
Tokenisation is NP-Complete

Philip Whittington 1 Gregor Bachmann 1 Tiago Pimentel 1

Abstract
In this work, we prove the NP-completeness of
two variants of tokenisation, defined here as the
problem of compressing a dataset to at most δ
symbols by either finding a vocabulary directly
(direct tokenisation), or selecting a sequence of
merge operations (bottom-up tokenisation).

1. Introduction
Tokenisation is at the heart of natural language processing
(NLP) being the first step required to use a language model.
Given a string of characters c, a tokeniser converts it into a
string of subwords s. Language models are then trained to
estimate distributions over subword-strings—never seeing
the original character-strings. Despite its prominent role,
however, much remains unknown about tokenisation. We
still do not know, for instance, what makes a good tokeniser
(Gowda & May, 2020; Cognetta et al., 2024): which charac-
teristics should its produced subwords s have to be a good
starting point for language modelling? If we knew this, then
we could define an objective function with which we could
evaluate tokenisers.

Another open question is how to—given such an objective
function—efficiently find a tokeniser which maximises it.
Byte pair encoding (BPE; Gage, 1994; Sennrich et al., 2016),
for instance, is a greedy solution to find a tokeniser which
maximises a text’s compression. UnigramLM (Kudo, 2018)
is a heuristic method to find a tokeniser that maximises its
tokenised text’s unigram log-probability. Both these meth-
ods, however, are approximate: they do not necessarily find
an optimal tokeniser according to their objective function.
This raises the question of whether finding such optimal
tokenisers efficiently is even possible.

In this paper, we answer this question (at least partially),
proving the NP-completeness of several variants of this
tokenisation problem. Specifically, we focus on finding

1Department of Computer Science, ETH Zurich,
Zurich, Switzerland. Correspondence to: Philip Whit-
tington <philip.whittington@inf.ethz.ch>, Tiago Pimentel
<tiago.pimentel@inf.ethz.ch>.

Non-archival presentation at ICML 2025 Tokenization Workshop
(TokShop), Vancouver, Canada. 2025.

tokenisers that maximise the compression of a text.1 Given
this objective, we then define the tokenisation problem
as the task of finding a tokeniser which compresses a
dataset to at most δ symbols. Notably, prior work imposes
different constraints on how tokenisers are defined; here we
consider two variants. In direct tokenisation, the desired
compression must be reached by choosing a vocabulary (i.e.,
a set of subwords) which is directly used to represent the
text. In bottom-up tokenisation, the desired compression
must be reached by finding a sequence of merge operations
instead, which we apply to the input text.

We prove the NP-hardness of both of these tokenisation prob-
lems (as well as of some variants thereof) by reducing from
the max 2-satisfiability problem.2 Practically speaking, our
results imply that we are unlikely to discover an efficient
algorithm for the problem of finding optimal tokenisers, and
that we should focus on approximate algorithms (such as
BPE or UnigramLM) instead.

2. How to Choose a Tokeniser?
Given a tokeniser, any character-level distribution has an
equivalent subword-level distribution (Pimentel & Meister,
2024; Phan et al., 2024; Giulianelli et al., 2024). Ergo,
despite the distribution we may wish to language model, a
sufficiently expressive model should be able to represent it
exactly; this is true regardless which tokeniser is used. In
theory, thus, a researcher’s choice of tokeniser should not
influence their language model’s quality.

In practice, however, a bad choice of tokeniser can have un-
desirable effects on downstream applications. For instance,
performing standard arithmetic tasks (e.g., 317 + 421) can
be difficult even for large models (Nogueira et al., 2021;
Muffo et al., 2022) due to the arbitrary splitting of numbers
into subwords. Indeed, simple changes in how numbers are

1The compression achieved by a tokeniser correlates with down-
stream language modelling performance (Gallé, 2019; Zouhar
et al., 2023a) and computational efficiency.

2We note two related concurrent works. Kozma & Voderholzer
(2024) also prove the NP-completeness of bottom-up tokenisation;
in fact, they prove something stronger: its APX-hardness. Lim
et al. (2025) prove the NP-completeness of a restricted variant of
direct tokenisation, in which a set of candidate tokens is previously
specified.

1



Tokenisation is NP-Complete

tokenised can improve performance in such tasks (Singh &
Strouse, 2024). Similar issues arise when prompting lan-
guage models to count letters, where even advanced models
such as GPT-4 infamously cannot correctly count the num-
ber of occurrences of the letter r in the word strawberry.

This raises the question of how to select a good tokeniser.
Ideally, we would choose the tokeniser which maximises
downstream language modelling performance. Unfortu-
nately, we do not know how to measure such performance
without fully training a model, making its direct maximisa-
tion computationally infeasible. Rather, we thus optimise
proxy objectives—assumed to correlate with downstream
performance. Among these are unigram log-probability
(Kudo, 2018), Rényi efficiency (Zouhar et al., 2023a), and
compression (Gallé, 2019).

We focus on compression in this paper. Denoting our to-
kenisation’s objective function as G, we write this objec-
tive as: G(s) = −|s|. Improved compression leads to:
(i) more efficient training and inference, due to shortened
inputs;3 (ii) improved downstream performance, at least
to a certain extent (Gallé, 2019; Rust et al., 2021; Zouhar
et al., 2023a; Goldman et al., 2024);4 and (iii) fairer mul-
tilingual treatment—assuming similar compression across
languages—given models’ limited context lengths and the
per-token costs to use proprietary models (Petrov et al.,
2023; Ahia et al., 2023).

Our Notation’s Colour-coding

• Blue for raw data (i.e., characters c ∈ Σ∗);

• Magenta for tokeniser-specific data (i.e., subwords s∈S∗

and merges m∈M∗);

• Orange for functions (e.g., tok).

3. Defining a Tokeniser
A tokeniser can be defined as a 3-tuple ⟨S, tok, detok⟩,
composed of a vocabulary, a tokenisation and a detokenisa-
tion function. Before defining these terms, however, we re-
quire some notation. Let c ∈ Σ∗ be a character-string,5 i.e.,
a sequence of characters c from alphabet Σ, which we write
as c = c1c2 · · · c|c|. Further, let D={cn}Nn=1 be a dataset

3Recent work tries to improve the computational efficiency of
byte-level models (Yu et al., 2023; Pagnoni et al., 2024).

4Although, see Ali et al. (2024), who argue that compression
might be a necessary but not sufficient condition for good
downstream performance, and Schmidt et al. (2024), who argue
that compression and downstream performance have a more
complex relationship than prior work suggests.

5We note that Σ∗ denotes the Kleene star of Σ (i.e., ∪∞
i=0Σ

i),
and Σ+ denotes its Kleene plus (i.e., ∪∞

i=1Σ
i).

of character-strings.6 A subword s ∈ S represents a non-
empty character-string c (where sequence c can have length
one). Finally, let s ∈ S∗ be a subword-string. Just like
a single subword, a subword-string s = ⟨s1, s2, · · · , s|s|⟩
represents a character-string via the concatenation of its
subwords’ characters:

concat(s) = s1 ◦ s2 ◦ ... ◦ s|s| (1)

and we say that a pair of character and subword strings are
equivalent if:

c
◦
= s ⇐⇒ c = concat(s) (2)

Given the notation above, we can now define the items in
tuple ⟨S, tok, detok⟩. A tokeniser’s vocabulary is a set
of subwords S ⊂ Σ+ such that Σ ⊆ S;7 we say its size
is |S| = |Σ| + K. Further, a detokenisation function is
defined as detok : S∗ → Σ∗ and given a subword-string it
outputs the character-string it represents. This function thus
is simply defined as detok(s) def

= concat(s).

Finally, we are left with defining a tokenisation function
tok : Σ∗ → S∗, which maps from character- to subword-
strings. Notably, these functions always ensure the equiva-
lence c

◦
= s for s= tok(c). Several tokenisation functions,

however, are compatible with this constraint, as given a vo-
cabulary, many subword-strings may be equivalent to the
same character-string. For instance, given S={a, c, t, at},
the string c=c, a, t could be tokenised as s = ⟨c, a, t⟩ or as
s = ⟨c, at⟩. Most researchers define tokenisation functions
in one of two ways, which we term direct and bottom-up
tokenisation functions; we define these next.

3.1. Direct Tokenisation Functions

In direct tokenisation, a character-string is directly replaced
by an optimal subword-string. To implement this, one must
thus first define what optimal means; this is done through
an objective function G which, given a subword-string,
returns a score. Given a previously chosen vocabulary
S (we discuss how to find S in §5), a direct tokenisation
function then encodes string c as:

tok	[S](c) = argmax
s∈S∗

G(s) (3)

s.t. s
◦
= c

6We note that we use set notation here, but our datasets are
actually multisets—datasets can include the same string c multiple
times. We show that tokenisation is still NP-complete for datasets
with no repetitions in §6.3. Further, we impose no constraint on
the kind of string present in these datasets: each cn can be either a
raw or pre-tokenised character-string (i.e., either a full document
or a whitespace-separated word).

7Σ⊆S is typically enforced to guarantee that every c∈Σ∗ can
be represented by at least one subword-string s ∈ S∗.

2



Tokenisation is NP-Complete

In words, given a vocabulary S, function tok	 returns the
optimal subword-string s ∈ S∗ which is equivalent to the
input character-string c. We then set tok(c) def

= tok	[S](c).
Different choices of G recover methods such as Uni-
gramLM’s tokenisation function (Kudo, 2018) or PathPiece
(Schmidt et al., 2024). Notably, in general, this function
is not efficiently computable.8

In this paper, we are concerned with tokenisers that use
compression as their objective: that is, for which G(s) =
−|s|. In this case, we can rewrite the direct tokenisation
function as:

tok	[S](c) = argmin
s∈S∗

|s| (4)

s.t. s
◦
= c

Importantly, in the case of compression, this equation can
be computed efficiently (as shown in §5.1).

3.2. Bottom-up Tokenisation Functions

In bottom-up tokenisation, one starts with a set of character-
strings, and merges their symbols bottom-up, one pair at a
time.9 Formally, let m ∈ M be a merge, defined as a pair
of subwords: m = ⟨s1, s2⟩. Further, let M def

= Σ+ ×Σ+.
Now, let merge be a functional; given merge m = ⟨s1, s2⟩,
it returns a function merge[m] : S∗ → (S ∪ {s1 ◦ s2})∗
which operates on string s left-to-right, replacing every
occurrence of s1 followed by s2 in it with subword s′ =
s1 ◦ s2. E.g., given s = ⟨wo, r, ld⟩ and m = ⟨wo, r⟩, the
output of merge[m](s) is ⟨wor, ld⟩.

Consider now m ∈ M∗, a sequence of merges. Given a
character-string c ∈ Σ∗, a bottom-up tokenisation function
compresses it as:

tok↑[m](c) =

( |m|⊙
z=1

merge[mz]

)
(c) (5)

where
⊙

represents function composition, e.g.,⊙2
z=1 merge[mz] = merge[m2]⊙merge[m1]. Bottom-up

tokenisers then set tok def
= tok↑[m]. Further, a merge

sequence m is also used to set a bottom-up tokeniser’s
vocabulary as:

S = Σ ∪ {s1 ◦ s2 | ⟨s1, s2⟩ ∈ m} (6)

where |m| = K implies this vocabulary has size |S| =
|Σ|+K, as before.

8In fact, Geh et al. (2024) shows that it is NP-complete for
G(s)=

∑|s|
t=1 log pθ(st |s<t), where pθ is a language model.

9Currently, this is likely the most common tokenisation func-
tion, being used in popular tokenisers such as, e.g., GPT-4’s (Ope-
nAI, 2023), LLaMA’s (Touvron et al., 2023a;b), and Pythia’s (Bi-
derman et al., 2023).

4. Maximum 2-Satisfiability
Our paper’s goal is to prove the NP-completeness of tokeni-
sation. To show this, we must reduce an NP-hard problem
to tokenisation in polynomial time. We will rely on the
maximum 2-satisfiability problem (max-2-SAT) for this,
whose definition we provide here. The NP-hardness of
max-2-SAT was proven by Garey et al. (1974).

