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Abstract

Recent advances in Pretrained Language Mod-001
els (PLMs) and Large Language Models002
(LLMs) have demonstrated transformative ca-003
pabilities across diverse domains. The field of004
patent analysis and innovation is not an excep-005
tion, where natural language processing (NLP)006
techniques presents opportunities to stream-007
line and enhance important tasks—such as008
patent classification and patent retrieval—in009
the patent cycle. This not only accelerates the010
efficiency of patent researchers and applicants,011
but also opens new avenues for technologi-012
cal innovation and discovery. Our survey pro-013
vides a comprehensive summary of recent NLP-014
based methods—including multimodal ones—015
in patent analysis. We also introduce a novel016
taxonomy for categorization based on tasks in017
the patent life cycle, as well as the specifics018
of the methods. This interdisciplinary survey019
aims to serve as a comprehensive resource for020
researchers and practitioners who work at the021
intersection of NLP, Multimodal AI, and patent022
analysis, as well as patent offices to build effi-023
cient patent systems.024

1 Introduction025

The growing complexity and volume of textual026

data across various domains have driven signifi-027

cant advancements in NLP, particularly through028

PLMs (Devlin et al., 2019) and LLMs (Radford029

et al., 2019). The field of patents and technological030

innovation is not an exception. This advancement031

can streamline complex patent-related tasks such032

as classification, retrieval, and valuation predic-033

tion. For instance, for patent examination, patent034

offices often rely only on the examiner to judge035

whether a technology is innovative enough and,036

thus, patentable. However, it is challenging for037

the human examiner to stay updated on various do-038

mains due to the exponential growth in technology039

and apply the knowledge during evaluation. This040

intersection of NLP, Multimodal AI, and patent041

processes can accelerate the efficiency of the patent 042

systems—patent reviewers as well as applicants— 043

and help in a faster technological innovation to 044

benefit our society. 045

The patent application and granting process in- 046

volves complex textual analysis tasks that require 047

significant human effort for both applicants and 048

reviewers. To streamline this, NLP techniques can 049

be helpful, particularly in patent classification, re- 050

trieval, and quality analysis (Krestel et al., 2021). 051

Patent classification can benefit from multi-label 052

classification tools for the hierarchical schemes: 053

International Patent Classification (IPC) and the 054

Cooperative Patent Classification (Roudsari et al., 055

2022; Althammer et al., 2021). To evaluate novelty 056

and avoid infringement, the patent retrieval task 057

becomes important while filing or reviewing a new 058

patent application. On the other hand, quality anal- 059

ysis also requires a substantial amount of effort. 060

NLP-based representation learning methods can be 061

useful in both tasks (Chung and Sohn, 2020; Lin 062

et al., 2018). Lastly, recent advanced LLMs can 063

generate accurate and technical language descrip- 064

tions for patents and, thus, are useful to optimize 065

human resources and precision in patent writing 066

(Lee and Hsiang, 2020a). 067

The existing patent surveys in the literature do not 068

cover the recent studies in this area and fail to show 069

the trends and methods in task specific manner. We 070

introduce a novel taxonomy to categorize the meth- 071

ods based on the relevant tasks and the nature of 072

the methods. Our taxonomy provides an in-depth 073

view of the methods being used in specific tasks. 074

Moreover, it captures the recent trends of using ad- 075

vanced methods (e.g., LLMs) that are missing from 076

the existing surveys. This will be beneficial for re- 077

searchers who aim to build task-specific methods. 078

Overview. Fig. 1 provides the hierarchical orga- 079

nization of patent tasks and methods. We organize 080

the survey as follows: Sec. 2 provides background, 081

Sec. 3 summarizes the methods for individual tasks, 082

1



and Sec. 4 provides future research directions.083

2 Background084

A patent grants the owner or holder exclusive rights085

to an invention and can be a novel product or a086

process that usually offers a unique method or tech-087

nical solution. In exchange for this right, inventors088

must publicly disclose detailed information about089

their invention in a patent application. The United090

States Patent and Trademark Office (USPTO1) is-091

sues three types of patents: utility, design, and plant.092

In this work, we focus on utility and design patents,093

considering their importance in innovation across094

industries. Utility patents protect the rights related095

to how the invention works or is used. It provides096

the entitlement to the functionality of a product.097

On the other hand, design patents protect the right098

of the look of an invention and are intended to safe-099

guard the form of a product. Here, we outline the100

relevant tasks.101

Formulation. We provide the problem formula-102

tions of these patent tasks in Appendix A.3.103

Datasets. We describe the common benchmark104

patent datasets in Appendix A.6.105

2.1 Patent Classification106

Patent classification is an important but time-107

intensive task in the patent life cycle (Grawe et al.,108

2017; Shalaby et al., 2018; Risch and Krestel,109

2018). This involves a multi-label classification110

for patents where the classification scheme is hier-111

archical, and a patent can get multiple labels. There112

are two widely used patent classification systems:113

International Patent Classification (IPC) and the114

Cooperative Patent Classification (CPC). The IPC115

comprises 8 sections, 132 classes, 651 subclasses,116

7590 groups, and 70788 subgroups in a hierarchical117

order (i.e., sections have classes and classes have118

subclasses, and so on). CPC is an expansion of119

IPC and is collaboratively administered by the Eu-120

ropean Patent Office (EPO) and the USPTO. It con-121

sists of around 250,000 classification entries and122

is divided into nine sections (A-H and Y), which123

are further broken down into classes, subclasses,124

groups, and subgroups2. Table 7 (see Appendix)125

shows an example of CPC classification.126

Challenges. Patent classification is challenging127

due to its multi-class and multi-label nature. A sin-128

gle patent can be assigned multiple CPC/IPC codes,129

1https://www.uspto.gov/
2https://www.cooperativepatentclassification.org/

which makes the classification process complex. 130

Additionally, the hierarchical structure of patent 131

