffic

96 0.387 0.504 0.334 0.403 0.350 0.428 0.323 0.386 0.399 0.471 0.325 0.393
168 0.588 0.804 0.333 0.413 0.366 0.457 0.320 0.393 0.377 0.443 0.328 0.408
336 0.380 0.504 0.345 0.436 0.414 0.555 0.336 0.425 0.384 0.459 0.345 0.436
720 0.407 0.532 0.368 0.469 0.656 1.002 0.356 0.448 0.401 0.490 0.368 0.469

Weather

96 0.249 0.180 0.220 0.181 0.299 0.221 0.210 0.172 0.265 0.199 0.211 0.170
168 0.284 0.237 0.259 0.218 0.363 0.320 0.250 0.211 0.305 0.245 0.252 0.209
336 0.344 0.304 0.298 0.278 0.439 0.437 0.301 0.270 0.341 0.310 0.293 0.271
720 0.380 0.358 0.346 0.343 0.496 0.524 0.366 0.349 0.383 0.371 0.331 0.329

datasets. The framework reduces the average prediction error by up to 15.92% in MAE and 20.72%
in MSE, confirming its effectiveness in mitigating the adverse effects of non-stationarity.

A key observation is that the performance improvement is particularly pronounced in long-term fore-
casting scenarios. For instance, when applied to the Informer backbone, the error reduction escalates
with the prediction horizon, underscoring the framework’s capability to preserve long-range tempo-
ral dependencies. This enhanced long-term performance is attributed to a virtuous cycle created by
Dual-AN: by providing a more stable, stationary input, it enables the backbone model to learn more
generalizable temporal patterns, which in turn prevents the error accumulation that typically plagues
long-horizon forecasts in non-stationary series. These findings highlight the efficacy of the proposed
hierarchical normalization approach, especially for challenging long-horizon forecasting tasks.

4.3 COMPARATIVE EXPERIMENTS WITH EXISTING NORMALIZATION METHODS

To benchmark Dual-AN against its direct peers, we compare it with leading model-agnostic nor-
malization frameworks designed for non-stationarity: FAN Ye et al. (2024), SAN Liu et al. (2023c),
Dish-TS Fan et al. (2023), and RevIN Kim et al. (2021). Table 2 summarizes the resulting MAE
scores across all settings.

Table 2: Averaged MAE performance compared with other normalization methods. The best per-
formance is highlighted in red and the second best performance is underlined. Please see Table 11
in the Appendix D.2 for full results.

Models DLinear Informer SCINet
Methods Dual-AN FAN SAN Dish-TS RevIN Dual-AN FAN SAN Dish-TS RevIN Dual-AN FAN SAN Dish-TS RevIN
ETTh1 0.484 0.484 0.495 0.496 0.498 0.485 0.502 0.582 0.640 0.616 0.487 0.485 0.493 0.514 0.496
ETTh2 0.257 0.257 0.260 0.262 0.268 0.276 0.301 0.324 0.376 0.329 0.258 0.262 0.264 0.291 0.271
ETTm1 0.439 0.440 0.439 0.447 0.457 0.444 0.444 0.470 0.524 0.509 0.438 0.440 0.441 0.463 0.476
ETTm2 0.231 0.231 0.231 0.237 0.238 0.235 0.237 0.241 0.284 0.259 0.231 0.230 0.229 0.249 0.236

Electricity 0.284 0.286 0.300 0.297 0.290 0.267 0.269 0.303 0.329 0.295 0.271 0.277 0.284 0.310 0.267
Exchange 0.268 0.272 0.287 0.360 0.305 0.278 0.295 0.353 0.485 0.349 0.275 0.282 0.290 0.386 0.300

Traffic 0.345 0.347 0.414 0.451 0.484 0.334 0.341 0.407 0.371 0.575 0.342 0.355 0.359 0.402 0.369
Weather 0.281 0.278 0.289 0.319 0.269 0.282 0.287 0.292 0.346 0.277 0.272 0.277 0.285 0.293 0.268

Count (1st) 7 3 2 0 1 7 1 0 0 1 4 1 1 0 2

Dual-AN demonstrates superior performance across most datasets, with the notable exception of
the Weather dataset. Here, RevIN Kim et al. (2021) excels, an insightful finding we attribute to
this dataset’s very weak trend and seasonality (see Appendix B.1). In such scenarios, the benefits
of frequency decomposition are marginal, making simpler, moment-based normalization sufficient.
This highlights a key characteristic: Dual-AN’s strength is most pronounced on series with complex,
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multi-scale non-stationarity, a common trait in real-world applications. Additionally, we observe a
slightly diminished gain on the SCINet Liu et al. (2022a) backbone, likely due to an overlap between
its sub-sequence decomposition and SWAN’s focus on local patterns.

As shown in Table 2, Dual-AN reduces the average MAE by 1.50% (vs. FAN), 6.30% (vs. SAN),
14.17% (vs. Dish-TS), and 8.79% (vs. RevIN). Excluding the Weather dataset, these improvements
are even more significant, reaffirming the strong and consistent performance of our framework.

To further illustrate the superiority of the proposed Dual-AN method, we compare it with state-of-
the-art plug-in methods Kang et al. (2024); Dai et al. (2024); Sun et al. (2025); Yang et al. (2025);
Kim et al. (2025) in Table 3 with the average MAE/MSE reduction rate of 15.78%/37.68% (vs.
DDN), 15.60%/36.85% (vs. HCAN), 17.30%/35.12% (vs. BSA), 12.17%/35.36% (vs. SCAM), and
17.81%/33.55% (vs. TAFAS).

Table 3: Full results of the comparison of Dual-AN with other state-of-the-art plug-in methods on
ETTh1, ETTh2, ETTm2, Exchange Rate and Traffic datasets using iTransformer as the backbone.
The best performance is highlighted in red and the second best performance is underlined.

