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Abstract
Despite the widespread use of graph neural net-
works (GNNs) we lack methods to reliably quan-
tify their uncertainty. We propose a conformal
procedure to equip GNNs with prediction sets
that come with distribution-free guarantees – the
output set contains the true label with arbitrarily
high probability. Our post-processing procedure
can wrap around any (pretrained) GNN, and un-
like existing methods, results in meaningful sets
even when the model provides only the top class.
The key idea is to diffuse the node-wise confor-
mity scores to incorporate neighborhood infor-
mation. By leveraging the network homophily
we construct sets with comparable or better effi-
ciency (average size) and significantly improved
singleton hit ratio (correct sets of size one). In
addition to an extensive empirical evaluation, we
investigate the theoretical conditions under which
smoothing provably improves efficiency.

1. Introduction
From health to traffic forecasting, graph neural networks
(GNNs) have become a fundamental building block in a
variety of applications. Even though their versatility places
them in the spotlight among other machine learning topics,
they seldom provide reliable uncertainty estimates. Since
test accuracy is not necessarily a trustworthy indicator of
performance, it is essential to explicitly quantify the model
uncertainty for different inputs, especially in safety-critical
domains. Naively considering the predicted distribution over
labels (e.g. from the softmax) does not produce a good es-
timate of the true conditional probability p(y | x) since
models are often overconfident and uncalibrated (Guo et al.,
2017; Hein et al., 2019). Most uncertainty quantification
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methods are computationally expensive, and/or require mod-
ifications to the model architecture or at least retraining of
the model (Hüllermeier & Waegeman, 2021; Abdar et al.,
2021). Moreover, most techniques rely on the i.i.d. assump-
tion, which is clearly violated for node classification due to
the interdependence between nodes. Hence, methodological
contributions in this direction are often incompatible with
graph-based models such as GNNs (Stadler et al., 2021).

Conformal prediction (CP) is a promising paradigm for
constructing prediction sets (or intervals in the case of re-
gression) with a statistically sound coverage guarantee –
the output set covers the true label with any user-specified
probability. CP is distribution free and it relies on exchange-
ability, i.e. the only assumption is that every permutation
of the instances (in our case the nodes) is equally likely. In
other words, we assume that the indexing of the random
variables is immaterial. This makes CP a prime candidate
for uncertainty quantification on graphs since exchangeabil-
ity relaxes the i.i.d. assumption. In § 3 we discuss in detail
the settings (e.g. transductive vs. inductive) under which this
assumption is satisfied for semi-supervised node classifica-
tion. More generally, we prove that semi-supervised learning
with (subset-) permutation-equivariant models preserves ex-
changeability. Interestingly, even in cases where exchange-
ability may be violated, it is still possible to provide strong
guarantees while incurring a coverage penalty that is propor-
tional to the degree of distribution shift (Barber et al., 2022).

Although full conformal prediction has a significant com-
putational cost, split conformal prediction is fast, easy to
implement, and model and data-distribution independent
(Vovk et al., 2005; Shafer & Vovk, 2008). Since it uses the
model as a black box, there is no need to retrain or modify it.
Along with a provable coverage guarantee, the sets are inter-
pretable and can be used to communicate with non-expert
stakeholders, making CP readily applicable to different do-
mains like medicine (Vazquez & Facelli, 2022), electricity
market forecasting (Kath & Ziel, 2021), and robotics (Luo
et al., 2023). Contrary to full conformal, split conformal
prediction sacrifices statistical efficiency for computational
efficiency, while there are extensions that sit in the middle of
this tradeoff, e.g. cross-conformal prediction (Vovk, 2015),
and CV+/Jackknife+ (Barber, 2020; Barber et al., 2021). We
focus on the split conformal setting, but our diffusion-based
approach can be extended to CV+/Jackknife+.
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An important ingredient of CP is the conformity score
s(x, y) which quantifies the agreement between an observa-
tion x and a candidate label y. While the coverage guarantee
holds for any scoring function s, the output sets are more
efficient (i.e. smaller on average) the closer s is able to
track the true conditional label distribution (see § 4 for a
detailed discussion). Our key insight is that the network
structure for homophilous graphs contains valuable informa-
tion which we leverage to refine the node-wise conformity
scores. Specifically, our main contributions are:

• A method called Diffusion Adaptive Prediction Sets
(DAPS) to smooth node-wise conformity scores result-
ing in prediction sets with comparable or better effi-
ciency and significantly improved singleton hit ratio.

• Theoretical insights into when smoothing is beneficial,
and a rigorous discussion of graphs and exchangeability.

• The first thorough empirical evaluation of conformal
prediction for transductive node classification.

In contrast to existing baselines, our method produces mean-
ingful sets even without access to the class distribution. This
considerably expands its applicability, e.g. to cloud-based
models that only provide a prediction. DAPS is effective
and simple – which we argue is its biggest strength.

2. Background
First, we review the concept of standard conformal predic-
tion (as applied to e.g. image classifiers) without considering
any additional structure like network homophily. We also
cover the current state-of-the-art conformity scores.

Let π(x) ∈ △K be the distribution over K = |Y| class
labels predicted by some classifier f (pre-)trained on Dtrain.
For example, π(x) = σ(f(x)) where σ is the softmax
applied on the last layer of a neural network f , but any
classifier that outputs a distribution is applicable. Given
access to calibration data Dcal = {(x1, y1), . . . , (xn, yn)}
we can construct a prediction set C(xn+1) ⊆ Y for an
unseen test example xn+1 with the following coverage guar-
antee P [yn+1 ∈ C(xn+1)] ≥ 1 − α, where α is the user-
specified significance level. The only assumption is that
Dcal ∪ (xn+1, yn+1) is exchangeable.
Theorem 1 (Vovk et al. (2005)). Let {(xi, yi)}n+1

i=1 be ex-
changeable. For any score function s : X × Y 7→ R
and any significance level α ∈ (0, 1), define quantile

q̂ := Quantile
(

⌊(n−1)(α)⌋
n ; {s(xi, yi)}ni=1

)
and prediction

sets as Cα(xn+1) = {y : s(xn+1, y) ≥ q̂}. We have1

1− α+
1

(n+ 1)
≥ P [yn+1 ∈ C(xn+1)] ≥ 1− α (1)

1The upper bound holds when there are no ties between the
scores, but in practice, ties are broken by adding random noise.

The conformity score function s(x, y) quantifies the agree-
ment between an observation x and a candidate label y2.

Theorem 1 provides a marginal coverage guarantee that
holds true on average for all x. It has been shown that
without strong unrealistic assumptions, coverage guarantees
conditional on a given x are impossible (Vovk, 2012; Barber
et al., 2019). Additionally, with l = ⌊(n+1)α⌋, Vovk (2012)
shows that the coverage follows a Beta distribution

P [yn+1 ∈ Cα(xn+1) | {(xi, yi)}ni=1] ∼ Beta(n+1− l, l)

This means that if we resample the calibration set, the em-
pirical coverage on the test set will be centered on 1 − α.
Two conclusions are directly implied: (i) the number of cali-
bration samples has an effect on the concentration (and the
variance) of the coverage probability (and other metrics),
and (ii) the coverage is also upper-bounded, which in trivial
cases where α is smaller than the model’s accuracy, may
lead to systematic miscoverage (for details see § 6.1).

Conformity scores. An obvious idea for the conformity
score is s(x, y) := π(x)y where π(x)y is the predicted
probability for class y, which is known as threshold predic-
tion sets (TPS) (Sadinle et al., 2018). However, this scoring
method has the tendency to undercover hard examples and
overcover trivial ones (Angelopoulos & Bates, 2021). Hence,
a popular alternative is the adaptive prediction sets (APS)
(Romano et al., 2020) method. Assuming we have access to
an oracle, let p(y | x) be the ground-truth conditional label
distribution. We can form Cα by including classes one by
one, from the most likely class to the least likely, until the cu-
mulative probability becomes > 1−α. This is the motivation
behind APS. In place of the oracle, APS uses the estimated
π(x) defining s(x, y) := − (ρ(x, y) + u · π(x)y) where
ρ(x, y) :=

∑K
c=1 π(x)c1 [π(x)c > π(x)y] is the sum of

all classes predicted as more likely than y, and u ∈ [0, 1] is
a uniform random value that breaks potential ties between
different scores (Stutz et al., 2022)3.

One drawback of APS is that it results in large sets.
To overcome this, Angelopoulos et al. (2021) propose
a regularization approach, called regularized adaptive
prediction sets (RAPS), penalizing labels that are less
likely, and thus encouraging smaller sets. Formally,
let o(x, y) := |{c ∈ Y : π(x)y ≥ π(x)c}|
be the rank of y, the proposed score is s(x, y) =
− (ρ(x, y) + u · π(x)y + νmax (o(x, y)− k, 0)), where
ν and k are hyperparameters. Intuitively, the regularization
term penalizes classes that are at the bottom of the rank (af-
ter k) proportionally to ν, so to be selected for the predictive
set, a lower quantile is needed.

2Conformity scores can equivalently be defined as measuring
the nonconformity (disagreement).

3This randomization helps achieve an exact 1− α coverage.
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3. Graphs and Exchangeability
Let G = (X,A) be a graph where X is the matrix of
node features and A the adjacency matrix. Let Vl and Vu

be disjoint sets of labeled and unlabeled nodes and V =
Vl ∪ Vu. In all settings we split Vl = Vd ∪ Vc into a disjoint
development (training + validation) Vd and a calibration Vc

set. We discuss three settings, focusing mostly on the first.