taxonomies introduces dependencies that require 132

models to capture relationships between broad and 133

fine-grained categories. Moreover, patent docu- 134

ments have various sections such as titles, abstracts, 135

and claims—each contains different information. 136

Given the extensive length of these full-text patent 137

documents, identifying the most relevant sections 138

for classification also poses a significant challenge. 139

2.2 Patent Retrieval 140

Patent Retrieval (PR) (Kravets et al., 2017; Kang 141

et al., 2020; Chen et al., 2020; Setchi et al., 2021) 142

focuses on developing methods to efficiently re- 143

trieve relevant patent documents and images based 144

on specific search queries. PR plays a crucial role 145

in identifying new patents related to new inventions. 146

It is essential for evaluating novelty of a patent as 147

well as ensuring that it does not infringe on existing 148

patents. Moreover, patent image retrieval can serve 149

as a source of inspiration for design. 150

Challenges. Patent retrieval tasks involve both 151

text and image retrieval with unique challenges. 152

Text retrieval is complex due to the use of similar 153

words to describe new inventions; an invention can 154

be described using various synonyms and phrasings 155

which make it difficult to retrieve crucial informa- 156

tion for patent infringement analysis. On the other 157

hand, image retrieval is particularly challenging 158

due to the nature of the images involved, which 159

are typically black and white sketches, including 160

numbers to describe the inventions. 161

2.3 Patent Quality analysis 162

Businesses have shown great interest in evaluating 163

patent value due to its significant impact in gener- 164

ating revenue and investment (Aristodemou, 2021). 165

Investors usually aim to predict the future value 166

of technological innovation from the target firm 167

while making investment decisions. As a result, 168

many companies hire professional patent analysts 169

for quality analysis. This complex task demands 170

substantial human effort as well as expertise in var- 171

ious domains (Lin et al., 2018). The quality of 172

a patent can be assessed using various measures, 173

including the number of forward or backward cita- 174

tions, the number of claims, the grant lag, patent 175

family size, the remaining lifetime of the patent 176

(Aristodemou, 2021; Erdogan et al., 2022). 177

Challenges. The challenge in analyzing patent 178

quality is the ambiguity of the metrics to quantify 179
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Figure 1: The schema of the main organization with the methods in each patent-related task. We summarize the
methods for four individual tasks: patent classification, retrieval, quality analysis, and generation. “NN”, “MMs”,
“PLMs”, and “PatLMs” denote neural networks, multimodal models, pre-trained language models, and patent
language models, respectively. The works that use images are in blue.

the quality of a patent. Commonly used measures180

for the quality analysis are the number of citations181

(both forward and backward), the number of claims,182

and the grant lag. However, the weight of each of183

these measures remains unclear. Moreover, analyz-184

ing these information to perform a comprehensive185

study is non-trivial.186

2.4 Patent Generation187

Patents usually require a considerable amount of188

written text, which requires significant human re-189

sources. The patent generation task involves gener-190

ating specific sections of a patent, such as abstract,191

independent claims, and dependent claims, based192

on instructions for an AI tool. Patent documents re-193

quire precise and technical language to accurately194

describe the invention and its claims (Risch et al.,195

2021). AI-assisted patent generation will help au-196

tomate the drafting process, which involves time,197

effort, and legal requirements. This will also re-198

duce the amount of patent attorney time which will199

be a substantial cost saver.200

Challenges. Though the patent document has201

certain structures, one major challenge is to eval-202

uate the dependency—which can help in patent203

generation—among the parts of the patent. For in-204

stance, one part (e.g., abstract, claims) can be used205

as an input in a generative model (e.g., a LLM) to206

generate a different part of the patent. Addition-207

ally, it becomes non-trivial to construct effective 208

instructions or prompts that guide the generation 209

process. The generation also brings the question of 210

evaluation of the generated content or text, i.e., how 211

to judge whether the generated content is desired 212

or not appropriate. 213

3 Methods 214

We organize the important patent tasks that can 215

benefit from recent advancements in NLP and Mul- 216

timodal AI. An overview of important patent tasks 217

is shown in Figure 2 (Appendix A.1). The fre- 218

quently used AI methods in the papers covered by 219

this survey are in Table 6. 220

3.1 Patent Classification 221

In the literature, several models have been used to 222

automate this process. We organize them based on 223

the nature of the method into three major categories. 224

Table 1 represents a summary of the methods for 225

patent classification. We present the evaluation 226

metrics and the results in Table 8 in Appendix A.4. 227

228

3.1.1 Traditional Neural Networks 229

The commonality among these methods is that they 230

follow a two-step approach: generate initial fea- 231

tures and then use a classifier for the final classi- 232

fication. One of the initial studies (Grawe et al., 233

2017) implements a single-layer LSTM to classify 234
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Table 1: Studies on patent classification. Hierarchy levels for classification include Section, Class (white), Subclass
(blue), Group, and Subgroup (grey). The color green represents the category of visualizations. Table 8 provides
more details on the performance in the Appendix.

Papers Embeddings Methods Components
(Grawe et al., 2017) Word2Vec Single layer LSTM Description

(Shalaby et al., 2018) Fixed Hierarchy Vectors LSTM ADC
(Risch and Krestel, 2018) FastText GRU Full text

(Benites et al., 2018) TF-IDF SVM Single Text Block
(Risch and Krestel, 2019) FastText GRU Full text
(Lee and Hsiang, 2020b) – BERT-base Claim
(Althammer et al., 2021) – BERT, SciBERT Claim

(Sofean, 2021) Word2Vec Multiple LSTMs Description
(Roudsari et al., 2022) Word2Vec, FastText BERT, XLNet, RoBERTa Title, abstract
(Kamateri et al., 2022) FastText, Glove, Word2Vec CNN, LSTM, GRU TADC
(Ghauri et al., 2023) Vision Transformer MLP Image

(Kamateri et al., 2023) FastText Bi-LSTM, Bi-GRU, LSTM Metadata
(Bekamiri et al., 2024) SBERT KNN Claim, title, abstract

