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Abstract001

Mixture-of-Experts (MoE) layers scale trans-002
formers by routing tokens to a sparse subset003
of feed-forward experts. Token-level routing,004
however, assigns an entire semantic spectrum005
to each expert, creating capacity bottlenecks,006
load-balancing pathologies, and limited spe-007
cialisation. We introduce SliceMoE, an archi-008
tecture that routes contiguous slices of a to-009
ken’s hidden vector. A d-dimensional embed-010
ding is partitioned into S slices, and for each011
slice, a lightweight shared router predicts the012
top-k experts. Experts operate on their as-013
signed slices independently, and outputs are014
re-assembled, maintaining per-token FLOP ef-015
ficiency. Because slices from different tokens016
interleave within an expert, utilisation is nat-017
urally smoother. We propose a slice-level ca-018
pacity loss, cross-slice dropout, and efficient019
fused batched-GEMM kernels. Experiments020
on WikiText-103 language modelling, WMT021
En–De translation, and three text-classification022
datasets show SliceMoE attains up to 1.7×023
faster inference than dense baselines, 12–18%024
lower perplexity than parameter-matched token-025
MoE, and improved expert balance, with inter-026
pretable expertise over syntactic versus seman-027
tic sub-spaces.028

1 Introduction029

Sparse Mixture-of-Experts (MoE) layers attain030

state-of-the-art efficiency by activating only a few031

expert feed-forward networks (FFNs) per token032

(Fedus et al., 2021). Yet, practical deployments033

of token-level MoE face persistent issues: whole-034

token routing often overloads popular experts while035

others remain under-utilised, wasting parameters036

and causing latency spikes (Shen et al., 2022). Fur-037

thermore, forcing an expert to process an entire038

feature vector limits its ability to specialise on nar-039

rower sub-spaces, blunting modularity benefits.040

We hypothesise that different contiguous seg-041

ments (slices) of a token’s embedding vector cap-042

ture diverse and partially independent information043

(e.g., syntactic cues in some coordinates, semantic 044

nuances in others). Exposing this sub-token di- 045

versity to the routing mechanism can unlock finer- 046

grained conditional computation. To this end, we 047

propose SliceMoE, which partitions each token’s 048

hidden vector into S contiguous slices and dis- 049

patches each slice separately to a selection of k 050

experts. This approach yields: (i) smoother load 051

distribution, as each token contributes S indepen- 052

dent routing decisions; (ii) increased parameter 053

utilisation due to more diverse expert activation 054

patterns; and (iii) enhanced sub-token specialisa- 055

tion, which we demonstrate to be interpretable. 056

Our contributions are: (1) SliceMoE, a novel 057

slice-level routing mechanism applicable to various 058

MoE models; (2) an efficient implementation strat- 059

egy using fused batched GEMM kernels; (3) exten- 060

sive experiments demonstrating superior perplexity, 061

accuracy, and load balance over strong baselines; 062

and (4) analyses, including ablations on slice gran- 063

ularity and interpretability studies, confirming the 064

benefits of sub-token routing. 065

2 Related Work 066

Token-level MoE has evolved from early Top-k 067

routing (Fedus et al., 2021) to adaptive variants that 068

merge experts (Muqeeth et al., 2023), tie weights 069

(He et al.), or employ sophisticated capacity man- 070

agement and load balancing losses (Shen et al., 071

2022). While some methods, like Switch Trans- 072

formers, focus on simplifying routing, others ex- 073

plore more complex, learned routing strategies. 074

Segment-based routing concepts have appeared in 075

dynamic adapter systems (Kong et al.). Chowdhury 076

et al. (2020) and Chen et al. (2022) study modu- 077

lar selective networks, but none explicitly dispatch 078

sub-token feature fragments to distinct experts in 079

the manner of SliceMoE. Our approach is orthogo- 080

nal and complementary to hardware-aware kernel 081

optimizations like FlexGEMM (Wang), which can 082
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be used to implement efficient batched operations.083