Datasets Horizons Metrics iTransformer +Dual-AN +DDN +HCAN +BSA +SCAM +TAFAS

E
T

T
h1

96 MAE 0.444 0.426 0.399 0.402 0.443 0.401 0.443
MSE 0.378 0.362 0.388 0.379 0.428 0.373 0.438

192 MAE 0.489 0.452 0.434 0.427 0.481 0.436 0.489
MSE 0.431 0.395 0.446 0.432 0.481 0.432 0.492

336 MAE 0.533 0.486 0.462 0.454 0.521 0.455 0.532
MSE 0.511 0.441 0.496 0.489 0.538 0.466 0.554

720 MAE 0.64 0.569 0.499 0.474 0.62 0.466 0.627
MSE 0.669 0.574 0.527 0.504 0.698 0.455 0.704

E
T

T
h2

96 MAE 0.255 0.237 0.345 0.343 0.324 0.342 0.329
MSE 0.122 0.111 0.297 0.282 0.235 0.293 0.239

192 MAE 0.282 0.252 0.397 0.381 0.362 0.393 0.362
MSE 0.148 0.128 0.382 0.373 0.29 0.373 0.287

336 MAE 0.3 0.264 0.431 0.426 0.388 0.429 0.386
MSE 0.167 0.139 0.419 0.42 0.327 0.417 0.326

720 MAE 0.362 0.279 0.446 0.435 0.439 0.442 0.425
MSE 0.482 0.155 0.426 0.423 0.414 0.424 0.393

E
T

T
m

2

96 MAE 0.203 0.199 0.265 0.264 0.259 0.264 0.263
MSE 0.078 0.078 0.181 0.183 0.153 0.179 0.157

192 MAE 0.239 0.222 0.303 0.312 0.29 0.302 0.292
MSE 0.103 0.095 0.246 0.242 0.189 0.241 0.192

336 MAE 0.247 0.243 0.342 0.355 0.321 0.343 0.324
MSE 0.114 0.114 0.306 0.306 0.23 0.305 0.235

720 MAE 0.277 0.264 0.397 0.401 0.369 0.4 0.366
MSE 0.144 0.139 0.406 0.41 0.304 0.406 0.301

E
xc

ha
ng

e

96 MAE 0.212 0.164 0.202 0.204 0.211 - 0.208
MSE 0.081 0.051 0.084 0.084 0.09 - 0.084

192 MAE 0.331 0.238 0.297 0.302 0.307 - 0.293
MSE 0.184 0.102 0.175 0.179 0.185 - 0.165

336 MAE 0.504 0.324 0.41 0.415 0.43 - 0.389
MSE 0.398 0.178 0.321 0.322 0.346 - 0.28

720 MAE 0.671 0.465 0.7 0.761 0.7 - 0.665
MSE 0.747 0.331 0.859 0.995 0.861 - 0.773

Tr
af

fic

96 MAE 0.3 0.297 0.271 0.262 0.273 0.247 0.289
MSE 0.338 0.349 0.425 0.383 0.393 0.374 0.42

192 MAE 0.313 0.294 0.28 0.273 0.281 0.259 0.296
MSE 0.362 0.353 0.446 0.411 0.417 0.399 0.441

336 MAE 0.319 0.3 0.291 0.279 0.29 0.269 0.305
MSE 0.375 0.364 0.459 0.42 0.433 0.419 0.458

720 MAE 0.338 0.326 0.311 0.296 0.31 0.291 -
MSE 0.403 0.395 0.5 0.449 0.47 0.451 -

Count(1st) - 31 1 2 0 6 0

4.4 ABLATION STUDY

This section evaluates the effectiveness of the two core components of the Dual-AN method, SWAN
and SPM. We compare two ablation variants against Dual: “w/o SWAN” removes the sliding win-
dow adaptive normalization (SWAN) module, rendering the statistical prediction module (SPM)
inactive due to the absence of statistical indicators; “w/o SPM” removes the statistical prediction
module (SPM), instead using the original statistics of the inputs directly as the statistical indicators
for de-normalization. Experiments are conducted on ETTh1 and Electricity datasets using Informer
and SCINet as backbones, respectively, with MAE and MSE results summarized in Table 4.
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Table 4: MAE and MSE indicators of ablation studies. The best results are highlighted in bold.

Models Metrics ETTh1 Electricity
96 168 336 720 96 168 336 720

Dual-AN MAE 0.431 0.446 0.493 0.579 0.254 0.256 0.272 0.303
MSE 0.365 0.386 0.452 0.589 0.159 0.160 0.169 0.194

w/o SWAN MAE 0.434 0.465 0.507 0.602 0.258 0.258 0.278 0.312
MSE 0.367 0.407 0.467 0.617 0.165 0.163 0.175 0.204

w/o SPM MAE 0.441 0.472 0.513 0.604 0.264 0.262 0.280 0.305
MSE 0.381 0.418 0.473 0.617 0.170 0.166 0.177 0.199

The results demonstrate that Dual-AN consistently achieves the best performance across all ablation
variants, confirming the importance of both the SWAN and SPM modules proposed in this study.
The ablation variant w/o SWAN ranks second, slightly outperforming the variant w/o SPM. This
performance gap stems from the fact that statistical indicators derived directly from the original
time series fail to accurately capture future trends, leading to suboptimal de-normalization and thus
degrading forecasting performance.

4.5 MODEL ANALYSIS

In this section, we discuss and analyze the parameters of the model, including the lookback length,
horizon length, and the hyperparameter sliding window size.

4.5.1 LOOKBACK AND HORIZON ANALYSIS

We analyze the effects of the lookback and horizon lengths on the forecasting performance of
Dual-AN on the Exchange Rate dataset on Informer and SCINet backbones, respectively, com-
pared with FAN, which is the current state-of-the-art (SOTA) normalization method. We il-
lustrate the experimental results in Figure 3, and the lookback and horizon lengths are set to
L ∈ {48, 72, 96, 120, 144, 168} and H ∈ {270, 336, 420, 540, 600, 720}, while keeping H = 96
and L = 96 respectively.

48 72 96 120 144 168
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
SE

Dual-AN FAN

(a) Parameter Lookback (L)
270 336 420 540 600 720

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
SE

Dual-AN FAN

(b) Parameter Horizon (H)

Figure 3: The MSE indicator of Dual-AN and FAN under different lookback and horizon settings.
Please see Table 12 in the Appendix D.2 for full results.

As shown in Figure 3, Dual-AN consistently outperforms FAN across all lookback and horizon
lengths. Notably, as the prediction horizon increases from 270 steps to 720 steps, the improvement
gains of Dual-AN over FAN gradually increases with the reduction rate of MSE rising from 5.63%
to 7.69%, which demonstrates the significant advantages of Dual-AN with the characteristics of
coordinating time and frequency domains, especially in long-term time series forecasting.

4.5.2 CANDIDATE WINDOW SIZE

In the sliding window adaptive normalization (SWAN) module of our Dual-AN method, the size of
the sliding window is a critical hyperparameter. In order to illustrate the rigor of the experiments
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in this paper, we rigorously evaluate the impact of different window sizes on our method. We
conduct experiments on the ETTm2 dataset using the DLinear backbone for the hyperparameter
sliding window size. Since the lookback length is set to L = 96, we test 5 reasonable candidate
window sizes Wexp ∈ {6, 12, 24, 48, 72}, and record the MAE and MSE indicators in Table 5.

Table 5: MAE and MSE indicators of the different window sizes. The best results are highlighted in
bold.

Window Size 6 12 24 48 72
Metrics MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

96 0.19876 0.07819 0.19871 0.07813 0.19887 0.07812 0.19884(4) 0.07805 0.19883(7) 0.07822
168 0.21911 0.09329(0) 0.21893 0.09329(1) 0.21896 0.09325 0.21983 0.09367 0.21899 0.09327
336 0.24262 0.11430 0.24252 0.11431 0.24286 0.11447 0.24153 0.11310 0.24275 0.11436
720 0.26464 0.13932 0.26448 0.13939 0.26446 0.13940 0.26450 0.13929 0.26455 0.13934

Count (1st) 0 0 2 0 1 1 1 3 0 0

Experimental results show optimal performance is achieved with window sizes W ∈ 12, 24, 48, a
range adopted for the main experiments in Section 3.1. This range effectively balances the trade-
off between capturing sufficient context and preserving local temporal patterns. Moreover, the low
performance variance across these optimal window sizes highlights Dual-AN’s robustness to this
hyperparameter choice. For more discussion of the window size selection, please refer to Appendix
F.

4.5.3 VISUALIZATIONS

Figure 4 visualizes the performance gains of Dual-AN over the Informer backbone. The baseline
model frequently fails to capture local extrema, a shortcoming that Dual-AN effectively addresses.
This corrective capability is especially pronounced in long-horizon forecasting (H = 720), where
the framework’s advantage is most evident. Further visual comparisons are available in Appendix
E.
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(a) H = 96.
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(b) H = 168.
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(c) H = 336.
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(d) H = 720.

Figure 4: The visual forecasting results of backbone (Informer) and Dual-AN on the Weather dataset
across 4 different prediction lengths.

5 CONCLUSION

In this paper, we propose Dual-AN, a general framework that synergizes time and frequency domains
to address non-stationarity in time series forecasting. Its core components, the sliding window adap-
tive normalization (SWAN) and the statistical prediction module (SPM), respectively eliminate local
residual non-stationarity and predict future statistics for de-normalization. Extensive experiments
demonstrate that Dual-AN consistently enhances three backbone models, achieving state-of-the-art
(SOTA) performance over existing normalization methods. Its feasibility as a lightweight, efficient
plug-in is confirmed by a formal complexity analysis (Appendix I). For reproducibility, all source
code and data are detailed in Section 6. Limitations and potential future directions are discussed in
Appendix K.
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6 REPRODUCIBILITY STATEMENT

In full compliance with double-blind review guidelines, we have taken extensive measures to en-
sure the reproducibility of our work. All source code and data from this study have been uploaded
to the supplementary materials and have been made publicly available in an anonymous reposi-
tory: https://anonymous.4open.science/r/Dual-AN. We have also included instructions for running
the code and reproducing the results in the README file. Furthermore, all of these will be publicly
released on GitHub immediately after the review process is completed to ensure reproducibility and
facilitate future research in the broader field of time series forecasting.
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publicly available and widely accepted in the time series forecasting community. We conducted no
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rity risks. Our proposed method, Dual-AN, is a general forecasting framework and does not target
sensitive or high-risk applications. However, we acknowledge that time series forecasting models
can potentially be misapplied in domains such as surveillance, financial manipulation, or discrimi-
natory decision-making. We strongly discourage any such misuse. The research was conducted with
integrity, and we declare no conflicts of interest. All authors have read and complied with the ICLR
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A PRELIMINARIES

In this section, we introduce the basics of this study from the aspects of multivariate time series fore-
casting, trend variation and seasonality variation, Fast Fourier Transform (FFT), Discrete Fourier
Transform (DFT) and Inverse Discrete Fourier Transform (IDFT), and the frequency adaptive nor-
malization (FAN) method Ye et al. (2024).

A.1 MULTIVARIATE TIME SERIES FORECASTING

As for the multivariate time series forecasting, we denote multiple time series as Xt ∈ RN×L,
where N is the number of variables of the time series and each time series has a lookback length
of L at timestamp t . Then we use the forecasting model F to predict the future time series
(X̂t+1, X̂t+2, ..., X̂t+H) based on the historical time series (Xt−L+1,Xt−L+2, ...,Xt), where H
is the horizon length of the future time series. Therefore, we can formulate the multivariate time
series forecasting problem as follows:

(X̂t+1, X̂t+2, ..., X̂t+H) = FΘ(Xt−L+1,Xt−L+2, ...,Xt) (14)
where Θ is the parameters of the forecasting model F .