patents at the IPC subgroup level where the ini-235

tial features are obtained by the Word2Vec method.236

Similarly, (Shalaby et al., 2018) use LSTM for IPC237

subclass level classification. For the initial docu-238

ment representation, the method uses fixed hierar-239

chy vectors that utilize distinct models for various240

segments of the document. (Risch and Krestel,241

2018) and (Risch and Krestel, 2019) focus on train-242

ing fastText word embeddings on a corpus of 5243

million patent documents, then use Bi-GRU for244

classification. Similarly, (Sofean, 2021) applies245

text mining techniques to extract key sections from246

patents, train Word2Vec, and then use multiple247

parallel LSTMs for the classification task. These248

collectively show the usefulness of neural networks249

in patent classification.250

3.1.2 Ensemble Models251

The models in this category are used to ensemble252

different word embeddings and deep learning mod-253

els. (Benites et al., 2018) use SVM as a baseline254

method and experiment with various datasets, the255

number of features, and semi-supervised learning256

approaches. Meanwhile, (Kamateri et al., 2023)257

and (Kamateri et al., 2022) both investigate en-258

semble models incorporating Bi-LSTM, Bi-GRU,259

LSTM, and GRU. More specifically, (Kamateri260

et al., 2022) conduct experiments with different261

word embedding techniques, whereas (Kamateri262

et al., 2023) focus on applying various partition-263

ing techniques to enhance the performance of the264

proposed framework. While the above methods265

heavily focus on texts, (Ghauri et al., 2023) classify266

patent images into distinct types of visualizations,267

such as graphs, block circuits, flowcharts, and tech-268

nical drawings, along with various perspectives, in-269

cluding side, top, left, and perspective views. The270

approach utilizes the CLIP model with Multi-layer 271

Perceptron (MLP) and various CNN models. 272

3.1.3 Pre-trained Language Models (PLMs) 273

The first study (Lee and Hsiang, 2020b) which in- 274

volves PLMs, fine-tune the BERT model on the 275

USPTO-2M dataset and introducing a new dataset, 276

USPTO-3M at the subclass level to aid in future 277

research. Concurrently, (Roudsari et al., 2022) 278

also fine-tune BERT, along with XLNet (Yang 279

et al., 2019), and RoBERTa on the USPTO-2M 280

dataset. They establish XLNet as the new state- 281

of-the-art in classification performance, achieving 282

the highest precision, recall, and f1 measure. (Al- 283

thammer et al., 2021) implement domain adaptive 284

pre-trained Linguistically Informed Masking and 285

shows that SciBERT-based representations perform 286

better than BERT-based representations in patent 287

classification. SciBERT is pre-trained on scien- 288

tific literature which helps the method to under- 289

stand the technical language of patents. (Bekamiri 290

et al., 2024) use Sentence BERT that takes into 291

account entire sentences instead of word by word. 292

On USPTO data, their method gives the highest 293

recall and f1 score. 294

3.1.4 Discussion and Suggestion 295

The evaluation measures for patent classification 296

are accuracy, precision, recall, and the f1 score on 297

the CPC or IPC. The earlier works on patent classi- 298

fication are mostly focused on simpler neural net- 299

works (Risch and Krestel, 2018, 2019). Applying 300

models such as LSTM can capture the sequence 301

and context in the text, which is suitable for the 302

patent domain since the context is critical. How- 303

ever, these are comparatively simple models that 304

might be limited to capturing complex technical 305
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Table 2: Works on patent retrieval. The papers are white, blue, and gray based on the data type of text, image, and
both, respectively. The dataset details are provided in Appendix A.6.

Work Method Training Datasets
(Kravets et al., 2017) CNN supervised Freepatent, Findpatent
(Kang et al., 2020) BERT pre-trained WIPS
(Chen et al., 2020) BiLSTM-CRF, BiGRU-HAN supervised USPTO
(Jiang et al., 2021) DUAL-VGG supervised -

(Setchi et al., 2021) SVM, Naive Bayes, Random Forest, MLP supervised -
(Pustu-Iren et al., 2021) RoBERTa, CLIP pre-trained EPO
(Siddharth et al., 2022) Sentence-BERT, TransE pre-trained, unsupervised USPTO

(Kucer et al., 2022) (ImageNet, Sketchy) ResNet50 supervised, finetuned DeepPatent
(Higuchi and Yanai, 2023) Deep Metric Learning self-supervised DeepPatent

(Higuchi et al., 2023) InfoNCE and ArcFace self-supervised DeepPatent
(Lo et al., 2024) BLIP-2, GPT-4V pre-trained, supervised DeepPatent2

