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Abstract001

Mathematical reasoning has been challenging002
for large language models (LLMs). How-003
ever, the introduction of step-by-step Chain-of-004
Thought (CoT) inference has significantly ad-005
vanced the mathematical capabilities of LLMs.006
Despite this progress, current approaches ei-007
ther necessitate extensive inference datasets for008
training or depend on few-shot methods that fre-009
quently compromise computational accuracy.010
To address these bottlenecks in mathematical011
reasoning, we propose a novel method called012
Step Guidied Reasoning, which is more sta-013
ble and generalizable than few-shot methods014
and does not involve further fine-tuning of the015
model. In this approach, LLMs reflect on small016
reasoning steps, similar to how humans deliber-017
ate and focus attention on what to do next. By018
incorporating this reflective process into the in-019
ference stage, LLMs can effectively guide their020
reasoning from one step to the next. Through021
extensive experiments, we demonstrate the022
significant effect of Step Guidied Reasoning023
in augmenting mathematical performance in024
state-of-the-art language models. Qwen2-72B-025
Instruct outperforms its math-specific counter-026
part, Qwen2.5-72B-Math-Instruct, on MMLU-027
STEM with a score of 90.9%, compared to028
87.3%. The average scores of Qwen2-7B-029
Instruct and Qwen2-72B-Instruct increase from030
27.1% to 36.3% and from 36.5% to 47.4% on031
the mathematics domain, respectively.032