A.2 TREND AND SEASONALITY VARIATIONS

In order to better describe the properties of the datasets, we need to calculate the trend variation and
seasonality variation.
Trend Variation.To capture the global trend change, we calculate the average value of different
regions of the dataset. With a time series dataset X ∈ RN×L, where N is the number of inputs
and L is the lookback length, we first split it into Xtrain, Xval, and Xtest in chronological order,
representing the training dataset, validation dataset, and test dataset, respectively. Then, the trend
variation is calculated as follows:

Trend Variation =

∣∣∣∣MeanN (Xtrain)−MeanN (Xval,test)

MeanN (Xtrain)

∣∣∣∣ (15)

where Xval,test represents the concatenation of the validation set and the test set. It should be
noted that in order to obtain relative results between different datasets, the trend changes need to be
normalized by dividing by the mean of the training dataset.
Seasonality Variation.We evaluate seasonal changes by analyzing the Fourier frequency changes
of all input instances. Given an input X ∈ RNi×L, where Ni is the number of inputs and L is the
lookback length. We first obtain the FFT results of all inputs, denoted as Z ∈ CNi×L. Then, we
calculate the variance between different inputs and normalize the variance by dividing by the mean
of each input, as follows:

Seasonality Variation =
VarNi [Amp(Z)]

MeanL(X)
(16)

where the subscripts indicate the dimension of the operation process.

A.3 FAST FOURIER TRANSFORM (FFT)

In time series forecasting, Fast Fourier Transform (FFT) is often used for frequency domain analysis
Brigham (1988). Here, we perform FFT decomposition on the time series Xt(t = 0, 1, . . . , L− 1)
of length L and obtain the frequency domain coefficients:

Xk =

L−1∑
t=0

xt · e−i2πkt/L, (17)

where k = 0, 1, . . . , L− 1 and Xk is a complex number consisting of amplitude Ak and phase ϕk:

Xk = Ake
iϕk , (18)

Ak = |Xk|, (19)
ϕk = arg(Xk). (20)

where | · | represents the absolute value operation and arg(·) is the argument function of a complex
number, which is used to calculate the phase angle of a complex number in the complex plane.
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A.4 DISCRETE FOURIER TRANSFORM (DFT) AND IDFT PROCESS

Based on Section A.3, we introduce the Discrete Fourier Transform (DFT) process and Inverse
Discrete Fourier Transform (IDFT) process that can be implemented by Fast Fourier Transform
(FFT) Brigham (1988). Given a multivariate time series input X, we perform a 1-dim Fourier
transform on each dimension X(i) separately, so we illustrate it in vector form. For a discrete time
series vector X ∈ RL with the lookback length of L, we transform it to the Fourier domain by
applying a 1-dim DFT, and then we can also transform it back to the Fourier domain using a 1-dim
IDFT, which is defined as:

DFT : Z[ω] =

L−1∑
t=0

X[t] · e−2πiωt
L (21)

IDFT : X[t] =
1

L

T−1∑
ω=0

Z[ω] · e2πiωt
L (22)

where ω is the current frequency, t is the current time step, and Z is the result of the Fourier trans-
form, which is a complex vector containing real and imaginary parts. Its amplitude and phase can
be calculated as follows:

Mag : a[ω] =

√
Re(Z[ω])2 + Im(Z[ω])2

L
(23)

Pha : p[ω] = atan 2(Im(Z[ω]),Re(Z[ω])) (24)
where Im(Z[·]) and Re(Z[·]) represent the imaginary and real parts of the complex number, respec-
tively, and atan 2 is the two-argument form of arctan .

A.5 FREQUENCY ADAPTIVE NORMALIZATION (FAN) METHOD

In this section, we briefly introduce the frequency adaptive normalization (FAN) method Ye et al.
(2024). Please refer to the original paper Ye et al. (2024) for specific related functions and variable
names.

At each time step, FAN Ye et al. (2024) first removes the first K dominant components in the
frequency domain for each input instance. This process is called frequency residual learning (FRL),
and then removes Xnon from the original sequence to obtain the stationary component Xres:

Z = DFT(X), (25)
K = TopK(Amp(Z)), (26)

Xnon = IDFT(Filter(K,Z)), (27)
Xres = X−Xnon, (28)

The DFT and IDFT processes can be implemented using Fast Fourier Transform (FFT). Afterwards,
the prediction backbone gθ uses the stationary component Xres to forecast the stationary part of the
output Ŷres and then reintegrates the removed non-stationary information into the output:

Ŷres = gθ(Xres), (29)

Ŷ = Ŷres + Ŷnon, (30)

Here, a simple multi-layer perceptron (MLP) model qϕ is used to directly predict the future values
of the composite top K frequency components for D dimensions:

Ŷnon = qϕ(Xnon,X) (31)
= W3 ReLU(W2 Concat(ReLU(W1Xnon),X)) (32)

The above is a brief introduction to the preparation work for this paper. For more details about the
FAN method Ye et al. (2024), please refer to the original paper Ye et al. (2024).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS

In this section, we will introduce the specific details of the datasets and the evaluation metrics to
help readers better reproduce the experimental results of this paper.

B.1 DATASETS DETAILS

We use 8 widely-used real-world datasets in the time series field, namely the ETT (Electric Trans-
former Temperature) dataset Zhou et al. (2021), which records the oil temperature and load of power
transformers for 2 years from July 2016 to July 2018. The dataset contains 4 subsets, of which (1)
ETTh1 and (2) ETTh2 are sampled every hour, and (3) ETTm1 and (4) ETTm2 are sampled every 15
minutes; (5) Electricity, which contains the electricity consumption of 321 customers every 15 min-
utes for 3 years from July 2016 to July 2019; (6) Exchange Rate, which records the daily exchange
rates of 8 countries for 26 years from 1990 to 2016. (7) Traffic, which contains hourly traffic flow on
San Francisco highways recorded by 862 sensors for 1 year from 2015 to 2016; (8) Weather, which
consists of 21 meteorological indicators, including air temperature and humidity data collected ev-
ery 10 minutes in 2021. For more detailed properties and characteristics of the datasets, please refer
to Table 6.

Table 6: The detailed descriptions of the datasets.

Datasets Dim Dataset Size Frequency K TV SV Information
ETTh1 7 (8545, 2881, 2881) 1 Hour 4 3.839 3.690 Temperature
ETTh2 7 (8545, 2881, 2881) 1 Hour 3 0.154 1.013 Temperature
ETTm1 7 (34465, 11521, 11521) 15 Minutes 11 0.030 3.330 Temperature
ETTm2 7 (34465, 11521, 11521) 15 Minutes 5 0.196 1.648 Temperature

Electricity 321 (18317, 2633, 5261) 1 Hour 2 0.249 0.435 Electricity
Exchange 8 (5120, 665, 1422) 1 Day 3 0.242 2.645 Exchange Rate

Traffic 862 (12185, 1757, 3509) 1 Hour 30 0.068 14.225 Transportation
Weather 21 (36792, 5271, 10540) 10 Minutes 2 0.028 0.387 Weather

As shown in Table 6, Dim represents the dimension of the dataset, which is the number of variables,
and the dataset size is listed as (Train, Validation, Test). K is the hyperparameter of the top K ampli-
tude signals proposed in the FAN method Ye et al. (2024). For more details on the hyperparameter
K, please refer to the original paper of FAN Ye et al. (2024). Furthermore, TV and SV represent
trend variation and seasonality variation, respectively, mentioned in Appendix A.2.

B.2 METRICS DETAILS

Regarding metrics, we use the mean square error (MSE) and mean absolute error (MAE) as evalua-
tion metrics for time series forecasting, which are calculated as follows:

MSE =
1

H

H∑
i=1

(Xi − X̂i)
2 (33)

MAE =
1

H

H∑
i=1

|Xi − X̂i| (34)

where Xi, X̂i ∈ R are the ground truth and prediction results of the ith time point in the future and
N is the total number of future time points.
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C ALGORITHMIC DETAILS OF MODEL DESIGN

In this section, in order to help readers understand the core idea of this paper more clearly, we
introduce the specific algorithmic processes of the two major innovations proposed in this paper,
sliding window adaptive normalization (SWAN) and statistical prediction Module (SPM).