SliceMoE differs from standard regularization tech-084

niques (Salehin and Kang, 2023) by operating di-085

rectly on the routing decisions and data flow within086

the MoE layer.087

3 SliceMoE Architecture088

Given a token representation h ∈ Rd, SliceMoE089

first splits it into S contiguous, non-overlapping090

slices h(s) ∈ Rd/S for s = 1, . . . , S. Each slice is091

then processed by a shared routing mechanism.092

3.1 Slice Router and Gating093

The slice router is a lightweight Multi-Layer Per-094

ceptron (MLP) shared across all S slices of all to-095

kens. For each individual slice h(s), the router MLP096

(Linear(d/S → Hr) → ReLU → Linear(Hr →097

E), where Hr = 256 is the hidden router dimen-098

sion and E is the total number of experts) computes099

logits g(s) ∈ RE . These logits are passed through100

a softmax function to obtain routing probabilities101

p
(s)
e = softmax(g(s))e for expert e. For each slice102

s, the top-k experts are selected based on these103

probabilities. The j-th selected expert ej for slice104

s processes the weighted slice:105

h̃(s)ej = p(s)ej · h(s) (1)106

The expert ej itself is a standard FFN (e.g., a two-107

layer MLP), producing an output ϕej (h̃
(s)
ej ). The S108

output slices (summed if k > 1 for a given slice,109

or concatenated if experts output vectors of the110

same slice dimension) are then concatenated to111

reconstruct the full token representation h′ ∈ Rd112

for the subsequent transformer layer. The router is113

trained end-to-end along with the experts using the114

main task loss and the auxiliary slice-level capacity115

loss.116

3.2 Slice-Level Capacity Loss117

To encourage balanced load across experts at the118

slice level, we introduce a slice-level capacity loss.119

We count the number of slices assigned to each120

expert e across all B×S slices in a mini-batch. The121

capacity loss (Lcap) is then defined as the squared122

coefficient of variation (CV) of these counts:123

Lcap = α ·
(

std(counts1, . . . , countsE)
mean(counts1, . . . , countsE)

)2

(2)124

where α is a hyperparameter (typically 0.01-0.2).125

This penalizes imbalance in slice assignments, pro-126

ducing smoother gradients and more stable load127

distribution than token-level objectives.128

3.3 Cross-Slice Dropout 129

To encourage router diversification and prevent 130

over-reliance on specific slice-expert pairings dur- 131

ing training, we apply cross-slice dropout. For each 132

slice, after computing the top-k routing probabil- 133

ities p
(s)
ej , we randomly set a fraction (e.g., 20%) 134

of these k assignment probabilities to zero. The 135

remaining non-zero probabilities for that slice are 136

then re-normalized to sum to 1 before weighting the 137

slice as in Equation (1). This forces the router to ex- 138

plore alternative expert assignments for each slice 139

while ensuring information flow is maintained. 140

3.4 Fused Kernels for Efficiency 141

A naive implementation routing individual small 142

slices can be inefficient. To maintain GPU effi- 143

ciency, all slices h(s) (weighted by p
(s)
ej ) destined 144

for a particular expert ej from different tokens in a 145

batch are dynamically grouped and stacked. This 146

forms a new batch of slice inputs specific to expert 147

ej . This allows each layer of the expert FFN to be 148

processed using a single batched matrix multiply 149

operation (e.g., via ‘torch.bmm‘ or custom kernels 150

generated by tools like CUTLASS or Triton based 151

on FlexGEMM principles). This approach amor- 152

tizes kernel launch overhead and improves memory 153

access patterns, enabling throughput comparable 154

to dense layers on capable hardware (e.g., A100 155

GPUs). 156

4 Experimental Setup 157

Models We primarily use a 16-expert (E=16) con- 158

figuration based on Switch-Transformer (Fedus 159

et al., 2021) with approximately 90M total param- 160

eters. The MoE layer is replaced with SliceMoE. 161

Unless stated otherwise, we use S = 8 slices and 162

route each slice to top-k = 2 experts. For compar- 163

ison, we evaluate against a dense transformer of 164

similar parameter count and a standard token-level 165

MoE (TokenMoE) baseline. 166

Datasets Language modelling (LM) uses 167

WikiText-103 (WT-103) (Wang et al.). Machine 168

translation (MT) uses WMT-21 English–German 169

(Subramanian et al.). Text classification tasks 170

include AG NEWS, DBPEDIA-14, and EMO- 171

TION (from HuggingFace Datasets). A synthetic 172

64-dimensional dataset is used for initial toy 173

experiments (Figure 7). 174

Training For classification, to isolate the perfor- 175

mance of the MýoE layer and routing strategy, the 176
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Dataset Accuracy ↑ ELE ↑ Loss ↓

AG NEWS 0.88 0.95 0.35
EMOTION 0.48 0.96 1.36
DBPEDIA-14 0.96 0.96 0.26

Table 1: Validation metrics for 90M SliceMoE (S=8,
k=2, E=16) after three epochs on classification tasks.