1 Introduction033

Since the introduction of Chain-of-Thought034

(CoT) (Wei et al., 2022) reasoning on LLMs (Yang035

et al., 2024c; Zhao et al., 2023; Vaswani et al.,036

2017), it has been demonstrated how reasoning abil-037

ities naturally emerge in sufficiently large language038

models through a simple technique called thought039

chaining prompts. This approach involves enrich-040

ing the prompts (Sahoo et al., 2024) with thought041

chaining examples, which serve as demonstrations042

to guide the model’s reasoning process. However,043

complex mathematical reasoning remains a signifi- 044

cant challenge for LLMs (He et al., 2024a). Even 045

though the accuracy of LLMs in mathematical rea- 046

soning can be improved with the scaling of model 047

parameters and that of the training data, the amount 048

of high-quality CoT data (Cheng et al., 2024) be- 049

comes the bottleneck (Hoffmann et al., 2022). 050

There are several approaches to tackle these 051

challenges in the inference stage, and the meth- 052

ods discussed below significantly enhance the 053

model’s performance on both mathematical reason- 054

ing and MMLU-STEM benchmarks (Hendrycks 055

et al., 2021a). Cumulative reasoning (Zhang et al., 056

2023) has been proposed to make great improve- 057

ments over MATH datasets (Hendrycks et al., 058

2021b). Cumulative reasoning significantly en- 059

hances problem-solving by decomposing the task 060

into smaller, more manageable elements and builds 061

upon prior propositions, improving the overall 062

effectiveness of problem-solving. Additionally, 063

Zheng et al. proposed a “Take a Step Back” method, 064

which introduced overall concepts and principles 065

to guide model reasoning using results from high- 066

level descriptions of original questions. Both of 067

these schemes improve the accuracy of mathemati- 068

cal reasoning by generating intermediate but useful 069

contexts, namely "scratchpad" (Nye et al., 2021), 070

during the inference phase. 071

Another approach to enhancing mathematical 072

reasoning ability involves methods that increase 073

computation during the inference stage (Zhang 074

et al., 2024; Gao et al., 2024; Yao et al., 2024; 075

Snell et al., 2024). These approaches enable LLMs 076

to explore multiple possible reasoning paths and 077

select the most likely correct ones. To be more spe- 078

cific, techniques such as Best-of-N (BoN) (Cobbe 079

et al., 2021; Dong et al., 2023) and Tree-of-Thought 080

(ToT) (Yao et al., 2024) have also been explored. 081

By scoring intermediate reasoning steps or eval- 082

uating the entire final result, the highest-scoring 083

outcome by the reward model (RM) (Ouyang et al., 084

1



2022) is selected as the final answer. These strate-085

gies have been shown to effectively improve the086

model’s mathematical reasoning ability, allowing087

it to tackle more complex problems with better088

accuracy and reliability.089

However, when coming to challenging math090

problems, such as competition-level math (AI-MO,091

2024b,a), neither of them works well, and ap-092

proaches like ToT and BoN require an additional093

reward model for scoring. To be more specific,094

we observed that more challenging math tasks of-095

ten require more thoughtful reasoning steps (see096

analysis of Figure 2) to complete the answer. In-097

spired by these observations, we propose a method098

called Step Guidied Reasoning (SGR) that intro-099

duces guided thought in step-by-step reasoning,100

and SGR can improve challenging math problems101

without finetuning (Parthasarathy et al., 2024) the102

model and without the need for a reward model103

like BoN. In each reasoning step of our approach,104

the model is prompted to self-question (Renze and105

Guven, 2024) what to do next, self-answer this106

question which can help the next-step generation,107

and use this reflection to guide the subsequent108

generation process. Through this method, we ob-109

served substantial improvements in solving com-110

plex problems, particularly in multi-step tasks such111

as the Olympic Mathematical Challenge (He et al.,112

2024b), where the model already demonstrates a113

certain level of accuracy on the test dataset through114

0-shot CoT (Kojima et al., 2022).115

By applying our method, Qwen2-7B-Instruct im-116

proved the accuracy on the MATH dataset Level117

5 (Hendrycks et al., 2021b), the most difficult level,118

from 37.1% to 58.6%, while Qwen2-Math-7B-119

Instruct achieved an accuracy of 52.0%. Similarly,120

Qwen2-72B-Instruct achieved an improvement121

from 35.8% to 41.2% on the OlympiaBench (He122

et al., 2024a) open-ended, no-image English123

Math Competition test set, with Qwen2-Math-72B-124

Instruct achieving an accuracy of 42.5%.125

To summarise our contributions, we present a126

generalized approach that facilitates autonomous127

inference strategies in mathematical reasoning128

without requiring fine-tuning in the domain of129

mathematical logic, leading to substantial improve-130

ments on challenging math datasets.131

2 Method132

Step Guidied Reasoning (SGR) method employs133

a series of reasoning steps during inference, each134

step consisting of generating two key components: 135

a step guidance and a step answer.1 The step guid- 136

ance distills the most crucial logical elements and 137

generates inferential cues. Functioning as a more 138

sophisticated prompt signal, it fortifies every rea- 139

soning step. The step answer then harnesses these 140

cues comprehensively to yield more refined inter- 141

mediate step responses. As a result, the overall 142

reasoning becomes more efficient and impactful. 143

As illustrated in Figure 1, SGR incorporates a 144

multi-round iterative reasoning mechanism. At the 145

first iteration (Stage-I) of the reasoning, upon re- 146

ceiving a math query, we first direct the model to 147

formulate a Step Guidance Question. Subsequently, 148

we prompt the model to engage in in-depth deliber- 149

ation and response, thus eliciting a step guidance. 150

This enables the model to generate a high-quality 151

step answer autonomously. In the following iter- 152

ative cycles (Stage-II), we gradually leverage the 153

step answer obtained from the preceding round to 154

refine the step answer at the k-th step, until the 155

model outputs a satisfactory result. 156

SGR method provides a simple guidance mech- 157

anism effectively promotes the model’s thinking 158

process and significantly enhances its reasoning ca- 159

pabilities. By following this multi-round iterative 160

reasoning mechanism, the model can break down 161

complex mathematical problems into more man- 162

ageable steps, leading to more accurate and logical 163

reasoning. 164

2.1 Reasoning Step 165

SGR consisits of multiple iterations as the reason- 166

ing steps to instruct LLMs during inference. As 167

shown in Figure 1, the first step initiates a rea- 168

soning cycle (Stage I), and the subsequent steps 169

(Stage II) iteratively refine the current step answer. 170

Each "step" can be defined at various granulari- 171

ties, including token-level (Zelikman et al., 2024), 172

sentence-level (Jarrahi et al., 2023), paragraph- 173

level (Chalkidis et al., 2021; Zhang et al., 2021), 174

or block-level, typically annotated by human ex- 175

perts (Lightman et al., 2024). In this paper, we opt 176

to define a step as a paragraph level, since our ap- 177

proach focuses on challenging mathematical prob- 178

lems which generally require answers spanning 179

thousands of tokens (Fu et al., 2023). Selecting 180

appropriate granularity for math domain ensures 181

the effectiveness of instructing without losing co- 182

herence or logical flow while minimizing computa- 183

1All used prompts are listed in Appendix A.1.
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<<Query>> +

Prompt 1.1: if you need to solve a current

problem, what relevant knowledge do you

need? Ask a question about relevant

knowledge. Please note: You only need to

ask the question, you do not need to

answer it.

Prompt 1.2: The answers should be short,

but organized and informative. + 

<<Step Guidance Question>>

<<Step Guidance>>1 + <<Query>>

<<Query>> +

<<Step Answer>>k-1 +

Prompt k.1: If you need to solve the

current problem for the current step, what

relevant knowledge will be needed in the

future?

Prompt k.2: Next for the current topic to

continue the next step of the answer, be

sure not to repeat the previous content, to

answer according to the previous content.

 + <<Step Guidance>>k

 + <<Query>>

 + <<Step Answer>>k-1 

Stage I (First Iteration) Stage II (Subsequent Iterations)

Step Guidance Question：This

problem is related with a classic xx

series, which equation should I use?

Step Answer (1st iteration): To

address this problem, first I should

transform xxx

Step Guidance (1st iteration): I

should use the Equ. xx to calc. I can

use Equ.xx to verify. Step Answer (k-th): To address

this problem, first I should

transform xxx

Step Guidance (k-th): I have already

used the Equ. xx. For the next step, I

can now use Equ.xx to verify.

Final Answer: Above all, the

answer to this problem is xxx.

Terminated Until the

Maximum Iteration

Figure 1: Illustration of how our proposed SGR method generates step guidance and step answer for each iteration
k. In stage I (k = 1), Prompt 1.1 questions the model to search for relevant knowledge. Subsequently, Prompt 1.2
elicits a guidance from the model by getting it to answer the step guidance question. Original query with such a step
guidance empowers the model to generate a more accurate and well-reasoned step answer. In stage II (1 < k ≤ N ),
the step answer at step k is refined by reiterating the process from step answer k − 1 with Prompt k.1 and k.2. We
iteratively enhance the step answer until a satisfactory final answer is obtained.

tional overhead.184

In practice, we found delimiter “.\n\n” serves185

as an effective boundary for logical inference186

for most instruct models, such as GPT-4/GPT-4o,187

Qwen, and LLaMA. However, directly splitting188

reasoning at every occurrence of “.\n\n” can lead189

to repeated patterns in the model generation, caus-190

ing the model to reanalyze the first step instead of191

progressing to the next. This issue arises because192

the model may interpret each split as a signal to re-193

analyze the problem, rather than advancing through194

the reasoning process.195

To mitigate this problem, we introduce a step196

length constraint, where each step, delimited by197

“.\n\n”, must contain a minimum number of char-198

acters. This helps ensure that each step contains suf-199

ficient information for meaningful reasoning and200

reduces the tendency for the model to repeat earlier201

analyses. Although this constraint addresses some202

of the repetition, LLMs could still exhibit long203

repetitive patterns in subsequent steps by chance,204

which would be fixed by fine-tuning to improve205

instruction following.206

In theory, the step length required for different207

problems may vary, and even within a single prob-208

lem, the length of steps may differ depending on the209

complexity of the reasoning required. Ideally, fine-210

tuning the language models over manually labelled211

data with a special step token could explicitly dis-212

tinguish between steps, providing further clarity 213

and precision in the reasoning process. However, 214

this approach is not considered in the current paper, 215

as our focus remains on leveraging an instruction- 216

based model that requires no additional fine-tuning. 217

2.2 Step Guidance 218

For each iteration, the prompt guides the LLM to 219

think about what relevant knowledge is needed next 220

as step guidance, and the model is then asked to 221

generate the corresponding reasoning as the step 222

answer. The model does not revisit or retain pre- 223

vious step guidance; instead, each generated step 224

guidance is used exclusively for the current step, 225

ensuring that each step is handled independently 226

without carrying over unnecessary context. 227

For the first iteration, we adopt the SBP ap- 228

proach (Zheng et al., 2024) by using a question 229

to obtain a more general step guidance. Specifi- 230

cally, in the first iteration, the model is prompted 231

to independently generate a question related to the 232

query as the step guidance question, and then the 233

LLM answers this step guidance question, with the 234

answer serving as the step guidance. 235

2.3 Step Answer 236

To generate the result of k-th reasoning step, both 237

the generated step guidance at step k and the pre- 238

viously accumulated << step answer >>k−1 are 239
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incorporated into the prompt to support continued240