Transductive case.4 Here the model has access to the entire
graph during training, calibration, and testing. We assume
an arbitrary fixed graph and that the union of calibration
and unlabeled nodes Vc ∪ Vu is exchangeable. The set of
development nodes Vd may have arbitrary dependencies.
In our experiments, we sample all of the labeled nodes Vl

uniformly at random so the exchangeability of Vc ∪ Vu is
satisfied by construction since any node has an equal chance
to land in Vc or Vu. It is plausible that in a real-world appli-
cation, the labeling budget is randomly allocated, but any
other exchangeable sampling strategy is permitted. Impor-
tantly, while the classifier has access to the node features
and the neighborhood structure for all nodes in the calibra-
tion set Vc, their labels are not revealed during training. In
other words, the classifier itself (and thus the score) cannot
distinguish between calibration Vc and unlabeled Vu nodes.

Simultaneous inductive case. This setting is identical to the
transductive case except the classifier is trained only on the
subgraph induced by Vd. The rest of the graph, including the
calibration and the unlabeled test nodes, are simultaneously
revealed after training and before calibration.

Inductive case. The classifier is again trained only on the
subgraph induced by Vd. We calibrate on the extended sub-
graph induced by Vd ∪ Vc. The rest of the unlabeled test
nodes may arrive either one at a time or in batches.

Exchangeability. We show that the conformity scores from
a transductive (and simultaneous inductive) semi-supervised
GNN are exchangeable. With s(v, y | X,A) = s(v, y) de-
note the score for node v and a candidate label y, which may
depend on all other nodes. We omit X and A for brevity.

Proposition 1. Assume that Vc ∪ Vu is exchangeable. Let
π(G) = Π ∈ △|V|×K be a matrix where row v is the
label distribution for node v predicted by any permutation
equivariant GNN classifier π(·) trained on the entire graph
G and only using labels for nodes in Vd. Then the scores
s(v, y) = Πvy where Πvy is the predicted probability for
node v and class y, are exchangeable for all v ∈ (Vc ∪ Vu).

4In the conformal prediction literature, full conformal predic-
tion is sometimes referred to as transductive, while split conformal
is referred to as inductive. This is orthogonal to the use of the terms
transductive and inductive in semi-supervised node classification
where they indicate which part of the graph is seen during training.
In this paper, we mostly focus on split conformal prediction and
GNNs that are trained in a transductive manner.

All omitted proofs are provided in § C. The gist here is that
exchangeability is preserved since the classifier is permuta-
tion equivariant and does not distinguish between calibration
Vc and unlabeled Vu nodes. Proposition 1 implies that the
APS and RAPS scores are also exchangeable in this setting.
More importantly, it implies that conformal prediction is
applicable to node classification and that the coverage guar-
antee must hold. Our experimental evaluation confirms this
since we can always obtain the desired coverage. Proposi-
tion 1, can also be trivially extended to the general trans-
ductive semi-supervised setting (e.g. on images) as long as
permutation equivariance is satisfied.

Beyond exchangeability. In the inductive case exchange-
ability is violated whenever the conformity scores for
calibration nodes are affected by a change in the graph.
Specifically, as soon as a test node becomes part of the
receptive field of any calibration node (e.g. its 2-hop
neighborhood for a 2-layer GNN). Nonetheless, even in
this case conformal prediction can still provide coverage
guarantees, incurring only a penalty on the coverage that
is proportional to the magnitude of the distribution shift
as measured by the total variation distance (see Barber
et al. (2022) for more details). We consider this setting
in § E.10. Clarkson (2022) uses the same approach to
adapt conformal prediction for inductive node classification
assuming exchangeability to be violated in both inductive
and transductive settings. Although this assumption is
correct for the inductive scenario, our Proposition 1 shows
that exchangeability is not violated in the transductive case.

Sparsity. We are often interested in the sparsely-labeled
setting where we have access to a relatively small set of
labeled nodes for training, validation, and now calibration.
Using an unrealistically large validation set, e.g. larger than
the training set, is one pitfall that can skew the evaluation
results of GNNs (Shchur et al., 2018). Moreover, if we
happen to have access to a large labeled set it is probably
more effective to use it for training than validation. These
concerns equally apply to the calibration set. Thus, under
label scarcity one reasonable strategy is to split the labeled
nodes into training, validation and calibration sets of the
same size. Since most graphs are sparse themselves, sparsity
leads to a serious issue for the NAPS approach proposed
by Clarkson (2022). Adapting the weighted variant of CP
from Barber et al. (2022), NAPS assigns a weight of one to
adjacent nodes, and a weight of zero otherwise. Now, due to
the two sources of sparsity, many of the unlabeled test nodes
have no calibration nodes in their immediate neighborhood.
This means we cannot form any valid prediction sets for
them (since all weights are zero), which happens for up to
79% of nodes as we show in § 6.1. This problem persist
regardless of whether we are in the inductive or transductive
setting. Our approach does not suffer from the same issue
and we can always obtain valid predictions for all nodes.
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Graph generative models and exchangeability. There is a
rich body of work on exchangeability and graph generative
models such as the Stochastic Block Model (SBM) (Hol-
land et al., 1983). There we can make a distinction between
node-exchangeable models like the SBM that generate either
dense or empty graphs with probability one (Lloyd et al.,
2012), and edge-exchangeable models (Cai et al., 2016) that
can exhibit sparsity. Since most real world graphs are sparse
one can conclude that edge-exchangeability is a more rea-
sonable assumption. However, this literature is orthogonal
to our work since it concerns generative models, while our
focus is on the transductive node classification setting where
we assume an arbitrary given graph. Here, our exchangeabil-
ity assumption is w.r.t. the node labels, regardless of how the
features vectors and the graph structure is generated. Since
we sample the set of calibration nodes uniformly at random,
exchangeability is satisfied by construction.

4. Properties of Conformal Scores
Efficiency. On the surface, conformal prediction seems
to sidestep the need for direct uncertainty quantification
where the goal is to provide calibrated probability estimates,
making it a convenient alternative. However, CP is highly
dependent on the choice of the scoring function, which in
turn depends on how well the unknown conditional label
distribution is approximated by the model. Even if we can
obtain a good approximation, all scoring functions are not
created equal. As shown by Romano et al. (2020), assuming
an oracle model that returns the true p(y | x), the scores
produced by APS provide the smallest possible sets that
satisfy the conditional coverage guarantee. We conjecture
an interesting implication of this result that, to the best of
our knowledge, has not been discussed before: we can use
efficiency to compare models. Let Sf

α be the average set size
at significance α using APS and probabilities estimated by
some model f . Similarly, let Sg

α be the average set size for
model g. If it holds Sf

α < Sg
α for all α, i.e. CP on top of the

model f always produces more efficient sets, then we can
conclude that it is likely that f better approximates the ora-
cle model. In § B we discuss how to estimate the efficiency
without having to explicitly compute it on the test set, and
we use this insight to select the calibration hyperparameters.

Score distribution. To understand the effect of different
scoring functions, we examine the distribution of confor-
mity scores. In Fig. 1, we show the distribution for APS,
RAPS and DAPS (introduced in § 5), where True denotes
the scores for ground-truth labels in the calibration set and
False denotes all other scores. We see that the penalty term
in RAPS causes the distribution of low-ranked scores to
concentrate on K − k locations. This makes RAPS unstable
since a small shift in the quantile threshold (e.g. due to
sampling) can have a large effect on the outcome, causing
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Figure 1. Histogram of conformity scores for ground-truth labels
(True) and all other labels (False) on CoraML for GCN.

RAPS to have a large variance, which we experimentally
verify (see § 6). Moreover, Einbinder et al. (2022) show that
for the oracle, the (conditional) distribution of true adaptive
conformity scores is uniform. RAPS scores strongly deviate
from this ideal case implying that it would be difficult
to conclude how well the predicted sets capture the true
p(y | x). Diffused scores deviate from distribution mildly.

Evaluation metrics and the singleton hit ratio. In the con-
formal prediction literature, the most commonly used metric
to compare different methods is efficiency (assuming valid
coverage). We argue that another important metric is the
singleton hit ratio defined as the fraction of examples with a
correct prediction set of size one, i.e. singletons that contain
the true label. For example, in a real-world application it is
reasonable to automatically process all singleton predictions
– simply predict the single class. However, a predicted set
of size ≥ 1 might trigger inspection by a human expert who
would have to decide how to handle the uncertain observa-
tion. Therefore, maximizing the singleton hit ratio would
minimize the inspection effort in this example. As we will
show in § 6, our approach significantly improves the single-
ton hit ratio even though it is not specifically designed to do
so. It is also important to note that blindly optimizing for effi-
ciency may not always be a good idea. Observations that are
truly aleatorically uncertain should indeed have larger sets.

5. Diffused Adaptive Prediction Sets
Our proposed DAPS exploits the graph structure by up-
dating the node-wise conformal scores s(v, y) based on
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neighborhood diffusion. We define the diffused score as

ŝ(v, y) = (1− λ)s(v, y) +
λ

|Nv|
∑
u∈Nv

s(u, y) (2)

where Nv is set of v’s neighbors, and λ is a diffusion pa-
rameter. Practically, given the matrix of node-wise scores
H ∈ R|V|×K the neighborhood diffused scores are Ĥ =
(1− λ)H + λD−1AH where D is the degree matrix. We
show that diffusion preserves exchangeability.