Definition 1. Let X = {Xj}Jj=1 be a set of variables; each
of these variables are assigned values xj ∈ {F, T}, and we
write x = {xj}Jj=1 ∈ {F, T}J . Let C={(L1

i ∨ L2
i )}Ii=1 be

a set of clauses,10 where each literal L represents either
a variable Xj or its negation ¬Xj . The max-2-SAT
decision problem requires deciding whether there exists
an assignment for which at least γ clauses are satisfied:

γ ≤ max
x ∈{F,T}J

I∑
i=1

1x {L1
i ∨ L2

i } (7)

where 1x is an indicator function which evaluates the
clause and returns one if the clause is satisfied by x and
zero otherwise.

For mathematical convenience, we will write M2S(X , C, γ)
for a function which returns T if its input is satisfi-
able under a max-2-SAT decision problem, and F oth-
erwise. As a concrete example, consider the set of
variables X = {X1, X2} and the set of clauses C =
{X1 ∨X2,¬X1 ∨X2, X1 ∨¬X2,¬X1 ∨¬X2}. The as-
signment x1 = T, x2 = T leads to 3 clauses being satisfied,
which is the optimum. For this example, we thus have that
M2S(X , C, 3) = T, but that M2S(X , C, 4) = F.

5. Finding Optimal Direct Tokenisers
We are now left with the task of finding an optimal tokeniser.
We do this by selecting either: its vocabulary in direct to-
kenisation, since tok = tok	[S]; or its merge sequence in
bottom-up tokenisation, since tok = tok↑[m] and since its
vocabulary is chosen according to Eq. (6). (Note that in §3,
we only showed how to apply tokenisers at inference time,
but not how to find them.) In this section, we focus on direct
tokenisation, defining its optimisation and decision prob-
lems; we then prove its NP-completeness. The optimisation
problem is defined as follows.

Definition 2. Given a dataset D and a vocabulary size K,
the direct tokenisation optimisation problem is to find a

10max-2-SAT also allows clauses to have a single literal Li.
In this case, we can always rewrite the clause as (Li ∨ Li) with
no change to the solution of this decision problem.

3



Tokenisation is NP-Complete

vocabulary Sopt ⊂ Σ+ which maximally compresses D:

Sopt =argmin
S⊂Σ+

∑
c∈D

|tok	[S](c)| (8)

s.t. |S| = |Σ|+K

We can similarly define direct tokenisation’s decision prob-
lem.

Definition 3. Given a dataset D and a vocabulary size
K, the direct tokenisation decision problem requires de-
ciding whether there exists a vocabulary S ⊂ Σ+ which
compresses D to at most δ symbols:

δ ≥ min
S⊂Σ+

∑
c∈D

|tok	[S](c)| (9)

s.t. |S| = |Σ|+K

We write Tok	(D,K, δ) for a function which returns T if
a direct tokenisation decision problem with those inputs is
satisfiable, and F otherwise. Note that, whenever |D| ≤ K,
the solution to the problem above is trivial, as an optimal
solution simply requires including all strings cn in vocabu-
lary S. As we show next, however, in the general case the
above decision problem is NP-complete. We now state this
as a theorem, which we will prove in the next two sections.

Theorem 1. The direct tokenisation decision problem, as
in Definition 3, is NP-complete.

Proof. A decision problem is considered to be NP-complete
if: (i) it is in NP; (ii) it is NP-hard. We prove these conditions
in §5.1 and §5.2.

5.1. Direct Tokenisation is in NP

A decision problem is in the nondeterministic polynomial
time class (NP) if, given a certificate of polynomial length,
one can verify that certificate in polynomial time. Specif-
ically, a certificate usually encodes a decision problem’s
solution, allowing us to verify its satisfiability. In the case of
direct tokenisation, this certificate would be a vocabulary S
which leads a dataset D to be compressed to at most δ sym-
bols. Verifying this certificate simply requires computing
the sum in Eq. (9), i.e.:∑

c∈D
|tok	[S](c)| (10)

Lemma 1. The direct tokenisation decision problem, as in
Definition 3, is in NP.

Proof. As noted above, whenever |D| ≤ K, each cn ∈ D
can be included in the vocabulary S and fully compressed
to a single symbol; we can thus verify the problem’s sat-
isfiability by simply checking that δ ≥ |D| as this is the

best reachable compression. Assuming K to be bounded
by |D|—and therefore polynomial in the input—we have
that the certificate S also has polynomial length. Given
such a certificate S , verifying it simply requires computing
the sum in Eq. (10). In turn, computing this sum requires
|D| calls to function tok	. It follows that, if function tok	
runs in polynomial time, then direct tokenisation is in NP.
Luckily, this function can indeed be computed efficiently
using Schmidt et al.’s (2024) PathPiece method, which runs
in O(|c|2) time. This is achieved by first converting c into
a directed acyclic graph where nodes represent string posi-
tions [0, 1, . . . , |c|] and where two nodes t, t′ are connected
if there exists a subword s ∈ S for which ct:t′

◦
= s. E.g., for

a string c and S = Σ ∪ {c0:2, c1:t}, we build a graph:

0 1 2 · · · t · · · |c|

The shortest path from node 0 to |c| in this graph then
gives us tok	[S](c). As the shortest path of a directed
acyclic graph can be computed in O(N + V ) time, the
time complexity of finding the shortest path in this directed
acyclic graph is thus bounded by O(|c|2).

5.2. Direct Tokenisation is NP-hard

We now use a reduction from max-2-SAT to prove the
NP-hardness of direct tokenisation.

Reduction 1. Let us have an instance of the max-2-SAT
decision problem as in Definition 1. To reduce this instance
to an instance of the direct tokenisation decision problem,
as in Definition 3, we first define an alphabet Σ = {⊚} ∪
{xTj , xFj}Jj=1. We then construct three sets of strings:

D1 = {⊚xTj⊚}Jj=1 ∪ {⊚xFj⊚}Jj=1 (11a)

D2 = {⊚xTj ⊚ xFj⊚}Jj=1 (11b)

D3 = {⊚L1
i⊚L2

i⊚}Ii=1 (11c)

In these strings Li is replaced by either character xTj or xFj ,
depending on whether it represents Xj or ¬Xj , respectively.
We then construct our dataset D, and choose K and δ as:

D =

( f⋃
=1

D1

)
∪
( f ′⋃

=1

D2

)
∪ D3 (12a)

K = J, δ = (4f + 3f ′) J + 5 I − 2γ (12b)

where we set f ′ def
= 2I + 1 and f

def
= 4f ′J + 4I + 1.

We write R1(X , C, γ) to represent a function which, given
an instance of max-2-SAT, returns an instance of the to-
kenisation problem given by our reduction (i.e., D,K, δ).

4



Tokenisation is NP-Complete

For our reduction to be correct, we must have that:

M2S(X , C, γ) ⇐⇒ Tok	(R1(X , C, γ)) (13)

meaning that a max-2-SAT instance is satisfiable if and
only if its reduced direct tokenisation instance is as well. We
now set out to prove this. We start by proving the forward
direction of this iff clause.

Lemma 2. If a max-2-SAT instance is satisfiable, then
the direct tokenisation instance output by Reduction 1 is
also satisfiable. Formally:

M2S(X , C, γ) =⇒ Tok	(R1(X , C, γ)) (14)

Proof sketch. See a formal proof in App. A. Our proof
works by first fixing a satisfying solution to max-2-SAT
with values x⋆

j . Given this solution, for each variable, we
add to our vocabulary S a subword ⊚xTj⊚ if x⋆

j is true,
or ⊚xFj⊚ if x⋆

j is false. Given these subwords, strings in
D1 and D2 occupy a total length of (4f + 3f ′) J . Further,
since at least γ of the max-2-SAT clauses are satisfied by
x⋆
j , the strings in D3 will occupy a total length smaller or

equal to 5 I − 2γ. This solution to the tokenisation problem
thus gives us a total length which is smaller or equal to
δ = (4f + 3f ′) J + 5 I − 2γ.

Now, we are left with proving the backward direction of the
iff clause in Eq. (13). We do so in the following lemma.

Lemma 3. If the direct tokenisation instance output by
Reduction 1 is satisfiable, the max-2-SAT instance which
generated it is as well. Formally:

Tok	(R1(X , C, γ)) =⇒ M2S(X , C, γ) (15)

Proof sketch. See a formal proof in App. B. Our proof
works in three steps. First, we show that any satisfying
solution must only have subwords of the form ⊚xTj⊚ or
⊚xFj⊚, since this is required to compress strings in D1 to
at most 4fJ symbols. Second, we show that any satisfying
solution must only have either subword ⊚xTj⊚ or ⊚xFj⊚
for any variable Xj ; this is required to compress strings
in D2 to at most 3f ′J symbols. Finally, we show that if a
tokeniser compresses strings in D3 to 5I − 2γ, then there
is an assignment x which satisfies at least γ of the original
max-2-SAT problem.

Given both lemmas above, we can now trivially prove that
direct tokenisation is NP-hard.

Lemma 4. The direct tokenisation decision problem, as in
Definition 3, is NP-hard.

Proof. First, it is easy to see that Reduction 1 runs in poly-
nomial time. Second, max-2-SAT is an NP-hard problem
(Garey et al., 1974). This lemma then follows trivially from

Lemmas 2 and 3, which together show that an instance of
the tokenisation problem generated through Reduction 1 is
satisfiable if and only if the max-2-SAT instance used to
produce it is also satisfiable.

6. Finding Optimal Bottom-up Tokenisers
We now shift our attention to bottom-up tokenisation. We
define both its optimisation and decision problems, and
then prove its NP-completeness. We start with defining the
optimisation problem.
Definition 4. Given a dataset D and a vocabulary size
K, the bottom-up tokenisation optimisation problem is
to find a merge sequence mopt ∈ M∗ which maximally
compresses D:

mopt =argmin
m∈M∗

∑
c∈D

|tok↑[m](c)| (16)

s.t. |m| = K

As can be seen, this optimisation problem is similar to the
direct tokenisation problem, albeit its target is to find a
merge sequence instead of a vocabulary. We similarly define
a decision problem.
Definition 5. Given a dataset D and a vocabulary size
K, the bottom-up tokenisation decision problem requires
deciding whether there exists a merge sequence m ∈ M∗

which compresses D to at most δ symbols:

δ ≥ min
m∈M∗

∑
c∈D

|tok↑[m](c)| (17)

s.t. |m| = K

We write Tok↑(D,K, δ) for a function which returns T if a
bottom-up tokenisation decision problem with those inputs
is satisfiable, and F otherwise. We spend the rest of this
section showing that bottom-up tokenisers are NP-complete.
Theorem 2. The bottom-up tokenisation decision problem,
as in Definition 5, is NP-complete.

Proof. We prove this in two steps below. We first prove
that this problem is in NP, in §6.1. We then prove that this
problem is NP-hard, in §6.2.

6.1. Bottom-up Tokenisation is in NP

We can verify this using a solution, the merge sequence
m ∈ M∗, as a certificate. By showing that this certificate
has polynomial length and that it can be verified in polyno-
mial time, we prove this problem is in NP. To verify this
certificate, we simply need to compute the sum in Eq. (17),
i.e.: ∑

c∈D
|tok↑[m](c)| (18)

5



Tokenisation is NP-Complete

which we show now can be done efficiently.

Lemma 5. The bottom-up tokenisation decision problem,
as in Definition 5, is in NP.