reasoning. The generation process is halted once241

the model reaches the token “.\n\n” with a min-242

imum length, which indicates the completion of243

the current step. This serves as a natural delimiter,244

ensuring that each step is sufficiently detailed and245

self-contained.246

To ensure the quality of generation of the <<247

step answer >>k, we explicitly emphasized that248

"not to repeat the previous content" in the Prompt249

k.2. However, such repetitions still occurred. To250

address this, whenever a duplicate of the current251

step is detected, it is removed and the model is252

prompted to resample and generate a new response.253

This trick ensures a streamlined reasoning process254

that eliminates unnecessary repetition, enabling255

the model to advance smoothly through each step256

without redundancy.257

Unlike Retrieval-Augmented Generation258

(RAG) (Gao et al., 2023), which leverages addi-259

tional pre-existing or externally-retrieved context260

to enhance reasoning, our step answer mechanism261

hinges on step guidance where the additional262

context is generated autonomously by the Large263

Language Model (LLM) itself, rather than being264

sourced from external repositories. This unique265

characteristic of dynamic context generation266

endows our method with greater flexibility and267

adaptability during real-time reasoning processes,268

enabling the model to adjust its reasoning strategies269

according to the evolving requirements of the task270

at hand.271

3 Experiments272

3.1 Experimental Setups273

Datasets For evaluation, we use four represen-274

tative challenging math benchmarks, AMC23 (AI-275

MO, 2024a), MATH (Hendrycks et al., 2021b),276

AIME24 (AI-MO, 2024b) and OlympiadBench277

(OLY) (He et al., 2024b) with the open-278

ended, no-image English Math Competition279

(OE_TO_maths_en_COMP) tag. The selected280

mathematics test sets are all challenging and in-281

clude competition-level questions (See A.2).282

To assess the scalability of our method—whether283

it can also be effective in domains beyond284

mathematical logical reasoning—we selected285

MMLU (Hendrycks et al., 2021a) with STEM tags286

(MMLU-STEM) for evaluation. STEM, which en-287

compasses the fields of Science, Technology, En-288

gineering, and Mathematics, often requires spe-289

cialized problem-solving skills. Each of the four 290

datasets provides the problem as a query along with 291

a reference answer, and we report the accuracy by 292

comparing the final output of the LLM with the 293

reference answer. Specifically, for the MMLU- 294

STEM test dataset, a multiple-choice dataset, we 295

determine accuracy by comparing the final selected 296

answer option with the reference answer. For the 297

other test sets, we first accurately extract the final 298

answer from the reference answer and then com- 299

pare this extracted final answer with the answer 300

generated by the model to ensure that the model’s 301

output aligns with the intended task objectives. To 302

ensure the reliability and consistency of our evalu- 303

ation, we employ GPT-4 (OpenAI et al., 2024) as 304

our validation tool, a model that has demonstrated 305

near-human-level evaluation capabilities (Sottana 306

et al., 2023). 307

Models Given that the SGR method demands 308

that LLMs display remarkably strong and com- 309

prehensive capabilities, we choose Qwen2-72B- 310

Instruct, Qwen2-7B-Instruct (Yang et al., 2024a), 311

LLaMA3.1-8B-Instruct (Dubey et al., 2024) and 312

LLaMA2-70B-Instruct (Touvron et al., 2023) as 313

our experimental model. We also use a distilled 314

version of DeepSeek-R1 of Qwen-7b and LLaMA2- 315

8b (DeepSeek-AI et al., 2025) to compare with 316

Qwen-7b and LLaMA2-8B as the base instruct 317

models promoted by our method. 318

We then compared our method to the state- 319

of-the-art models QwQ-32B-Preview (Team, 320

2024), Qwen2-Math-7B-Instruct, Qwen2-Math- 321

72B-Instruct (Yang et al., 2024a), Qwen2.5-Math- 322

7B-Instruct, Qwen2.5-Math-72B-Instruct (Yang 323

et al., 2024b), and GPT-4o (OpenAI, 2023). Note 324

that we do not use these models because they are 325

specifically fine-tuned for mathematics, which has 326

led to a loss of its instruction-following capabili- 327

ties. Therefore, this disables the model to follow 328

guidance effectively. 329

Alongside the 0-shot CoT results for LLMs, we 330

also provide a comparison with two representative 331

methods: Best-of-N (BoN) (Cobbe et al., 2021) 332

and “Take a Step Back Prompt”(SBP) (Zheng et al., 333

2024). For the BoN method, sampling 16 or 32 334

times for each problem using Qwen2-7B-Instruct. 335

The Qwen2.5-Math-RM-72B (Yang et al., 2024b) 336

model was then used to score these responses, with 337

the one receiving the highest score selected as the fi- 338

nal result. For SBP, we utilized the original prompt 339

template from the SBP method along with the ex- 340
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Figure 2: This figure illustrates the proportion of dif-
ferent steps at which the correct answer first appears
for problems across various difficulty levels (Level) in
the MATH dataset. The result represents the average
accuracy of the outputs from Qwen2-7b-Instruct with
top_p values of 0.7 and 1.0.

ample provided in the appendix to construct a 5-341

shot prompt. This prompt was employed to gener-342

ate both the principal and the final answer.343

Hyperparamters For the decoding strategy, we344

use temperature as 1.0 and set top_p to 1.0 and345

0.7 for sampling.2 All experimental results are346

reported as the average accuracy scores under347

top_p values of 0.7 and 1.0. The step length con-348

straint for MATH and MMLU-STEM was spec-349

ified as 300, while for the AIME24 dataset, it350

was set to 500. We use a maximum of 10 iter-351

ations for all test sets. If there is a duplication352

between steps, it will delete and re-sample the353

solution in the current step. We conducted the354

experiment using 8 V100 GPUs, with each prob-355

lem in the test dataset generating an average out-356

put of 6,384 tokens from the MATH dataset by357

the Qwen2-7B-Instruct. We use float32 precision358

for the LLaMA3.1-8B-Instruct/Qwen2-7B-Instruct359

model, but float16 precision for the Qwen2-72B-360

Instruct model, leading to some degree of perfor-361

mance degradation. The native float16 precision is362

utilized for the LLaMA2-70B-Instruct model.363

3.2 Experimental Results364

Table 1 shows comparison results of our method365

and the SOTA, demonstrating distinct performance366

of SGR across different datasets. In the MATH367

dataset, SGR improves more than 10% over 0-shot368

CoT, with the exception of LLaMA2-70B-Instruct369

model. On hard reasoning tasks, (like MATH L5),370

SGR greatly stimulates the potential of LLaMA3.1-371

2We observed that top_p decoding tends to mitigate repeti-
tion compared with greedy decoding.
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Figure 3: As the change of step length thresholds, our
SGR accuracy on the MATH dataset by Qwen2-7B-
Instruct. The 0-shot Chain of Thought (CoT) and Step-
Back Prompt (SBP) generated by the same model are
compared as the baseline.