Proposition 2. Let H ∈ R|V|×K be any matrix where row
v is the conformal scores for all classes y for node v, and let
H be exchangeable for all v ∈ (Vc ∪Vu). Then the diffused
scores Ĥ are also exchangeable for all v ∈ (Vc ∪ Vu).

5.1. Homophily and Theoretical Benefits of Diffusion

The predicted label distribution approximates the ground
truth. To understand when diffusion is beneficial, we com-
pare the approximation error before and after diffusion.

Theorem 2. Let πi be the model’s approximation of the
ground-truth conditional probability vector pi, and let the
diffused distribution be π̂i = (1− λ)πi +

λ
|Ni|

∑
j∈Ni

πj .
Assume that the G = (X,A) is constructed such that
Aij = 1 iff ||pi − pj || ≤ ∆ where || · || is the total varia-
tion norm. Diffusion improves the approximation error ϵi =
||πi − pi||, i.e. ||π̂i − pi|| < ϵi if 1

|Ni|
∑

j∈Ni
ϵj +∆ < ϵi.

Assuming that the graph is constructed in a homophilous
manner – here edges are formed only between nodes with
ground-truth distributions closer than some ∆ – Theorem 2
shows that diffusion helps whenever the average approxima-
tion error in the neighborhood plus a ∆ penalty is smaller
than the node’s own error. Diffusion is beneficial since a
better approximation of pi leads to more efficient sets.5

Efficiency is affected by more than just the model accu-
racy. We can amplify or decrease the absolute probabilities
without affecting the accuracy by e.g. rank-preserving trans-
formations such as temperature scaling or uniform perturba-
tions (see § D for a discussion). Moreover, in § 6 we show
that diffusion has a negligible (positive) impact on accuracy
while significantly improving efficiency and singleton hit
ratio. This shows that diffusion does not change the most
likely label, but rather refines the distribution of labels.

Simulation. To illustrate the effect of diffusion we create
synthetic data where the true label distribution is known.
Then we simulate approximation errors by perturbing the
nodes – each node is randomly perturbed with noise which
either has a large magnitude with probability ps = 0.20 or

5The result in Theorem 2 is about diffusion in probability space,
while Eq. 2 performs diffusion on the scores. We investigate both
variants in § E.8. Moreover, it’s easy (but notationally more cum-
bersome) to derive a similar result for the score diffusion.
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Figure 2. Diffusion (right) corrects the perturbed synthetic data
(left). The RGB color shows the probability of each class.

small magnitude with probability 1− ps (see § D for more
details). The graph is constructed for ∆ = 0.4. In Fig. 2
we see that the diffused probability vectors can correct the
introduced perturbations. Intuitively, if the neighborhood of
a node is mostly unperturbed, its probability vector can be
reconstructed from its neighbors as long as their probability
vectors are similar enough (i.e. we have homophily).

5.2. Generalizations of Neighborhood Diffusion

We generalize diffusion beyond the 1-hop neighborhood.
For instance, we can incorporate the k-hop neighbors as
Ĥ = λ0H +

∑k
i=1 λi(D

−1A)i × H. We investigate the
2-hop variant with parameters λ0 and λ1. Inspired by la-
bel propagation (LP), we define another variant which we
call score propagation (SP), where each node propagates
its scores to its neighbors. We define the iterative score up-
date as Ĥ(t) = (1 − λ)Ĥ(0) + λĤ(t−1)D−1A, where
Ĥ(0) = H is the initial node-wise score, λ ∈ (0, 1) can
be interpreted as the teleport probability in the correspond-
ing random walk, and D−1A is the degree-normalized ad-
jacency matrix. Similar to LP, the close-form solution is
Ĥ = (1− λ)

(
I − λD−1A

)−1
H . In practice, we do not

perform the matrix inverse and run t = 10 iterations which
is enough for convergence. Note, since both of these trans-
formations are permutation equivariant it is easy to see that
they also preserve exchangeability like the 1-hop variant
(see proof of Proposition 2). In § 6 we show that the 2-hop
and SP variants improve over the 1-hop variant, however,
for simplicity, in most experiments we focus on the latter.
For code and computational complexity analysis see § A.

5.3. Hard Predictions

In some cases, the model outputs only the most likely label
and there is no information on the predicted distribution of
labels. For example, cloud-based models may provide such
hard predictions on purpose for privacy protection since
this makes membership inference attacks more difficult. In
this case, π(x)y = 1 for the predicted label, and 0 for
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Figure 3. Comparing efficiency and singleton hit ratio for all models on CoraML
(left) and CoauthorPhysics (right) datasets with adaptive coverage.

RAPS DAPS
Dataset Eff ↓ SH ↑ Eff ↓ SH ↑

CoraML -0.24 -0.22 -0.50 0.09
PubMed 0.07 -0.13 0.02 -0.01
CiteS 0.08 -0.24 -0.40 0.10
Co-CS -0.93 -0.09 -1.03 0.13

Co-Phy 0.03 -0.17 -0.22 0.09
Amz-C -0.35 -0.16 -0.77 0.19
Amz-P -0.02 -0.23 -0.48 0.16

Table 1. Performance relative to APS across all small
datasets for GCN model. DAPS is best overall.

all other labels. Therefore, the (empirical) distribution of
scores computed by APS will degenerate with all scores
concentrated on one of two locations, introducing many
ties between the scores. While the coverage guarantee will
still hold due to the built-in randomization with uniform
noise, the resulting prediction sets will be less informative.
Moreover, RAPS is not applicable at all since it penalizes
scores based on rank, but here there is no rank information
(all values are either 0 or 1). In contrast, DAPS will diffuse
the scores based on the neighborhood and recover some of
the missing information about the distribution of labels.

We provide some intuition on why diffusion works in this
case. Bahri & Jiang (2021) have shown that even if we only
have access to hard labels sampled from the true p(y | x),
the estimate pk(y | x) computed as the average label among
the k nearest neighbors, approaches the true distribution at
a minimax optimal rate for an appropriately chosen value
of k. Assuming that the graph is constructed based on the
k nearest neighbors in feature space, pk(y | x) coincides
with the diffused p̂(y | x) for λ = 1. Thus, if all predictions
are correct, π̂(y | x) also approaches the true distribution
at the same optimal rate. Since the model is never perfectly
accurate, there will be some estimation error, however, in
practice we observe that diffusion indeed provides a signif-
icant performance boost (see § 6). We leave it for future
work to theoretically characterize this setting in more detail.

6. Experimental Evaluation
We study the: (i) the impact of diffusion on efficiency and
singleton hit ratio for semi-supervised node classification,
(ii) the stability of all methods to random sampling and their
sensitivity to hyperparameters, (iii) and the performance
when we only have hard predictions. We compare our ap-
proach with the two strongest baselines APS and RAPS,
which do not explicitly take the graph structure into account
(although implicitly the graph is used to produce the proba-
bility vectors πi). For experimental evaluation, we put our

main focus on the transductive case. We also provide some
experiments for inductive and simultaneous inductive set-
tings in § E.10. Moreover, in § E.2 we study the combination
of the regularization from RAPS plus diffusion (although
it’s not recommended due to the instability of RAPS). In
§ E.4 we show that the margin score (Wijegunawardana
et al., 2020) also benefits from diffusion.

Models and datasets. We evaluate conformal prediction
considering five different models: GCN (Kipf & Welling,
2017), GAT (Velickovic et al., 2018), GraphSAGE (Hamil-
ton et al., 2017), and APPNP(Klicpera et al., 2019) as
structure-aware models and MLP as a structure-independent
model. We evaluate our approach on 10 datasets. The com-
mon citation graphs CoraML (McCallum et al., 2004),
CiteSeer (Sen et al., 2008), PubMed (Namata et al.,
2012), CoraFull(Bojchevski & Günnemann, 2018),
Coauthor Physics and Coauthor CS (Shchur et al.,
2018). The co-purchase graphs Amazon Photos and
Amazon Computers (McAuley et al., 2015; Shchur
et al., 2018). And two large graphs, OGBN Arxiv (Wang
et al., 2020) and OGBN Products (Bhatia et al., 2016).
CoraML⋆ and CoraFull⋆ are variants considering the
largest connected component. Datasets statistics are in § G.

Evaluation procedure. We randomly split the nodes into
train/validation/calibration/test sets. Since GNNs are sen-
sitive to splits, especially in the sparsely labeled setting
(Shchur et al., 2018), we train 10 different models with
different train/validation splits and report the average. We
randomly select 20 nodes per class for training/validation.
As described in § B, we split the calibration set into two
sets, one for tuning parameters like λ, and one for actual
calibration. To reflect a realistic scenario, the size of the
calibration (and tuning) set is the same as as the training set
size. Since APS is parameter-free, for fairness we increase
its calibration set such that it uses the same total number of
labels. We report average results over 100 calibration/test
splits. The calibration/test labels are never used for model
training. See § G for details on the labeling budget.
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Figure 4. DAPS scales to large datasets such as OGBN Products and provides a strong
improvement in both efficiency (left) and singleton hit ratio (right) for any coverage.
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Figure 6. DAPS for different values of λ for a GCN model trained on CiteSeer. From left to right: the effect of diffusion on (i) efficiency
(ii) singleton hit ratio (iii) accuracy. The change in accuracy is negligible while significantly improving the other two metrics.