C.1 SLIDING WINDOW ADAPTIVE NORMALIZATION (SWAN)

Regarding the sliding window adaptive normalization (SWAN) module, we describe the specific al-
gorithm flow of dynamic optimal window size selection and sliding window adaptive normalization
in Algorithm 1 and Algorithm 2.

Algorithm 1: Dynamic Optimal Window Size Selection
Input: The set of the candidate window size W ∈ ϕw; the time series data X; and the

lookback length L
Output: The optimal window size Woptimal

1 Initialisation: Initialize the candidate window size set ϕw = {12, 24, 48}
2 while W ∈ ϕw do
3 Padding the sequence with a size of W

2
4 for i← 1 to L do
5 σwindow(i) =

√
1
W

∑W
j=i(Xj − µwindow(i))2

6 end for
7 µσ ← 1

L

∑L
i=1 σwindow(i)

8 σwindow ←
√

1
L

∑L
i=1(σwindow(i)− µσ)2

9 end while
10 return Woptimal ← arg minϕw

σwindow

Algorithm 2: Sliding Window Adaptive Normalization
Input: The optimal window size Woptimal; the original time series data X; and the lookback

length L
Output: The normalized time series data Xstat

1 Initialisation: Define the set of means ϕµ and the set of standard deviations ϕσ containing the
statistics of each window, and the set of the normalized sequence ϕXnorm

2 Padding the sequence with a size of Woptimal

2
3 for i = 1 to L do
4 µwindow(i)← 1

W

∑W
j=i Xj

5 σwindow(i)←
√

1
W

∑W
j=i(Xj − µwindow(i))2

6 Xstat(i)← X(i)−µwindow(i)
σwindow(i)+ε

7 ϕµ ← ϕµ ∪ {µwindow(i)}
8 ϕσ ← ϕσ ∪ {σwindow(i)}
9 ϕXstat(i)

← ϕXstat(i)
∪ {Xstat(i)}

10 end for
11 return Xstat ← ϕXstat(i)
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C.2 STATISTICAL PREDICTION MODULE (SPM)

For the statistical prediction module (SPM), we describe its detailed process in Algorithm 3.

Algorithm 3: Statistical Prediction Module
Input: The statistics µ and σ from the sets ϕµ and ϕσ calculated in Algorithm 2; the original

time series data X; the stationary part results Ŷ stat predicted by the backbone network
with the input Xstat

Output: The predicted stationary component Ŷres

1 Initialisation: Initialize the network structure of f1 and f2, which contain 1 and 2 linear layers
respectively, and the ReLU activation function, where L and H represent the lookback and
horizon lengths respectively

2 hµ ← ReLU(Linearf1, L×256(µ))
3 inpµ ← Concat(hµ, X)
4 hσ ← ReLU(Linearf1, L×256(σ))
5 inpσ ← Concat(hσ, X)
6 hµ ← ReLU(Linearf2, (256+L)×512(inpµ))
7 µ̂← Linearf2, 512×H(hµ)
8 hσ ← ReLU(Linearf2, (256+L)×512(inpσ))
9 σ̂ ← Linearf2, 512×H(hσ)

10 return Ŷres ← Ŷstat · σ̂ + µ̂
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D ADDITIONAL RESULTS

D.1 ADDITIONAL EXPERIMENTS RESULTS ON OTHER BACKBONES

We present the experimental results of incorporating our Dual-AN method on 5 datasets with 3
state-of-the-art backbones: (1) MLP-based WPMixer Murad et al. (2025); (2) Transformer-based
iTransformer Liu et al. (2023a); (3) CNN-based MICN Wang et al. (2023), in Tables 7, 8, and 9.

Table 7: Full results of the WPMixer backbone with and without Dual-AN. The best results are
highlighted in bold.

Models WPMixer +Dual-AN
Metrics MAE MSE MAE MSE

ETTh1

96 0.430 ± 0.002 0.374 ± 0.003 0.426 ± 0.002 0.363 ± 0.002
168 0.460 ± 0.001 0.411 ± 0.002 0.449 ± 0.004 0.390 ± 0.006
336 0.485 ± 0.002 0.456 ± 0.003 0.487 ± 0.003 0.446 ± 0.004
720 0.574 ± 0.007 0.609 ± 0.012 0.571 ± 0.002 0.571 ± 0.003

ETTh2

96 0.239 ± 0.002 0.115 ± 0.002 0.239 ± 0.001 0.113 ± 0.000
168 0.258 ± 0.002 0.134 ± 0.002 0.256 ± 0.005 0.130 ± 0.002
336 0.275 ± 0.006 0.151 ± 0.005 0.271 ± 0.005 0.143 ± 0.004
720 0.302 ± 0.007 0.188 ± 0.008 0.284 ± 0.002 0.160 ± 0.001

ETTm2

96 0.200 ± 0.000 0.079 ± 0.000 0.198 ± 0.001 0.077 ± 0.001
168 0.220 ± 0.001 0.094 ± 0.000 0.218 ± 0.001 0.092 ± 0.000
336 0.245 ± 0.001 0.118 ± 0.001 0.242 ± 0.001 0.115 ± 0.001
720 0.270 ± 0.002 0.150 ± 0.001 0.264 ± 0.000 0.139 ± 0.001

Exchange

96 0.165 ± 0.001 0.054 ± 0.001 0.169 ± 0.001 0.054 ± 0.001
168 0.214 ± 0.001 0.087 ± 0.001 0.222 ± 0.004 0.091 ± 0.002
336 0.311 ± 0.004 0.177 ± 0.005 0.283 ± 0.005 0.151 ± 0.003
720 0.483 ± 0.006 0.384 ± 0.007 0.432 ± 0.009 0.318 ± 0.013

Traffic

96 0.354 ± 0.003 0.440 ± 0.003 0.324 ± 0.001 0.391 ± 0.001
168 0.353 ± 0.002 0.446 ± 0.003 0.328 ± 0.001 0.405 ± 0.001
336 0.363 ± 0.002 0.467 ± 0.001 0.340 ± 0.001 0.429 ± 0.002
720 0.387 ± 0.004 0.497 ± 0.003 0.365 ± 0.000 0.463 ± 0.000

As shown in Table 7, 8, and 9, after adding the Dual-AN method to the WPMixer, iTransformer, and
MICN backbones, the average MAE/MSE ratios across all the 5 datasets decrease by 3.40%/7.37%,
9.78%/18.31%, and 4.81%/6.87%, respectively.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: Full results of the iTransformer backbone with and without Dual-AN. The best results are
highlighted in bold.

Models iTransformer +Dual-AN
Metrics MAE MSE MAE MSE

ETTh1

96 0.444 ± 0.005 0.378 ± 0.007 0.426 ± 0.001 0.362 ± 0.000
168 0.472 ± 0.009 0.413 ± 0.012 0.449 ± 0.002 0.390 ± 0.003
336 0.533 ± 0.015 0.511 ± 0.023 0.486 ± 0.003 0.441 ± 0.005
720 0.640 ± 0.021 0.669 ± 0.043 0.569 ± 0.002 0.574 ± 0.006

ETTh2

96 0.255 ± 0.004 0.122 ± 0.002 0.237 ± 0.001 0.111 ± 0.001
168 0.271 ± 0.009 0.141 ± 0.006 0.252 ± 0.002 0.128 ± 0.001
336 0.300 ± 0.020 0.167 ± 0.017 0.264 ± 0.001 0.139 ± 0.001
720 0.362 ± 0.041 0.482 ± 0.041 0.279 ± 0.002 0.155 ± 0.001

ETTm2

96 0.203 ± 0.005 0.078 ± 0.003 0.199 ± 0.000 0.078 ± 0.000
168 0.226 ± 0.005 0.094 ± 0.003 0.219 ± 0.000 0.093 ± 0.000
336 0.247 ± 0.005 0.114 ± 0.003 0.243 ± 0.001 0.114 ± 0.000
720 0.277 ± 0.004 0.144 ± 0.004 0.264 ± 0.000 0.139 ± 0.000

Exchange

96 0.227 ± 0.021 0.093 ± 0.015 0.168 ± 0.001 0.054 ± 0.001
168 0.270 ± 0.023 0.131 ± 0.020 0.218 ± 0.002 0.090 ± 0.001
336 0.390 ± 0.050 0.262 ± 0.063 0.294 ± 0.001 0.161 ± 0.001
720 0.512 ± 0.096 0.480 ± 0.166 0.409 ± 0.016 0.291 ± 0.017

Traffic

96 0.320 ± 0.013 0.371 ± 0.017 0.319 ± 0.000 0.388 ± 0.001
168 0.337 ± 0.001 0.408 ± 0.001 0.330 ± 0.000 0.408 ± 0.000
336 0.350 ± 0.001 0.432 ± 0.001 0.335 ± 0.000 0.427 ± 0.000
720 0.376 ± 0.002 0.469 ± 0.002 0.357 ± 0.000 0.458 ± 0.000

Table 9: Full results of the MICN backbone with and without Dual-AN. The best results are high-
lighted in bold.