8B-Instruct, leading to 188% improvement. Unlike 372

BoN, which exhibits uniform growth across the en- 373

tire difficulty spectrum of the test set across differ- 374

ent domains, SGR outperforms methods like BoN 375

on more difficult test sets (MATH Level 4 and Level 376

5). It shows that our method effectively enhanced 377

the mathematical reasoning on hard problems. Al- 378

though these base models show poor performances 379

on AIME24 dataset, applying SGR again lifts the 380

reasoning abilities. 381

Beyond the math domain, we also test our 382

method on the MMLU-STEM dataset, showing 383

that SGR method consistently achieves the SOTA. 384

In Table 1, SGR outforms than BoN methods 385

consistently on Qwen2-7B-inst model. The accu- 386

racy of Qwen2-72B-Instruct + our method reaches 387

90.9%, which is comparable to QwQ-32B-Preview 388

(91.8%), a strong baseline fine-tuned with slow 389

thinking. Moreover, we conduct a further investi- 390

gation into the slow-thinking-enhanced Qwen2-7B 391

and LLaMA3.1-8B models that incorporate dis- 392

tilled data from DeepSeek-R1. As demonstrated 393

in Table 3, our method confers greater capabilities 394

to the vanilla instruction models compared to the 395

distilled models, which acquire advanced reason- 396

ing abilities from a powerful pre-trained model, 397

highlighting the superiority and effectiveness of 398

our proposed method. 399

3.3 Analysis 400

Step Analysis We analyse the number of steps 401

to the first appearance of the answer in different 402

levels (see Figure 2) on MATH. As illustrated in 403

the chart, higher-level problems generally require 404

more steps to reach a final solution compared to 405

lower-level problems. 406
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Method
MATH AMC23 AIME24 OLY Average

L1 L2 L3 L4 L5 Average

Slow-Thinking Model
QwQ-32B-Preview 97.5 96.4 95.4 91.8 84.9 92.2 85.0 50.0 67.4 73.7

Math-Specific Models
Qwen2-Math-7b-inst 93.1 87.2 82.6 72.4 52.0 73.8 62.5 13.3 34.1 45.9
Qwen2-Math-72b-inst 95.0 94.1 90.5 83.7 67.7 83.9 60.0 20.0 42.5 51.7
Qwen2.5-Math-7b-inst 95.4 93.0 89.7 82.7 67.4 83.2 62.5 33.3 37.3 54.1
Qwen2.5-Math-72b-inst 96.3 93.5 90.9 84.9 73.3 85.7 70.0 43.3 60.6 65.5

General Models

GPT-4o
CoT 95.0 91.7 86.0 74.9 53.8 76.6 15.0 10.0 43.3 36.2
SBP 91.3 88.3 81.1 71.5 51.2 73.0 15.0 6.7 43.3 34.4 (-1.8)

Qwen2-7b-inst

CoT 85.1 73.4 65.2 52.4 37.1 57.8 28.8 1.5 20.1 27.1
SBP 84.2 71.8 64.1 52.1 38.4 57.5 22.5 0.0 27.3 26.8 (-0.3)
SGR 90.2 81.3 74.6 68.3 58.6 71.4 38.8 1.5 33.3 36.3 (+9.2)

BoN@16 91.5 84.6 76.4 62.7 40.3 66.4 46.3 5.0 31.7 37.4 (+10.3)
BoN@32 92.8 85.5 79.7 66.8 44.5 69.4 52.5 10.0 34.4 41.6 (+14.5)

Qwen2-72b-inst
CoT 91.4 85.3 77.3 66.9 46.1 69.2 35.0 6.0 35.8 36.5
SBP 88.6 82.2 72.1 60.2 38.7 63.6 36.3 1.7 32.7 33.6 (-2.9)
SGR 93.9 89.3 83.7 76.9 65.6 79.2 61.3 8.0 41.2 47.4 (+10.9)

LLaMA3.1-8b-inst
CoT 76.2 61.2 50.8 36.6 21.2 43.7 20.0 8.0 14.4 21.5
SBP 75.3 59.3 48.1 36.4 21.2 42.5 11.3 5.0 18.5 19.3 (-2.2)
SGR 81.7 76.8 71.5 66.8 61.2 69.5 18.8 6.0 22.7 29.2 (+7.7)

LLaMA2-70b-inst
CoT 44.5 25.4 15.8 9.6 5.2 15.7 4.0 0.0 2.3 5.5
SBP 39.8 26.1 19.1 14.8 14.7 19.9 6.3 0.0 5.1 7.8 (+2.3)
SGR 38.7 25.3 16.8 11.3 7.1 16.3 5.0 3.3 2.7 6.8 (+1.3)

Method
MMLU-STEM

Physics Chemistry Biology Computer Science Math Engineer Average

Slow-Thinking Model
QwQ-32B-Preview 93.9 83.1 94.0 88.8 95.1 86.1 91.8

Math-Specific Models
Qwen2-Math-7b-inst 69.1 57.5 64.4 65.3 84.3 62.5 71.5
Qwen2-Math-72b-inst 87.3 78.1 88.1 81.9 90.7 79.9 86.2
Qwen2.5-Math-7b-inst 71.3 61.1 61.9 66.7 86.8 61.1 73.0
Qwen2.5-Math-72b-inst 88.2 78.7 86.9 83.9 92.6 81.2 87.3

General Models

GPT-4o
CoT 90.0 64.8 94.7 85.3 87.8 83.3 86.1
SBP 89.6 82.1 95.1 87.0 87.9 77.8 87.8 (+1.7)

Qwen2-7b-inst

CoT 65.9 56.0 79.5 64.7 73.2 62.2 64.9
SBP 65.4 54.7 76.2 65.2 70.6 65.3 67.5 (+2.9)
SGR 79.2 72.3 88.9 85.2 84.1 74.0 82.3 (+17.4)

BoN@16 67.9 56.1 80.0 66.1 82.1 59.7 73.0 (+8.1)
BoN@32 71.2 60.8 82.2 67.2 83.9 61.5 75.4 (+10.5)

Qwen2-72b-inst
CoT 86.3 74.9 93.8 81.8 86.5 75.3 85.3
SBP 81.8 70.6 91.4 80.3 82.7 71.9 81.5 (-3.8)
SGR 90.7 83.2 95.1 91.3 92.7 78.8 90.9 (+5.6)

LLaMA3.1-8b-inst
CoT 59.4 62.4 56.1 78.4 61.2 64.9 69.2
SBP 62.7 57.7 77.6 60.2 65.4 65.7 64.9 (-4.3)
SGR 77.7 82.1 78.6 89.2 85.9 81.1 82.4 (+13.2)

LLaMA2-70b-inst
CoT 46.0 39.4 72.0 55.9 38.7 51.8 48.1
SBP 63.4 58.7 75.3 63.2 52.1 61.5 60.3 (+12.2)
SGR 69.3 62.3 83.1 75.3 57.9 71.5 67.3 (+19.2)

Table 1: Accuracy comparison (%) of CoT, SBP(5-shot) and our SGR methods with the SOTA over MATH (Level 1
to Level 5), AMC23, AIME24, MMLU-STEM and OLY datasets. We also report the results of open-sourced SOTA
math-specific models - the QwQ, Qwen-Math models and GPT-4o. The best results are in Bold for each base and
Red denotes the highest score in the current test set. Green indicates lower results compared to CoT, while Red
denotes higher results.
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Method
MATH OLY AMC23 AIME24 Average