structures in patent documentation. This limitation306

is evident in the evaluation metrics; for instance,307

the highest accuracy at the subclass level is only308

0.74 (Table 8 in Appendix). More advanced tech-309

niques, including PLMs, have become popular over310

time. PLMs could be powerful because of their pre-311

training step on a massive amount of data. Patent312

text is different from the usual text in scientific313

articles (e.g., research papers). Thus, fine-tuning314

PLMs on patent datasets might be able to address315

some of these concerns by providing context-aware316

representations for the patent domain. From Table317

8, the early works have a low precision of 0.53 on318

USPTO data (Risch and Krestel, 2018). PLMs—319

such as BERT and RoBERTa—have significantly320

improved the performance to 0.82 (Roudsari et al.,321

2022). The language models used for classification322

tasks in the patent domain are generally simpler323

compared to advanced LLMs such as GPT and324

LLaMA. There is a significant gap between recent325

practices in the patent domain and the existing ad-326

vanced AI models.327

3.2 Patent Retrieval328

We organize the relevant studies below based on the329

types of methods. Table 2 provides an overview of330

studies for patent retrieval. We present the results331

by these methods in Table 9 (Appendix A.4).332

3.2.1 Traditional Machine Learning333

Initial studies have used traditional machine learn-334

ing methods for patent retrieval. (Setchi et al.,335

2021) describe five technical requirements to in-336

vestigate the feasibility of AI for the task. These337

requirements include query expansion and identi-338

fication of semantically similar documents. The339

study uses SVMs, Naive Bayesian learning, deci-340

sion tree induction, and RF, along with word em-341

beddings, to solve the prior art retrieval problem.342

Prior art usually implies the references which may 343

be used to determine the novelty of a patent ap- 344

plication. Patent data is searched through multiple 345

resources and returns results based on the query and 346

the database and these results need to be merged 347

to create the final result. (Stamatis et al., 2023) 348

employ techniques such as random forest, Support 349

Vector Regression, and Decision Trees to merge 350

the search findings effectively. 351

3.2.2 Traditional Neural Networks 352

The methods based on neural networks have been 353

popular in recent years for patent retrieval. (Kravets 354

et al., 2017), (Jiang et al., 2021), and (Kucer et al., 355

2022) implement CNN, DUAL-VGG, and ResNet, 356

respectively, to retrieve patent images based on a 357

query image. (Chen et al., 2020) aim to solve entity 358

identification and semantic relation extraction by 359

BiLSTM-CRF (Huang et al., 2015) and BiGRU- 360

HAN (Han et al., 2019), respectively. 361

3.2.3 PLMs & Multimodal Models (MMs) 362

PLMs are useful in many text-related tasks and 363

patent retrieval is not an exception. (Kang et al., 364

2020) use the BERT language model which in- 365

cludes the combinations of title, abstract, and claim. 366

(Siddharth et al., 2022) incorporate Sentence-BERT 367

(Reimers and Gurevych, 2019) for text embeddings 368

as well as use the TransE method for the citation 369

and inventor knowledge graph embeddings. They 370

identify that the mean cosine similarity among the 371

vector representations of the patents is effective in 372

linking multiple existing patents to a target patent. 373

Multimodal techniques have also been used in infor- 374

mation retrieval (Pustu-Iren et al., 2021). Here, the 375

visual features are extracted using vision transform- 376

ers, while textual features are from sentence trans- 377

formers. (Pustu-Iren et al., 2021) utilize CLIP for 378

image embedding alongside RoBERTa for captur- 379
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Table 3: Summary of the methods on patent quality: “Many" includes Linear regression, Ridge regression, Random
Forest, XGBoost, CNN, and LSTM. “APR" stands for the measures of accuracy, precision, and recall. IncoPat is a
global patent database. We denote Attribute Network Embedding, Attention-based Convolutional Neural Network,
European Telecommunications Standards Institute, Derwent Innovation by ANE, ACNN, ETSI, and DI, respectively.

Papers Indicators Methods Evaluation Metrics Datasets
(Lin et al., 2018) Citations, meta features ANE, ACNN RMSE USPTO, OECD

(Trappey et al., 2019) Principal component analysis (PCA) DNN Accuracy ETSI and DI
(Hsu et al., 2020) Investor reaction, citations Many MAE Patentsview

(Chung and Sohn, 2020) Abstract, claims, predefined CNN, Bi-LSTM Precision, recall USPTO
(Aristodemou, 2021) 12 patent indices ANN APR, F1, FNR, MAE USPTO, OECD
(Erdogan et al., 2022) 9 patent indices MLP Accuracy, Kappa, MAE USPTO

(Li et al., 2022) Maintenance period BiLSTM-ATT-CRF APR, F1 IncoPat
(Krant, 2023) Patent text MSABERT MSE USPTO, OECD

ing textual features, and thus, enhances the search380

process by incorporating both visual and textual381

data. (Lo et al., 2024) use distribution-aware con-382

trastive loss to improve understanding of class and383

category information which achieves robust rep-384

resentations even for tail classes. For captioning,385

they employ open-source BLIP-2 and GPT-4V, a386

frozen text encoder from CLIP for text feature, and387

various visual encoder backbones, including ViT388

variants, ResNet50, EfficientNetB-0, and SwinV2-389

B. Among other techniques, (Higuchi and Yanai,390

2023), (Higuchi et al., 2023) employ a deep metric391

learning framework with cross-entropy methods392

such as InfoNCE (Oord et al., 2018) and ArcFace393

(Deng et al., 2019).394

3.2.4 Discussion and Suggestion395

Patent retrieval process involves several subtasks,396

such as defining technical requirements and merg-397

ing search outcomes from various databases. The398

early methods often use traditional techniques like399

SVM, Naive Bayes, Decision trees, etc. While the400

image retrieval methods apply a variety of CNNs to401

effectively handle and analyze the visual data, the402

text retrieval methods have shifted towards PLMs403

for advanced linguistic analysis. Traditional ma-404

chine learning techniques are limited to captur-405

ing the complexity of both patent image and text.406

Although CNNs are popular for image retrieval407

tasks, the question remains in their effectiveness408

for patent image retrieval, as patent images are non-409

traditional and technical. On the other hand, com-410

bining Vision Transformer alongside RoBERTa,411

Sentence-BERT, TransE shows another approach412

that might be more suitable for handling the multi-413

modal (e.g., text, images) aspect of patents. (Pustu-414

Iren et al., 2021) demonstrate that the image and415

text-based transformer models achieve the highest416

mean average precision in patent retrieval tasks.417

3.3 Patent Quality Analysis 418

We organize the methods for patent quality analysis 419

below and provide a summary in Table 3. 420

3.3.1 Traditional Neural Networks 421

(Erdogan et al., 2022) apply an MLP-based ap- 422

proach for quality analysis, utilizing nine indices 423

such as claim counts, forward citations, backward 424

citations, the patent family size to measure the 425

value of a patent, etc. (Li et al., 2022) classify 426

patents based on their maintenance period in four 427

categories. This study implements a Bi-LSTM 428

along with the attention mechanism and Condi- 429

tional Random Field (CRF) to predict the quality 430

of a patent. (Trappey et al., 2019) use Deep Neural 431

Networks with 11 quality indicators. (Hsu et al., 432

2020) predict forward citation and investor reac- 433

tion to patent announcements implementing CNN- 434

LSTM neural networks and various ML models. 435

(Chung and Sohn, 2020), (Lin et al., 2018) and 436

(Aristodemou, 2021) apply a variety of neural net- 437

works such as CNN, Bi-LSTM, Attention-based 438

CNN (ACNN), deep and wide Artificial Neural 439

Networks (ANN), respectively. 440

3.3.2 Pre-trained Language Models (PLMs) 441

(Krant, 2023) proposes to use MSABERT to as- 442

sess patent value based entirely on the textual data 443

and use the OECD (Eurostat, O., 2005) quality 444

indicators for evaluation. Building upon BERT, 445

MSABERT handles the multi-section structure and 446

longer texts of patent documents. The OECD index 447

includes composite indicators and generality with 448

other predominant indices. 449

3.3.3 Discussion and Suggestion 450

While numerous measures are used in assessing the 451

quality of a patent, the absence of universally ac- 452

cepted “gold standard” poses a challenge. Among 453
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Table 4: Example of the works that used PLMs and LLMs to solve patent tasks. This shows the growing trend of
incorporating large-scale language models to improve patent processing and analysis.