Models MICN +Dual-AN
Metrics MAE MSE MAE MSE

ETTh1

96 0.454 ± 0.001 0.387 ± 0.002 0.420 ± 0.002 0.355 ± 0.002
168 0.485 ± 0.003 0.433 ± 0.004 0.449 ± 0.003 0.388 ± 0.004
336 0.551 ± 0.004 0.533 ± 0.007 0.495 ± 0.003 0.453 ± 0.004
720 0.609 ± 0.003 0.626 ± 0.005 0.580 ± 0.003 0.576 ± 0.005

ETTh2

96 0.239 ± 0.003 0.110 ± 0.002 0.237 ± 0.001 0.111 ± 0.001
168 0.259 ± 0.002 0.128 ± 0.002 0.248 ± 0.003 0.124 ± 0.001
336 0.287 ± 0.002 0.148 ± 0.002 0.261 ± 0.003 0.135 ± 0.002
720 0.338 ± 0.004 0.200 ± 0.005 0.283 ± 0.002 0.155 ± 0.001

ETTm2

96 0.195 ± 0.001 0.074 ± 0.000 0.192 ± 0.001 0.073 ± 0.001
168 0.215 ± 0.001 0.088 ± 0.000 0.212 ± 0.000 0.088 ± 0.000
336 0.235 ± 0.001 0.106 ± 0.001 0.239 ± 0.003 0.111 ± 0.003
720 0.267 ± 0.002 0.136 ± 0.002 0.264 ± 0.001 0.138 ± 0.000

Exchange

96 0.171 ± 0.003 0.056 ± 0.002 0.169 ± 0.002 0.055 ± 0.001
168 0.217 ± 0.002 0.088 ± 0.002 0.224 ± 0.006 0.092 ± 0.004
336 0.309 ± 0.002 0.172 ± 0.002 0.298 ± 0.007 0.162 ± 0.004
720 0.495 ± 0.022 0.417 ± 0.034 0.428 ± 0.023 0.319 ± 0.028

Traffic

96 0.323 ± 0.003 0.380 ± 0.006 0.320 ± 0.002 0.379 ± 0.002
168 0.334 ± 0.002 0.402 ± 0.003 0.325 ± 0.004 0.402 ± 0.006
336 0.345 ± 0.006 0.427 ± 0.011 0.342 ± 0.001 0.430 ± 0.001
720 0.358 ± 0.007 0.446 ± 0.006 0.351 ± 0.001 0.433 ± 0.001
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D.2 COMPLETE EXPERIMENTAL RESULTS

Due to the space limitation of the main text, we place the complete experimental results of the 3
backbone models with and without Dual-AN on all 8 datasets in Table 10.

Table 10: Full results of the main experiments with and without Dual-AN. The best results are
highlighted in bold.

Models DLinear +Dual-AN Informer +Dual-AN SCINet +Dual-AN
Metrics MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1

96 0.424 0.368 0.425 0.363 0.598 0.646 0.421 0.357 0.461 0.409 0.420 0.356
168 0.449 0.398 0.453 0.396 0.694 0.863 0.446 0.386 0.518 0.489 0.452 0.396
336 0.485 0.448 0.487 0.446 0.738 0.950 0.493 0.452 0.574 0.582 0.493 0.450
720 0.561 0.558 0.573 0.568 0.823 1.106 0.579 0.589 0.645 0.707 0.581 0.581

ETTh2

96 0.237 0.110 0.236 0.110 0.298 0.160 0.238 0.111 0.264 0.128 0.237 0.112
168 0.254 0.127 0.250 0.125 0.331 0.191 0.252 0.127 0.292 0.156 0.249 0.125
336 0.271 0.138 0.264 0.138 0.347 0.208 0.276 0.147 0.305 0.167 0.262 0.137
720 0.316 0.179 0.280 0.157 0.413 0.291 0.337 0.208 0.339 0.201 0.284 0.156

ETTm1

96 0.380 0.310 0.394 0.334 0.514 0.520 0.401 0.353 0.421 0.355 0.395 0.343
168 0.408 0.354 0.414 0.360 0.563 0.600 0.422 0.377 0.446 0.399 0.414 0.360
336 0.446 0.416 0.455 0.421 0.612 0.690 0.459 0.429 0.489 0.464 0.454 0.421
720 0.488 0.471 0.492 0.474 0.697 0.849 0.494 0.477 0.553 0.563 0.487 0.465

ETTm2

96 0.203 0.080 0.199 0.078 0.226 0.091 0.199 0.079 0.206 0.079 0.199 0.078
168 0.220 0.093 0.219 0.093 0.251 0.112 0.220 0.093 0.226 0.094 0.219 0.093
336 0.245 0.114 0.242 0.113 0.283 0.140 0.245 0.114 0.262 0.122 0.242 0.113
720 0.270 0.142 0.264 0.139 0.347 0.212 0.277 0.147 0.297 0.153 0.264 0.139

Electricity

96 0.277 0.195 0.265 0.181 0.376 0.277 0.244 0.148 0.296 0.188 0.254 0.159
168 0.272 0.183 0.265 0.176 0.371 0.269 0.254 0.159 0.306 0.196 0.256 0.160
336 0.294 0.197 0.285 0.190 0.377 0.273 0.270 0.166 0.330 0.214 0.272 0.169
720 0.333 0.233 0.320 0.223 0.401 0.311 0.302 0.191 0.352 0.240 0.303 0.194

Exchange

96 0.164 0.052 0.167 0.053 0.532 0.412 0.168 0.055 0.218 0.085 0.167 0.053
168 0.219 0.090 0.215 0.087 0.582 0.491 0.217 0.089 0.266 0.126 0.215 0.087
336 0.288 0.155 0.291 0.158 0.721 0.847 0.295 0.164 0.337 0.203 0.290 0.156
720 0.453 0.352 0.398 0.283 0.889 1.210 0.431 0.350 0.502 0.430 0.427 0.312

Traffic

96 0.387 0.504 0.334 0.403 0.350 0.428 0.323 0.386 0.399 0.471 0.325 0.393
168 0.588 0.804 0.333 0.413 0.366 0.457 0.320 0.393 0.377 0.443 0.328 0.408
336 0.380 0.504 0.345 0.436 0.414 0.555 0.336 0.425 0.384 0.459 0.345 0.436
720 0.407 0.532 0.368 0.469 0.656 1.002 0.356 0.448 0.401 0.490 0.368 0.469

Weather

96 0.249 0.180 0.220 0.181 0.299 0.221 0.210 0.172 0.265 0.199 0.211 0.170
168 0.284 0.237 0.259 0.218 0.363 0.320 0.250 0.211 0.305 0.245 0.252 0.209
336 0.344 0.304 0.298 0.278 0.439 0.437 0.301 0.270 0.341 0.310 0.293 0.271
720 0.380 0.358 0.346 0.343 0.496 0.524 0.366 0.349 0.383 0.371 0.331 0.329

In addition, we report the full results of comparative experiments with existing normalization meth-
ods on all 8 datasets in Table 11. For the model parameter experiments on lookback and horizon
lengths, we place the complete experimental results in Table 12.
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Table 11: Full results of MAE and MSE performance compared with other normalization methods.
The best performance is highlighted in red and the second best performance is underlined.