L1 L2 L3 L4 L5 Average

Qwen2-7b-inst

CoT 85.1 73.4 65.2 52.4 37.1 57.8 20.1 28.8 1.5 27.1
Stage I 84.5 72.9 66.5 56.7 43.5 60.8 20.7 32.5 3.0 29.3 (+2.2)
Stage II 88.6 77.7 68.8 58.4 40.1 62.3 40.9 27.5 0 32.7 (+5.6)

SGR 90.2 81.3 74.6 68.3 58.6 71.4 33.3 38.8 1.5 36.3 (+9.2)

Qwen2-72b-inst

CoT 91.4 85.3 77.3 66.9 46.1 69.2 35.8 35.0 6.0 36.5
Stage I 88.1 80.4 74.1 62.7 46.8 66.5 31.6 37.5 5.0 35.2 (-1.3)
Stage II 93.9 87.6 82.1 71.6 53.9 74.0 50.0 45.0 6.7 43.9 (+7.4)

SGR 93.9 89.3 83.7 76.9 65.6 79.2 41.2 61.3 8.0 47.4 (+10.9)

LLaMA3.1-8b-inst

CoT 76.2 61.2 50.8 36.6 21.2 43.7 14.4 20.0 8.0 21.5
Stage I 69.1 53.6 45.3 33.5 22.6 40.1 12.6 18.8 8.0 19.9 (-1.6)
Stage II 77.6 66.0 55.6 43.5 27.6 49.1 26.8 23.8 5.0 26.2 (+5.1)

SGR 81.7 76.8 71.5 66.8 61.2 69.5 22.7 18.8 6.0 29.3 (+7.8)

LLaMA2-70b-inst

CoT 44.5 25.4 15.8 9.6 5.2 15.7 2.3 4.0 0.0 5.5
Stage I 34.8 18.6 11.2 6.0 3.1 11.2 3.8 0.0 2.7 4.4 (-1.1)
Stage II 43.6 27.9 17.4 12.1 6.4 17.4 7.5 8.3 4.1 9.3 (+3.8)

SGR 38.7 25.3 16.8 11.3 7.1 16.3 2.7 5.0 3.3 6.8 (+1.3)

Method
MMLU-STEM

Physics Chemistry Biology Computer Science Math Engineer Average

Qwen2-7b-inst

CoT 65.9 56.0 79.5 64.7 73.2 62.2 64.9
Stage I 65.7 55.1 77.7 65.0 72.5 58.3 62.9 (-2.0)
Stage II 77.0 71.6 85.6 84.2 84.9 73.6 81.0 (16.1)

SGR 79.2 72.3 88.9 85.2 84.1 74.0 82.3 (17.4)

Qwen2-72b-inst

CoT 86.3 74.9 93.8 81.8 86.5 75.3 85.3
Stage I 84.8 71.1 90.7 79.8 83.6 70.5 82.9 (-2.4)
Stage II 92.6 88.4 95.6 92.7 92.0 79.9 91.5 (+6.2)

SGR 90.7 83.2 95.1 91.3 92.7 78.8 90.9 (+5.6)

LLaMA3.1-8b-inst

CoT 59.4 62.4 56.1 78.4 61.2 64.9 69.2
Stage I 59.7 61.4 54.0 77.0 62.0 60.9 67.9 (-1.3)
Stage II 82.8 77.3 91.7 87.8 82.4 79.9 83.7 (+14.5)

SGR 77.7 82.1 78.6 89.2 85.9 81.1 82.4 (+13.2)

LLaMA2-70b-inst

CoT 46.0 39.4 72.0 55.9 38.7 51.8 48.1
Stage I 49.9 40.0 74.2 55.7 37.1 55.6 48.9 (+0.9)
Stage II 71.3 65.0 85.1 76.5 61.7 75.4 70.0 (+21.9)

SGR 69.3 62.3 83.1 75.3 57.9 71.5 67.3 (+19.2)

Table 2: Accuracy(%) results for Qwen2-7B-Instruct, Qwen2-72B-Instruct, LLaMA3.1-8B-Instruct and LLaMA2-
70B-Instruct using different prompting methods on MATH, AMC23, AIME24, OLY and MMLU-STEM test
datasets. The stage I refers to the initial iteration within SGR framework (0-shot). The stage II is the second SGR
involves enhancing the first iteration by prompting the model from the outset to decide what action to take next. For
this part of the experiment, we utilized a top_p sampling method with a value of 0.7 and 1.0. We report the average
of the accuracy. The best results are in Bold for each base and Red denotes the highest score in the current test set.
Green indicates lower results compared to CoT, while Red denotes higher results.

Comparison of Token Numbers Figure 4 illus-407

trates the relationship between the average number408

of tokens per query and the accuracy generated by409

the Qwen2-7B-Instruct model on the MATH and410

MMLU-STEM test sets using different methods. It411

is evident that with our method, we achieve better412

results than BoN@32 while using less than half the413

number of tokens on MATH.414

Step Length Thresholds Analysis We evaluate415

model performance using different step lengths,416

ranging from 100 to 600, on the MATH dataset.417

As illustrated in Figure 3, we observe that for step 418

lengths ranging from 200 to 400, the accuracy is 419

significantly higher compared to the baseline, with 420

only minor variations in accuracy across this range. 421

The step length serves as a crucial hyperparame- 422

ter, where the exact split point is dynamically de- 423

termined by the first occurrence of the sequence 424

“.\n\n” following the initially specified step length. 425

When the step length varies between 200 and 400, 426

the results of step division show little difference. 427
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Method
MMLU-STEM

Physics Chemistry Biology Computer Science Math Engineer Average

Qwen2-7b-inst
CoT 65.9 56.0 79.5 64.7 73.2 62.2 64.9
SGR 79.2 72.3 88.9 85.2 84.1 74.0 82.3 (+17.4)

DeepSeek-R1-Distill-Qwen-7b CoT 81.0 75.1 71.7 72.4 90.8 72.2 80.6 (+12.3)

LLaMA3.1-8b-inst
CoT 59.4 62.4 56.1 78.4 61.2 64.9 69.2
SGR 77.7 82.1 78.6 89.2 85.9 81.1 82.4 (+13.2)

DeepSeek-R1-Distill-Llama-8b CoT 74.9 75.1 81.2 70.7 82.5 65.3 77.2 (+12.3)

Table 3: This figure compares the MMLU-STEM accuracy (%) of LLaMA3.1-8B-series and Qwen2-7B-series
under three conditions: (1) the Chain of Thought (CoT) results using the instruct model as baseline, (2) the
results after applying the SGR method through instruct models, and (3) the performance following distillation with
DeepSeek-r1 (DeepSeek-AI et al., 2025). The best results are in Bold for each base and Red denotes the highest
score in the current test set. Green indicates lower results compared to CoT, while Red denotes higher results.
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Figure 4: The scatter plot shows the relationship be-
tween the token numbers per query and accuracy for
the MATH and MMLU-STEM datasets by Qwen2-7B-
Instruct in different methods and QwQ-32B-Preview.