6.1. Comparing Conformal Prediction Sets for GNNs

Efficiency and singleton hit ratio. As discussed in § 4,
efficiency (average set size) and the singleton hit ratio are
two important metrics. We consider two settings: a fixed
coverage with α = 0.08 and an adaptive coverage, related to
the actual accuracy of the model, which we discuss in § E.3.
Fig. 3 shows that DAPS slightly improves efficiency while
significantly increasing the singleton hit ratio compared
to APS and RAPS. We also study the performance across
different coverage guarantees. Fig. 4 shows the result for the
large OGBN Products dataset, again seeing that DAPS
performs best overall. We provide a comprehensive report
on all datasets and models in § E.9 with similar conclusions.
In § E.6 we also compare empty, singleton, and multi-sets.

On Fig. 4 (right) we observe a mild increase in the singleton
hit ratio for values of 1− α close to the model’s accuracy.
Since the coverage is distributed as a Beta distribution, there
is both an upper and a lower bound on the coverage meaning
that in these conditions CP is forced to discard potential sin-
gleton sets to satisfy the upper bound. As the coverage gets
closer to the accuracy, there is a potential for improvement
in the singleton hit ratio. The inflection point around 78.4%
(model’s accuracy with diffusion) is followed by a trade-off
between coverage and the singleton hit ratio.

Generalizations of diffusion. So far we focused on 1-hop
diffusion since it is simple and computationally inexpensive,
making it practical. We also evaluate the 2-hop and score
propagation (SP) variants introduced in § 5.2. In Fig. 5, for
a GCN model on CoraML, we see that both variants provide
further improvements. We leave it as a future work to study
what is the optimal form of diffusion.

Efficiency and accuracy. Model accuracy plays a sig-
nificant role in conformal prediction. One might wonder
whether the improvements from DAPS stem primarily from
improved accuracy. Fig. 6 (right) shows this is not the case.
In most cases DAPS does not increase the accuracy (when
predicting argmaxy ŝ(v, y)), while significantly increasing
efficiency and singleton hit ratio. We further investigate this
phenomenon in § E.5, and find a large subset of λ values
that lead to improvement in CP metrics, with the optimal
value of around λ = 0.5 for most datasets and models.

Stability. GNNs are known to be sensitive to data splits, so
we study the stability of all methods across varying condi-
tions. We explore two settings: (i) we tune the parameters
on a single given split and we evaluate the same parameters
on all other splits, (ii) we tune the parameters for a single
α and we evaluate on all other values of α. In Fig. 7 (left)
we see that the variance of RAPS across both metrics is
significantly larger compared to APS and DAPS (as visually
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Figure 7. Stability for a GCNmodel on CoraML across different initial splits (left, absolute
difference) and different coverage guarantees (right, enhancement relative to APS).

|Vc| NAPS DAPS

Eff ↓ N/A ↓ Eff ↓
5.2% 2.24 79% 1.81
10% 2.34 67% 1.82
20% 2.44 47.9% 1.81
50% 2.58 19.5% 1.80

Table 2. Comparison between DAPS and
NAPS (k = 1) for different calibration
set sizes in a transductive setting. N/A
means ”not applicable”. Note that DAPS
is always applicable to all test nodes.

shown by the rectangles). In Fig. 7 (right) we see the rela-
tive enhancement over APS. Each circle corresponds to a
different α and its size shows the magnitude. Unlike RAPS,
DAPS provides a consistent enhancement for all values.

Comparison with NAPS. As discussed in § 3 due to spar-
sity many test nodes are not adjacent to any calibration
nodes. As a result, NAPS fails to return a prediction set
for them. Table 2 shows that on CoraML with GCN under
the default evaluation setting with |Vc| = 5.2%, NAPS is
non-applicable and unable to make predictions for 79% of
test nodes (see § E.11 for details). Even if we make the size
of the calibration set unrealistically large, NAPS still fails
for many test nodes. DAPS is always applicable regardless
of the size of Vc, and returns more efficient sets.

Hard predictions. We compare only with APS since, as we
discussed in § 4, RAPS is not applicable when only hard pre-
dictions are given. If we naively use APS the coverage guar-
antee cannot be satisfied since we will still get ties despite
the built-in randomization (see § E.1 for details). To make
APS applicable we add a small constant ϵ to all classes and
renormalize (increasing 0 to ϵ and decreasing 1 to 1− |C|ϵ).
For comparability, we do the same for DAPS even though it
does not need it. In Fig. 8 we see that APS catastrophically
fails to provide useful sets. In contrast, DAPS still works
reasonably well, and its performance is close to the soft base-
line that has access to the full distribution. Moreover, we
see that for all methods the empirical coverage matches the
guaranteed coverage, which is a good sanity check against
theoretical and implementation bugs. The variance is also
on the expected order of magnitude (recall that the coverage
is distributed as Beta(n+ 1− l, l)).

Limitations. Diffusion relies on homophily. In § E.9 we
study graphs with lower homophily such as OGBN Arxiv,
where as expected diffusion does not provide a significant
boost, and has different trade-offs than RAPS. Moreover,
during tuning we can always select λ = 0 to disable diffu-
sion. More importantly, a general limitation of conformal

prediction is that the guarantees only hold marginally (over
all test nodes). Recall, that conditional coverage is impos-
sible without additional strong assumption (Barber et al.,
2019). Thus, we have to be careful when interpreting the
results. Nonetheless, in practice we observe good empirical
coverage for different subsets of nodes. In Fig. 9 we inves-
tigate coverage conditional on the class label, the set size
and the node degree and see that diffusion again provides
a strong benefit. In § E.7 we investigate empirical condi-
tional coverage and find that APS and DAPS are comparable.
Finally, coverage is also upper-bounded (see Theorem 1).

7. Related Work
Conformal prediction. First introduced by Vovk et al.
(2005), CP provides distribution-free guarantees assum-
ing only exchangeability (Lei & Wasserman, 2014; Shafer
& Vovk, 2008). Most works provide guarantees on the
marginal coverage of the true label, however, CP can be
generalized to any user-defined risk function (Angelopoulos
et al., 2022). Improving efficiency is often the goal. APS,
RAPS and our DAPS do not change the model, while Stutz
et al. (2022) improve efficiency by simulating calibration
during training. Einbinder et al. (2022) encourage unifor-
mity via a loss to improve conditional coverage. Fisch et al.
(2022) add a constraint on the false positive rate. There is
also significant effort in generalizing CP beyond exchange-
ability. Gendler et al. (2022) address the adversarial setting.
Tibshirani et al. (2019) define a weighted CP to handle
covariate shift. Finally, Barber et al. (2022) propose a gen-
eral framework where their guarantee has a penalty term
proportional to the degree of distribution shift.

Uncertainty quantification on graphs. There are few
studies on uncertainty quantification for graph-based mod-
els such as GNNs (Abdar et al., 2020). One challenge is
the interdependence between the nodes which prevents us
from e.g. directly applying methods designed for i.i.d. data.
Stadler et al. (2021) explicitly model epistemic and aleatoric
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Figure 9. Empirical coverage conditional on the class label (left), prediction set size (middle), and node degree (right). On the middle plot
the support for each set size is different per method. On the right plot the lines without any bar show the s.d. of APS from its mean.

uncertainty by propagating node-wise estimates along the
graph. In § F we show that their approach is orthogonal and
can be combined with our CP guarantees. They define three
axioms for uncertainty quantification with structural depen-
dency. DAPS aligns with the third, indicating that a node’s
aleatoric uncertainty should increase when connected to
conflicting nodes or nodes with higher aleatoric uncertainty.
Hsu et al. (2022b) study calibration and temperature scaling,
and Hsu et al. (2022a) study edge-wise calibration. A few
works study out-of-distribution detection (Liu et al., 2023;
Huang et al., 2022; Bazhenov et al., 2022).

Conformal prediction on graphs. Wijegunawardana et al.
(2020) is the first to apply CP on graphs. They propose a
margin-based score, which unlike DAPS, does not explicitly
account for the graph structure. In § E.9 we show that their
score also benefits from diffusion. Nonetheless, we argue
that using APS as the base score is more suitable, since
similar to TPS, the margin score may undercover hard ex-
amples. Recently, Clarkson (2022) introduces NAPS for the
inductive case using the beyond-exchangeability technique
from Barber et al. (2022), dismissing the transductive case
as unsuitable. In § 3, we highlighted the major limitations
of NAPS (see also § E.11 for a longer discussion). Along-

side our main focus on the transductive scenario, we provide
additional experiments on the inductive setting in § E.10.
Finally, Kang et al. (2022) derives a variant of Jackknife+
for GCN. Different from existing works, in our score we
explicitly leverage homophily while still providing a valid
coverage guarantee.