Work Model Task Year
(Lee and Hsiang, 2020b) BERT Classification 2020

(Kang et al., 2020) BERT Retrieval 2020
(Lee and Hsiang, 2020a) GPT-2 Generation 2020

(Lee, 2020) GPT-2 Generation 2020

(Althammer et al., 2021) SciBERT Classification 2021
(Pustu-Iren et al., 2021) RoBERTa Retrieval 2021

(Roudsari et al., 2022) BERT, RoBERTa Classification 2022
(Siddharth et al., 2022) SBERT Retrieval 2022

(Christofidellis et al., 2022) GPT-2 Generation 2022

(Krant, 2023) MSABERT Quality Analysis 2023

(Bekamiri et al., 2024) Sentence-BERT Classification 2024
(Lo et al., 2024) BLIP, GPT-4 Retrieval 2024

(Wang et al., 2024a) GPT-J, T5 Generation 2024
(Lee, 2024) GPT-J Generation 2024

(Jiang et al., 2024) Llama-3, Mistral, and PatentGPT-J Generation 2024
(Bai et al., 2024) Llama-2 and Mixtral Generation 2024

(Ren and Ma, 2024) Qwen2 Generation 2024
(Wang et al., 2024b) Qwen2, LLAMA3, GPT-4o, Mistral Generation 2024

several used indices, only forward citations are di-454

rectly associated with the value—both monetary455

and quality—of a patent. Even though applying456

different deep learning models has some success,457

the question of building a method to handle tech-458

nical information, metadata, and images together459

remains open. While MSABERT on the entire460

dataset will be computationally costly, building461

upon it might be useful for quality evaluation.462

3.4 Patent Generation463

The generative models are becoming increasingly464

popular in many domains. The recent develop-465

ments in LLMs have also led to novel methods for466

generating patents, thus reducing significant human467

effort. Sec. 3.4.1 presents the studies with LLMs468

and PLMs for generating patent texts, and Sec.469

3.4.2 focuses on the pretrained and advanced meth-470

ods used for patent-specific data. Table 4 shows471

the trend of using PLMs and LLMs to solve differ-472

ent patent tasks, and most patent-related tasks are473

shifting towards leveraging LLMs. Table 5 (see Ap-474

pendix) shows the summary of patent generation.475

We also discuss the broader impact in App. A.8.476

3.4.1 Patent Text Generation with LLMs477

(Lee and Hsiang, 2020a) implement GPT-2 (Rad-478

ford et al., 2019) models to generate the indepen-479

dent claims in patents. The researchers fine-tune480

the model on 555,890 patent claims of the granted481

utility patents in 2013 from USPTO. Providing a482

few words, the method generates the first indepen-483

dent claim of the patent. However, the study is484

limited to providing quantitative metrics to evalu- 485

ate the quality of the generated patent claims. In a 486

separate study, (Lee, 2020) focuses on personalized 487

claim generation by fine-tuning a pre-trained GPT- 488

2 model with inventor-centric data to demonstrate 489

greater relevance. The measure of personalization 490

in the generated claims has been assessed using 491

a BERT model. (Christofidellis et al., 2022) in- 492

troduce the Patent Generative Transformer (PGT) 493

that supports three tasks: part-of-patent genera- 494

tion, text infilling, and coherence evaluation. They 495

train GPT-2 on a dataset of 11.6 million patents. 496

PGT shows strong zero-shot capabilities for gen- 497

erating abstracts with high semantic similarities 498

from keywords. Patentformer (Wang et al., 2024a) 499

generates detailed patent specifications by fine- 500

tuning T5 and GPT-J language models on a dataset 501

that includes claims, drawings, and descriptions. 502

It focuses on two tasks: Claim-to-Specification, 503

which creates specification text from a single claim, 504

and Claim+Drawing-to-Specification, which inte- 505

grates claims, drawings, and descriptions to pro- 506

duce richer specifications. (Jiang et al., 2024) gen- 507

erate claims by incorporating descriptions instead 508

of abstracts. It also demonstrates an interesting ob- 509

servation that the general-purpose models—such as 510

Llama-3, GPT-4, and Mistral—outperform models 511

specifically trained on patent data (e.g., PatentGPT- 512

J). The authors also conclude that fine-tuning en- 513

hances clarity, but revisions are still necessary for 514

legal robustness. 515
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3.4.2 Patent-Specific LLMs516

(Lee, 2024) finetunes a pretrained model517

PatentGPT-J-6B using reinforcement learning from518

human feedback (RLHF) to align patent claim519

generation with drafting goals. The authors design520

a custom reward function where claim length521

up to a defined length and inclusion of limiting522

terms are rewarded. These limiting terms improve523

the chance of patent approval. However, further524

improvements in text quality and broader datasets525

are needed to meet legal and practical patent526

standards. (Bai et al., 2024) build a cost-effective527

LLMs for the intellectual property (IP) domain528

to handle domain-specific expertise and long-text529

processing. They finetune open-source models530

like LLaMA2 and Mixtral with over 240 billion531

multilingual IP-focused tokens, nearly half from532

patent data. The approach incorporates pretraining,533

fine-tuning, and reinforcement learning to align534

model outputs with human preferences. Similarly,535

(Ren and Ma, 2024) introduce a specialized536

LLM based on Qwen2-1.5b for automated patent537

drafting. The approach integrates domain-specific538

knowledge using knowledge graphs, supervised539

fine-tuning, and RLHF. A multi-agent framework540

for drafting patents using LLMs is introduced541

by (Wang et al., 2024b). They employ agents542

for planning, writing, and reviewing to generate543

comprehensive patents from inventor drafts.544

3.4.3 Discussion and Suggestion545

The use of PLMs and LLMs for automating patent546

generation has grown rapidly. However, a critical547

challenge remains in evaluating the quality of548

generated patents. The existing studies focus only549

on pretraining LLMs on patent-specific data to550

better capture the domain’s technical language and551

structure without rigorous evaluation techniques.552

As a result, human intervention becomes essential553

to ensure accuracy, legal validity, and compli-554

ance with patent standards. Additionally, most555

approaches for patent generation focus exclusively556

on the text and overlook the multimodal nature of557

patents. This is particularly important for design558

patents, which consist of images predominantly.559

560

4 Future Directions561

Many researchers have leveraged NLP and Mul-562

timodal AI for patent analysis, yet significant re-563

search opportunities remain going forward. We564

believe a foundation model (e.g., LLMs, MLMs) 565

tailored for patent data will enhance understanding 566

and performance across diverse tasks. 567

Multimodal Learning on Patents. The avail- 568
ability of multiple modalities (e.g., text, images) 569