Case Study To understand how our method im-428

proves the reasoning procedure, we demonstrate429

an example in Figure 5. Compared to CoT at step430

1, when calculating the "second train", the step431

guidance generated by SGR can help the model to432

carry out the correct logical reasoning, while CoT433

reasoning makes an error. The full contents of this434

example are included in the Appendix A.3.435

3.4 Ablation436

As shown in Figure 1, to explore the impact of each437

individual component, we evaluate the results of438

using each stage independently. Therefore, our ap-439

proach is divided into two stages. In stage I, we440

prompt the LLMs to ask a step guidance question441

without employing a few-shot template, allowing442

the model to answer the step guidance question443

directly as the step guidance. In stage II, we di-444

rectly ask the model what knowledge it needs to445

use next and continue the process iteratively as step446

guidance. All results are presented in Table 2. 447

When we check the step guidance and step an- 448

swer, we find that for particularly challenging prob- 449

lems (OLY), the LLM struggles to generate the 450

step guidance question, often repeating the query. 451

This severely undermines the effectiveness of step 452

guidance. However, when the LLM is allowed to 453

directly use the prompt from Stage II to generate 454

step guidance, the quality of the step guidance is 455

significantly improved compared to Stage I. As a 456

result, the OLY achieved higher accuracy using 457

only Stage II, outperforming the full SGR. How- 458

ever, we do not consider Stage I to be ineffective. 459

This is because, compared with using the complete 460

SGR method, it can bring about a more significant 461

improvement in the overall performance in MATH. 462

4 Conclusion 463

We propose a step-by-step reasoning method that 464

incorporates guidance generation within each step 465

for multiple problem tasks. Our method, applica- 466

ble to general instruction LLMs without the need 467

for further fine-tuning, employs self-questioning 468

and self-answering at each reasoning step, where 469

the model generates and answers to guide the step 470

answer, enhancing the overall reasoning process. 471

When the model demonstrates a certain level of 472

accuracy through CoT, it can significantly improve 473

performance on challenging mathematical and log- 474

ical reasoning problems. In the mathematical do- 475

main, we achieved significant improvements with 476

different-sized and series of models. Compared 477

with the SOTA methods, our approach can achieve 478

stable improvements without the need for the Re- 479

ward Model (RM), nor does it require fine-tuning. 480
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Limitations481

Due to the limitations of our computing resources,482

we were unable to fully utilize the capabilities of483

Qwen2-72B-Instruct. Since applying SGR gener-484

ates very long responses, the 8 * V100 GPU mem-485

ory was insufficient to run float32, likely resulting486

in the lower accuracy of Qwen2-72B-Instruct than487

its potential. We have verified that the SGR method488

leads to improvements across STEM domains, but489

we have not yet tested whether our method can490

achieve similar results in more challenging AIGC491

tasks.492
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A Appendix 928

A.1 Prompt 929

Prompt 1: 930

«question» 931

If you need to solve a current problem for a current 932

problem, what relevant knowledge do you need? 933

Ask a question about relevant knowledge. Please 934

note: You only need to ask the question, you do 935

not need to answer it. 936

937

Prompt 2: 938

The answers should be short, but organized and 939

informative. 940

«Step Guider Question» 941

942

Prompt 3: 943

If you need to solve the current problem for the 944

current step, what relevant knowledge will be 945

needed in the future? 946
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947

Prompt 4:948

Next for the current topic to continue the next step949

of the answer, be sure not to repeat the previous950

content, to answer according to the previous951

content.952

«Step Guidance»953

A.2 Dataset954

• MATH The MATH dataset comprises a sub-955

stantial collection of 12,500 high school-level956

mathematical problems, meticulously curated957

to cover a wide range of topics and difficulty958

levels. In our study, we selected the MATH959

dataset’s test data (5,000 problems) to evaluate960

our model’s performance across diverse math-961

ematical topics and difficulty levels, ensuring962

a robust assessment of its generalization and963

problem-solving capabilities.964

• AMC23 It contains 40 data items, each includ-965

ing a question and an answer.966

• AIME24 The AIME24 test set is from the967

2024 American Invitational Mathematics Ex-968

amination. It has 30 questions, each with an969

answer. Among all our test sets, AIME24 is970

the most difficult.971

• MMLU-STEM MMLU, or Massive Multitask972

Language Understanding, is a crucial bench-973

mark for evaluating large language models.974

We have selected a test set with the MMLU-975

STEM label, which consists of a total of 3,018976

problems.977

• Olympiadbench OlympiadBench is a bilin-978

gual and multimodal scientific evaluation979

dataset at the Olympiad level jointly, which980

contains 8,952 math and physics ques-981

tions from international Olympiads, Chinese982

Olympiads, Chinese college entrance exami-983

nations, and mock exams. We have selected a984

dataset with the "OE_TO_maths_en_COMP"985

tag, and there are a total of 675 problems in986

this dataset.987

A.3 A full Context of Example988

Question989

Paul is at a train station and is waiting for his990

train. He isn’t sure how long he needs to wait, but991

he knows that the fourth train scheduled to arrive992

at the station is the one he needs to get on. The first993

train is scheduled to arrive in 10 minutes, and this 994

train will stay in the station for 20 minutes. The 995

second train is to arrive half an hour after the first 996

train leaves the station, and this second train will 997

stay in the station for a quarter of the amount of 998

time that the first train stayed in the station. The 999

third train is to arrive an hour after the second train 1000

leaves the station, and this third train is to leave the 1001

station immediately after it arrives. The fourth train 1002

will arrive 20 minutes after the third train leaves, 1003

and this is the train Paul will board. In total, how 1004

long, in minutes, will Paul wait for his train? 1005

• The First iteration 1006

– Step Guidance Question 1007

What is the schedule and duration of stay 1008

for each train arriving at the station be- 1009

fore Paul’s train, and how does this affect 1010

the total waiting time for Paul’s train? 1011

– Step Guidance 1012

To answer your question, I would need 1013

more specific information about which 1014

station and which trains you are refer- 1015

ring to. However, I can provide a gen- 1016

eral explanation of how train schedules 1017

and durations of stay can affect waiting 1018

times. 1019

The schedule of each train arriving at 1020

a station is typically determined by the 1021

train operator and can be found on their 1022

website or at the station. The duration 1023

of stay for each train, also known as the 1024

dwell time, is the time the train spends 1025

at the station for passengers to board and 1026

disembark. This can vary depending on 1027

the number of passengers and the type of 1028

train. 1029

If Paul’s train is scheduled to arrive after 1030

several other trains, the total waiting time 1031

for his train may be affected by the dwell 1032

times of the previous trains. If the previ- 1033

ous trains have longer dwell times, this 1034

can cause delays for subsequent trains, 1035

including Paul’s train. However, if the 1036

previous trains have shorter dwell times 1037

and are on schedule, Paul’s train may ar- 1038

rive on time or even early. 1039

Overall, the schedule and duration of stay 1040

for each train can have a significant im- 1041

pact on the waiting time for subsequent 1042

trains, and it’s important for train opera- 1043
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tors to manage these factors to minimize1044