Proof. First, if K is larger than the total number of char-
acters in D, i.e.,

∑
c∈D |c|, then this dataset can be com-

pressed to |D| by merging each string down to a single
symbol; further, compressing D more than that is not possi-
ble independently of K. Verifying the satisfiability of such
an instance of the tokenisation problem is thus trivial, only
requiring checking if δ ≥ |D|. Second, if K is bounded
by
∑

c∈D |c|—and therefore polynomial in the input—the
certificate m has polynomial length. Given such a certificate
m, verifying it then simply requires computing the sum in
Eq. (18). In turn, computing this sum requires |D| calls to
function tok↑. It follows that, if function tok↑ runs in poly-
nomial time, then bottom-up tokenisation is in NP. The com-
putation of tok↑, can be done in polynomial time following
the structure described in §3.2. For each m = ⟨s1, s2⟩ in
m, scan the current c and replace each occurrence of s1, s2
by s′. This takes time O(|c|) for each merge. Afterwards,
the resulting string can be compared against the desired size.
We obtain a total runtime of O(|D||c||m|).

6.2. Bottom-up Tokenisation is NP-hard

As before, we use a reduction from max-2-SAT to prove
bottom-up tokenisation’s NP-hardness.

Reduction 2. Let us have an instance of the max-2-SAT
decision problem as in Definition 1. To reduce this in-
stance to an instance of the bottom-up tokenisation decision
problem, as in Definition 5, we first define an alphabet
Σ={⊚,⊗} ∪ {xTj ,xFj}Jj=1. We then construct five sets of
strings:

D1={⊚xTj}Jj=1∪{xFj⊚}Jj=1∪{xTj⊚}Jj=1 (19)

∪ {⊚xFj}Jj=1∪{xTj⊗}Jj=1∪{⊗xFj}Jj=1

D2={⊚xTj⊚}Jj=1 ∪ {⊚xFj⊚}Jj=1

∪ {⊚xTj⊗}Jj=1 ∪ {⊗xFj⊚}Jj=1

D3={⊚xTj ⊚ xFj⊚}Jj=1∪{⊗xFj ⊚ xTj⊗}Jj=1

D4={⊚xFj ⊚ xTj⊗}Jj=1∪{⊗xFj ⊚ xTj⊚}Jj=1

D5=


⊚xT

j ⊚ xF
j′⊚ if L1

i = Xj and L2
i = ¬Xj′

⊚xT
j′ ⊚ xF

j⊚ if L1
i = ¬Xj and L2

i = Xj′

⊗xF
j ⊚ xF

j′⊚ if L1
i = ¬Xj and L2

i = ¬Xj′

⊚xT
j ⊚ xT

j′⊗ if L1
i = Xj and L2

i = Xj′


I

i=1

We then construct our dataset D, and choose K and δ as:

D =

f⋃
=1

D1∪
f ′⋃
=1

D2∪
f ′′⋃
=1

D3∪
f ′′′⋃
=1

D4∪D5 (20)

K = 8J, δ = (6f+6f ′+4f ′′+4f ′′′) J+3 I−γ

where we set:

f ′′′ def
= 5I, f ′′ def

= 10f ′′′J + 5I (21a)

f ′ def
= (10f ′′ + 10f ′′′) J + 5I (21b)

f
def
= (12f ′ + 10f ′′ + 10f ′′′) J + 5I (21c)

As before, we write R2(X , C, γ) for a function which, given
an instance of the max-2-SAT problem, returns an instance
of the bottom-up tokenisation problem. For our reduction
to be correct, we must have that:

M2S(X , C, γ) ⇐⇒ Tok↑(R2(X , C, γ)) (22)

We follow the same proof strategies as before, starting by
proving the forward direction of this iff statement.

Lemma 6. If a max-2-SAT instance is satisfiable, then
the bottom-up tokenisation instance output by Reduction 2
is also satisfiable. Formally:

M2S(X , C, γ) =⇒ Tok↑(R2(X , C, γ)) (23)

Proof sketch. See a formal proof in App. C. Without loss
of generality, let a satisfying solution to max-2-SAT have
values x⋆

j . Our proof works by first defining the three follow-
ing lists of merges, which must be included in any satisfying
solution to this tokenisation problem:

m1 = ⃝J
j=1[⟨⊗, xFj⟩, ⟨xTj ,⊗⟩] (24a)

m3 = ⃝J
j=1[⟨xFj ,⊚⟩, ⟨⊚, xTj⟩] (24b)

m5 = ⃝J
j=1[⟨⊚, xFj⟩, ⟨xTj ,⊚⟩] (24c)

We then construct two other lists of merges, which depend
on the satisfying assignments to max-2-SAT:

m2 = ⃝J
j=1

[
⟨⊚, xTj⊗⟩ if x⋆

j = T

⟨⊗xFj ,⊚⟩ else

]
(25a)

m4 = ⃝J
j=1

[
⟨⊚xTj ,⊚⟩ if x⋆

j = T

⟨⊚, xFj⊚⟩ else

]
(25b)

Finally, we create a merge sequence by concatenating these
lists in order:

m = m1 ◦m2 ◦m3 ◦m4 ◦m5 (26)

Note that we have exactly K = 8J merges in this list.
Given this merge sequence, it is easy to verify that strings
in D1 to D4 will use exactly (6f +6f ′+4f ′′+4f ′′′) J
symbols after being tokenised. Further, since at least γ of
the max-2-SAT’s clauses are satisfied by x⋆

j , the strings in
D5 will occupy a total length smaller or equal to 3 I − γ.
This solution to the tokenisation problem thus gives us a
tokeniser which will compress D to at most δ = (6f+6f ′+
4f ′′+4f ′′′) J + 3 I − γ.

6



Tokenisation is NP-Complete

We now prove the backward direction of the iff clause in
Eq. (22).

Lemma 7. If the bottom-up tokenisation instance output by
Reduction 2 is satisfiable, the max-2-SAT instance which
generated it is as well. Formally:

Tok↑(R2(X , C, γ)) =⇒ M2S(X , C, γ) (27)

Proof sketch. See a formal proof in App. D. Our proof
works in five steps. First, we show that all satisfying solu-
tions must include merges m1, m3, and m5 from Eq. (24),
since this is required to compress strings in D1 to at most
6fJ symbols. Second, we show the other merges of any
satisfying solution must be of the form:

m⊚
j =

{
⟨⊚xTj ,⊚⟩, ⟨⊚, xFj⊚⟩
⟨⊚, xTj⊚⟩, ⟨⊚xFj ,⊚⟩

}
(28a)

m⊗
j =

{
⟨⊚, xTj⊗⟩, ⟨⊗xFj ,⊚⟩
⟨⊚xTj ,⊗⟩, ⟨⊗, xFj⊚⟩

}
(28b)

this is required to compress strings in D2 to at most 6f ′J
symbols. Third, we show that any satisfying solution will
have at least one merge of each set m⊚

j and one of each set
m⊗

j ; this is required to compress strings in D3 to at most
4f ′′J symbols. Fourth, we show that any satisfying solution
will have—for each j ∈ {1, ..., J}—both its merges in sets
m⊚

j and m⊗
j containing character xTj or character xFj ; this is

required to compress strings in D4 to at most 4f ′′′J symbols.
Finally, we show that if a tokeniser compresses strings in
D5 to 3I − γ, then there is an assignment x which satisfies
at least γ of the original max-2-SAT problem.

Finally, given both lemmas above, we can now prove that
bottom-up tokenisation is NP-hard.

Lemma 8. The bottom-up tokenisation decision problem,
as in Definition 5, is NP-hard.

Proof. First, it is easy to see that Reduction 2 runs in poly-
nomial time. Second, max-2-SAT is an NP-hard problem
(Garey et al., 1974). This lemma then follows trivially from
Lemmas 6 and 7.

6.3. Other Definitions of Tokenisation

We now expand our discussion to consider variations of the
above tokenisation problems.

Deduped Datasets. Our definitions of both direct and
bottom-up tokenisation allow datasets D to include repeated
entries. It is common, however, to deduplicate datasets in
NLP—thus removing repeated entries. A small change to
both our reductions is enough to adapt it to this deduplicated
dataset case: simply append each string in the repeated
datasets (either D1 and D2 in Reduction 1 or D1 to D4 in

Reduction 2) with a unique character {ay}∞y=1 and increase
the target compression size δ accordingly (by f + f ′ or
f + f ′ + f ′′ + f ′′′, respectively). These new characters
will never be included in optimal tokenisers’ solutions, and
thus the previous proofs hold, with the difference that each
dataset will require extra symbols once compressed.

A Single Long String. In the previous sections, we con-
sidered tokenisers trained on a dataset D. Work on com-
pression, however, usually considers a single long string c
as its input. It is easy to see that direct tokenisation is not
an NP-complete problem if its input is a single long string;
including this string in vocabulary S already achieves opti-
mal compression. Bottom-up tokenisation, however, is still
NP-complete even when given a single string as input. As
before, this can be shown with a similar strategy to Reduc-
tion 2, but where we first append each string in dataset D
with a unique character {ay}∞y=1 and then concatenate all
these strings. As in the deduped case above, characters ay
will never be merged by any optimal tokeniser; they will
thus serve as virtual string delimiters and will not affect our
proofs beyond an increase to the target compression size δ.

A Hybrid Approach. Finally, the last variant we con-
sider is a hybrid between direct and bottom-up tokenisation,
where we find a merge sequence m which—when we extract
a vocabulary from it as S = Σ∪{s1 ◦ s2 | ⟨s1, s2⟩ ∈ m}—
optimally compresses a dataset D using the direct tokeni-
sation function in Eq. (4). We can easily prove the NP-
hardness of this tokenisation variant by relying on Reduc-
tion 2; as our proof in Lemma 8 did not make use of the
order of merges in m, only of the subwords composed by it,
this lemma’s proof strategy can be similarly applied to this
hybrid variant.

7. Tokenisation and Compression
The variants of tokenisation that we consider here—with
compression as their objective function—are closely related
to the field of dictionary compression. In both fields, we
wish to reduce the size of an input (c or D) by exploiting
repetitive elements. In fact, the most popular tokenisation
algorithm to date, BPE, was originally proposed as a com-
pression algorithm (Gage, 1994) and has only somewhat
recently been ported into NLP to find tokenisers (by Sen-
nrich et al., 2016).

Not surprisingly, prior work has also considered, from a
theoretical perspective, the compression tokenisers achieve.
Zouhar et al. (2023b), for instance, analyse bottom-up to-
kenisation and prove an approximation bound on the com-
pression achieved by the tokenisers found using BPE. More
recently, Kozma & Voderholzer (2024) also analyses bottom-
up tokenisation, proving a tighter bound on this compression

7



Tokenisation is NP-Complete

achieved by BPE.

A popular dictionary compression method, the straight-
line program (SLP; Kieffer & Yang, 2000; Charikar et al.,
2005), can be used to illustrate the similarities and differ-
ences between tokenisers and compressors.11 Given a string
c, an SLP describes a context-free grammar from which
c can be uniquely derived. Formally, an SLP in Chomsky
normal form (CNF) is a set of rules of form X → a or
X → AB, where X,A,B are called nonterminals and a
is a terminal.12 Starting from a special nonterminal S, ap-
plying these rules exhaustively—until only terminals are
left—produces exactly the desired string c. Notably, given
a string c, it is NP-complete to find the smallest SLP which
generates it (Charikar et al., 2005).

On the one hand, SLPs in CNF are closely linked to bottom-
up tokenisation; each of its rules expands to two nonter-
minals, and thus corresponds to a merge. However, while
SLPs must find the minimum number of merges (or rules)
to fully compress a string into a single symbol, bottom-up
tokenisers must maximally compress the string given a fixed
number of merges. On the other hand, SLPs which are not
in CNF (that is, for which other context-free production
rules are allowed, as long as the decoding stays unique) are
closely linked to direct tokenisation. In this case, a direct
tokeniser could be converted into an SLP with depth two;
this grammar has a start rule S → s, and a rule from each
subword to its characters s → c. Again, while SLPs must
find a minimal grammar representing the string, direct to-
kenisers must minimise the size of rule S → s given a fixed
number of rules s → c.