8. Conclusion
We propose conformal prediction sets that explicitly account
for the graph structure. The key insight is that diffusing the
conformity scores along the graph leads to improved uncer-
tainty quantification in presence of homophily. We discuss
exchangeability for graphs and GNNs, and the theoretical
conditions under which diffusion is beneficial. Our method,
DAPS, performs on par or better than the baselines in effi-
ciency and significantly better w.r.t. singleton hit ratio.
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A. Conformal Prediction Algorithm
Assuming that a black box model f has been chosen, as well as a score function s(·, ·), the construction of a conformal
prediction set is straightforward. On a hold-out calibration set, we compute conformal scores for each pair of input and the
corresponding true class. Then we sort them and save the α quantile as a calibration quantile variable. During the evaluation
procedure, for each datapoint, we evaluate the conformal score for each of the classes, and we take those with scores higher
than the quantile as elements of the prediction set. See Fig. 10 for a better intuition about the position of the quantile with
respect to true classes and false classes. Algorithm 1 outlines the steps to obtain a prediction set with a coverage guarantee
equal to a user-selected 1− α.

Algorithm 1 Conformal prediction pseudo-code

Input: Model f
Score function s
Held-outa labeled calibration data Dcal = {(xi, yi)}ni=1

Unseen new input (xn+1, ?)
Coverage guarantee 1− α

1: ∀(xi, yi) ∈ Dcal compute s(xi, yi) = si
2: Sort all scores S = {si}ni=1

3: Set q̂ := Quantile
(

⌊(n−1)(α)⌋
n ;S

)
4: Compute s(xn+1, yj), for all yj ∈ Y

Return: Cα(xn+1) = {yj : s(xn+1, yj) ≥ q̂}

aRecall that in the transductive setting, the feature and graph structure of the
calibration (and the test nodes) are available to the model during training, but their
labels are not. Thus, held-out here refers to the labels.

In addition to the mentioned algorithm, the Python implementation including the code to reproduce reported results is
accessible at https://github.com/soroushzargar/DAPS.

A.1. Computational Complexity of DAPS

Alongside the time complexity of conformal prediction, to apply DAPS or its generalizations we have to consider additional
computation. Simple diffusion takes O(E), and its k-hop generalization takes O(k ·E) additional runtime. This complexity
is added to the whole procedure and we need to run it only once (for transductive setting). The complexity of the SP
generalization is dominated by the complexity to compute the propagated scores. In practice, we do not compute the inverse
matrix but rather use only a few (e.g. 10) steps of power iteration which is enough to get a good approximation. There is
a rich literature on scalable approximations to personalized PageRank that is also applicable here. We highlight that we
applied DAPS to OGBN Products a graph with more than 2.4 million nodes (with a wall-clock time of 631 ms).

Experimental setting. We based our implementation on PyTorch Geometric (Fey & Lenssen, 2019). Given the computation
efficiency of DAPS, we run all our experiments both on CPU (Intel(R) Xeon(R) Platinum 8368 CPU @ 2.40GHz) and, even
if not necessary, on GPU (NVIDIA A100-SXM4-40GB).

B. Tuning Calibration Parameters
Split conformal prediction relies on held-out labeled data for calibration. It is not always realistic to assume that a large
proportion of data is accessible for this purpose. This restriction becomes more critical in sparsely-labeled semi-supervised
node classification tasks since the goal is to predict all node labels in the graph based on a small proportion of training nodes.
Methods like DAPS and RAPS require additional labeled data for tuning calibration parameters. Naively, one might require
two other labeled sets, analogous to the calibration/evaluation sets used in the final algorithm, in order to estimate the effect
of different hyperparameters (e.g. different values of λ). We show that tuning can be conducted using only one set, which
we call the tuning set. Our tuning procedure is the same as the procedure in RAPS, which uses a tuning set to select λ and k.
Here, we only provide a principled justification of why this is a good idea. Specifically, we show that the expected set size
on the tuning set is almost surely the same as the expected set size on the test set.
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Figure 10. Scores with respect to the selected quantile. A density plot of the scores (left) where solid lines show the calibration set and
dashed lines show the test set. The 4×4 boxes (middle and right) show a histogram of calibration scores (upper row) and test scores (lower
row) for both true classes (green) and false classes (orange). On all plots, the dashed black line shows the place of the α quantile.

The expected set size is determined by: (1) performing a calibration over tuning scores, (2) defining prediction sets for
elements in the same tuning set, and finally (3) computing the effective set size for nodes in the tuning set. The calculated
number is an approximation for the effective set size over the rest of the unlabeled nodes. Formally, the expected set size for
the conformal prediction with 1− α coverage and the holdout tuning set Iτ is derived as

E[ESSα(D)] =

∑
xi∈Iτ

∑
j∈{1,...,C} I

(
s(xi, y

(j)) > Quantile
(

⌊(n−1)(α)⌋
n ; {s(xi, yi)}ni=1

))
|Sτ |

(3)

where s(xi, y
(j)) is the score value for class j and node i in the tuning set. This could be rewritten as E[ESSα(D)] =

1
|D|

∑
x∈D E[ESSα(x)].

For simplicity, we consider binary classification, but the extension to multiple classes is trivial. Assume S =
{s(xi, yi)}ni=1 ∼ D is sampled exchangeably from the test dataset. Note that in this notation yi is the true class for

xi; we also call the false class as y′i. For 1− α coverage, we take q̂ := Quantile
(

⌊(n−1)(α)⌋
n ; {s(xi, yi)}ni=1

)
. There exists

a αr for the derived value q̂ for which we have q̂ = Quantile
(

⌊(n−1)(αr)⌋
n ; {s(xi, y

′
i)}ni=1

)
. For each individual node xi

we assume that the probability of class y(1) is ηi, hence the probability of y(2) is equal to 1− ηi. The expected set size for
the node xi is based on two independent random events; y(1) ∈ C(xi), and y(2) ∈ C(xi). If each of these classes is selected
in the prediction set, the expected set size increases by one unit; hence the expected prediction set size for the set C(xi) is

E[|C(xi)|] = 1× P[y(1) ∈ C(xi)] + 1× P[y(2) ∈ C(xi)] (4)

We can expand P[y(j) ∈ C(xi)] to two conditions based on whether y(j) is true, and a supplementary term that determines
whether the set contains y(j) given that it is true or false:

E[|C(xi)|] = [ηi(1− α) + (1− ηi)(1− αr)] + [(1− ηi)(1− α) + (ηi)(1− αr)] = (1− α) + (1− αr) (5)

Based on definition of αr we have

E[|C(xi)|] = 1− α+
∑

j:y(j) ̸=yi

I
(
s(xi, y

(j)) > Quantile
(
⌊(n− 1)(α)⌋

n
; {s(xi, yi)}ni=1

))
(6)

This yields an expected prediction set size for any node inside the tuning set. Similarly we have E[ESSα(I)] =
1
|I|

∑
xi∈I E[ESSα(xi)]. As the tuning set I is exchangeably sampled from D, the plug-in estimator is unbiased (see
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Figure 11. The density histogram of the scores in the calibration set (upper left) and the evaluation set (lower left) alongside the marginal
difference between the estimated set size and the actual effective set size (right). As shown in the figure, the estimation error for the
average set size is centered around zero and the concentration of this error is correlated with the size of the calibration set. Here we use
the APS score, but similar results hold for all other scores.

(Berti & Rigo, 1997)), hence E[ESSα(D)] = E[ESSα(I)]. Note, for the special case of i.i.d., one can also use the Dvoret-
zky–Kiefer–Wolfowitz inequality (Dvoretzky et al., 1956) to characterize the approximation error, however, we omit this
discussion here since we focus on the more general exchangeable setting.

In our experiments, we use a tuning set with the same size as the calibration set (and the training/validation sets) of just
20 nodes per class on average. Thus, the total sum of labeled nodes used is still relatively small. This is in contrast to e.g.
applications of CP in computer vision, where a large number of labels are available. Both RAPS and DAPS share the same
random indices for the splits. We exclude the tuning set from any further evaluation or calibration steps. In other words,
to make sure that the coverage guarantee is not violated we do not reuse the tuning set during the final calibration which
uses “fresh” data. As an empirical verification of the above statement, we empirically compare our estimate of the expected
average set size (i.e. the efficiency) with the average set size on the test set. In Fig. 11 we see that the distribution of errors
has a mean around zero and the variance scales with the number of calibration samples.

C. Proofs
In this section, we provided the proofs that were omitted from the main paper.

Proposition 1. Assume that Vc ∪ Vu is exchangeable. Let π(G) = Π ∈ △|V|×K be a matrix where row v is the label
distribution for node v predicted by any permutation equivariant GNN classifier π(·) trained on the entire graph G and only
using labels for nodes in Vd. Then the scores s(v, y) = Πvy where Πvy is the predicted probability for node v and class y,
are exchangeable for all v ∈ (Vc ∪ Vu).

Proof of Proposition 1. Let g(X,A) be the function that takes the entire graph, trains the model π(·) using only the
labels for the nodes in Vd, and returns the prediction only for the calibration and test nodes Vc,Vu. Since, we assume
that π(·) is permutation equivariant, this implies that g is also permutation equivariant w.r.t. a subset of nodes. To see
this, we construct the matrix Π as the prediction matrix Π = π(X,A). This matrix consists of a block of labeled nodes,
corresponding to the nodes in Vd, and two blocks of nodes corresponding to Vc and Vu respectively. Without loss of
generality, let the first |Vd| rows correspond to Vd, the next |Vc| rows correspond to Vc, and the final |Vu| rows correspond to
Vu, i.e. Π = [Πd,Πc,Πu]T where Πd,Πc,Πu correspond to the three blocks. Then, g(X,A) = [Πc,Πu]T . Since π is
permutation equivariant, we have that for any permutation ω, it holds g(ωX, ωA) = ω[Πc,Πu]T . Now, the result directly
follows given the assumption that the nodes in Vc ∪ Vu are exchangeable and the fact that permutation equivariant functions
preserve exchangeability (Kuchibhotla, 2020).