delays and ensure on-time performance.1045

– Response for the First iteration1046

To calculate the total waiting time for1047

Paul, we need to consider the arrival and1048

departure times of each train and the du-1049

ration of stay for each train.1050

1. The first train arrives in 10 minutes1051

and stays for 20 minutes. Therefore, it1052

will depart 30 minutes after its arrival.1053

2. The second train arrives 30 minutes1054

after the first train leaves. Since the first1055

train leaves 30 minutes after its arrival,1056

the second train arrives 60 minutes after1057

the first train’s arrival. The second train1058

stays for a quarter of the time the first1059

train stayed, which is 5 minutes (20 min-1060

utes / 4). Therefore, the second train will1061

depart 65 minutes after the first train’s1062

arrival.1063

• The Second iteration1064

– Step Guidance1065

3. The third train arrives an hour after1066

the second train leaves. Since the sec-1067

ond train leaves 65 minutes after the first1068

train’s arrival, the third train arrives 1251069

minutes after the first train’s arrival (651070

minutes + 60 minutes). The third train1071

leaves immediately after it arrives, so it1072

doesn’t add any additional waiting time1073

for Paul.1074

4. The fourth train, which is Paul’s train,1075

arrives 20 minutes after the third train1076

leaves. Since the third train leaves im-1077

mediately after it arrives, the fourth train1078

arrives 145 minutes after the first train’s1079

arrival (125 minutes + 20 minutes).1080

To find out how long Paul waits for his1081

train, we need to calculate the time from1082

when he arrives at the station to when1083

the fourth train arrives. Since the first1084

train arrives in 10 minutes, Paul arrives1085

at the station at this time. Therefore, Paul1086

waits for his train for 135 minutes (1451087

minutes - 10 minutes).1088

In the future, to solve similar problems,1089

you will need to know: - The schedule of1090

the trains, including arrival and departure1091

times. - The duration of stay for each1092

train. - The sequence of the trains that1093

Paul needs to board. - The time Paul 1094

arrives at the station. 1095

With this information, you can calculate 1096

the total waiting time by determining the 1097

arrival time of the required train and sub- 1098

tracting the time Paul arrives at the sta- 1099

tion. 1100

– Response for the Second iteration Given 1101

the information provided: 1102

1. The first train arrives in 10 minutes 1103

and stays for 20 minutes, so it departs 30 1104

minutes after its arrival. 1105

2. The second train arrives 30 minutes 1106

after the first train leaves, which is 60 1107

minutes after the first train’s arrival. It 1108

stays for 5 minutes (a quarter of the first 1109

train’s stay), so it departs 65 minutes af- 1110

ter the first train’s arrival. 1111

• The third iteration 1112

– Step Guidance 1113

3. The third train arrives an hour after 1114

the second train leaves. Since the second 1115

train departs 65 minutes after the first 1116

train’s arrival, the third train arrives 125 1117

minutes after the first train’s arrival (65 1118

minutes + 60 minutes). The third train 1119

leaves immediately after it arrives, so it 1120

doesn’t add any additional waiting time 1121

for Paul. 1122

4. The fourth train, which is Paul’s train, 1123

arrives 20 minutes after the third train 1124

leaves. Since the third train arrives and 1125

leaves immediately, the fourth train ar- 1126

rives 145 minutes after the first train’s 1127

arrival (125 minutes + 20 minutes). 1128

To find out how long Paul waits for his 1129

train, we need to calculate the time from 1130

when Paul arrives at the station to when 1131

the fourth train arrives. Since Paul ar- 1132

rives at the station at the same time the 1133

first train is scheduled to arrive (10 min- 1134

utes from now), we can subtract the 10 1135

minutes from the 145 minutes to find 1136

Paul’s total waiting time. 1137

Paul’s total waiting time = 145 minutes - 1138

10 minutes = 135 minutes. 1139

Therefore, Paul will wait for 135 min- 1140

utes for his train to arrive. The relevant 1141

knowledge needed for future steps would 1142

be the ability to calculate time intervals, 1143
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understand schedules, and perform basic1144