The paragraphs above highlights two important differences
between tokenisers and compressors. First, tokenisers aim
to reduce only the size of the resulting tokenised text (i.e.,
|s|), whereas compressors also consider the size of the com-
pression information (e.g., considering the size required to
store S , which would be

∑
s∈S |detok(s)|). This is because

tokenisers must create shorter inputs for NLP algorithms,
while compressors must make information compact. Sec-
ond, tokenisers and compressors have different optimisation
parameters. Compression algorithms always compress a
string to the best extent possible (e.g., for SLPs, until a
single nonterminal is reached), whereas tokenisation algo-
rithms are given a maximum vocabulary size (i.e., K) and
find tokenisers which only compress their input as much as
possible until this limit is reached.

11See Lohrey (2012) for an overview of straight-line programs,
and Kempa & Prezza (2018); Kociumaka et al. (2023) for a more
detailed overview of compression in general.

12Although not originally defined that way, SLP’s grammars
are typically assumed to be in CNF, for simplicity. This does not
make a big difference for compression, but will be important for
our purposes.

8. Conclusion
In this work, we proved the NP-completeness of two variants
of tokenisation. These results underline that finding optimal
tokenisers most likely will remain a difficult quest and that
research should focus on approximate algorithms instead.
Regarding those, there is potential both in improving the
analysis of currently used algorithms, such as BPE, as well
as in designing new ones.

Limitations
While we prove the NP-completeness of multiple variants
of the tokenisation problem—which is an important part
of modern language modelling pipelines—we must note
a few limitations in our work. First, we only prove NP-
completeness of tokenisation with compression as its objec-
tive. This is a popular objective function, frequently used to
judge the quality of tokenisers (e.g., Liu et al., 2025); how-
ever, it is not perfectly correlated with downstream language
modelling performance, as discussed in §2.13 Investigating
the complexity of tokenisation under other objective func-
tions is important. Second, our proofs do not assume a fixed
alphabet size, so for fixed alphabets tokenisation might not
be NP-complete. Tokenisers are frequently run at the byte
level, for which specialised, more efficient algorithms might
exist. Finally, while we investigated the complexity of the
tokenisation problem for two types of tokenisation functions,
similar results for other variants (with other tokenisation
functions) remain open; we believe this would be exciting
future work.

References
Ahia, O., Kumar, S., Gonen, H., Kasai, J., Mortensen, D.,

Smith, N., and Tsvetkov, Y. Do all languages cost the
same? Tokenization in the era of commercial language
models. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 9904–9923,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
614. URL https://aclanthology.org/2023.
emnlp-main.614.

Ali, M., Fromm, M., Thellmann, K., Rutmann, R.,
Lübbering, M., Leveling, J., Klug, K., Ebert, J., Doll,
N., Buschhoff, J., Jain, C., Weber, A., Jurkschat, L.,
13Relatedly, in practice, state-of-the-art language models still

achieve very good performance (at least in English), despite sub-
optimal tokenisers. These tokenisers thus do not prevent good
performance; rather they seem to make the training process less
efficient. Studying the relationship between tokenisation choices
and training efficiency, as in Schäfer et al. (2024) and Tao et al.
(2024), is important future work.

8

https://aclanthology.org/2023.emnlp-main.614
https://aclanthology.org/2023.emnlp-main.614


Tokenisation is NP-Complete

Abdelwahab, H., John, C., Ortiz Suarez, P., Osten-
dorff, M., Weinbach, S., Sifa, R., Kesselheim, S., and
Flores-Herr, N. Tokenizer choice for LLM training:
Negligible or crucial? In Duh, K., Gomez, H., and
Bethard, S. (eds.), Findings of the Association for Compu-
tational Linguistics: NAACL 2024, pp. 3907–3924, Mex-
ico City, Mexico, June 2024. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2024.findings-naacl.
247. URL https://aclanthology.org/2024.
findings-naacl.247.

Biderman, S., Schoelkopf, H., Anthony, Q., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Puro-
hit, S., Prashanth, U. S., Raff, E., Skowron, A.,
Sutawika, L., and Van Der Wal, O. Pythia: A
suite for analyzing large language models across train-
ing and scaling. In Proceedings of the 40th Inter-
national Conference on Machine Learning, ICML’23,
2023. URL https://proceedings.mlr.press/
v202/biderman23a/biderman23a.pdf.

Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prab-
hakaran, M., Sahai, A., and Shelat, A. The smallest gram-
mar problem. IEEE Transactions on Information Theory,
51(7):2554–2576, 2005. doi: 10.1109/TIT.2005.850116.

Cognetta, M., Zouhar, V., Moon, S., and Okazaki, N.
Two counterexamples to tokenization and the noise-
less channel. In Calzolari, N., Kan, M.-Y., Hoste, V.,
Lenci, A., Sakti, S., and Xue, N. (eds.), Proceedings
of the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Evalua-
tion (LREC-COLING 2024), pp. 16897–16906, Torino,
Italia, May 2024. ELRA and ICCL. URL https://
aclanthology.org/2024.lrec-main.1469.

Gage, P. A new algorithm for data compression.
C Users Journal, 12(2):23–38, feb 1994. ISSN
0898-9788. URL https://dl.acm.org/doi/10.
5555/177910.177914.

Gallé, M. Investigating the effectiveness of BPE: The power
of shorter sequences. In Inui, K., Jiang, J., Ng, V., and
Wan, X. (eds.), Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pp. 1375–1381,
Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1141.
URL https://aclanthology.org/D19-1141.

Garey, M. R., Johnson, D. S., and Stockmeyer, L. Some
simplified NP-complete problems. In Proceedings of
the Sixth Annual ACM Symposium on Theory of Com-
puting, STOC ’74, pp. 47–63, New York, NY, USA,
1974. Association for Computing Machinery. ISBN

9781450374231. doi: 10.1145/800119.803884. URL
https://doi.org/10.1145/800119.803884.

Geh, R., Zhang, H., Ahmed, K., Wang, B., and Van
Den Broeck, G. Where is the signal in tokenization
space? In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N.
(eds.), Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 3966–
3979, Miami, Florida, USA, November 2024. Associ-
ation for Computational Linguistics. URL https://
aclanthology.org/2024.emnlp-main.230.

Giulianelli, M., Malagutti, L., Gastaldi, J. L., DuSell,
B., Vieira, T., and Cotterell, R. On the proper treat-
ment of tokenization in psycholinguistics. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, Miami, Florida, USA,
2024. Association for Computational Linguistics. URL
https://arxiv.org/abs/2410.02691.

Goldman, O., Caciularu, A., Eyal, M., Cao, K., Szpek-
tor, I., and Tsarfaty, R. Unpacking tokenization:
Evaluating text compression and its correlation with
model performance. In Ku, L.-W., Martins, A.,
and Srikumar, V. (eds.), Findings of the Association
for Computational Linguistics: ACL 2024, pp. 2274–
2286, Bangkok, Thailand, August 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.134. URL https://aclanthology.
org/2024.findings-acl.134.

Gowda, T. and May, J. Finding the optimal vocabulary
size for neural machine translation. In Cohn, T., He, Y.,
and Liu, Y. (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pp. 3955–3964,
Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.
352. URL https://aclanthology.org/2020.
findings-emnlp.352.

Kempa, D. and Prezza, N. At the roots of dictionary com-
pression: string attractors. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2018, pp. 827–840, New York, NY, USA,
2018. Association for Computing Machinery. ISBN
9781450355599. doi: 10.1145/3188745.3188814.

Kieffer, J. and Yang, E.-H. Grammar-based codes: a new
class of universal lossless source codes. IEEE Transac-
tions on Information Theory, 46(3):737–754, 2000. doi:
10.1109/18.841160.

Kociumaka, T., Navarro, G., and Prezza, N. Toward a defini-
tive compressibility measure for repetitive sequences.
IEEE Transactions on Information Theory, 69(4):2074–
2092, 2023. doi: 10.1109/TIT.2022.3224382.

9

https://aclanthology.org/2024.findings-naacl.247
https://aclanthology.org/2024.findings-naacl.247
https://proceedings.mlr.press/v202/biderman23a/biderman23a.pdf
https://proceedings.mlr.press/v202/biderman23a/biderman23a.pdf
https://aclanthology.org/2024.lrec-main.1469
https://aclanthology.org/2024.lrec-main.1469
https://dl.acm.org/doi/10.5555/177910.177914
https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/D19-1141
https://doi.org/10.1145/800119.803884
https://aclanthology.org/2024.emnlp-main.230
https://aclanthology.org/2024.emnlp-main.230
https://arxiv.org/abs/2410.02691
https://aclanthology.org/2024.findings-acl.134
https://aclanthology.org/2024.findings-acl.134
https://aclanthology.org/2020.findings-emnlp.352
https://aclanthology.org/2020.findings-emnlp.352


Tokenisation is NP-Complete

Kozma, L. and Voderholzer, J. Theoretical analysis of byte-
pair encoding, 2024. URL https://arxiv.org/
abs/2411.08671.

Kudo, T. Subword regularization: Improving neural network
translation models with multiple subword candidates. In
Gurevych, I. and Miyao, Y. (eds.), Proceedings of the
56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 66–75,
Melbourne, Australia, July 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P18-1007. URL
https://aclanthology.org/P18-1007.

Lim, J. P., Choo, D., and Lauw, H. W. A partition
cover approach to tokenization, 2025. URL https:
//arxiv.org/abs/2501.06246.

Liu, A., Hayase, J., Hofmann, V., Oh, S., Smith, N. A.,
and Choi, Y. SuperBPE: Space travel for language mod-
els, 2025. URL https://arxiv.org/abs/2503.
13423.

Lohrey, M. Algorithmics on SLP-compressed strings: A
survey. Groups - Complexity - Cryptology, 4(2):241–299,
2012. doi: doi:10.1515/gcc-2012-0016. URL https:
//doi.org/10.1515/gcc-2012-0016.

Muffo, M., Cocco, A., and Bertino, E. Evaluating trans-
former language models on arithmetic operations using
number decomposition. In Calzolari, N., Béchet, F.,
Blache, P., Choukri, K., Cieri, C., Declerck, T., Goggi,
S., Isahara, H., Maegaard, B., Mariani, J., Mazo, H.,
Odijk, J., and Piperidis, S. (eds.), Proceedings of the
Thirteenth Language Resources and Evaluation Confer-
ence, pp. 291–297, Marseille, France, June 2022. Euro-
pean Language Resources Association. URL https:
//aclanthology.org/2022.lrec-1.30.

Nogueira, R., Jiang, Z., and Lin, J. Investigating the limita-
tions of transformers with simple arithmetic tasks, 2021.
URL https://arxiv.org/abs/2102.13019.

OpenAI. GPT-4 technical report, 2023. URL https:
//arxiv.org/abs/2303.08774.

Pagnoni, A., Pasunuru, R., Rodriguez, P., Nguyen, J.,
Muller, B., Li, M., Zhou, C., Yu, L., Weston, J., Zettle-
moyer, L., Ghosh, G., Lewis, M., Holtzman, A., and
Iyer, S. Byte latent transformer: Patches scale bet-
ter than tokens, 2024. URL https://arxiv.org/
abs/2412.09871.

Petrov, A., Malfa, E. L., Torr, P., and Bibi, A. Lan-
guage model tokenizers introduce unfairness between
languages. In Thirty-seventh Conference on Neural In-
formation Processing Systems, 2023. URL https:
//openreview.net/forum?id=78yDLKi95p.

Phan, B., Havasi, M., Muckley, M., and Ullrich, K. Under-
standing and mitigating tokenization bias in language
models, 2024. URL https://arxiv.org/abs/
2406.16829.

Pimentel, T. and Meister, C. How to compute the proba-
bility of a word. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing,
Miami, Florida, USA, 2024. Association for Computa-
tional Linguistics. URL https://arxiv.org/abs/
2406.14561.

Rust, P., Pfeiffer, J., Vulić, I., Ruder, S., and Gurevych,
I. How good is your tokenizer? On the monolin-
gual performance of multilingual language models. In
Zong, C., Xia, F., Li, W., and Navigli, R. (eds.), Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pp. 3118–3135, Online,
August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.243. URL https:
//aclanthology.org/2021.acl-long.243.