Recall, that the while we do have and do use the labels for Vc for calibration, these labels are not used during training.
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Proposition 2. Let H ∈ R|V|×K be any matrix where row v is the conformal scores for all classes y for node v, and let H
be exchangeable for all v ∈ (Vc ∪ Vu). Then the diffused scores Ĥ are also exchangeable for all v ∈ (Vc ∪ Vu).

Proof of Proposition 2. Similar to the proof of Proposition 1, the diffusion of the scores defined in Eq. 2 that results in Ĥ is
permutation equivariant for all nodes, and hence also for all v ∈ (Vc∪Vu). To see this notice that Ĥ = (1−λ)H+λD−1AH
is a special case of a message passing GNN layer. It follows that the diffused scores are also exchangeable for all
v ∈ (Vc ∪ Vu).

Theorem 2. Let πi be the model’s approximation of the ground-truth conditional probability vector pi, and let the diffused
distribution be π̂i = (1 − λ)πi +

λ
|Ni|

∑
j∈Ni

πj . Assume that the G = (X,A) is constructed such that Aij = 1 iff
||pi − pj || ≤ ∆ where || · || is the total variation norm. Diffusion improves the approximation error ϵi = ||πi − pi||, i.e.
||π̂i − pi|| < ϵi if 1

|Ni|
∑

j∈Ni
ϵj +∆ < ϵi.

Proof of Theorem 2. To show ∥pi − π̂i∥ < ∥pi − πi∥ = ϵi we use the definition of π̂i

∥pi − π̂i∥ = ∥pi − (1− λ)πi −
λ

|Ni|
·
∑
j∈Ni

πj∥ (7)

Leveraging the fact that pi = (1− λ · pi) + λ · pi, we have∥∥∥∥∥∥pi − (1− λ)πi −
λ

|Ni|
·
∑
j∈Ni

πj

∥∥∥∥∥∥ =

∥∥∥∥∥∥(1− λ)(pi − πi) + λ

pi −
1

|Ni|
∑
j∈Ni

πj

∥∥∥∥∥∥ (8)

≤ (1− λ)∥pi − πi∥+
λ

|Ni|
∑
j∈Ni

∥pi − πj∥ (9)

≤ (1− λ)ϵi +
λ

|Ni|
∑
j∈Ni

∥pi − πj∥ (10)

≤ (1− λ)ϵi +
λ

|Ni|
∑
j∈Ni

(∥pi − pj∥+ ∥pj − πj∥) (11)

≤ (1− λ)ϵi +
λ

|Ni|
∑
j∈Ni

(∆ + ϵj) (12)

Where we repeatedly use the triangle inequality.

Conclusively, we want to prove that

(1− λ)ϵi +
λ

|Ni|
∑
j∈Ni

ϵj + λ∆ < ϵi (13)

λ

|Ni|
∑
j∈Ni

ϵj + λ∆ < λϵi (14)

By dividing everything by λ

1

|Ni|
∑
j∈Ni

ϵj +∆ < ϵi (15)

Which is the basic assumption of the proposition.
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Figure 12. Accuracy and Jensen Shannon divergence for various degrees of perturbation over the ground-truth label distribution. The
x-axis shows the intensity of noise applied to highly perturbed nodes (ϵh) and the y-axis shows the probability of the node being highly
perturbed (ps). A highly accurate model does not imply a good approximation of the true label distribution.

D. Synthetic Experiment with Access to the Ground-Truth Distribution
Additional to the provided theoretical insights on the effect of neighborhood diffusion, we also carried out a supplementary
experiment utilizing synthetic data. In § 5.1 we discussed a perturbation of the ground-truth data. We use the following
perturbation scheme:

π(xi) = πi =

{
pi + u · ϵh if Bernoulli(ps) = 1

pi + u · ϵl, otherwise
(16)

where ϵh is a high-magnitude perturbation coefficient, ϵl is a low-magnitude perturbation coefficient, u is a uniform random
variable, and ps defines the probability of a node being highly perturbed. We make sure that the resulting probability vector
is normalized. The result is a perturbed distribution that aligns with ground truth for many nodes (with a very small shift)
while highly perturbing the small proportion of selected nodes.

For the experiment in Fig. 2 we set ϵh = 0.7, ϵl = 0.1, and ps = 0.2. First, we generate a dataset based on two different
multivariate Gaussian distributions. Each point in the resulting dataset would be a conditional probability vector indicating
how much the point is likely to belong to each class. Labels are also sampled from the same distribution. Here the graph is
the k-NN graph with k = 15. In Fig. 12 we study the effects of changing the high-magnitude perturbation coefficient ϵh from
0.0 to 0.9. We measure the effect on the accuracy and on the Jensen–Shannon divergence to the ground-truth probability
distribution. We see that a perturbation up to a certain degree can cause a large JS divergence from the ground-truth while
preserving the rank of the class with the highest probability (and thus the accuracy). This shows that an accurate model does
not guarantee a good approximation of the label distribution.

Potential issue with smoothed probabilities. One potential pitfall of the diffusion approach which is also observable in the
synthetic data experiment (see Fig. 2) is that it results in less confident probability vectors. This is a general phenomenon
since there is an aggregation involved in the transformation. One can notice the resulting underconfidence in Fig. 1 where
for DAPS we see a decrease at the end (highly-confident) part of the histogram. However, the denoising effect of diffusion
makes such a valuable enhancement, that the effect of smoothing is negligible. This issue can be mitigated with temperature
scaling, however we leave this for future work.
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E. Additional Experiments and Experimental Details
E.1. Technical Details for the Hard Prediction Case

As mentioned in § 4 and further evaluated in § 6, one additional application of neighborhood diffusion is in cases where
only the hard predictions of nodes are provided. Technically, in such cases methods like APS can not perform as expected
since the one-hot probability vector causes many ties in the score space. Even the built-in uniform randomization in APS
can not overcome this problem. Inspecting the definition of APS, we see that the classes with probability of 0 are directly
mapped to −1 which again results in ties despite the randomization. As a technical solution to this problem, we increase
each non-top class by a small constant ϵ = 0.001 and decrease the top class by |C| · ϵ. After this step, the resulting vectors
can be used with APS and we can obtain valid coverage. However, APS results in large prediction sets for almost all inputs.
This makes sense, since there is no information about the ranking of the (non-top) classes. As we discussed before, this
is also the reason why RAPS is not applicable, even with the ϵ transformation. For a fair comparison, we apply the same
transformation to DAPS even though it can work without it.

E.2. Combination of Scoring Functions

In addition to individually comparing DAPS and RAPS (see § E.9), another idea is to apply each of the approaches as an
add-on to the other. This means that we can perform the regularization defined in RAPS on top of the diffusion in DAPS
or vice versa. We evaluate the enhancement of such combined scores (relative to APS) in Fig. 13. We see that diffusion
provides additional benefits to RAPS. However, we do not recommend using these combinations since they inherit the
instabilities of RAPS and its sensitivity to different initial splits and different α values.
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Figure 13. Applying RAPS regularization over DAPS (left two plots), and diffusion over RAPS (right two plots). For each pair of plots
the left subplot shows the enhancement in efficiency and the right subplot shows the enhancement in singleton hit ratio (the results are
relative to APS). All plots of this figure have the k = 0 for RAPS.

E.3. Adaptive Coverage Guarantee

Many recent studies report their results on a fixed coverage guarantee. We argue that an adaptive coverage guarantee (which
we define next) is more meaningful. In any case, we report results using both fixed and adaptive coverage. To make the
coverage adaptive, for each dataset-model pair, we set 1− α relative to the accuracy of the selected model for the selected
dataset. In our examples, this value is set to a weighted average between the model accuracy and 100% with weights ( 13 ,

2
3 ).

This results in a value of 1− α that is always larger than the accuracy. For example, if the model has accuracy of 97% it is
less informative to use a fixed 1− α = 0.9 which is often the default. Here the adaptive coverage 1− α = 0.99 is more
realistic. For all results in the main paper, except Fig. 7 (right), we use adaptive coverage, the concrete selected values are
given in Table 5. The value of α is important since the performance of CP is sensitive to the distance between 1− α and the
model’s accuracy (see Fig. 4 as one of many examples).

In other words, assuming everything else is the same, a model with higher accuracy is expected to exhibit superior
performance under a fixed coverage guarantee. Hence, it is essential to examine different methods for both fixed and adaptive
coverage. Fig. 14 illustrates a significant difference between the two settings (fixed and adaptive coverage). Nonetheless,
DAPS performs well in both settings. Since the accuracy of Coauthor Physics and Coauthor CS is relatively high
(see Table 5), all models including APS seem to perform well for fixed coverage, which is not true for the adaptive coverage.