arithmetic operations. Additionally, un-1145

derstanding the concept of elapsed time1146

and how to calculate it based on given1147

schedules would be beneficial.1148

– Response for the third iteration1149

Continuing from the previous steps:1150

3. The third train arrives an hour after1151

the second train leaves. Since the second1152

train departs 65 minutes after the first1153

train’s arrival, the third train arrives 1251154

minutes after the first train’s arrival (651155

minutes + 60 minutes). The third train1156

leaves immediately after it arrives, so it1157

doesn’t add any additional waiting time1158

for Paul.1159

• The Forth iteration1160

– Step Guidance1161

4. The fourth train, which is Paul’s train,1162

arrives 20 minutes after the third train1163

leaves. Since the third train arrives and1164

leaves at the same time, which is 1251165

minutes after the first train’s arrival, the1166

fourth train arrives 145 minutes after the1167

first train’s arrival.1168

To find out how long Paul waits for his1169

train, we need to consider when he ar-1170

rives at the station. Since the problem1171

doesn’t specify when Paul arrives, we1172

can assume he arrives just before the first1173

train is scheduled to arrive, which is at1174

the 10-minute mark. Therefore, Paul’s1175

waiting time is the time from his arrival1176

until the fourth train arrives.1177

Given that Paul arrives just before the1178

first train arrives (at the 10-minute mark)1179

and the fourth train arrives 145 minutes1180

after the first train’s arrival, Paul’s total1181

waiting time is 145 minutes.1182

However, since Paul arrives 10 minutes1183

before the first train, we need to subtract1184

those 10 minutes from the 145 minutes1185

to find the total time Paul actually waits1186

from his arrival. Therefore, Paul’s total1187

waiting time is 135 minutes (145 minutes1188

- 10 minutes).1189

In summary, the relevant knowledge1190

needed to solve this problem includes1191

understanding the schedule of each train,1192

calculating the departure times based on1193

arrival and stay times, and determining 1194

the total waiting time for Paul based on 1195

his arrival time and the arrival time of his 1196

train. 1197

– Response for the Fourth iteration 1198

Given the sequence of events and the tim- 1199

ing for each train’s arrival and departure: 1200

1. The first train arrives 10 minutes af- 1201

ter Paul’s arrival and stays for 20 min- 1202

utes, departing 30 minutes after Paul’s 1203

arrival. 2. The second train arrives 30 1204

minutes after the first train leaves, which 1205

is 60 minutes after Paul’s arrival, and 1206

stays for 5 minutes, departing 65 minutes 1207

after Paul’s arrival. 3. The third train ar- 1208

rives an hour after the second train leaves, 1209

which is 125 minutes after Paul’s arrival, 1210

and departs immediately. 1211

• The Fifth iteration 1212

– Step Guidance 1213

To find out how long Paul will wait for 1214

his train, we need to calculate the arrival 1215

time of the fourth train and compare it 1216

to the time Paul arrived at the station. 1217

Here’s the breakdown: 1218

1. **First Train:** - Arrives 10 minutes 1219

after Paul’s arrival. - Stays for 20 min- 1220

utes. - Departs 30 minutes after Paul’s 1221

arrival. 1222

2. **Second Train:** - Arrives 30 min- 1223

utes after the first train leaves, which is 1224

60 minutes after Paul’s arrival. - Stays 1225

for 5 minutes (a quarter of the first train’s 1226

stay). - Departs 65 minutes after Paul’s 1227

arrival. 1228

3. **Third Train:** - Arrives an hour 1229

after the second train leaves. - Since 1230

the second train departs 65 minutes after 1231

Paul’s arrival, the third train arrives 125 1232

minutes after Paul’s arrival (65 minutes + 1233

60 minutes). - Leaves immediately after 1234

it arrives. 1235

4. **Fourth Train:** - Arrives 20 min- 1236

utes after the third train leaves. - Since 1237

the third train arrives 125 minutes af- 1238

ter Paul’s arrival and leaves immediately, 1239

the fourth train arrives 145 minutes after 1240

Paul’s arrival. 1241

Given that Paul arrived at the station at 1242

time 0, the total waiting time for Paul is 1243
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the time the fourth train arrives, which is1244

145 minutes. Therefore, Paul will wait1245

for 145 minutes for his train to arrive.1246

This calculation takes into account the1247

arrival and departure times of each train1248

and the duration of stay for each train, as1249

well as the time between the departure of1250

one train and the arrival of the next. This1251

information is necessary to determine the1252

exact waiting time for Paul.1253

– Response for the Fifth iteration1254

Continuing from the established se-1255

quence:1256

4. The fourth train, which is the one Paul1257

is waiting for, arrives 20 minutes after the1258

third train leaves. Since the third train1259

arrives 125 minutes after Paul’s arrival1260

and departs immediately, the fourth train1261

arrives 145 minutes after Paul’s arrival.1262

Therefore, Paul’s total waiting time is1263

145 minutes, which is the time it takes for1264

the fourth train to arrive after he initially1265

arrives at the station. This total includes1266

the waiting times for all the preceding1267

trains to arrive, depart, and the intervals1268

between their departures and the arrivals1269

of the subsequent trains.1270

A.4 Comparison with CoT and SGR1271
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Question
Paul is at a train station and is waiting for his train. He isn't sure how long he needs to wait, but he 

knows that the fourth train scheduled to arrive at the station is the one he needs to get on. The 

first train is scheduled to arrive in 10 minutes, and this train will stay in the station for 20 minutes. 

The second train is to arrive half an hour after the first train leaves the station, and this second 

train will stay in the station for a quarter of the amount of time that the first train stayed in the 

station. The third train is to arrive an hour after the second train leaves the station, and this third 

train is to leave the station immediately after it arrives.  The fourth train will arrive 20 minutes after 

the third train leaves, and this is the train Paul will board.  In total, how long, in minutes, will Paul 

wait for his train?

Model directly Answer
Let's break down the schedule to determine how long Paul will have to wait.

1. **First Train:**

- Arrives in 10 minutes and stays for 20 minutes.

- Departs after 30 minutes since it arrived.

2. **Second Train:**

- Arrives half an hour (30 minutes) after the first train leaves.

- Since the first train departs at 30 minutes after it arrives (at minute 40), the second train 

arrives at 70 minutes.

- It stays for a quarter of the 20-minute duration the first train stayed, which is 5 minutes.

- So, it departs at 75 minutes.

3. **Third Train:**

- Arrives an hour after the second train leaves, which is at 60 minutes + 75 minutes = 135 

minutes.

- It leaves immediately after it arrives (0 minute wait).

- Therefore, it departs at 135 minutes.

4. **Fourth Train (Paul's Train):**

- Arrives 20 minutes after the third train leaves, which is 135 minutes + 20 minutes = 155 

minutes.

Since the fourth train arrives at minute 155 and Paul starts waiting at minute 0 (when the first train 

is scheduled to arrive in 10 minutes):

- Paul has to wait for the fourth train to arrive.

- The total time Paul will wait is 155 minutes.

Hence, Paul will wait for a total of **155 minutes** before his train arrives.

To calculate the total waiting time for Paul, we need to consider the arrival and departure times of each 

train and the duration of stay for each train.

1. The first train arrives in 10 minutes and stays for 20 minutes. Therefore, it will depart 30 minutes after 

its arrival.

2. The second train arrives 30 minutes after the first train leaves. Since the first train leaves 30 minutes 

after its arrival, the second train arrives 60 minutes after the first train's arrival. The second train stays 

for a quarter of the time the first train stayed, which is 5 minutes (20 minutes / 4). Therefore, the second 

train will depart 65 minutes after the first train's arrival.

Given the information provided:

1. The first train arrives in 10 minutes and stays for 20 minutes, so it departs 30 minutes after its arrival.

2. The second train arrives 30 minutes after the first train leaves, which is 60 minutes after the first 

train's arrival. It stays for 5 minutes (a quarter of the first train's stay), so it departs 65 minutes after the 

first train's arrival.

Continuing from the previous steps:

3. The third train arrives an hour after the second train leaves. Since the second train departs 65 

minutes after the first train's arrival, the third train arrives 125 minutes after the first train's arrival (65 

minutes + 60 minutes). The third train leaves immediately after it arrives, so it doesn't add any additional 

waiting time for Paul.

Given the sequence of events and the timing for each train's arrival and departure:

1. The first train arrives 10 minutes after Paul's arrival and stays for 20 minutes, departing 30 minutes 

after Paul's arrival.

2. The second train arrives 30 minutes after the first train leaves, which is 60 minutes after Paul's arrival, 

and stays for 5 minutes, departing 65 minutes after Paul's arrival.

3. The third train arrives an hour after the second train leaves, which is 125 minutes after Paul's arrival, 

and departs immediately.

Continuing from the established sequence:

4. The fourth train, which is the one Paul is waiting for, arrives 20 minutes after the third train leaves. 

Since the third train arrives 125 minutes after Paul's arrival and departs immediately, the fourth train 

arrives 145 minutes after Paul's arrival.

Therefore, Paul's total waiting time is 145 minutes, which is the time it takes for the fourth train to arrive 

after he initially arrives at the station. This total includes the waiting times for all the preceding trains to 

arrive, depart, and the intervals between their departures and the arrivals of the subsequent trains.

Step1

Step2

Step3

Step5

Step4

CoT SGR

Figure 5: The comparison above shows the results of models using direct answering versus the SGR approach. The
red sections in the direct answers indicate errors, while the corresponding red sections in the SGR answers are
correct. Each step of the SGR-generated answer is enclosed in a box.
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