DistilBERT encoder weights were frozen after ini-177

tial pretraining; only the MoE layer and the final178

classifier were trained for 3 epochs on 5k examples179

per Pytorch dataset. LM models are trained for180

100k updates on four A100 GPUs. We use Adam181

optimizer (β1 = 0.9, β2 = 0.98), a learning rate182

of 2e-4, batch size 32, and label smoothing of 0.1183

for MT. Key results for accuracy and perplexity are184

averaged over 3 runs with different random seeds.185

Improvements over TokenMoE were generally sta-186

tistically significant (p < 0.05 via t-tests) for AG187

NEWS and WT-103.188

Metrics Task quality is measured by perplexity189

(PPL) for LM and accuracy for classification. Ex-190

pert balance is quantified by the Entropy of Load191

Estimate (ELE): −
∑

e(loade log loade)/ logE,192

where loade is the fraction of total slices routed193

to expert e. ELE=1 indicates perfect balance.194

5 Results and Analysis195

Comparison to Baselines Figure 1a reports vali-196

dation accuracy. SliceMoE (S=8) consistently out-197

performs TokenMoE by 2–4 pp on AG NEWS198

and DBPEDIA-14, and matches or exceeds a199

dense DistilBERT baseline while using effectively200

k ·S/Etotal ≈ 2·8/16 = 1/8-th of the FFN parame-201

ters per token compared to traditional MoE or k/E202

if token-MoE is compared. More accurately, it203

matches dense DistilBERT with approximately 6×204

fewer active parameters per token pass compared to205

a dense FFN. Figure 1b plots accuracy against ELE.206

SliceMoE achieves both high task quality and near-207

optimal load balance (ELE ≈ 0.95− 0.97), while208

TokenMoE often shows a trade-off, struggling to209

maintain high ELE without sacrificing accuracy.210

Training Dynamics Figure 2 illustrates stable211

training dynamics for SliceMoE. Loss and accuracy212

curves show smooth convergence. Critically, expert213

load entropy (ELE) remains high (≈ 0.95− 0.97)214

throughout training, confirming the effectiveness215

of the slice-level capacity loss and routing diver-216

sity. Validation performance closely tracks train-217

Slices AG NEWS WT-103
(S) Acc. ↑ ELE ↑ PPL ↓ ELE ↑

2 0.861 0.90 26.8 0.91
4 0.873 0.93 26.0 0.94
8 0.880 0.95 25.4 0.97
16 0.875 0.94 25.7 0.96
32 0.864 0.92 26.1 0.93

Table 2: Impact of Slice Count (S) on AG NEWS (Accu-
racy, ELE) and WikiText-103 (Perplexity, ELE). Model:
16 Experts, k = 2. Performance peaks at S=8. Too few
slices limit fine-grained routing benefits, while too many
may increase routing overhead or fragment information
excessively.