Schäfer, A., Hofmann, T., Schlag, I., and Pimentel,
T. On the effect of (near) duplicate subwords in
language modelling. In Ku, L.-W., Martins, A.,
and Srikumar, V. (eds.), Findings of the Association
for Computational Linguistics: ACL 2024, pp. 9580–
9597, Bangkok, Thailand, August 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.571. URL https://aclanthology.
org/2024.findings-acl.571/.

Schmidt, C. W., Reddy, V., Zhang, H., Alameddine, A.,
Uzan, O., Pinter, Y., and Tanner, C. Tokenization is more
than compression. In Al-Onaizan, Y., Bansal, M., and
Chen, Y.-N. (eds.), Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing,
pp. 678–702, Miami, Florida, USA, November 2024. As-
sociation for Computational Linguistics. URL https:
//aclanthology.org/2024.emnlp-main.40.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. In Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 1715–1725, Berlin, Germany, August 2016. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
P16-1162. URL https://aclanthology.org/
P16-1162.

Singh, A. K. and Strouse, D. Tokenization counts: the im-
pact of tokenization on arithmetic in frontier LLMs, 2024.
URL https://arxiv.org/abs/2402.14903.

10

https://arxiv.org/abs/2411.08671
https://arxiv.org/abs/2411.08671
https://aclanthology.org/P18-1007
https://arxiv.org/abs/2501.06246
https://arxiv.org/abs/2501.06246
https://arxiv.org/abs/2503.13423
https://arxiv.org/abs/2503.13423
https://doi.org/10.1515/gcc-2012-0016
https://doi.org/10.1515/gcc-2012-0016
https://aclanthology.org/2022.lrec-1.30
https://aclanthology.org/2022.lrec-1.30
https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2412.09871
https://arxiv.org/abs/2412.09871
https://openreview.net/forum?id=78yDLKi95p
https://openreview.net/forum?id=78yDLKi95p
https://arxiv.org/abs/2406.16829
https://arxiv.org/abs/2406.16829
https://arxiv.org/abs/2406.14561
https://arxiv.org/abs/2406.14561
https://aclanthology.org/2021.acl-long.243
https://aclanthology.org/2021.acl-long.243
https://aclanthology.org/2024.findings-acl.571/
https://aclanthology.org/2024.findings-acl.571/
https://aclanthology.org/2024.emnlp-main.40
https://aclanthology.org/2024.emnlp-main.40
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://arxiv.org/abs/2402.14903


Tokenisation is NP-Complete

Tao, C., Liu, Q., Dou, L., Muennighoff, N., Wan, Z.,
Luo, P., Lin, M., and Wong, N. Scaling laws with
vocabulary: Larger models deserve larger vocabular-
ies. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=sKCKPr8cRL.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. LLaMA: Open and efficient foundation language
models, 2023a. URL https://arxiv.org/abs/
2302.13971.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023b. URL https://arxiv.org/
abs/2307.09288.

Yu, L., Simig, D., Flaherty, C., Aghajanyan, A., Zettlemoyer,
L., and Lewis, M. MEGABYTE: Predicting million-byte
sequences with multiscale transformers. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=JTmO2V9Xpz.

Zouhar, V., Meister, C., Gastaldi, J., Du, L., Sachan, M.,
and Cotterell, R. Tokenization and the noiseless chan-
nel. In Rogers, A., Boyd-Graber, J., and Okazaki,
N. (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 5184–5207, Toronto, Canada,
July 2023a. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.284. URL https:
//aclanthology.org/2023.acl-long.284.

Zouhar, V., Meister, C., Gastaldi, J., Du, L., Vieira, T.,
Sachan, M., and Cotterell, R. A formal perspective
on byte-pair encoding. In Rogers, A., Boyd-Graber,
J., and Okazaki, N. (eds.), Findings of the Association
for Computational Linguistics: ACL 2023, pp. 598–614,
Toronto, Canada, July 2023b. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.

38. URL https://aclanthology.org/2023.
findings-acl.38.

11

https://openreview.net/forum?id=sKCKPr8cRL
https://openreview.net/forum?id=sKCKPr8cRL
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=JTmO2V9Xpz
https://openreview.net/forum?id=JTmO2V9Xpz
https://aclanthology.org/2023.acl-long.284
https://aclanthology.org/2023.acl-long.284
https://aclanthology.org/2023.findings-acl.38
https://aclanthology.org/2023.findings-acl.38


Tokenisation is NP-Complete

A. Proof of Lemma 2
Lemma 2. If a max-2-SAT instance is satisfiable, then the direct tokenisation instance output by Reduction 1 is also
satisfiable. Formally:

M2S(X , C, γ) =⇒ Tok	(R1(X , C, γ)) (14)

Proof. First, note that if M2S(X , C, γ), then we have that Eq. (7) holds: γ≤maxx ∈{F,T}J

∑I
i=11{L1

i ∨L2
i }. Now, without

loss of generality, let a satisfying solution have values x⋆
j . In this case, for each variable Xj , we construct token ⊚xTj⊚ if x⋆

j

is true, or ⊚xFj⊚ if x⋆
j is false. This gives us a total of J new tokens, so satisfies the |S| = |Σ|+K condition. Now we just

need to count the symbols output by this solution to see if Eq. (9) is satisfied, since any given tokenisation tok(·,S) will
provide an upper bound on the optimal tokenisation in terms of compression:∑

c∈D
|tok	[S](c)| ≥ min

S′⊂Σ+

∑
c∈D

|tok	[S ′](c)| (29)

s.t. |S ′| = |Σ|+K

For each pair of strings ⊚xTj⊚ and ⊚xFj⊚ in D1, one is compressed into a single subword while the other is kept as
originally—using 3 symbols. We thus have that the strings in D1 will occupy a total of (1 + 3)J characters, and:∑

c∈(
⋃f

=1 D1)

|tok	[S](c)| = 4fJ (30)

Similarly, for each string in D2 of form ⊚xTj ⊚ xFj⊚, we have that either token ⊚xTj⊚ or ⊚xFj⊚ exists. So each of these
strings is compressed from 5 into 3 symbols. We thus have:∑

c∈(
⋃f′

=1 D2)

|tok	[S](c)| = 3f ′J (31)

Finally, we have strings in D3 of form ⊚L1
i ⊚ L2

i⊚. These strings will be compressed into 3 symbols if ⊚L1
i⊚ or ⊚L2

i⊚
(or both) exist, and kept with 5 symbols otherwise. We thus have:

∑
c∈D3

|tok	[S](c)| =
I∑

i=1

(
5− 21

{⊚L1
i⊚ ∈ S
or

⊚L2
i⊚ ∈ S

})
(32a)

= 5I − 2

I∑
i=1

1



⊚xTj⊚ ∈ S and L1
i = Xj

or
⊚xFj⊚ ∈ S and L1

i = ¬Xj

or
⊚xTj′⊚ ∈ S and L2

i = Xj′

or
⊚xFj′⊚ ∈ S and L2

i = ¬Xj′


(32b)

= 5I − 2

I∑
i=1

1x ⋆{L1
i ∨ L2

i } (32c)

≤ 5I − 2γ (32d)

where, by construction, we have that a subword ⊚Li⊚ ∈ S if and only if its associated variable (Xj or ¬Xj) is true.
Summing together the lengths in Eqs. (30) to (32), we get that∑

c∈D
|tok	[S](c)| ≤ δ = (4f + 3f ′) J + 5 I − 2γ (33)

which concludes the proof.

12



Tokenisation is NP-Complete

B. Proof of Lemma 3
Lemma 3. If the direct tokenisation instance output by Reduction 1 is satisfiable, the max-2-SAT instance which generated
it is as well. Formally:

Tok	(R1(X , C, γ)) =⇒ M2S(X , C, γ) (15)

Proof. First, note that the dataset D output by Reduction 1 has a total number of characters:∑
c∈D

|c| = (6f + 5f ′)J + 5I (34)

Further, let:

toklen(D,S) def
=
∑
c∈D

|tok	[S](c)|, S0 = Σ ∪
J⋃

j=1

{⊚xTj⊚,⊚xFj⊚} (35)

The maximum number of symbols in this dataset after compression is set to δ = (4f + 3f ′) J + 5 I − 2γ. This means that,
to satisfy this objective, there must exist a vocabulary whose tokeniser compresses the text by at least (2f + 2f ′) J + 2γ
symbols. We now prove this lemma in three steps: 1 we show that any solution which compresses the text by at least 2fJ
symbols must only have nontrivial subwords14 of the form ⊚xTj⊚ or ⊚xFj⊚; 2 we show that any solution which compresses
the text by at least (2f + 2f ′)J symbols must only have either subword ⊚xTj⊚ or ⊚xFj⊚ for any variable Xj ; 3 we show
that any solution which compresses the text by at least (2f + 2f ′)J + 2γ symbols must be produced by a max-2-SAT
instance which has at least γ clauses that are simultaneously satisfiable.

LemmaProofStep 1. (Step 1 ). Any solution which compresses the text by at least 2fJ symbols must only have nontrivial
subwords of the form ⊚xTj⊚ or ⊚xFj⊚, i.e.,:(

toklen(D,S) ≤ (4f + 5f ′)J + 5I︸ ︷︷ ︸∑
c∈D |c|−2fJ

)
=⇒ S ⊂ S0 (36)

Proof. First, given a solution with S ⊂ S0, each subword s ∈ S\Σ, where S\Σ
def
= S \ Σ, will replace at least f strings in

D1—i.e., with form ⊚xTj⊚ or ⊚xFj⊚—for a single subword, thus saving 2f characters. Since we have |S\Σ| = K = J
tokens, we save exactly 2fJ symbols in D1:

S ⊂ S0 =⇒
(
toklen(D1,S ′) = 4fJ︸︷︷︸∑

c∈D1
|c|−2fJ

)
(37)

Note now that any solution S ′ for which S ′ ̸⊂ S0 has at least one nontrivial subword which is not of the form ⊚xTj⊚ or
⊚xFj⊚; this subword s /∈ S0 will thus not compress strings in D1 by 2f symbols, but by at most f symbols:

S ′ ̸⊂ S0 =⇒
(
toklen(D1,S ′) ≥ 4f(J − 1) + 5f︸ ︷︷ ︸∑

c∈D1
|c|−2fJ+f

)
(38)

Even if this new subword were able to fully compress strings in D2 and D3 to a single symbol each, it would reach a
compression of at most 4f ′J + 4I . Since by design f = 4f ′J + 4I + 1, we get that:

S ′ ̸⊂ S0 =⇒
(
toklen(D,S ′) ≥ 4fJ + f + f ′J + I > (4f + 5f ′)J + 5I

)
(39)

which concludes this step of the proof.
14We define nontrivial subwords as subwords with more than one character. Remember that by definition Σ ⊆ S, so all characters are

always included in tokenisers’ vocabularies. Also note that |S| = |Σ|+K, so those trivial subwords are not counted towards vocabulary
size K.

