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Abstract

In learning with noisy labels, the sample selection approach is very popular, which1

regards small-loss data as correctly labeled during training. However, losses are2

generated on-the-fly based on the model being trained with noisy labels, and thus3

large-loss data are likely but not certainly to be incorrect. There are actually4

two possibilities of a large-loss data point: (a) it is mislabeled, and then its loss5

decreases slower than other data, since deep neural networks “learn patterns first”;6

(b) it belongs to an underrepresented group of data and has not been selected yet. In7

this paper, we incorporate the uncertainty of losses by adopting interval estimation8

instead of point estimation of losses, where lower bounds of the confidence intervals9

of losses derived from distribution-free concentration inequalities, but not losses10

themselves, are used for sample selection. In this way, we also give large-loss but11

less selected data a try; then, we can better distinguish between the cases (a) and12

(b) by seeing if the losses effectively decrease with the uncertainty after the try. As13

a result, we can better explore underrepresented data that are correctly labeled but14

seem to be mislabeled at first glance. Experiments demonstrate that the proposed15

method is superior to baselines and robust to a broad range of label noise types.16

1 Introduction17

Learning with noisy labels is one of the most challenging problems in weakly-supervised learning,18

since noisy labels are ubiquitous in the real world [36, 65, 40, 1, 61]. For instance, both crowdsourcing19

and web crawling yield large numbers of noisy labels everyday [12]. Noisy labels can severely impair20

the performance of deep neural networks with strong memorization capacities [67, 69, 42, 30].21

To reduce the influence of noisy labels, a lot of approaches have been recently proposed [38, 29, 31,22

68, 71, 55, 56, 46, 33, 25, 34, 47, 60, 49, 19, 17, 14]. They can be generally divided into two main23

categories. The first one is to estimate the noise transition matrix [41, 44, 15, 11], which denotes the24

probabilities that clean labels flip into noisy labels. However, the noise transition matrix is hard to be25

estimated accurately, especially when the number of classes is large [65]. The second approach is26

sample selection, which is our focus in this paper. This approach is based on selecting possibly clean27

examples from a mini-batch for training [12, 62, 50, 65, 23, 50, 51]. Intuitively, if we can exploit less28

noisy data for network parameter updates, the network will be more robust.29

A major question in sample selection is what criteria can be used to select possibly clean examples.30

At the present stage, the selection based on the small-loss criteria is the most common method, and31

has been verified to be effective in many circumstances [12, 16, 65, 52, 62]. Specifically, since32

deep networks learn patterns first [2], they would first memorize training data of clean labels and33

then those of noisy labels with the assumption that clean labels are of the majority in a noisy class.34

Small-loss examples can thus be regarded as clean examples with high probability. Therefore, in35

each iteration, prior methods [12, 52] select the small-loss examples based on the predictions of the36

current network for robust training.37
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Figure 1: Illustrations of uncertainty of losses. Experiments are conducted on the imbalanced noisy MNIST
dataset. Left: uncertainty of small-loss examples. At the beginning of training (Epochs 1 and 2), due to the
instability of the current prediction, the network gives a larger loss to the clean example and does not select it
for updates. If we consider the mean of training losses at different epochs, the clean example can be equipped
with a smaller loss and then selected for updates. Right: uncertainty of large-loss examples. Since the deep
network learns easy examples at the beginning of training, it gives a large loss to clean imbalanced data with
non-dominant labels, which causes such data unable to be selected and severely influence generalization.

However, such a selection procedure is debatable, since it arguably does not consider uncertainty38

in selection. The uncertainty comes from two aspects. First, this procedure has uncertainty about39

small-loss examples. Specifically, the procedure uses limited time intervals and only exploits the40

losses provided by the current predictions. For this reason, the estimation for the noisy class posterior41

is unstable [63], which causes the network predictions to be equally unstable. It thus takes huge risks42

to only use losses provided by the current predictions (Figure 1, left). Once wrong selection is made,43

the inferiority of accumulated errors will arise [65]. Second, this procedure has uncertainty about44

large-loss examples. To be specific, deep networks learn easy examples at the beginning of training,45

but ignore some clean examples with large losses. Nevertheless, such examples are always critical for46

generalization. For instance, when learning with imbalanced data, distinguishing the examples with47

non-dominant labels are more pivotal during training [35]. Deep networks often give large losses to48

such examples (Figure 1, right). Therefore, when learning under the realistic scenes, e.g., learning49

with noisy imbalanced data, prior sample selection methods cannot address such an issue well.50