18



Conformal Prediction Sets for Graph Neural Networks

0.1 0.2 0.3 0.4 0.5 0.6
Singleton Hit Ratio

1.5

2.0

2.5

3.0

3.5

E
ffi

ci
en

cy

APS
RAPS
DAPS

GCN
GAT
SAGE
MLP
APPNPNet

0.2 0.3 0.4 0.5 0.6
Singleton Hit Ratio

1.8

2.0

2.2

2.4

2.6

2.8

E
ffi

ci
en

cy

0.2 0.3 0.4 0.5
Singleton Hit Ratio

1.5

1.6

1.7

1.8

E
ffi

ci
en

cy

0.30 0.35 0.40 0.45 0.50
Singleton Hit Ratio

1.50

1.55

1.60

1.65

1.70

1.75

E
ffi

ci
en

cy

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Singleton Hit Ratio

1.5

2.0

2.5

3.0

3.5

E
ffi

ci
en

cy

0.2 0.3 0.4 0.5 0.6
Singleton Hit Ratio

1.8

2.0

2.2

2.4

2.6

2.8

3.0

E
ffi

ci
en

cy

0.4 0.5 0.6 0.7 0.8 0.9
Singleton Hit Ratio

1.0

1.5

2.0

2.5

3.0

3.5

E
ffi

ci
en

cy

0.2 0.3 0.4 0.5 0.6 0.7
Singleton Hit Ratio

1.5

2.0

2.5

3.0

3.5

4.0

4.5

E
ffi

ci
en

cy

0.5 0.6 0.7 0.8 0.9
Singleton Hit Ratio

1.0

1.2

1.4

1.6

1.8

E
ffi

ci
en

cy

0.4 0.5 0.6 0.7 0.8
Singleton Hit Ratio

1.2

1.4

1.6

1.8

2.0

E
ffi

ci
en

cy

Figure 14. The Pareto plot of different CP approaches for different datasets. From top to bottom, each row illustrates the evaluation
of the approaches, namely APS, RAPS and DAPS, on CoraML, PubMed, CiteSeer, Coauthor CS, and Coauthor Physics
respectively. The left plot in each row is regarding an experiment on 92% fixed coverage, and the right plot illustrates the result for
adaptive coverage. DAPS performs best on average for both fixed and adaptive coverage.
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E.4. Margin Scoring Function

In this study, we focused on applying diffusion on top of the baseline APS score function. However, this approach is
equally applicable to any other score function as well. This is also true for the regularization idea behind RAPS presented in
Angelopoulos et al. (2021). In § 4 we argued that APS is the most suitable choice. However, since Wijegunawardana et al.
(2020) proposes a different scoring function called “margin scoring”, we also evaluate our diffusion method on top of that as
well. The score function is defined as s(x, y) = π(x)y −maxy′ ̸=y π(x)y′ . Fig. 15 presents the evaluation of the diffusion
and regularization variants of the margin scoring function. Again, we see that both provide similar improvements on top of
the margin baseline. Since the margin score has issues with undercovering hard examples and overcovering easy examples,
similar to TPS, we do not advocate for its use even though it appears to have good efficiency.
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Figure 15. Conformal prediction with the margin score for the CoraML (top), and CiteSeer (bottom) datasets. The evaluation is based
on fixed 92% coverage (left) and adaptive coverage (right). The transparent plot recalls the result of using APS as a reference score.

E.5. Sensitivity to λ, Efficiency and Accuracy

As a supplementary discussion to § 6.1 we present the result of the same experiment as Fig. 6 over some other dataset/model
pairs. Fig. 16 shows that in almost every case the impact of the proposed diffusion on the accuracy is insignificant while it
enhances the conformal set efficiency and singleton hit ratio. This gives a more intuitive sense that the diffusion framework
results in more efficient sets by enhancing the approximation of the probabilities instead of increasing the model’s accuracy.

E.6. Empty, Singleton and Multi-class Prediction Sets

For a given input, CP either returns a single class, a set of classes, or an empty set. One might prefer to increase the
proportion of singleton sets as they can be applied without any further postprocessing. We compare the proportion of zero,
singleton and multi-class prediction sets in Fig. 17 for different coverages spanning from a threshold below the model’s
accuracy (which is a trivial area for CP) up to near 100% coverage. This experiment shows that DAPS results in fewer empty
sets and more singleton sets, which aligns with the higher singleton hit ratio covered in § 6. As shown in the figure, all CP
methods tend to increase the number of empty-set predictions as the coverage guarantee decreases (and becomes lower than
the model’s accuracy). It is likely that with lower values of coverage guarantees, CP tends to result in a smaller false positive
ratio. Note, the result varies across different runs of the experiment which is a direct result of label scarcity and the small
calibration set, but the order is the same in the majority of observations.
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Figure 16. The effect of different λ values on (left) efficiency and (middle) singleton hit ratio of conformal prediction alongside its impact
on (right) the accuracy of the model. Rows refer to experiments conducted on (top) CoraML/GCN, (middle) CoauthorCS/APPNP, and
(bottom) Amazon-Photo/GraphSAGE respectively.
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Figure 17. Comparison of APS, RAPS, and DAPS over different coverage guarantees for CoraML/GCN by the proportion of empty (left),
singleton (middle) and multi-set (right) prediction sets. The dashed line in all plots show the model’s accuracy over the test set.

E.7. Empirical Evaluation of Conditional Coverage

Evaluating CP’s deviation from conditional coverage requires access to ground truth p(x, y). However, Romano et al. (2020)
propose an approximation that is adaptable to limited data. The procedure involves searching for a slab (Sv,a,b = {x ∈
Rp : a < vTx < b}) in which the empirical coverage is at its lowest. With a finite number of datapoints, in order to avoid
finite-sample negative bias, a valid slab must contain an acceptable proportion of data points (e.g. 10%). The slab’s identifier
vector v is chosen uniformly at random in the feature space and is normalized. We chose the optimal parameters a∗, b∗, and
v∗ on 25% of the test data, using the rest to evaluate the coverage. See Romano et al. (2020) for more details. Fig. 18 shows
that DAPS performs better than or on par with APS. This comparison is shown for different values of 1− α.
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Figure 18. Comparison of worst-slice coverage for APS and DAPS across different coverage guarantees 1− α. Results are shown for
CoraML/GCN. Note approaches that are closer to the optimal dashed line are better.

E.8. Transformations for the Probability Space

Although we usually apply regularization (in RAPS), and diffusion as an enhancement on top of APS scores, we also
examine the scenario where we apply those transformations over probability vectors (softmax outputs) as well. In both cases,
we apply APS on top of the result and compare it with the conventional APS. Since APS accepts probability vectors as
input, we need to represent the output of those transformations in a probability space. While, DAPS with λ ∈ [0, 1] does not
require any normalization to return a probability vector (since it is a convex combination), RAPS needs to be normalized
(since the penalty changes the output range). To represent the regularization result in form of a probability vector, we apply
a min-max normalization over elements, such that the minimum is equal to zero. Then we divide them by their summation.
Fig. 19 shows the comparison. With RAPS, we observed a significant decrease in efficiency and singleton hits while DAPS
is similar to conventional APS. It is better to apply both RAPS and DAPS in the score rather than the probability space.

E.9. Transductive Semi-Supervised Node Classification

With a brief review of experimental results provided in § 6, this section presents a comprehensive report of all results
obtained. We compare DAPS alongside the baseline APS, and RAPS in the form of Pareto plots where two different metrics
(effective set size and singleton hit) are evaluated at the same time. Blue points in the plot show baseline values (APS results)
for different dataset/model pairs. Corresponding orange and green points are respectively showing RAPS, and 1-hop DAPS.
Each baseline is connected to the two other results by an arrow of the same color. Fig. 14 shows the result on co-author
networks and Fig. 20 shows a similar evaluation on the co-purchase networks. We also conducted the same experiment on
CoraFull⋆ and CoraML⋆, for which the result is reported in Fig. 21. Although we have shown the adaptability of DAPS
to large networks like OGBN Products in Fig. 4, we also evaluated our method on another large OGBN Arxiv dataset.
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Figure 19. Comparison of DAPS and RAPS in probability space (dashed lines) and in APS (solid lines) score space.

22



Conformal Prediction Sets for Graph Neural Networks

As shown in Fig. 22, for OGBN Arxiv DAPS achieves a marginal enhancement and RAPS returns the most efficient
sets among other methods. In spite of losing efficiency, DAPS outperforms RAPS in terms of singleton hit ratio for many
coverage values. It is noteworthy that we did not expect a significant improvement for DAPS in this experiment since OGBN
Arxiv does not have a high homophily score which is an essential requirement for this approach. For the same reason, we
do not expect a significant enhancement in CoraFull⋆ as well.
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Figure 20. Pareto plot of different CP approaches for co-purchase datasets; APS, RAPS, and DAPS. The first column shows the result for
the fixed 92% coverage and the right column shows the result for adaptive coverage. Rows from above to below refer to (1) Amazon
Computers and (2) Amazon Photo datasets.

E.10. Other Variants of Semi-Supervised Node Classification

While our focus is on the transductive setting, we conduct additional experiments for other settings as well. Here we provide
our experimental results on inductive and simultaneous inductive settings. For both cases, we trained our model on the
inductive subgraph restricted to only training and validation nodes. Definitions and theoretical analysis of exchangeability
for these settings are provided in § 3. For the inductive setting, we add calibration nodes to the training graph (creating the
induced subgraph of training/validation/calibration nodes) during CP’s calibration step. The rest of the evaluation nodes
(with their connections) are added one at a time. Upon each modification, we update the model predictions. The prediction
set for each node is computed immediately upon its arrival. These updates in the graph structure lead to distribution shift
and conclusive violation of exchangeability as shown in Fig. 23. As a result, the 1− α coverage is not guaranteed anymore.