in patent documents offers a comprehensive under- 570

standing of the related patent tasks. One of the 571

challenges is that the patent images are often more 572

complex and use advanced domain related concepts 573

compared to the natural (or RGB) images. Recent 574

advances in multimodal learning would allow for 575

more reliable and accurate patent analysis. Intu- 576

itively, drawings or sketches provide geometrical 577

information about individual patents. In general, 578

multimodal learning can be used to align represen- 579

tations derived from text descriptions with those 580

derived from technical images. 581

Generative AI for Patents. In patent generation, 582

LLMs can suffer from hallucination, where they 583

generate incorrect information. They might pro- 584

duce repetitive and monotonous texts that will lack 585

creativity. Further, to mitigate the risk of patent 586

infringement, LLMs need up-to-date patent data. 587

Thus, the generation process requires human over- 588

sight and feedback to ensure accuracy and rele- 589

vance and cannot be fully automated yet. On the 590

other hand, the assessment of the text generated 591

by the generative models is also challenging. As 592

patents include jargons and many domain specific 593

words, evaluating generated patent text in terms of 594

only natural language will not be sufficient. Thus, 595

the important question remains—how to construct 596

domain-specific evaluation measures for the syn- 597

thetic or the generated text from LLMs? 598

Additional extended future directions are men- 599

tioned in App. A.7. 600

5 Conclusions 601

In this survey, we have provided a comprehensive 602

overview of various patent analysis tasks. We have 603

presented a novel schema with a detailed organi- 604

zation of the research papers, analyzing the corre- 605

sponding methodologies, their advantages, limita- 606

tions, and how they are applied to different patent- 607

related tasks. Our survey also focuses on the re- 608

cent advancements of PLMs and LLMs as well as 609

their usefulness in the patent domain. We have 610

offered several insights into some potential future 611

directions. This survey aims to be a useful guide 612

for researchers, practitioners, and patent offices all 613

over the world in the multidisciplinary field of NLP, 614

Multimodal AI, and patent systems. 615
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6 Limitations616

The life cycle of a patent—the time from its sub-617

mission to acceptance—is lengthy as it undergoes618

significant scrutiny and multiple iterations of re-619

visions. The advancements in Machine Learning620

(e.g., LLMs) can make this process faster and thus,621

can essentially accelerate technological innovation.622

For instance, while reviewing, recent tools can help623

retrieve relevant documents more efficiently and ac-624

curately than a human reviewer who often requires625

enough experience. Our work is a survey of the626

existing methods for such tasks in patents. Though627

the survey itself does not have limitations as such,628

we discuss the limitations of modern AI techniques629

in general for patent tasks.630

There are a few limitations of using AI in patent631

analysis. First, the LLMs methods may lack the632

nuanced understanding that human experts possess.633

Second, evaluation scores in classification and re-634

trieval indicate lower accuracy (see Tables 8 & 9)635

and thus, they still need human intervention to ob-636

tain relevant literature—which is important while637

reviewing—to prevent the patent infringement is-638

sues. Therefore, the entire process cannot be fully639

automated, and it is important to have human ex-640

perts in the loop. This requirement also applies641

to generative models for patent drafting (Sec. 3.4)642

which needs human guidance for accuracy. Addi-643

tionally, there are ethical concerns regarding the644

potential displacement of human workers by AI645

tools.646

7 Ethics Statement647

In this work, we have surveyed AI methods for648

patent tasks. We do not foresee any ethical issues649

from our study.650
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A Appendix938