To relieve the above issues, we study the uncertainty of losses in the sample selection procedure to51

combat noisy labels. To reduce the uncertainty of small-loss examples, we extend time intervals and52

utilize the mean of training losses at different training iterations. In consideration of the bad influence53

of mislabeled data on training losses, we build two robust mean estimators from the perspectives of54

soft truncation and hard truncation w.r.t. the truncation level, respectively. Soft truncation makes the55

mean estimation more robust by holistically changing the behavior of losses. Hard truncation makes56

the mean estimation more robust by locally removing outliers from losses. To reduce the uncertainty57

of large-loss examples, we encourage networks to pick the sample that has not been selected in a58

conservative way. Furthermore, to address the two issues simultaneously, we derive concentration59

inequalities [5] for robust mean estimation and further employ statistical confidence bounds [3] to60

consider the number of times an example was selected during training.61

The study of uncertainty of losses in learning with noisy labels can be justified as follows. In statistical62

learning, it is known that uncertainty is related to the quality of data [48]. Philosophically, we need63

variety decrease for selected data and variety search for unselected data, which share a common64

objective, i.e., reduce the uncertainty of data to improve generalization [37]. This is our original65

intention, since noisy labels could bring more uncertainty because of the low quality of noisy data.66

Nevertheless, due to the harm of noisy labels for generalization, we need to strike a good balance67

between variety decrease and search. Technically, our method is specially designed for handling68

noisy labels, which robustly uses network predictions and conservatively seeks less selected examples69

meanwhile to reduce the uncertainty of losses and then generalize well.70

Before delving into details, we clearly emphasize our contributions in two folds. First, we reveal prior71

sample selection criteria in learning with noisy labels have some potential weaknesses and discuss72

them in detail. The new selection criteria are then proposed with detailed theoretical analyses. Second,73

we experimentally validate the proposed method on both synthetic noisy balanced/imbalanced datasets74

and real-world noisy datasets, on which it achieves superior robustness compared with the state-75

of-the-art methods in learning with noisy labels. The rest of the paper is organized as follows. In76

Section 2, we propose our robust learning paradigm step by step. Experimental results are discussed77

in Section 3. The conclusion is given in Section 4.78
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2 Method79

In this section, we first introduce the problem setting and some background (Section 2.1). Then we80

discuss how to exploit training losses at different iterations (Section 2.2). Finally, we introduce the81

proposed method, which exploits training losses at different iterations more robustly and encourages82

networks to pick the sample that is less selected but could be correctly labeled (Section 2.3).83

2.1 Preliminaries84

Let X and Y be the input and output spaces. Consider a k-class classification problem, i.e., Y = [k],85

where [k] = {1, . . . , k}. In learning with noisy labels, the training data are all sampled from a86

corrupted distribution on X × Y . We are given a sample with noisy labels, i.e., S̃ = {(x, ỹ)}, where87

ỹ is the noisy label. The aim is to learn a robust classifier that could assign clean labels to test data by88

only exploiting a training sample with noisy labels.89

Let f : X → Rk be the classifier with learnable parameters w. At the i-th iteration during training,90

the parameters of the classifier f can be denoted as wi. Let ` : Rk × Y → R be a surrogate loss91

function for k-class classification. We exploit the softmax cross entropy loss in this paper. Given an92

arbitrary training example (x, ỹ), at the i-th iteration, we can obtain a loss `i, i.e., `i = `(f(wi;x), ỹ).93

Hence, until the t-th iteration, we can obtain a training loss set Lt about the example (x, ỹ), i.e.,94

Lt = {`1, . . . , `t}.95

In this paper, we assume that the training losses in Lt conform to a Markov process, which is to96

represent a changing system under the assumption that future states only depend on the current state97

(the Markov property) [43]. More specifically, at the i-th iteration, if we exploit an optimization98

algorithm for parameter updates (e.g., the stochastic gradient descent algorithm [4]) and omit other99

dependencies (e.g., S̃), we will have P (wi|wi−1, . . . ,w0) = P (wi|wi−1), which means that the100

future state of the classifier f only depends on the current state. Furthermore, given a training example101

and the parameters of the classifier f , we can determine the loss of the training example as discussed.102