Models DLinear Informer SCINet
Methods Dual-AN FAN SAN Dish-TS RevIN Dual-AN FAN SAN Dish-TS RevIN Dual-AN FAN SAN Dish-TS RevIN

MAE 0.425 0.426 0.432 0.433 0.428 0.421 0.434 0.498 0.556 0.521 0.420 0.427 0.431 0.438 0.43896 MSE 0.363 0.362 0.370 0.375 0.375 0.357 0.367 0.466 0.549 0.517 0.356 0.362 0.370 0.382 0.380
MAE 0.453 0.452 0.460 0.454 0.464 0.446 0.465 0.514 0.601 0.539 0.452 0.454 0.459 0.476 0.470168 MSE 0.396 0.393 0.404 0.405 0.416 0.386 0.407 0.485 0.642 0.531 0.396 0.395 0.404 0.430 0.425
MAE 0.487 0.484 0.504 0.505 0.501 0.493 0.507 0.627 0.662 0.642 0.493 0.487 0.502 0.539 0.490336 MSE 0.446 0.435 0.463 0.475 0.476 0.452 0.467 0.702 0.753 0.735 0.450 0.439 0.461 0.522 0.462
MAE 0.573 0.572 0.584 0.590 0.598 0.579 0.602 0.689 0.739 0.763 0.581 0.572 0.579 0.604 0.584

E
T

T
h1

720 MSE 0.568 0.574 0.579 0.603 0.641 0.589 0.617 0.845 0.914 0.968 0.581 0.575 0.580 0.622 0.620
MAE 0.236 0.234 0.237 0.237 0.239 0.238 0.256 0.272 0.330 0.309 0.237 0.239 0.238 0.265 0.24196 MSE 0.110 0.108 0.112 0.111 0.117 0.111 0.124 0.138 0.196 0.178 0.112 0.112 0.113 0.132 0.115
MAE 0.250 0.251 0.252 0.255 0.255 0.252 0.269 0.296 0.361 0.317 0.249 0.255 0.252 0.281 0.263168 MSE 0.125 0.126 0.128 0.129 0.135 0.127 0.138 0.159 0.234 0.189 0.125 0.130 0.127 0.152 0.140
MAE 0.264 0.263 0.264 0.269 0.273 0.276 0.300 0.310 0.375 0.334 0.262 0.269 0.263 0.297 0.275336 MSE 0.138 0.132 0.137 0.138 0.152 0.147 0.162 0.176 0.254 0.205 0.137 0.142 0.136 0.165 0.151
MAE 0.280 0.281 0.286 0.288 0.303 0.337 0.378 0.416 0.436 0.354 0.284 0.284 0.304 0.321 0.305

E
T

T
h2

720 MSE 0.157 0.158 0.159 0.165 0.193 0.208 0.256 0.332 0.350 0.223 0.156 0.159 0.179 0.190 0.190
MAE 0.394 0.394 0.386 0.407 0.383 0.401 0.389 0.401 0.457 0.446 0.395 0.394 0.389 0.415 0.43696 MSE 0.334 0.334 0.311 0.356 0.317 0.353 0.322 0.330 0.445 0.420 0.343 0.333 0.321 0.357 0.423
MAE 0.414 0.416 0.416 0.421 0.435 0.422 0.417 0.443 0.496 0.470 0.414 0.415 0.422 0.442 0.454168 MSE 0.360 0.364 0.354 0.373 0.390 0.377 0.362 0.393 0.496 0.457 0.360 0.363 0.367 0.414 0.430
MAE 0.455 0.456 0.458 0.459 0.480 0.459 0.462 0.492 0.536 0.524 0.454 0.456 0.454 0.481 0.490336 MSE 0.421 0.423 0.415 0.433 0.463 0.429 0.425 0.460 0.552 0.525 0.421 0.423 0.415 0.467 0.486
MAE 0.492 0.493 0.497 0.501 0.530 0.494 0.506 0.545 0.608 0.597 0.487 0.495 0.498 0.515 0.525

E
T

T
m

1

720 MSE 0.474 0.476 0.468 0.492 0.534 0.477 0.483 0.552 0.659 0.678 0.465 0.477 0.473 0.510 0.536
MAE 0.199 0.198 0.197 0.207 0.202 0.199 0.198 0.201 0.238 0.210 0.199 0.198 0.197 0.206 0.19796 MSE 0.078 0.078 0.077 0.082 0.080 0.079 0.077 0.079 0.105 0.086 0.078 0.078 0.077 0.083 0.077
MAE 0.219 0.219 0.217 0.222 0.224 0.220 0.219 0.221 0.261 0.235 0.219 0.218 0.217 0.227 0.220168 MSE 0.093 0.093 0.092 0.094 0.097 0.093 0.092 0.094 0.133 0.105 0.093 0.093 0.093 0.099 0.094
MAE 0.242 0.241 0.242 0.246 0.250 0.245 0.245 0.249 0.302 0.275 0.242 0.241 0.240 0.258 0.250336 MSE 0.113 0.113 0.114 0.114 0.121 0.114 0.114 0.120 0.169 0.142 0.113 0.113 0.113 0.126 0.122
MAE 0.264 0.264 0.268 0.274 0.277 0.277 0.287 0.293 0.336 0.314 0.264 0.264 0.262 0.303 0.277

E
T

T
m

2

720 MSE 0.139 0.139 0.142 0.144 0.155 0.147 0.154 0.162 0.207 0.186 0.139 0.139 0.137 0.181 0.155
MAE 0.265 0.266 0.284 0.278 0.273 0.244 0.248 0.280 0.303 0.275 0.254 0.258 0.269 0.289 0.25196 MSE 0.181 0.181 0.189 0.189 0.198 0.148 0.152 0.171 0.195 0.172 0.159 0.165 0.164 0.185 0.151
MAE 0.265 0.267 0.281 0.273 0.267 0.254 0.252 0.288 0.320 0.279 0.256 0.258 0.272 0.301 0.254168 MSE 0.176 0.177 0.183 0.181 0.184 0.159 0.155 0.178 0.211 0.177 0.160 0.163 0.168 0.200 0.155
MAE 0.285 0.288 0.301 0.296 0.289 0.270 0.272 0.312 0.335 0.299 0.272 0.278 0.287 0.312 0.266336 MSE 0.190 0.191 0.198 0.197 0.201 0.166 0.167 0.197 0.222 0.192 0.169 0.175 0.177 0.207 0.162
MAE 0.320 0.322 0.333 0.340 0.329 0.302 0.304 0.332 0.357 0.326 0.303 0.312 0.307 0.336 0.296

E
le

ct
ri

ci
ty

720 MSE 0.223 0.224 0.231 0.239 0.244 0.191 0.194 0.217 0.249 0.218 0.194 0.204 0.193 0.237 0.188
MAE 0.167 0.167 0.166 0.202 0.164 0.168 0.182 0.168 0.278 0.223 0.167 0.169 0.166 0.220 0.17096 MSE 0.053 0.053 0.054 0.070 0.053 0.055 0.061 0.055 0.183 0.096 0.053 0.054 0.054 0.087 0.057
MAE 0.215 0.217 0.213 0.277 0.216 0.217 0.239 0.238 0.364 0.295 0.215 0.220 0.213 0.303 0.218168 MSE 0.087 0.088 0.087 0.127 0.088 0.089 0.105 0.110 0.279 0.157 0.087 0.092 0.087 0.186 0.089
MAE 0.291 0.297 0.304 0.332 0.312 0.295 0.329 0.406 0.566 0.375 0.290 0.303 0.305 0.439 0.314336 MSE 0.158 0.162 0.171 0.190 0.178 0.164 0.184 0.305 0.603 0.252 0.156 0.165 0.171 0.318 0.183
MAE 0.398 0.406 0.466 0.628 0.526 0.431 0.431 0.599 0.730 0.503 0.427 0.437 0.474 0.583 0.496

E
xc

ha
ng

e

720 MSE 0.283 0.292 0.375 0.674 0.440 0.350 0.322 0.591 0.822 0.448 0.312 0.338 0.386 0.534 0.403
MAE 0.334 0.334 0.374 0.403 0.556 0.323 0.314 0.323 0.351 0.372 0.325 0.340 0.358 0.391 0.37196 MSE 0.403 0.403 0.443 0.513 0.738 0.386 0.364 0.365 0.415 0.455 0.393 0.393 0.409 0.458 0.434
MAE 0.333 0.334 0.517 0.585 0.598 0.320 0.319 0.340 0.355 0.506 0.328 0.346 0.348 0.392 0.356168 MSE 0.413 0.414 0.654 0.796 0.803 0.393 0.383 0.400 0.423 0.746 0.408 0.403 0.412 0.468 0.418
MAE 0.345 0.346 0.371 0.394 0.379 0.336 0.333 0.403 0.376 0.636 0.345 0.357 0.356 0.403 0.366336 MSE 0.436 0.437 0.463 0.511 0.520 0.425 0.406 0.518 0.459 1.048 0.436 0.426 0.437 0.498 0.444
MAE 0.368 0.372 0.395 0.420 0.403 0.356 0.397 0.563 0.402 0.786 0.368 0.377 0.375 0.423 0.382

Tr
af

fic

720 MSE 0.469 0.472 0.497 0.541 0.548 0.448 0.482 0.778 0.489 1.327 0.469 0.454 0.465 0.533 0.473
MAE 0.220 0.214 0.228 0.247 0.216 0.210 0.217 0.219 0.251 0.203 0.211 0.215 0.219 0.234 0.19696 MSE 0.181 0.173 0.175 0.190 0.195 0.172 0.172 0.170 0.190 0.173 0.170 0.170 0.164 0.175 0.164
MAE 0.259 0.254 0.258 0.285 0.242 0.250 0.247 0.253 0.303 0.248 0.252 0.253 0.257 0.270 0.232168 MSE 0.218 0.210 0.206 0.226 0.231 0.211 0.208 0.206 0.255 0.228 0.209 0.206 0.203 0.213 0.207
MAE 0.298 0.297 0.312 0.342 0.290 0.301 0.315 0.316 0.376 0.306 0.293 0.299 0.309 0.314 0.288336 MSE 0.278 0.274 0.277 0.293 0.301 0.270 0.287 0.279 0.364 0.314 0.271 0.268 0.269 0.275 0.285
MAE 0.346 0.345 0.358 0.400 0.327 0.366 0.368 0.379 0.454 0.350 0.331 0.340 0.355 0.355 0.356

W
ea

th
er

720 MSE 0.343 0.339 0.338 0.366 0.359 0.349 0.360 0.368 0.479 0.386 0.329 0.322 0.331 0.336 0.348
Count (1st) 34 21 12 0 5 41 22 4 0 2 29 14 18 0 14

Table 12: Full results of the model parameter experiments on lookback and horizon lengths com-
pared with FAN. The best results are highlighted in bold.