For the simultaneous inductive setting, we utilized the same model. However, this time all nodes in the rest of the network
(consisting of calibration nodes and unlabeled nodes) were connected to the training graph simultaneously. After this
we update the model predictions using the final graph. As shown in Fig. 24 the coverage guarantee is still valid since
exchangeability is not violated. The only difference between this setting and the transductive setting is the performance of
the underlying model which is reflected in the conformal prediction metrics.
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Figure 21. Pareto plot on the effective set size and singleton hit over the datasets CoraML⋆ (first column) and CoraFull⋆ (second
column). (First row) shows the result for a fixed coverage (92%) and (second row) over the adaptive coverage.
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Figure 22. Efficiency (left) and singleton hit ratio (right) for the OGBN Arxiv dataset.
Since we have less homophily DAPS sacrifices efficiency to improve singleton hits.
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Figure 23. Inductive evaluation setting for
Cora-Ml/GCN. Accuracy is 82%.
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Figure 24. Simultaneous inductive setting on CoraML with a GCN. Solid lines are recalling the same result for transductive setting while
dashed lines show the results of the simultaneous inductive setting. DAPS always leads to an improvement.
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E.11. Discussion of Neighborhood Adaptive Prediction Sets (NAPS)

For the inductive semi-supervised node classification, Clarkson (2022) proposes NAPS (Neighborhood APS) which is built
upon Barber et al. (2022) to adapt conformal prediction “beyond exchangeability”. Applying conformal prediction without
exchangeability leads to a gap between the empirical (real) coverage and the specified 1− α. This gap is bounded by

Coverage Gap ≤
∑n

i=1 wi · dTV (Z,Z
i)

1 +
∑n

i=1 wi
(17)

where wi corresponds to a weight over i-th datapoint (wi ∈ [0, 1]), and Zi is the result of swapping i-th datapoint in the
calibration set Z with the test point. Conclusively, a better weight assignment can result in a smaller coverage gap. In NAPS,
a weight of wi = 1 is assigned in case the test node is within k-hop distance of the i-th calibration node. The study suggests
using NAPS only on large homophilous networks with k = 1 or 2. Note, the coverage gap is a theoretical property and it is
not straightforward to compute or estimate it in practice.

As we discussed in § 3 NAPS is not applicable when the graph is sparse and the number of labeled nodes is limited. When
the size of the calibration set is realistic, many test nodes will have no nodes with non-zero weights from the calibration set,
making CP inapplicable to them. This happens regardless of the inductive or transductive setting. Even if somehow sparsity
is not an issue, since NAPS assigns weights from {0, 1}, a substantial proportion of the calibration set will be effectively
discarded for each node. Consequently, the smaller calibration set leads to a less concentrated coverage distribution (i.e. less
concentrated Beta) and less statistical power. It is worth noting that the claim by Clarkson (2022) that NAPS (or any other
CP score) is not to applicable for transductive settings does not hold as shown by Proposition 1.

In Table 2 we compared DAPS with NAPS in the transductive setting for different calibration set sizes. We see that as we
approach a realistic labeling budget, a considerable amount of nodes are excluded from the CP procedure (due to all zero
weights). This observation holds true even when the algorithm is applied in the inductive setting using the same dataset
since the source of this limitation remains the same.

E.12. Comparison Over Training Checkpoints

As CP is built on top of a model, to evaluate CP, it becomes important how well the model is trained. The question is
how the enhancement made by DAPS (in comparison to conventional APS) changes during training. Since the categorical
cross-entropy loss encourages the model to predict a concentrated ”one-hot” label distribution, it is expected that the
predicted probabilities become more over-confident when training the model for too many epochs. This may be an issue for
APS. DAPS uses structural information to propagate the scores and overcomes this issue. To support this discussion we
compared DAPS and APS for a GNN model during different checkpoints of the model’s training. The results in Table 3
show the enhancements made by DAPS has an increasing trend of improvement while the model becomes more accurate.

F. Complementarity with Other Methods for Uncertainty Quantification
Another interesting insight is that if we are provided with a good uncertainty estimation model, applying conformal prediction
on top should return even better results. To show this, we evaluate CP with the Graph Posterior Network (GPN) (Stadler
et al., 2021) on CoraML. In particular, we compute the scores for the conformal prediction based on the class probabilities

Table 3. Comparison between DAPS and APS over different checkpoints during the model training.

Checkpoint Acc APS DAPS Difference

Eff Set Size Singleton Hit Eff Set Size Singleton Hit Eff Set Size Singleton Hit

1 0.21 5.53 0.00 5.38 0.00 0.15 0
2 0.60 3.69 0.00 3.51 0.00 0.18 0
3 0.72 2.38 0.08 2.17 0.17 0.22 0.09
4 0.76 2.26 0.14 1.99 0.26 0.27 0.12
5 0.81 2.23 0.22 1.78 0.40 0.45 0.23
6 0.84 2.25 0.34 1.58 0.56 0.67 0.22
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as a measure of the aleatoric uncertainty which is also the kind of uncertainty captured by conformal prediction. The results
are shown in Fig. 25. Comparing GPN and GCN and we can see that even though their performance is close, we can note an
improvement for the APS and RAPS methods when using an uncertainty-aware model like GPN. DAPS is on par for both
underlying models, which suggests that our method captures the aleatoric uncertainty regardless of the model.
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Figure 25. Comparison of the approaches on GPN and GCN model over CoraML dataset. While GPN helps APS and RAPS, especially for
singleton hit, our approach DAPS is already able to provide an uncertainty quantification with a vanilla GCN.

G. More Details on Datasets and Models
Table 4 displays the statistics of the datasets used for the evaluation. The datasets marked by ⋆ refer to the largest component.
Moreover, for CoraFull⋆ we remove the classes (and the respective nodes) that have a number of samples less than 50 in
order to have the same number of nodes per class in each train/validation split. Table 5 summarizes the model’s accuracies
on every dataset, and the selected adaptive coverage as explained in § E.3.

Table 4. Statistics of the datasets. The labeled node column includes all nodes that are assumed to be labeled in each experiment which is
a summation of training, validation, tuning, and calibration nodes.

Dataset Name Vertices Attributes Edges Classes Homophily Labeled Nodes

CoraML 2995 2879 16316 7 78.85% 18.7%
CoraML⋆ 2810 2879 15962 7 78.44% 14.95%
CoraFull⋆ 18712 8710 124848 67 56.69% 20.41%
PubMed 19717 500 88648 3 80.23% 1.2%
CiteSeer 4230 602 10674 6 94.94% 10.8%
Coauthor CS 18333 6805 163788 15 80.80% 6.5%
Coauthor Physics 34493 8415 495924 5 93.14% 1.2%
Amazon Computers 13752 767 491722 10 77.72% 5.8%
Amazon Photo 7650 745 238162 8 82.72% 8.4%

OGBN Products 2449029 100 123718280 47 80.75% 11.24%
OGBN Arxiv 169343 128 1166243 40 65.51% 88.9%
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Table 5. Accuracy report for datasets and models involved in the analysis.

Dataset Model Accuracy Best Accuracy Adaptive Coverage

CoraML

GCN 82.3 ± 0.9 83.9 94.0
GAT 79.8 ± 3.1 84.4 93.1
SAGE 79.9 ± 1.7 82.2 93.2
MLP 63.4 ± 1.9 65.6 87.6
APPNPNet 83.5 ± 0.8 84.9 94.4

PubMed

GCN 79.5 ± 2.0 82.0 93. 0
GAT 77.8 ± 3.2 82.3 92.5
SAGE 75.7 ± 2.2 79.8 91.7
MLP 69.9 ± 0.9 71.6 89.8
APPNPNet 79.4 ± 2.3 82.2 93.0

CiteSeer

GCN 83.7 ± 1.4 85.9 94. 5
GAT 83.2 ± 0.9 84.2 94.3
SAGE 78.2 ± 2.3 80.8 92.6
MLP 62.6 ± 1.5 65.2 87.3
APPNPNet 84.9 ± 1.2 87.0 94.9

Coauthor CS

GCN 90.9 ± 0.8 91.8 96.9
GAT 88.6 ± 1.1 90.3 96.1
SAGE 88.6 ± 1.2 90.2 96.1
MLP 88.0 ± 0.6 88.9 95.9
APPNPNet 91.1 ± 0.5 91.7 97.0

Coauthor
Physics

GCN 92.2 ± 1.2 93.4 97.3
GAT 91.1 ± 1.1 92.9 97.0
SAGE 92.0 ± 0.7 92.9 97.3
MLP 87.1 ± 1.3 89.8 95.6
APPNPNet 93.1 ± 0.9 94.5 97.7

Amazon
Computers

GCN 80.2 ± 2.9 83.0 93.3
GAT 81.8 ± 1.9 84.6 93.8
SAGE 74.6 ± 3.1 78.1 91.4
MLP 60.0 ± 5.3 67.3 86.4
APPNPNet 80.5 ± 2.2 84.3 93.4

Amazon
Photo

GCN 89.0 ± 2.3 91.0 96.3
GAT 89.3 ± 1.2 91.3 96.4
SAGE 82.4 ± 3.5 86.4 94.0
MLP 74.2 ± 2.2 76.4 91.2
APPNPNet 89.4 ± 1.6 91.7 96.4

27