A.1 Overview of the tasks939

Overview of the major patent tasks: patent clas-940

sification, patent retrieval, patent generation, and941

patent quality analysis is shown in Figure 2. Pop-942

ular AI methods in the literature covered by this943

survey are listed in Table 6.944

A.2 Search and inclusion criteria.945

We have conducted our literature search using946

Google Scholar and Semantic Scholar, focusing on947

various categories of patent-related tasks. To align948

with the recent trends, we have limited our search949

to publications from 2017 to 2024. Our search950

criteria included various keywords such as ‘patent’,951

‘AI in patent’, ‘patent classification’, ‘patent tasks’,952

‘patent retrieval’, ‘patent generation’, ‘patent953

quality analysis’, and ‘patent dataset’. This com-954

bination of search terms has yielded hundreds of955

patent-related research papers. We have excluded956

more than half of these papers after reviewing their957

titles and abstracts, as they have not met our criteria958

(e.g., they did not fall under any of the relevant959

categories). After thorough scrutiny and reorga-960

nization, we have included 50 papers for the survey.961

962

A.3 Background: Formulation of Patent963

Tasks964

We provide the problem formulations of the popular965

patent tasks as follows.966

A.3.1 Patent Classification967

Given patents as (xi, yi)
N
i=1, where xi denotes968

the features of the i-th patent, C denotes the969

set of classes, C = {1, 2, . . . , k}, and yi =970

{yi1, yi2, . . . , yiK} is a binary multi-label vector,971

where yik ∈ {0, 1} is an indicator of whether class972

k is the correct classification for the example patent973

i. Since a single patent can belong to more than974

one class in C, the goal is to predict yi.975

Table 7 shows an example of CPC classification.976

A.3.2 Patent Retrieval977

Given a query patent as q and a set of patents X =978

{xi, . . . , xn}, where xq and xi are the features of979

the query and the patent i in the set X . The goal is980

to compute a similarity score (e.g. cosine) s(xq, xi)981

and return a set of patents R(q) = {xj , . . . , xk}982

based on top-k high similarities.983

A.3.3 Patent Generation 984

Given the patent xi, where xi are the features con- 985

structed from the instruction, title, abstract, or any 986

other part of the patent of the example patent i, the 987

output yi can be another part of the patent (e.g., 988

abstract, the first claim). The generation function 989

G can be denoted as yi=G(xi; θ), where θ is the 990

parameter of the generation model G. The goal is 991

to generate yi by learning θ, or inferring from a 992

pre-trained model with learned θ. 993

Table 5 shows the summary of the models and 994

datasets used to generate parts of the patent text. 995

A.4 Evaluation results 996

We discuss all the studies and related methods in 997

Section 3. We present the evaluation metrics and 998

the results in Table 8 and 9. 999

A.5 NLP and AI-based Methods for Other 1000

Relevant Patent Tasks 1001

There are other interesting studies in the patent 1002

domain. Recent work focuses on patent infringe- 1003

ment, such as (Chi and Wang, 2022) develop a 1004

model with different deep learning methods, such 1005

as CNN and LSTM, to predict the possibility of 1006

a patent application being granted and classify 1007

the reason for a failed application. Another 1008

work (Choi et al., 2022) applied a transformer 1009

and a Graph Neural Network (GNN) on patent 1010

classification for patent landscaping. (Zaini et al., 1011

2022) present an unsupervised method to identify 1012

the correlations between patent classification 1013

codes and search keywords using PCA and 1014

k-means. These studies provide advanced deep 1015

learning methods to avoid the risks in patent 1016

application. Moreover, there are various studies 1017

on generating new ideas and evaluating novelty, 1018

such as identifying the inventive process of novel 1019

patent using BERT (Giordano et al., 2023), and an 1020

explainable AI (XAI) model for novelty analysis 1021

via (Jang et al., 2023). (Zou et al., 2023) propose 1022

a new task to predict the trends of patents for the 1023

companies, and also provide a solution for the task 1024

by training an event-based GNN. These studies 1025

bring new insights and directions for patent ideas 1026

and developments. 1027

Applications in Businesses. The use of LLMs 1028

among businesses for patent related processes 1029

has significantly risen over time. The usage of 1030

the machine learning methods for these patents is 1031

growing at an impressive average annual rate of 1032

13



Figure 2: The overview of four major tasks of patent analysis. The patent retrieval task includes obtaining relevant
patents (text and images). Please refer to the detailed descriptions of these tasks in Section 2.

Table 5: Summary of the works on patent generation. Here, "comprehensive" denotes patent claims, specification
drafting, classification, translation, etc. IP data includes research papers, litigation records, web, news, etc.

Papers Model Parts Data
(Lee and Hsiang, 2020a) GPT-2 Independent Claims USPTO

(Lee, 2020) GPT-2 Personalized Claims USPTO
(Christofidellis et al., 2022) GPT-2 title, abstract, claim –

(Wang et al., 2024a) T5, GPT-J (Patentformer) Claim-to-Specification, Claim+Drawing-to-Specification USPTO
(Jiang et al., 2024) Llama-3, Mistral, and PatentGPT-J Claims HUPD

(Lee, 2024) PatentGPT-J Claim USPTO, PatentsView
(Bai et al., 2024) LLaMA2 and Mixtral Comprehensive Both patent and IP data

(Ren and Ma, 2024) Qwen2 Comprehensive USPTO
(Wang et al., 2024b) Qwen2, LLAMA3, GPT-4o, Mistral Comprehensive HUPD

28%3. Businesses are increasingly applying AI1033

to enhance various aspects of the patent process,1034

from drafting and classification to search and1035

analysis. Some of the prominent examples include1036

(Qatent, 2024), (DaVinci, 2024), and (Questel,1037

2024). (Qatent, 2024) leverages the latest NLP1038

techniques to facilitate patent drafting for patent1039

practitioners. It focuses on automating routine1040

tasks—typing, automating renumbering of claims,1041

and antecedence checking. It recommends various1042

word and sentence alternatives during the claim1043

drafting process, such as synonyms, broader or1044

more specific terms, and other linguistic variations.1045

Despite recent discussions around AI-generated1046

inventions, Qatent maintains a human-centric1047

approach which ensures all outputs are driven and1048

controlled by human drafters. (DaVinci, 2024)1049

is an advanced tool for drafting patents that uses1050

generative AI to streamline the process. It supports1051

3https://ip.com/blog/can-ai-invent-independently-how-a
i-is-changing-the-patent-industry/

a variety of document formats and lets users alter 1052

the AI’s writing style to suit their needs. (Questel, 1053

2024) offers AI powered patent classification, 1054

comprehensive patent search capabilities, efficient 1055

exploration of new markets, and opportunities such 1056

as management of patent fees and renewals. 1057

1058

A.6 Patent Dataset and Repositories 1059

Patent data are publicly available for bulk down- 1060

load from several sources in various formats such 1061

as XML, TSV, TIFF, and PDF. Examples include 1062

the USPTO, PatentsView4, EPO5, and WIPO6. 1063

Freepatent and Findpatent are patent data web- 1064

sites, where Findpatent includes patents registered 1065

in Russia. Beyond these resources, several patent 1066

datasets are available for benchmarking purposes. 1067

The datasets are detailed in Table 10. 1068

4https://patentsview.org/
5https://www.epo.org/
6https://www.wipo.int/classifications/ipc/en/ITsupport/
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Table 6: Popular AI methods in the literature. We use the acronyms frequently in our survey.

Acronym Full Name Paper
LSTM Long short-term memory (Hochreiter and Schmidhuber, 1997)
CNN Convolutional Neural Networks (LeCun et al., 1998)

Bi-LSTM Bidirectional Long Short-Term Memory (Graves and Schmidhuber, 2005)
Word2Vec – (Mikolov et al., 2013)

GRU Gated Recurrent Units (Cho et al., 2014)
Bi-GRU Bidirectional Gated Recurrent Units (Cho et al., 2014)

DUAL-VGG Dual Visual Geometry Group (Simonyan and Zisserman, 2015)
FastText – (Joulin et al., 2017)
BERT Bidirectional Encoder Representations from Transformers (Devlin et al., 2019)

RoBERTa Robustly Optimized BERT Pre-training Approach (Liu et al., 2019)
SciBERT Scientific BERT (Beltagy et al., 2019)

Table 7: An example of Cooperative Patent Classification (CPC) Scheme for the section A and its hierarchical
categorization.