13



Tokenisation is NP-Complete

LemmaProofStep 2. (Step 2 ). Any solution which compresses the text by at least (2f + 2f ′)J symbols must only have
either subword ⊚xTj⊚ or ⊚xFj⊚ for any variable Xj , i.e.,:(

toklen(D,S) ≤ (4f + 3f ′)J + 5I︸ ︷︷ ︸∑
c∈D |c|−(2f+2f ′)J

)
=⇒ ∀j∈{1,...,J} |S ∩ {⊚xTj⊚,⊚xFj⊚}| = 1 (40)

Proof. In this step of the proof, we show that satisfying solutions must have one and only one of subwords ⊚xTj⊚ and ⊚xFj⊚
for any variable Xj . As before, it’s easy to see that a solution of the form described achieves at least (2f + 2f ′)J symbol
compression. Each subword of form ⊚xTj⊚ or ⊚xFj⊚ saves exactly 2f characters in the strings in D1. Further, because we
always have either subword ⊚xTj⊚ or ⊚xFj⊚ for each value of j, we also get 2f ′ compression in the strings in D2:

∀j∈{1,...,J} |S ∩ {⊚xTj⊚,⊚xFj⊚}| = 1 (41)

=⇒
(
toklen(D1,S) = 4fJ︸︷︷︸∑

c∈D1
|c|−2fJ

)
and

(
toklen(D2,S) = 3f ′J︸︷︷︸∑

c∈D2
|c|−2f ′J

)

Now note that this is not true if both ⊚xTj⊚ and ⊚xFj⊚ exist for a single j; in this case, only one of the tokens can be applied
to ⊚xTj ⊚ xFj⊚, and thus both tokens together lead to a benefit of 2 instead of 4. If both ⊚xTj⊚ and ⊚xFj⊚ exist for any token
Xj , this implies that neither of ⊚xTj′⊚ and ⊚xFj′⊚ exists for some other Xj′ , resulting in an uncompressed string. Then, we
get at most a compression of 2fJ + 2f ′(J − 1) + 4I:

∃j∈{1,...,J} |S ′ ∩ {⊚xTj⊚,⊚xFj⊚}| ≠ 1 =⇒
(
toklen(D,S ′) ≥ (4f + 3f ′)J + 2f ′ + I︸ ︷︷ ︸∑

c∈D |c|−(2f+2f)′J+2f ′−4I

)
(42)

By construction f ′ = 2I + 1, which leads to:

∃j∈{1,...,J} |S ′ ∩ {⊚xTj⊚,⊚xFj⊚}| ≠ 1 =⇒
(
toklen(D,S ′) > (4f + 3f ′)J + 5I

)
(43)

This concludes the proof.

LemmaProofStep 3. (Step 3 ). Any instance of the tokenisation problem with a solution which compresses the text by at
least (2f + 2f ′)J + 2γ symbols must be produced by a max-2-SAT problem with at least γ satisfied clauses, i.e.,:(

toklen(D,S) ≤ (4f + 3f ′)J + 5I − 2γ︸ ︷︷ ︸∑
c∈D |c|−(2f+2f ′)J+2γ

)
=⇒ M2S(X , C, γ) (44)

Proof. Finally, we now know any solution with this compression must have—for any variable Xj—either subword ⊚xTj⊚
or ⊚xFj⊚. We can thus create a bijection ConvS→x between the set of possible vocabularies respecting this condition, and
the set of T/F assignments to SAT variables x :

ConvS→x (S) =
{

T if⊚xTj⊚ ∈ S
F if⊚xFj⊚ ∈ S

}J

j=1

(45)

Further, note that vocabularies of this form (as shown in Eq. (41)) lead to exactly (2f + 2f ′)J symbols being compressed in
D1 and D2. To achieve the target compression, a solution must thus compress D3 by at least 2γ symbols. Now note that for
any string ⊚L1

i ⊚ L2
i⊚ in D3 we have three compression options: ⊚L1

i⊚ will be compressed, saving 2 symbols; ⊚L2
i⊚

will be compressed, also saving 2 symbols; or nothing will be compressed. More specifically, ⊚L1
i⊚ can be compressed

if L1
i represents Xj and subword ⊚xTj⊚ exists, or if L1

i represents ¬Xj and subword ⊚xFj⊚ exists; the same is true for
⊚L2

i⊚. They cannot both be compressed, however, as there is only one symbol ⊚ between the literals. We thus get a
compression of 2 symbols for each of these strings if at least one of its literals has an associated subword in S. Note thus
that whenever a string ⊚L1

i ⊚ L2
i⊚ is compressed by 2 symbols using vocabulary S , the max-2-SAT disjunction L1

i ∨ L2
i

will also be satisfied by assignment x = ConvS→x (S); similarly, whenever this string suffers no compression (i.e., having

14



Tokenisation is NP-Complete

a compression of zero), the max-2-SAT disjunction will not be satisfied. As our condition assumes a compression of at
least 2γ symbols, we know that we have at least γ strings for which a literal has an associated subword. We can thus write:

2γ ≤ max
S⊂Σ+

∑
c∈D3

|c| − |tok	[S](c)| (46a)

s.t. |S| = |Σ|+ J and ∀j∈{1,...,J} |S ∩ {⊚xTj⊚,⊚xFj⊚}| = 1

= max
S⊂Σ+

∑
⊚L1

i⊚L2
i⊚∈D3

21

{ ⊚L1
i⊚ ∈ S
or

⊚L2
i⊚ ∈ S

}
(46b)

s.t. |S| = |Σ|+ J and ∀j∈{1,...,J} |S ∩ {⊚xTj⊚,⊚xFj⊚}| = 1

= max
x ∈{0,1}J

I∑
i=1

21x {L1
i ∨ L2

i } (46c)

=⇒ M2S(X , C, γ) (46d)

We thus know that, if a satisfying tokenisation solution exists, then the associated max-2-SAT problem will also be
satisfiable. This concludes the proof.

C. Proof of Lemma 6
Lemma 6. If a max-2-SAT instance is satisfiable, then the bottom-up tokenisation instance output by Reduction 2 is also
satisfiable. Formally:

M2S(X , C, γ) =⇒ Tok↑(R2(X , C, γ)) (23)

Proof. Our proof starts by first defining the three following lists of merges, which will be included in any satisfying solution
to the tokenisation problem:

m1 =
J

⃝
j=1

[
⟨⊗, xFj⟩, ⟨xTj ,⊗⟩

]
, m3 =

J

⃝
j=1

[
⟨xFj ,⊚⟩, ⟨⊚, xTj⟩

]
, m5 =

J

⃝
j=1

[
⟨⊚, xFj⟩, ⟨xTj ,⊚⟩

]
(47)

Now, without loss of generality, let a satisfying solution to max-2-SAT have values x⋆
j . We then construct two other lists

of merges, which depend on this max-2-SAT solution:

m2 =
J

⃝
j=1

[
⟨⊚, xTj⊗⟩ if x⋆

j = T

⟨⊗xFj ,⊚⟩ else

]
, m4 =

J

⃝
j=1

[
⟨⊚xTj ,⊚⟩ if x⋆

j = T

⟨⊚, xFj⊚⟩ else

]
(48)

In words, we create merges ⟨⊚, xTj⊗⟩ and ⟨⊚xTj ,⊚⟩ if x⋆
j is true, or ⟨⊗xFj ,⊚⟩ and ⟨⊚, xFj⊚⟩ if x⋆

j is false. We then create a
merge sequence by concatenating these lists in order:

m = m1 ◦m2 ◦m3 ◦m4 ◦m5 (49)

This gives us a total of |m| = K = 8J merges. Now we just need to count the symbols output by this solution to see if
Eq. (17) is satisfied, since any given tokenisation tok↑[m] will provide an upper bound on the optimal tokenisation in terms
of compression: ∑

c∈D
|tok↑[m](c)| ≥ min

m′∈M∗

∑
c∈D

|tok↑[m′](c)| (50)

s.t. |m′| = K

By applying the merges m, each string in D1 will be compressed into a single subword; note that m2 and m4 will have no
effect on these strings. This is easy to see by applying merges sequentially to these strings, as displayed in Tab. 1. leading to:∑

c∈(
⋃f

=1 D1)

|tok↑[m](c)| = 6fJ (51)

15



Tokenisation is NP-Complete

c tok↑[m1](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦m2 ◦m3 ◦m4 ◦m5](c) |tok↑[m](c)|

⟨⊚, xT
j⟩ · ⟨⊚xT

j⟩ · 1
⟨xF

j ,⊚⟩ · ⟨xF
j⊚⟩ · 1

⟨xT
j ,⊚⟩ · · ⟨xT

j⊚⟩ 1
⟨⊚, xF

j⟩ · · ⟨⊚xF
j⟩ 1

⟨xT
j ,⊗⟩ ⟨xT

j⊗⟩ · · 1
⟨⊗, xF

j⟩ ⟨⊗xF
j⟩ · · 1

Table 1: Example of applying m in D1 of bottom-up tokenisation problem obtained from Reduction 2. The dot symbol ·
denotes the string not changing under the given merge.

c tok↑[m1](c) tok↑[m1 ◦m2](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦m2 ◦m3 ◦m4](c) |tok↑[m](c)|
x⋆
j = T x⋆

j = F x⋆
j = T x⋆

j = F x⋆
j = T x⋆

j = F

⟨⊚, xT
j ,⊚⟩ · · · ⟨⊚xT

j ,⊚⟩ ⟨⊚xT
j⊚⟩ ⟨⊚xT

j ,⊚⟩ 1 2
⟨⊚, xF

j ,⊚⟩ · · · ⟨⊚, xF
j⊚⟩ ⟨⊚, xF

j⊚⟩ ⟨⊚xF
j⊚⟩ 2 1

⟨⊚, xT
j ,⊗⟩ ⟨⊚, xT

j⊗⟩ ⟨⊚xT
j⊗⟩ ⟨⊚, xT

j⊗⟩ · · · 1 2
⟨⊗, xF

j ,⊚⟩ ⟨⊗xF
j ,⊚⟩ ⟨⊗xF

j ,⊚⟩ ⟨⊗xF
j⊚⟩ · · · 2 1

Table 2: Example of applying m in D2 of bottom-up tokenisation problem obtained from Reduction 2. The dot symbol ·
denotes the string not changing under the given merge. m5 is not depicted as it does not affect this dataset.

For each pair of strings ⊚xTj⊚ and ⊚xFj⊚ in D2, one is compressed into a single subword while the other is only compressed
to two subwords—the one with xTj is compressed to a single symbol if x⋆

j = T and the one with xFj otherwise. The same is
true for each pair of strings ⊚xTj⊗ and ⊗xFj⊚, also in D2. This is displayed in Tab. 2. We thus have that, for each variable
Xj , the strings in D2 will occupy a total of (1 + 2 + 1 + 2)J characters, and:∑

c∈(
⋃f

=1 D2)

|tok↑[m](c)| = 6f ′J (52)

Similarly, each string in D3 and D4 will be compressed into only 2 symbols after this tokeniser is applied to it. We thus
have: ∑

c∈(
⋃f′′

=1 D3)

|tok↑[m](c)| = 4f ′′J,
∑

c∈(
⋃f′′′

=1 D4)

|tok↑[m](c)| = 4f ′′′J (53)

Finally, we have the strings in D5. These strings are constructed such that they will be compressed into 2 symbols if either
L1
i or L2

i evaluates to T, and kept with 3 symbols otherwise; see Tab. 4 for a detailed simulation of why this is the case. We
thus have:

∑
c∈D5

|tok↑[m](c)| =
I∑

i=1


3− 11



L1
i = Xj and ⟨⊚, xTj⊗⟩, ⟨⊚xTj ,⊚⟩ ∈ m

or
L1
i = ¬Xj and ⟨⊗xFj ,⊚⟩, ⟨⊚, xFj⊚⟩ ∈ m

or
L2
i = Xj′ and ⟨⊚, xTj′⊗⟩, ⟨⊚xTj′ ,⊚⟩ ∈ m

or
L2
i = ¬Xj′ and ⟨⊗xFj′ ,⊚⟩, ⟨⊚, xFj′⊚⟩ ∈ m




(54a)

= 3I −
I∑

i=1

1x ⋆{L1
i ∨ L2

i } (54b)

≤ 3I − γ (54c)

where, by construction, we have a merge in our sequence (e.g., ⟨⊚, xTj⊗⟩ or ⟨⊗xFj ,⊚⟩) if and only if its value is in a
satisfying assignment (e.g., x⋆

j = T or x⋆
j = F respectively). Summing together the lengths in Eqs. (51) to (54), we get that:∑

c∈D
|tok↑[m](c)| ≤ δ = (6f + 6f ′ + 4f ′′ + 4f ′′′) J + 3 I − γ (55)

16



Tokenisation is NP-Complete

D c tok↑[m1](c) tok↑[m1 ◦m2](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦m2 ◦m3 ◦m4](c) tok↑[m1 ◦m2 ◦m3 ◦m4 ◦m5](c) |tok↑[m](c)|
x⋆
j = T x⋆

j = F x⋆
j = T x⋆

j = F x⋆
j = T x⋆

j = F x⋆
j = T x⋆

j = F

D3 ⟨⊚, xTj ,⊚, xFj ,⊚⟩ · · · ⟨⊚xTj ,⊚, xFj⊚⟩ ⟨⊚xTj⊚, xFj⊚⟩ ⟨⊚xTj ,⊚xFj⊚⟩ · · 2
D3 ⟨⊗, xFj ,⊚, xTj ,⊗⟩ ⟨⊗xFj ,⊚, xTj⊗⟩ ⟨⊗xFj ,⊚xTj⊗⟩ ⟨⊗xFj⊚, xTj⊗⟩ · · · · · · 2
D4 ⟨⊚, xFj ,⊚, xTj ,⊗⟩ ⟨⊚, xFj ,⊚, xTj⊗⟩ ⟨⊚, xFj ,⊚xTj⊗⟩ · · ⟨⊚, xFj⊚, xTj⊗⟩ · ⟨⊚xFj⊚, xTj⊗⟩ ⟨⊚xFj ,⊚xTj⊗⟩ · 2
D4 ⟨⊗, xFj ,⊚, xTj ,⊚⟩ ⟨⊗xFj ,⊚, xTj ,⊚⟩ · ⟨⊗xFj⊚, xTj ,⊚⟩ ⟨⊗xFj ,⊚xTj ,⊚⟩ · ⟨⊗xFj ,⊚xTj⊚⟩ · · ⟨⊗xFj⊚, xTj⊚⟩ 2

Table 3: Example of applying m in D3 and D4 of the bottom-up tokenisation problem obtained from Reduction 2. The dot
symbol · denotes the string not changing under the given merge.