ing, with minimal overfitting except on the smaller 218

EMOTION dataset. 219

Impact of Slice Count (S) Table 2 shows the 220

impact of varying the number of slices S on AG 221

NEWS accuracy and WT-103 perplexity, along- 222

side ELE. Performance generally improves from 223

S = 2 to S = 8, after which it slightly degrades 224

for S = 16 and S = 32. This suggests an optimal 225

granularity: S = 8 (for d = 768, slice dim = 96) 226

appears to strike a balance. Too few slices may 227

not provide enough diversity for effective special- 228

ized routing, while too many might lead to overly 229

fragmented information or increased routing com- 230

plexity not offset by specialization gains, and could 231

also make individual slices too small to carry mean- 232

ingful distinct signals. ELE also peaks around S=8. 233

Contiguous vs. Shuffled Slices As shown in Fig- 234

ure 3, routing random permutations of slice indices 235

(shuffled slices) consistently degrades performance 236

by 1–3 pp and slightly reduces load balance com- 237

pared to using natural contiguous slices. This sup- 238

ports our hypothesis that contiguous blocks of the 239

embedding vector often capture coherent, locally 240

structured information that benefits specialized pro- 241

cessing. 242

Robustness to Router Noise Figure 4 demon- 243

strates SliceMoE’s robustness. Adding Gaussian 244

noise to the router logits before the softmax acti- 245

vation has minimal impact on accuracy until the 246

noise standard deviation (σ) exceeds 0.5, indicating 247

resilient routing decisions. 248

Language Modelling and MT On WikiText- 249

103, SliceMoE (16 Experts, S = 8, k = 2) 250

achieves a perplexity of 25.4, compared to 29.1 for 251

TokenMoE and 31.0 for a dense model of similar 252

FFN size, all while matching training FLOPs. In- 253
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(a) Validation accuracy
across models and datasets.

(b) Accuracy versus expert-
load entropy (ELE).

Figure 1: SliceMoE improves task quality and ex-
pert utilisation. (a) compares accuracy for SliceMoE
(S=8), TokenMoE, and Dense models on EMOTION
and DBPEDIA-14. (b) plots accuracy against ELE,
showing SliceMoE’s strong performance on both axes.

(a) AG NEWS (b) DBPEDIA-14

Figure 2: Learning curves for accuracy, loss, and ELE
confirm stable optimisation and balanced routing for
SliceMoE.

ference for SliceMoE is up to 1.7× faster than the254

dense baseline due to sparsity. On WMT En–De,255

SliceMoE obtains a BLEU score of 29.8, versus256

28.2 for TokenMoE and 27.6 for dense, with an257

ELE of 0.97.258

Interpretability Principal Component Analysis259

probes on slice embeddings sent to different ex-260

perts suggest specialization. To quantify this, we261

compute an Expert Specialization Score (ESS). For262

each expert on AG NEWS, we identify the top-263

50 most frequent words from input tokens whose264

slices were predominantly routed to it. We then265

calculate the average cosine similarity between the266

pre-trained embeddings of these words and the cen-267

troid of all slice embeddings processed by that ex-268

pert. SliceMoE experts achieved an average ESS269

of 0.72 (std=0.08), compared to 0.55 (std=0.15)270

for TokenMoE experts (where "slices" are whole271

tokens for consistent ESS calculation). This sug-272

gests more coherent semantic/syntactic groupings273

within SliceMoE experts. For instance, on AG274

NEWS, one SliceMoE expert frequently processed275

slices derived from financial contexts (tokens like276

’quarter’, ’earnings’, ’stock’, ’inc’), while another277

specialized in slices from sports-related tokens278

(’game’, ’season’, ’player’, ’team’). Token-level279

MoE showed less distinct separation. More exam-280

ples are in Appendix C.281

Figure 3: Contiguous slicing outperforms shuffled
slice partitions across AG NEWS, EMOTION, and
DBPEDIA-14. Solid lines: contiguous; dashed lines:
shuffled.

Figure 4: Accuracy under Gaussian-perturbed routing
logits. Performance is stable until noise standard devia-
tion exceeds 0.5.

6 Conclusion 282

SliceMoE introduces a novel fine-grained routing 283

mechanism for MoE models by dispatching con- 284

tiguous sub-token embedding slices. This approach 285

demonstrably improves load balancing, parameter 286

utilisation, and task performance across diverse 287

NLP tasks, while also fostering interpretable ex- 288

pert specialisation. Its efficiency, aided by fused 289

kernels, makes it a promising direction for scal- 290

ing transformers. Future work may explore hier- 291

archical routing combining slice- and token-level 292

decisions, adaptive slice counts, and porting fused 293

kernels to a wider range of emerging accelerators. 294
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Limitations295