Parameters Lookback (L) Horizon (H)
Lengths 48 72 96 120 144 168 270 336 420 540 600 720

MAE (Dual-AN) 0.174 0.171 0.168 0.167 0.170 0.170 0.271 0.290 0.319 0.353 0.330 0.427
MAE (FAN) 0.194 0.193 0.182 0.179 0.189 0.178 0.280 0.303 0.324 0.360 0.355 0.437

MSE (Dual-AN) 0.057 0.056 0.055 0.055 0.055 0.055 0.134 0.156 0.191 0.219 0.202 0.312
MSE (FAN) 0.073 0.072 0.061 0.060 0.063 0.060 0.142 0.165 0.196 0.228 0.216 0.338
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D.3 MODEL EFFICIENCY

In terms of model efficiency, we compared the prediction performance, number of parameters, and
training speed of Dual-AN and other normalization methods on the Traffic dataset on the Informer
backbone with a prediction length of H = 720. The results are shown in Figure 5. With the training
speed of Dual-AN no more than 3% different from that of other methods and the average number of
parameters no more than 5%, the average MAE metric is improved by 33.71% and the average MSE
metric is improved by 41.74%, which highlights the excellent performance of our Dual-AN model
in balancing effect and efficiency. Although compared with the existing most advanced method,
FAN, the reduction ratio can also reach 7.05% and 10.30%, which further demonstrates the superior
performance and high efficiency of the Dual-AN method proposed in this paper.

MAE MSE Parameters (30M) Speed (100it/s)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

es

Dual-AN
FAN
SAN
Dish-TS
RevIN

Figure 5: Model efficiency comparison of Dual-AN, FAN, SAN, Dish-TS, and RevIN.

To further illustrate the model efficiency of the Dual-AN method, we present a comparison of its
training and testing times with other normalization methods in Table 13.

Table 13: The comparison of training time (single epoch) and testing time for 5 runs with fixed seeds
of the pure backbone with and without the Dual-AN method and other normalization methods.

Method Training Time Testing Time
Backbone 96.4539±1.2890 13.6083±0.4669
+Dual-AN 119.6488±3.0048 14.6919±0.3710

+FAN 97.4063±1.8296 13.6021±0.6503
+SAN 101.7588±1.2157 15.1279±0.3996

+Dish-TS 98.5975±1.5698 13.7292±0.7178
+RevIN 97.2728±1.6602 13.7905±0.1818

The results clearly show that the training and inference times of Dual-AN are highly competitive
with those of existing standardized baselines. Therefore, model complexity does not pose a practical
concern and can be safely regarded as negligible in deployment.

E FORECAST SHOWCASES

To visualize the performance of our proposed Dual-AN method and since the FAN method Ye et al.
(2024) is the most advanced among the existing methods, we illustrate the visual forecasting results
of Dual-AN compared with FAN Ye et al. (2024) on the ETTh1 dataset with the Informer backbone
in Figure 6.

As shown in Figure 6, in extreme cases of the time series (such as maximum and minimum val-
ues), Dual-AN can more accurately capture the local trends of the time series, demonstrating the
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(a) The results of using Dual-AN
0 50 100 150 200 250 300 350

4

3

2

1

0

1

Ground Truth
Prediction

(b) The results of using FAN

Figure 6: The visual forecasting results of 336 steps of (a) Dual-AN and (b) FAN on the ETTh1
dataset with the Informer backbone.

significant advantages of the sliding window adaptive normalization (SWAN) module at a fine gran-
ularity, while furthermore making more accurate forecasting of future trends through the statistical
prediction module (SPM).

In addition, we show the visual forecasting results of the baseline model (Informer) and the Dual-AN
method proposed in this paper on the ETTh1 dataset in Figure 7, which once again corroborate the
significant advantages of Dual-AN in capturing future local trends in both short-term and long-term
forecasting.
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(b) H = 168.
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Figure 7: The visual forecasting results of backbone (Informer) and Dual-AN on the ETTh1 dataset
across 4 different prediction lengths.
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F FURTHER DISCUSSION ON THE WINDOW SIZE SELECTION PRINCIPLE

The criterion for dynamic window selection, which minimizes the standard deviation of local stan-
dard deviations (Equation 2), is rooted in the principle of seeking maximum statistical homogeneity
at a given temporal scale. The underlying hypothesis is that an optimal normalization window should
span a region where the series’ intrinsic volatility is most stable. A stable volatility profile leads to
more consistent scaling factors (mean and standard deviation), which in turn transforms the input
into a sequence that more closely approximates a stationary process—a key assumption for many
predictive models. While alternative criteria, such as those based on information theory (e.g., Mini-
mum Description Length) or spectral entropy, could offer more theoretical grounding, the proposed
heuristic provides a computationally efficient and empirically robust solution, as demonstrated by
the analysis in Section 4.5.2. A rigorous theoretical exploration of optimal windowing strategies is
a promising direction for future work.

To further illustrate the robustness of our dynamic window selection mechanism, we have expanded
Table 5 in Table 14 to show the experimental results under a wider range of window size selection
scenarios.

Table 14: The MAE and MSE experimental results of different window sizes. The best results are
highlighted in bold.

Window Size Metrics 96 168 336 720 Count (1st)

6 MAE 0.19876 0.21911 0.24262 0.26464 0
MSE 0.07819 0.09329(0) 0.11430 0.13932 0

12 MAE 0.19871 0.21893 0.24252 0.26448 2
MSE 0.07813 0.09329(1) 0.11431 0.13939 0

24 MAE 0.19887 0.21896 0.24286 0.26446 1
MSE 0.07812 0.09325 0.11447 0.13940 1

36 MAE 0.19886 0.21947 0.24293 0.26466 0
MSE 0.07823 0.09349 0.11454 0.13958 0

48 MAE 0.19884(4) 0.21983 0.24153 0.2645 1
MSE 0.07805 0.09367 0.11310 0.13929 3

60 MAE 0.19876 0.21916 0.24283 0.26467 0
MSE 0.07823 0.09326 0.11460 0.13944 0

72 MAE 0.19883(7) 0.21899 0.24275 0.26455 0
MSE 0.07822 0.09327 0.11436 0.13934 0

Mean±Std MAE 0.19881±0.00006 0.21921±0.00033 0.24258±00048 0.26457±0.00009 -
MSE 0.07817±0.00007 0.09336±0.00016 0.11424±0.00052 0.13939±0.00010 -

As can be seen from Table 14, the standard deviations of MAE and MSE indices are all within
0.0005 under different window sizes across all 4 horizons, indicating that the differences between
different window sizes are negligible.

F.1 THEORETICAL JUSTIFICATION FOR WINDOW SIZE SELECTION

In this section, we provide a theoretical justification for the dynamic window size selection criterion
used in our Dual-AN module. We demonstrate that selecting the window size W to minimize the
standard deviation of the sliding volatility estimates corresponds to optimizing the Bias-Variance
trade-off under the assumption of local stationarity.

F.1.1 PROBLEM FORMULATION

Let the residual time series rt (after frequency decomposition) be modeled as a Locally Stationary
Process (LSP):

rt = σ(t) · ϵt, ϵt
i.i.d∼ N (0, 1) (35)

where σ(t) is a deterministic, slowly varying (or piecewise constant) volatility function, and ϵt
represents stationary Gaussian noise.

Our goal is to estimate the local volatility σ(t) using a sliding window estimator σ̂t,W with window
size W :

σ̂t,W =

√√√√ 1

W

t∑
i=t−W+1

r2i (36)
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The selection criterion proposed in the paper minimizes the temporal fluctuation of this estimator:

L(W ) = StdDevt [σ̂t,W ] =

√√√√ 1

T

T∑
t=1

(σ̂t,W − σ̄W )
2 (37)

F.1.2 BIAS-VARIANCE TRADE-OFF ANALYSIS

The fluctuation metric L(W ) is influenced by two competing sources of error: sampling variance
(dominant at small W ) and estimation bias (dominant at large W near change points).