Assignment Condition c tok↑[m1](c) tok↑[m1 ◦m2](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦m2 ◦m3 ◦m4](c) |tok↑[m](c)|

L1
i = Xj and L2

i = ¬Xj′

x⋆
j = T ∧ x⋆

j′ = T

⟨⊚, xTj ,⊚, xFj′ ,⊚⟩

· ·

⟨⊚xTj ,⊚, xFj′⊚⟩

⟨⊚xTj⊚, xFj′⊚⟩ 2
x⋆
j = F ∧ x⋆

j′ = T · · ⟨⊚xTj ,⊚, xFj′⊚⟩ 3
x⋆
j = T ∧ x⋆

j′ = F · · ⟨⊚xTj⊚, xFj′⊚⟩ 2
x⋆
j = F ∧ x⋆

j′ = F · · ⟨⊚xTj ,⊚xFj′⊚⟩ 2

L1
i = ¬Xj and L2

i = Xj′

x⋆
j = T ∧ x⋆

j′ = T

⟨⊚, xTj′ ,⊚, xFj ,⊚⟩

· ·

⟨⊚xTj′ ,⊚, xFj⊚⟩

⟨⊚xTj′⊚, xFj⊚⟩ 2
x⋆
j = F ∧ x⋆

j′ = T · · ⟨⊚xTj′⊚, xFj⊚⟩ 2
x⋆
j = T ∧ x⋆

j′ = F · · ⟨⊚xTj′ ,⊚, xFj⊚⟩ 3
x⋆
j = F ∧ x⋆

j′ = F · · ⟨⊚xTj′ ,⊚xFj⊚⟩ 2

L1
i = ¬Xj and L2

i = ¬Xj′

x⋆
j = T ∧ x⋆

j′ = T

⟨⊗, xFj ,⊚, xFj′ ,⊚⟩ ⟨⊗xFj ,⊚, xFj′ ,⊚⟩

· ⟨⊗xFj ,⊚, xFj′⊚⟩ · 3
x⋆
j = F ∧ x⋆

j′ = T ⟨⊗xFj⊚, xFj′ ,⊚⟩ ⟨⊗xFj⊚, xFj′⊚⟩ · 2
x⋆
j = T ∧ x⋆

j′ = F · ⟨⊗xFj ,⊚, xFj′⊚⟩ ⟨⊗xFj ,⊚xFj′⊚⟩ 2
x⋆
j = F ∧ x⋆

j′ = F ⟨⊗xFj⊚, xFj′ ,⊚⟩ ⟨⊗xFj⊚, xFj′⊚⟩ · 2

L1
i = Xj and L2

i = Xj′

x⋆
j = T ∧ x⋆

j′ = T

⟨⊚, xTj ,⊚, xTj′ ,⊗⟩ ⟨⊚, xTj ,⊚, xTj′⊗⟩
⟨⊚, xTj ,⊚xTj′⊗⟩ ⟨⊚xTj ,⊚xTj′⊗⟩ ⟨⊚xTj ,⊚xTj′⊗⟩ 2

x⋆
j = F ∧ x⋆

j′ = T 2
x⋆
j = T ∧ x⋆

j′ = F · ⟨⊚xTj ,⊚, xTj′⊗⟩ ⟨⊚xTj⊚, xTj′⊗⟩ 2
x⋆
j = F ∧ x⋆

j′ = F · 3

Table 4: Example of applying m in D5 of the bottom-up tokenisation problem obtained from Reduction 2. The dot symbol ·
denotes the string not changing under the given merge. m5 is not depicted as it does not affect this dataset.

which concludes the proof.

D. Proof of Lemma 7
Lemma 7. If the bottom-up tokenisation instance output by Reduction 2 is satisfiable, the max-2-SAT instance which
generated it is as well. Formally:

Tok↑(R2(X , C, γ)) =⇒ M2S(X , C, γ) (27)

Proof. First, note that: ∑
c∈D

|c| = (12f + 12f ′ + 10f ′′ + 10f ′′′) J + 5 I (56)

Further, let:

toklen(D,m)
def
=
∑
c∈D

|tok↑[m](c)| (57)

m1 = ⃝J
j=1[⟨⊗, xFj⟩, ⟨xTj ,⊗⟩], m3 = ⃝J

j=1[⟨xFj ,⊚⟩, ⟨⊚, xTj⟩], m5 = ⃝J
j=1[⟨⊚, xFj⟩, ⟨xTj ,⊚⟩]

m⊚
j =

{
⟨⊚xTj ,⊚⟩, ⟨⊚, xFj⊚⟩
⟨⊚, xTj⊚⟩, ⟨⊚xFj ,⊚⟩

}
, m⊗

j =

{
⟨⊚, xTj⊗⟩, ⟨⊗xFj ,⊚⟩
⟨⊚xTj ,⊗⟩, ⟨⊗, xFj⊚⟩

}
mT

j =

{
⟨⊚xTj ,⊚⟩, ⟨⊚, xTj⊗⟩,
⟨⊚, xTj⊚⟩, ⟨⊚xTj ,⊗⟩,

}
, mF

j =

{
⟨⊚, xFj⊚⟩, ⟨⊗xFj ,⊚⟩,
⟨⊚xFj ,⊚⟩, ⟨⊗, xFj⊚⟩,

}
The maximum number of symbols in this dataset after compression is set to δ = (6f+6f ′+4f ′′+4f ′′′) J+3 I−γ.
This means that to satisfy this objective, there must exist a vocabulary whose tokeniser compresses the text by at least
(6f + 6f ′ + 6f ′′ + 6f ′′′) J + 2I + γ symbols. We now prove this lemma in five steps: 1 we show that any solution which
compresses the text by at least 6fJ symbols must include all merges in m1, m3, and m5; 2 we show that any solution

17



Tokenisation is NP-Complete

which compresses the text by at least (6f + 6f ′)J symbols must only include either merges in m1, m3, m5, or in either
m⊚

j or m⊗
j ; 3 we show that any solution which compresses the text by at least (6f + 6f ′ + 6f ′′)J symbols must include,

for each j ∈ {1, . . . , J}, exactly one merge in set m⊚
j and one in set m⊗

j ; 4 we show that any solution which compresses
the text by at least (6f + 6f ′ + 6f ′′ + 6f ′′′)J symbols must include, for each j ∈ {1, . . . , J}, exactly two merges in either
set mT

j or in set mF
j ; 5 we show that any solution which compresses the text by at least (6f +6f ′+6f ′′+6f ′′′)J +2I+γ

symbols must be produced by a max-2-SAT problem with at least γ satisfied clauses.

LemmaProofStep 1. (Step 1 ). Any solution which compresses the text by at least 6fJ symbols must include all merges in
m1, m3, and m5, i.e.,:(

toklen(D,m) ≤ 6fJ + (12f ′ + 10f ′′ + 10f ′′′) J + 5 I︸ ︷︷ ︸∑
c∈D |c|−6fJ

)
(58)

=⇒ ⃝J
j=1[⟨⊗, xFj⟩, ⟨xTj ,⊗⟩]︸ ︷︷ ︸

m1

⊂ m, ⃝J
j=1[⟨xFj ,⊚⟩, ⟨⊚, xTj⟩]︸ ︷︷ ︸

m3

⊂ m, ⃝J
j=1[⟨⊚, xFj⟩, ⟨xTj ,⊚⟩]︸ ︷︷ ︸

m5

⊂ m

Proof. We prove this statement by contradiction. Assume that one of the subwords above is not present in the tokenisers’
merge sequence m. In that case, the strings in D1 which contain this character string will not be compressed, and will thus
still be represented with 2 symbols. There will thus be at most 6J − 1 strings in D1 represented with a single symbol, and at
least one represented with two symbols. The minimum length achievable would thus be:

toklen(D,m) =
∑

c∈
⋃f

=1 D1

|tok↑[m](c)|

︸ ︷︷ ︸
≥(6J−1)f+2f

+
∑

c∈D\(
⋃f

=1 D1)

|tok↑[m](c)|

︸ ︷︷ ︸
>0

(59a)

> (6J + 1)f By construction f = (12f ′ + 10f ′′ + 10f ′′′) J + 5I (59b)
= (6f + 12f ′ + 10f ′′ + 10f ′′′) J + 5I (59c)

which contradicts the proof’s statement.

LemmaProofStep 2. (Step 2 ). Any solution which compresses the text by at least (6f + 6f ′)J symbols must only include
either merges in m1, m3, m5, or in either m⊚

j or m⊗
j , i.e.,:(

toklen(D,S) ≤ (6f + 6f ′)J + (10f ′′ + 10f ′′′) J + 5 I︸ ︷︷ ︸∑
c∈D |c|−(6f+6f ′)J

)
(60)

=⇒ m \ (m1 ◦m3 ◦m5) ⊆
{
⟨⊚, xTj⊗⟩, ⟨⊗xFj ,⊚⟩, ⟨⊚xTj ,⊚⟩, ⟨⊚, xFj⊚⟩
⟨⊚xTj ,⊗⟩, ⟨⊗, xFj⊚⟩, ⟨⊚, xTj⊚⟩, ⟨⊚xFj ,⊚⟩

}J

j=1︸ ︷︷ ︸⋃J
j=1(m

⊚
j ∪m⊗

j )

Proof. We again prove this statement by contradiction. Assume that m has all merges m1,m3,m5, but one of its other
merges is in neither of the sets m⊚

j and m⊗
j . This means that at least one of the sets m⊚

j ∪m⊗
j will not have at least two

merges in the solution; this is because there are J such sets (m⊚
j ∪m⊗

j ), which—coupled together with the 6J already
selected merges in m1,m3,m5—would amount to the maximum of 8J merges. In that case, the strings (e.g., ⊚xTj⊚,
⊚xFj⊚, ⊚xTj⊗ and ⊗xFj⊚) in D2 containing the characters this absent merge represents will not be fully compressed to
a single symbol, being represented with 2 symbols instead. Out of the 4J strings in D2 then, there will thus be at most
2J − 1 represented with a single symbol, and at least 2J + 1 represented with two symbols—resulting in a total of at least
2J − 1 + 2(2J + 1) = 6J + 1 symbols. The minimum length achievable would thus be:

toklen(D,m) =
∑

c∈
⋃f

=1 D1

|tok↑[m](c)|

︸ ︷︷ ︸
=6fJ

+
∑

c∈
⋃f′

=1 D2

|tok↑[m](c)|

︸ ︷︷ ︸
≥(6J+1)f ′

+
∑

c∈D\(D1∪D2)

|tok↑[m](c)|

︸ ︷︷ ︸
>0

(61a)

> 6fJ + (6J + 1)f ′ By construction f ′ = (10f ′′ + 10f ′′′) J + 5I (61b)
= (6f + 6f ′ + 10f ′′ + 10f ′′′) J + 5 I (61c)

18



Tokenisation is NP-Complete

which contradicts the proof’s statement.