Level Code Category
Section A Human Necessities
Class A61 Medical or Veterinary Science: Hygiene
Sub-class A61B Diagnosis: Surgery: Identification
Group A61B5 Measuring for diagnostic purposes; Identification of persons
Sub-group A61B5/0006 ECG or EEG signals

A.7 Extended Future Directions1069

Patent Assessment. To asses patent’s novelty, one1070

of the major tasks is to retrieve similar patents to1071

determine whether the patent is significantly differ-1072

ent from existing patents. One of the important task1073

in this case is to generate search queries. This often1074

needs alternate search terms, related words, and1075

synonyms which require domain knowledge. The1076

quality and structure of queries directly impact the1077

relevance of the search results. The current meth-1078

ods are yet to automate this entire process. Thus, it1079

brings challenges to obtain adequate similar patents1080

and correctly assess patent’s innovativeness and1081

novelty. On the other hand, the generic quality1082

analysis are based on well-known measures (Aris-1083

todemou, 2021; Erdogan et al., 2022). Nonetheless,1084

it remains unclear which of these indices are as-1085

sociated with the actual value of the patent (e.g.,1086

generated revenue).1087

Building a Knowledge Graph. Patents are rep-1088

resented as nodes connected by edges such as cita-1089

tions in a citation network (Liu and Li, 2022). This1090

structured representation allows for detailed cita-1091

tion analysis which is considered a crucial metric in1092

understanding a patent’s value. One interesting fu-1093

ture direction would be to build a knowledge graph1094

using other important information such as meta-1095

data, semantic similarity of patents, etc. This may1096

lead to a more organized landscape of patents. This1097

knowledge graph can help with prior art searches,1098

the identification of related patents, and identify 1099

valuable patents (e.g., patents with high citations) 1100

(Siddharth et al., 2022). 1101

A.8 Broader Impacts 1102

The life-cycle of a patent—the time from its sub- 1103

mission to acceptance—is lengthy as it undergoes 1104

significant scrutiny and multiple iterations of re- 1105

visions. The advancements in LLMs can make 1106

this process faster and thus, can essentially acceler- 1107

ate technological innovation. For instance, while 1108

reviewing, recent tools can help retrieve relevant 1109

documents more efficiently and accurately than a 1110

human reviewer who often requires enough experi- 1111

ence. 1112

Some of the major benefits are as follows: (1) 1113

Speed: The inclusion of LLMs and Multimodal AI 1114

in patent analysis tasks will speed up the review pro- 1115

cess. For example, (Ghauri et al., 2023) use a vision 1116

transformer that classifies images much more effi- 1117

ciently than previous works, and (Bekamiri et al., 1118

2024) achieve higher recall in classification tasks. 1119

Since patent classification is a time-consuming task 1120

for a human expert, incorporating these advance- 1121

ments into the review process will make the process 1122

faster. (2) Novelty: Another important task is re- 1123

trieving similar patents which is essential to assess 1124

the novelty of a patent. (Higuchi and Yanai, 2023) 1125

show a satisfactory mAP in retrieving similar im- 1126

ages, which can play a key role in patent infringe- 1127

ment. (3)Innovation: (Lee and Hsiang, 2020a; Lee, 1128
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Table 8: Existing results on the patent classification task. Hierarchy levels for classification include Section, Class,
Subclass , Group, and Subgroup. The tuple (Result 1, Reuslt 2) denotes the results using (Data 1, Data 2) for the
papers that report the measures using multiple datasets separately. The WIPO-alpha is a dataset for automated
patent classification systems, and ALTA2018 is a dataset from Language Technology Programming Competition.

Papers Hierarchy Level Accuracy Precision Recall F1 Top-3 Data
(Grawe et al., 2017) Subgroup 0.63 0.63 0.66 0.62 – USPTO

(Shalaby et al., 2018) Subclass – – – 0.61 0.79: F1 -
(Shalaby et al., 2018) Class – – – 0.72 0.89: F1 -

(Risch and Krestel, 2018) Subclass – (0.49, 0.53) – – (0.72,0.75): Precision WIPO-alpha, USPTO
(Benites et al., 2018) Class – – – 0.78 – ALTA2018, WIPO

(Risch and Krestel, 2019) Subclass – (0.49, 0.53) – – (0.72,0.75): Precision WIPO-alpha, USPTO
(Lee and Hsiang, 2020b) Subclass – 0.81 0.55 0.65 0.44: F1 USPTO
(Althammer et al., 2021) Subclass 0.59 0.58 0.59 0.581 – USPTO

(Sofean, 2021) Subclass 0.74 0.92 0.63 0.75 – EPO, WIPO
(Roudsari et al., 2022) Subclass – (0.82, 0.82) (0.55, 0.67) (0.63, 0.72) – USPTO, CLEF-IP 2011
(Kamateri et al., 2022) Subclass 0.64 – – – – CLEF-IP 2011
(Ghauri et al., 2023) Image type 0.85 – – – – CLEF-IP 2011, USPTO

(Kamateri et al., 2023) Subclass 0.68 – – – 0.89: accuracy CLEFIP-0.54M
(Bekamiri et al., 2024) Subclass – 0.67 0.71 0.66 – USPTO

Table 9: Results of the papers for the Patent Retrieval task. Here, mAP denotes mean average precision. Freepatent
and Findpatent are patent data websites, where Findpatent includes patents registered in Russia. WIPS is a patent
information search system.

Work Data type Data Accuracy (%) Precision Recall F1 mAP
(Kravets et al., 2017) image Freepatent, Findpatent 30 – – – –
(Kang et al., 2020) text WIPS – 71.74 94.29 81.48 –
(Chen et al., 2020) text USPTO – 92.4 91.9 92.2 –

(Pustu-Iren et al., 2021) image+text EPO – – – – 0.715
(Siddharth et al., 2022) text USPTO 70.2 65.9 81.2 72.6 –

(Kucer et al., 2022) image DeepPatent 70.1 – – – 37.9
(Higuchi and Yanai, 2023) image DeepPatent – – – – 0.85

(Higuchi et al., 2023) image DeepPatent – – – – 0.622
(Lo et al., 2024) image DeepPatent2 – – – – 0.69

2020) explore generating new patents, which is1129

an important component to foster new innovation.1130

This research provides inspiration for further devel-1131

opment in the field including creation of new and1132

innovative patents.1133
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Table 10: Overview of Patent Datasets: size, format, data type and intended tasks

Dataset Size Format Data type Task
USPTO-2M (Li et al., 2018) 2M JSON text Classification

BIGPATENT (Sharma et al., 2019) 1.3M JSON text Summarization
USPTO-3M (Lee and Hsiang, 2020b) 3M SQL statement text Classification

PatentMatch (Risch et al., 2021) 6.3M JSON text Retrieval
DeepPatent (Kucer et al., 2022) 350K XML & PNG text & image Retrieval
DeepPatent2 (Ajayi et al., 2023) 2M JSON & PNG text & image Retrieval

HUPD (Suzgun et al., 2024) 4.5M JSON text Multi-purpose
IMPACT (Shomee et al., 2024) 3.61M CSV & TIFF text & image Multi-purpose
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