Case 1: Small Window Size (Variance Domination) Consider a locally stationary segment
where the true volatility is constant, σ(t) = σ0. For a window size W , the empirical variance
σ̂2
t,W follows a scaled Chi-squared distribution:

σ̂2
t,W ∼

σ2
0

W
χ2
W (38)

Using the standard approximation for the variance of the standard deviation estimator for Gaussian
data, the variance of the estimator itself is inversely proportional to W :

Var (σ̂t,W ) ≈ σ2
0

2W
(39)

Implication: When W is small, the estimator σ̂t,W is highly sensitive to the noise ϵt. Even if the
underlying σ(t) is constant, the estimated sequence will fluctuate wildly solely due to sampling
noise. This results in a high value of L(W ). Increasing W effectively suppresses this noise.

Consider a non-stationary transition where the volatility steps from σ1 to σ2 at time τ . If W is large
relative to the local scale, the window will span across the change point for a long duration. During
this transition, the estimator σ̂t,W is a mixture of the two regimes. The expectation of the estimator
becomes:

E[σ̂2
t,W ] ≈ ασ2

1 + (1− α)σ2
2 (40)

where α represents the proportion of the window in the first regime. Implication: An excessively
large W creates a ”smearing” effect, introducing a bias that manifests as a slow, high-amplitude ramp
in the estimator sequence as it slides across regimes. This structural variation contributes to the total
fluctuation L(W ). Furthermore, overly large windows fail to capture local adaptive characteristics,
violating the local stationarity assumption.

F.1.3 CONCLUSION

Our criterion minW L(W ) effectively identifies the optimal scale by balancing these two factors:

1. It penalizes undersized windows where the signal is drowned out by the high variance of
the estimator (1/W term).

2. It penalizes oversized windows (implicitly) by favoring the scale where the estimator sta-
bilizes within homogeneous segments without smoothing out necessary structural changes.

Thus, the selected window size represents the characteristic scale of stationarity for the given
dataset, ensuring robust normalization.

G DESIGN RATIONALE FOR THE STATISTICAL PREDICTION MODULE (SPM)

The selection of an MLP architecture for the SPM (Section 3.2) was a deliberate design choice bal-
ancing expressive power against computational cost. The SPM’s task is to predict future window-
level statistics—a sequence-to-sequence regression problem. Although more complex architectures
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like RNNs or Transformers could be employed, they would introduce significant parameter over-
head and computational latency. Crucially, the sequences of statistical moments (mean and standard
deviation) are typically much smoother and less noisy than the raw time series data. Consequently,
an MLP, as a universal function approximator, possesses sufficient expressive capacity to model
these smoother dynamics effectively. This was confirmed during preliminary experiments, where
replacing the MLP with an LSTM yielded only marginal performance gains at the cost of a sub-
stantial increase in training time, thus justifying the current, more efficient design. This ensures that
Dual-AN remains a lightweight and broadly applicable plug-in.

H ABLATION STUDY ON LOSS FUNCTION COMPONENTS

To validate the effectiveness of the dual-component loss function described in Section 3.3, an
additional ablation study was conducted. The full model, optimized with the combined loss
(Lnonstat + Lstat), is compared against a variant trained with a single loss function applied only to
the final prediction (i.e., MSE on the final output Ŷ ). As shown in Table 15, explicitly supervising
both the non-stationary and stationary components leads to improved forecasting accuracy. This
result supports the hypothesis that the dual loss acts as a valuable regularizer, guiding the model to-
ward a more meaningful and effective decomposition of the time series, which ultimately enhances
prediction quality.

Table 15: Ablation study on loss function components on the ETTh1 dataset with the Informer
backbone (H=336).

Loss Configuration MAE MSE
Single Loss on Final Prediction (L(Ŷ , Y )) 0.501 0.462
Dual Loss (Lnonstat + Lstat) 0.493 0.452

I COMPUTATIONAL COMPLEXITY ANALYSIS

The computational overhead introduced by Dual-AN stems from the SWAN and SPM modules. Let
N be the number of variables, L be the lookback length, and Wopt be the optimal window size.

• SWAN: The primary cost is the calculation of sliding window statistics. A naive imple-
mentation has a time complexity of O(L ·Wopt · N). However, this can be optimized to
O(L ·N) using moving average algorithms. The space complexity isO(L ·N) to store the
statistics for each time step.

• SPM: The complexity is determined by its MLP layers. For the structure described in
Appendix C.2, the complexity is independent of the sequence length and depends only on
the hidden dimensions, which are fixed hyperparameters. Thus, its complexity is O(N).

The total additional time complexity is therefore approximatelyO(L ·N). This is linear with respect
to the input sequence length and does not alter the dominant complexity of most modern backbone
models (e.g., O(L2 ·N) for standard Transformers or O(L · logL ·N) for Informer). This analysis
confirms that Dual-AN is a computationally feasible plug-in for a wide range of applications without
introducing a new performance bottleneck.

J PRACTICAL GUIDANCE FOR CHOOSING NORMALIZATION METHODS

To make Dual-AN easier to apply in practice, we provide a simple rule-of-thumb on when to prefer
Dual-AN over simpler normalization schemes such as RevIN. Following FAN (?), we characterize
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Table 16: Practical guidance for choosing normalization methods based on dataset characteristics.
TV and SV are computed as in FAN Ye et al. (2024). “Avg. gain vs RevIN” is the relative MAE
reduction of Dual-AN compared with RevIN, averaged over three backbones and four horizons as
shown in Table 2.

Dataset TV SV Variation level Avg. MAE gain vs RevIN (%) Recommended normalization

ETTh1 3.839 3.690 High 9.6% Dual-AN (recommended)
ETTh2 0.154 1.013 Moderate 8.9% Dual-AN (recommended)
ETTm1 0.030 3.330 High 8.4% Dual-AN (recommended)
ETTm2 0.196 1.648 Moderate 4.9% Dual-AN / RevIN (both acceptable)
Electricity 0.249 0.435 Moderate 3.5% Dual-AN / RevIN (both acceptable)
Exchange 0.242 2.645 Moderate 13.9% Dual-AN (recommended)
Traffic 0.068 14.225 High 28.5% Dual-AN (strongly recommended)
Weather 0.028 0.387 Low -2.6% RevIN (near-stationary series)

each dataset by:
- Trend Variation (TV), which measures the distributional shift of the global trend across the
train/validation/test splits;
- Seasonality Variation (SV), which measures how much the spectral (seasonal) components
change across these splits.

Larger TV or SV indicates stronger non-stationarity in the time or frequency domain, respectively.
For each dataset, we further compute the average MAE improvement of Dual-AN over RevIN,

∆MAE =
MAERevIN −MAEDual-AN

MAERevIN
× 100%,

averaged over the three backbones (DLinear, Informer, SCINet) and four prediction horizons using
the results in Table 2.

Based on TV/SV, we divide series into three regimes:

- Low variation: TV < 0.05 and SV < 0.5 (close to stationary);
- High variation: TV ≥ 1.0 or SV ≥ 3.0 (strong trend/seasonality shifts);
- Moderate variation: all remaining cases.

Table 16 summarizes the statistics and our recommended normalization choice for each benchmark
dataset. In short, Dual-AN is clearly preferred for moderate or high variation, while RevIN is slightly
better on datasets that are nearly stationary in both trend and seasonality (e.g., Weather).

K LIMITATIONS AND FUTURE WORK

Based on the comprehensive framework and experimental results presented in this paper, we identify
several limitations and suggest promising avenues for future work. First, the current implementa-
tion of the sliding window adaptive normalization (SWAN) module relies on a pre-defined set of
candidate window sizes, which may not be optimal for all types of time series. Although Dual-AN
exhibits robustness across various window sizes, integrating an adaptive mechanism to dynamically
determine window size during training could further improve model flexibility and generalization.
Second, while Dual-AN achieves significant improvements across multiple backbones and datasets,
its performance on series with extremely low trend and seasonality variations (e.g., Weather) re-
mains less competitive compared to specialized methods like RevIN Kim et al. (2021). This sug-
gests that a more nuanced integration of time and frequency domains may be necessary for such
scenarios. Future work will focus on developing automated window size selection algorithms and
designing backbone-specific variants of Dual-AN to enhance its applicability and performance. Ad-
dressing these aspects will further establish Dual-AN as a versatile and powerful framework for
non-stationary time series forecasting.
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