LemmaProofStep 3. (Step 3 ). Any solution which compresses the text by at least (6f + 6f ′ + 6f ′′)J symbols must
include all merges in m1, m3, m5, and, for each j ∈ {1, . . . , J}, exactly one merge in set m⊚

j and one in set m⊗
j , i.e.,:(

toklen(D,m) ≤ (6f + 6f ′ + 4f ′′)J + 10f ′′′ J + 5 I︸ ︷︷ ︸∑
c∈D |c|−(6f+6f ′+6f ′′)J

)
(62)

=⇒ ∀j∈{1,...,J}

∣∣∣∣m ∩
{
⟨⊚xTj ,⊚⟩, ⟨⊚, xFj⊚⟩
⟨⊚, xTj⊚⟩, ⟨⊚xFj ,⊚⟩

}
︸ ︷︷ ︸

m⊚
j

∣∣∣∣ = 1 and

∣∣∣∣m ∩
{
⟨⊚, xTj⊗⟩, ⟨⊗xFj ,⊚⟩
⟨⊚xTj ,⊗⟩, ⟨⊗, xFj⊚⟩

}
︸ ︷︷ ︸

m⊗
j

∣∣∣∣ = 1

Proof. We again prove this statement by contradiction. First, assume that m contains all the merges in m1,m3,m5; further,
assume all its other merges are contained in sets m⊚

j and m⊗
j . Note now that, if any merge in m⊗

j is in the selected merges
m, the string ⊗xFj ⊚ xTj⊗ in D3 will be compressed to 2 symbols (e.g., ⟨⊗xFj ,⊚xTj⊗⟩); if none of these merges is present,
however, this string will only be compressed to 3 symbols (e.g., ⟨⊗xFj ,⊚, xTj⊗⟩). The same is true for strings ⊚xTj ⊚ xFj⊚
and merges in m⊚

j . Now, assume the contradictory case: for a value of j ∈ {1, . . . , J}, m does not satisfy the condition
above. As, by construction, our solution has K = 8J merges, and because |m1 ◦m3 ◦m5| = 6J , we know that we have
2J merges in sets m⊚

j and m⊗
j . As there are exactly 2J such sets, if the condition above does not hold, at least one of these

sets must have no merge present in m. In that case, the strings in D3 which contain the character string represented by these
absent merges will be compressed to three symbols, while others will be compressed to two symbols. There will thus be at
most 2J − 1 strings in D3 represented with two symbols, and at least one represented with three symbols. The minimum
length achievable would thus be:

toklen(D,m) =
∑

c∈
f⋃
=1

D1∪
f′⋃
=1

D2

|tok↑[m](c)|

︸ ︷︷ ︸
=(6f+6f ′)J

+
∑

c∈
f′′⋃
=1

D3

|tok↑[m](c)|

︸ ︷︷ ︸
≥(2J−1)2f ′′+3f ′′

+
∑

c∈
f′′′⋃
=1

D4∪D5

|tok↑[m](c)|

︸ ︷︷ ︸
>0

(63a)

> (6f + 6f ′)J + (4J + 1)f ′′ By construction f ′′ = 10f ′′′ J + 5I (63b)
= (6f + 6f ′ + 4f ′′ + 10f ′′′) J + 5 I (63c)

which contradicts the proof’s statement.

LemmaProofStep 4. (Step 4 ). Any solution which compresses the text by at least (6f + 6f ′ + 6f ′′ + 6f ′′′)J symbols
must include all merges in m1, m3, m5, and, for each j ∈ {1, . . . , J}, exactly one merge in set m⊚

j and one in set m⊗
j ,

such that either both these merges are in mT
j or both are in mF

j , i.e.,:(
toklen(D,m) ≤ (6f + 6f ′ + 4f ′′ + 4f ′′′)J + 5 I︸ ︷︷ ︸∑

c∈D |c|−(6f+6f ′+6f ′′+6f ′′′)J

)
(64)

=⇒ ∀j∈{1,...,J} |m ∩
{
⟨⊚xTj ,⊚⟩, ⟨⊚, xTj⊗⟩,
⟨⊚, xTj⊚⟩, ⟨⊚xTj ,⊗⟩,

}
︸ ︷︷ ︸

mT
j

| = 2 or |m ∩
{
⟨⊚, xFj⊚⟩, ⟨⊗xFj ,⊚⟩,
⟨⊚xFj ,⊚⟩, ⟨⊗, xFj⊚⟩,

}
︸ ︷︷ ︸

mF
j

| = 2

Proof. First, note that the conditions of the step of our proof are stricter than previous ones, so we assume the conditions of
steps 1 to 3 hold—i.e., m contains all merges in m1,m3,m5; further, it has one and only one merge from each set m⊚

j

and m⊗
j . (Note that m⊚

j ∪m⊗
j = mT

j ∪mF
j , and that the just-mentioned condition implies |m ∩ (mT

j ∪mF
j)| = 2.) We

now again prove this statement by contradiction. Consider now the case:∣∣∣∣m ∩
{
⟨⊚xTj ,⊚⟩, ⟨⊚, xTj⊗⟩,
⟨⊚, xTj⊚⟩, ⟨⊚xTj ,⊗⟩,

}
︸ ︷︷ ︸

mT
j

∣∣∣∣ = 2 or

∣∣∣∣m ∩
{
⟨⊚, xFj⊚⟩, ⟨⊗xFj ,⊚⟩,
⟨⊚xFj ,⊚⟩, ⟨⊗, xFj⊚⟩,

}
︸ ︷︷ ︸

mF
j

∣∣∣∣ = 2 (65)

19



Tokenisation is NP-Complete

If this is true, then strings ⊚xFj ⊚ xTj⊗ and ⊗xFj ⊚ xTj⊚ in D4 will be compressed to 2 symbols each (e.g., to ⟨⊚xFj ,⊚xTj⊗⟩
and ⟨⊗xFj ,⊚xTj⊚⟩ or ⟨⊚xFj⊚, xTj⊗⟩ and ⟨⊗xFj⊚, xTj⊚⟩ ); if this condition is false, however, one of these strings will only be
compressed to 3 symbols (e.g., to ⟨⊚xFj ,⊚xTj⊗⟩ and ⟨⊗xFj ,⊚, xTj⊚⟩). Now, assume the contradictory case: for a value of
j ∈ {1, . . . , J}, m does not satisfy the condition above. In that case, the strings in D4 for which the condition does not
hold will be compressed to 3 + 2 symbols, while others will be compressed to 2 + 2 symbols. There will thus be at most
2J − 1 strings in D4 represented with two symbols, and at least one represented with three symbols. The minimum length
achievable would thus be:

toklen(D,m) =
∑

c∈
f⋃
=1

D1∪
f′⋃
=1

D2∪
f′′⋃
=1

D3

|tok↑[m](c)|

︸ ︷︷ ︸
=(6f+6f ′+4f ′′)J

+
∑

c∈
f′′′⋃
=1

D4

|tok↑[m](c)|

︸ ︷︷ ︸
≥(2J−1)2f ′′′+3f ′′′

+
∑
c∈D5

|tok↑[m](c)|︸ ︷︷ ︸
>0

(66a)

> (6f + 6f ′ + 4f ′′)J + (4J + 1)f ′′′ By construction f ′′′ = 5I (66b)
= (6f + 6f ′ + 4f ′′ + 4f ′′′) J + 5 I (66c)

which contradicts the proof’s statement.

LemmaProofStep 5. (Step 5 ). Any instance of the tokenisation problem with a solution which compresses the text by at
least (6f + 6f ′ + 6f ′′ + 6f ′′)J + 2I + γ symbols must be produced by a max-2-SAT problem with at least γ satisfied
clauses, i.e.,:

(
toklen(D,S) ≤ (6f + 6f ′ + 4f ′′ + 4f ′′′)J + 3I − γ︸ ︷︷ ︸∑

c∈D |c|−(6f+6f ′+6f ′′+6f ′′′)J−2I−γ

)
=⇒ M2S(X , C, γ)

Proof. Finally, we now know any solution with this compression must have—for any variable Xj—either two merges in
mT

j or in mF
j (and never both). We can thus create a bijection Convm→x between the set of possible merge sequences

respecting this condition, and the set of T/F assignments to SAT variables x :

Convm→x (m) =

{
T if |m ∩mT

j | = 2
F if |m ∩mF

j | = 2

}J

j=1

(67)

Further, note that merge sequences of this form (as shown in Eq. (41)) lead to exactly (6f + 6f ′ + 6f ′′ + 6f ′′′)J symbols
being compressed in datasets D1 to D4. To achieve the target compression, a solution must thus compress D5 by at least
2I + γ symbols. Now note that for any string in D5, e.g., ⊚xTj ⊚ xFj′⊚, we have three compression options: ⊚xTj⊚ and
xFj′⊚ will be compressed, saving 3 symbols; ⊚xTj and ⊚xFj′⊚ will be compressed, also saving 3 symbols; or only ⊚xTj and
xFj′⊚ will be compressed saving only 2 symbols. More specifically, ⊚xTj⊚ will be compressed to a single symbol if merge
⟨⊚, xTj⊚⟩ exists; similarly, ⊚xFj′⊚ will be compressed to a single symbol if merge ⟨⊚xFj′ ,⊚⟩ exists. They cannot both be
compressed, however, as there is only one symbol ⊚ between the literals. We thus get a reduction of 3 symbols for each of
these strings if at least one of its literals has an associated merge in m. Note thus that whenever a string ⊚xTj ⊚ xFj′⊚ is
compressed by 3 symbols using merges m, the max-2-SAT disjunction Xj ∨ ¬Xj′ will also be satisfied by assignment
x = Convm→x (m); similarly, whenever this string is only compressed by two symbols, the max-2-SAT disjunction
will not be satisfied. A similar logic applies to all potential strings in D5: ⊚xTj ⊚ xFj′⊚, ⊚xTj′ ⊚ xFj⊚, ⊗xFj ⊚ xFj′⊚, and
⊚xTj ⊚ xTj′⊗. As our condition assumes a compression of at least 2I + γ symbols, we know that we have at least γ
strings for which a literal has an associated merge. Now, let m⋆ ∈ M∗ be a valid solution to Tok↑(R2(X , C, γ)) and

20



Tokenisation is NP-Complete

x ⋆ = Convm→x (m
⋆) the equivalent max-2-SAT assignment. We can thus write:

2I + γ ≤
∑
c∈D5

|c| − |tok↑[m⋆](c)| (68a)

=2I +
∑

c∈D5

1



(
xTj ∈ c

)
and

(
|mT

j ∩m⋆| = 2
)

or(
xFj ∈ c

)
and

(
|mF

j ∩m⋆| = 2
)

or(
xTj′ ∈ c

)
and

(
|mT

j′ ∩m⋆| = 2
)

or(
xFj′ ∈ c

)
and

(
|mF

j′ ∩m⋆| = 2
)


(68b)

=2I +

I∑
i=1

1x ⋆{L1
i ∨ L2

i } (68c)

=⇒ M2S(X , C, γ) (68d)

where 1x ⋆{L1
i ∨ L2

i } evaluates L1
i ∨ L2

i using assignments x ⋆. We thus know that, if a satisfying tokenisation solution
exists, then the associated max-2-SAT problem will also be satisfiable. This concludes the proof.

21