SliceMoE, while promising, has several limitations296

and areas for future investigation:297

Scalability The router MLP’s input dimension is298

d/S. While lightweight for moderate d and S, the299

total routing FLOPs scale with S (number of slices300

per token). For extremely large S or a very high301

number of experts E, routing computation could302

become a bottleneck relative to expert computation.303

Hierarchical routing or dynamically determined304

slice counts could mitigate this.305

Hyperparameter Sensitivity The number of306

slices S, top-k expert choices, capacity loss weight307

α, and cross-slice dropout rate are crucial hyperpa-308

rameters requiring careful tuning for optimal per-309

formance. The ideal S may also depend on the310

embedding dimension d and the specific task.311

Hardware Dependency for Fused Kernels The312

reported efficiency gains rely on fused batched313

GEMM kernels, which are most effective on mod-314

ern GPUs like A100s. Performance benefits might315

be less pronounced on older hardware or if less op-316

timized kernel implementations are used. Broader317

hardware compatibility and optimized open-source318

kernels would enhance practical adoption.319

Classification Experimental Setup Our classi-320

fication experiments utilized a frozen DistilBERT321

encoder to isolate the MoE layer’s impact. While322

this allows for a focused comparison of routing323

strategies, these results may not directly generalize324

to scenarios involving full end-to-end fine-tuning325

of the entire model. Exploring SliceMoE in fully326

trainable large models is an important next step.327

Comparisons with SOTA MoE Variants While328

SliceMoE demonstrates significant improvements329

over standard token-level MoE and dense baselines,330

this work did not include exhaustive comparisons331

against all recent, highly specialized MoE architec-332

tures (e.g., those with very complex learned routing333

or dynamic expert merging/pruning). Such com-334

parisons would provide a more complete picture of335

SliceMoE’s relative standing.336

Increased Implementation Complexity Slice-337

level routing and aggregation introduce more rout-338

ing decisions and data manipulation steps com-339

pared to token-level routing, potentially increasing340

the initial implementation complexity.341

Interpretability Metrics Our current inter- 342

pretability analysis, while indicative, relies on spe- 343

cific metrics like ESS and qualitative examples. 344

Developing more comprehensive and standardized 345

quantitative metrics for expert specialization in 346

MoE models remains an open research area. 347
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A Hyper-parameter Details391

The following details supplement Section 4:392

• Transformer hidden dimension d = 768, FFN393

intermediate dimension 4× d = 3072.394

• SliceMoE Router MLP: Input d/S, hidden395

layer Hr = 256 with ReLU, output E (num-396

ber of experts). For S = 8, d/S = 96.397

• Number of Slices S: Varied in398

{2, 4, 8, 16, 32} for ablation (Table 2).399

S = 8 was generally optimal.400

• Top-k experts per slice: k = 2 used consis-401

tently.402

• Capacity loss weight α: Validated in range403

[0.01, 0.2], set to 0.1 for LM/MT and 0.05 for404

classification for best stability and ELE.405

• Cross-slice dropout rate: 0.2 (i.e., 20% of se-406

lected expert assignments per slice dropped).407

Standard dropout of 0.1 on FFN activations.408

B Additional Ablation Results409

Figure 5 shows the effect of varying the softmax410

temperature in the slice router on AG NEWS val-411

idation accuracy. Performance is relatively stable412

for temperatures between 0.5 and 2.0, with a slight413

peak around 1.0 (default used).

Figure 5: Effect of router softmax temperature on AG
NEWS validation accuracy for SliceMoE (S=8, k=2).

414

C Additional Figures and Interpretability 415

Examples 416

Figure 6 shows the confusion matrix for SliceMoE 417

on DBPEDIA-14, indicating strong performance 418

across most classes.

Figure 6: Confusion matrix for DBPEDIA-14 (Slice-
MoE, S=8), showing improved class-wise performance
compared to TokenMoE (not shown).

419

Figure 7 illustrates SliceMoE’s behavior on a 420

synthetic task designed with distinct features in 421

different embedding segments. SliceMoE quickly 422

learns to route corresponding slices to specialized 423

experts, achieving near-perfect load balance.

Figure 7: SliceMoE on a synthetic toy task: expert
load entropy (ELE) rapidly converges to near-optimal
balance within five epochs.

424

Further Interpretability Examples (AG NEWS, 425

S=8): 426

• Expert 3 (Financial/Business): High ac- 427

tivation for slices from tokens/phrases like 428

"Inc.", "Corp.", "stocks fell", "quarterly re- 429

sults", "market share". Input slice embeddings 430

show tighter clustering around business con- 431

cepts. 432

• Expert 7 (Technology/Science): High acti- 433

vation for slices from "software", "version", 434

"internet", "researchers", "nasa". 435
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• Expert 12 (World Affairs/Politics): High436

activation for slices from "government", "elec-437

tion", "minister", "United Nations", "conflict".438

These qualitative observations, alongside the ESS439

metric, reinforce the finding that SliceMoE experts440

develop more granular specializations.441
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