Therefore, the training losses in Lt will also conform to a Markov process.103

2.2 Extended Time Intervals104

As limited time interval cannot address the instability issue of the estimation for the noisy class105

posterior well [42], we extend time intervals and exploit the training losses at different training106

iterations for sample selection. One straightforward idea is to use the mean of training losses at107

different training iterations. Hence, the selection criterion could be108

µ̃ =
1

t

t∑
i=1

`i. (1)

It is intuitive and reasonable to use such a selection criterion for sample selection, since the operation109

of averaging can mitigate the risks caused by the unstable estimation for the noisy class posterior,110

following better generalization. Nevertheless, such a method could arguably achieve suboptimal111

classification performance for learning with noisy labels. The main reason is that, due to the great112

harm of mislabeled data, part of training losses are with too large uncertainty and could be seen as113

outliers. Therefore, it could be biased to use the mean of training losses consisting of such outliers114

[10], which further influences sample selection. More evaluations for our claims are provided in115

Section 3.116

2.3 Robust Mean Estimation and Conservative Search117

We extend time intervals and meanwhile exploit the training losses at different training iterations more118

robustly. Specifically, we build two robust mean estimators from the perspectives of soft truncation119

and hard truncation [7]. Note that for specific tasks, it is feasible to decide the types of robust mean120

estimation with statistical tests based on some assumptions [8]. We leave the analysis as future work.121

Two distribution-free robust mean estimators are introduced as follows.122

Soft truncation. We extend a classical M-estimator from [7] and exploit the widest possible choice of123

the influence function. More specifically, give a random variable X , let us consider a non-decreasing124
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influence function ψ : R→ R such that125

ψ(X) = log(1 +X +X2/2), X ≥ 0. (2)

The choice of ψ is inspired by the Taylor expansion of the exponential function, which can make the126

estimation results more robust by reducing the side effect of extremum holistically. The illustration127

for this influence function is provided in Appendix A.1. For our task, given the observations on128

training losses, i.e., Lt = {`1, . . . , `t}, we estimate the mean robustly as follows:129

µ̃s =
1

t

t∑
i=1

ψ(`i). (3)

We term the above robust mean estimator (3) the soft estimator.130

Hard truncation. We propose a new robust mean estimator based on hard truncation. Specifically,131

given the observations on training losses Lt, we first exploit the K-nearest neighbor (KNN) algorithm132

[27] to remove some underlying outliers in Lt. The number of outliers is denoted by to(to < t), which133

can be adaptively determined as discussed in [70]. Note that we can also employ other algorithms,134

e.g., principal component analysis [45] and the local outlier factor [6], to identify underlying outliers135

in Lt. The main reason we employ KNN is because of its relatively low computation costs [70].136

The truncated loss observations on training losses are denoted by Lt−to . We then utilize Lt−to for137

the mean estimation. As the potential outliers are removed with high probability, the robustness of138

the estimation results will be enhanced. We denote such an estimated mean as µ̃h. We have139

µ̃h =
1

t− to

∑
`i∈Lt−to

`i. (4)

The corresponding estimator (4) is termed the hard estimator.140

We derive concentration inequalities for the soft and hard estimators respectively. The search strategy141

for less selected examples and overall selection criterion are then provided. Note that we do not need142

to explicitly quantify the mean of training losses. We only need to sort the training examples based143

on the proposed selection criterion and then use the selected examples for robust training.144

Theorem 1. Let Zn = {z1, · · · , zn} be an observation set with mean µz and variance σ2. By145

exploiting the non-decreasing influence function ψ(z) = log(1 + z + z2/2). For any ε > 0, we have146 ∣∣∣∣∣ 1n
n∑
i=1

ψ(zi)− µz

∣∣∣∣∣ ≤ σ2(n+ σ2 log(ε−1)
n2 )

n− σ2
, (5)

with probability at least 1− 2ε.147

Proof can be found in Appendix A.1.148

Theorem 2. Let Zn = {z1, . . . , zn} be a (not necessarily time homogeneous) Markov chain with149

mean µz , taking values in a Polish state space Λ1 × . . .× Λn, and with a minimal mixing time τmin.150

The truncated set with hard truncation is denoted by Zno , with no < n. If |zi| is upper bounded by Z.151

For any ε1 > 0 and ε2 > 0, we have152 ∣∣∣∣∣∣ 1

n− no

∑
zi∈Zn\Zno

−µz

∣∣∣∣∣∣ ≤ 1

n− no

(
2Z

√
2τmin log

2

ε1
+

2Zno
n

√
2τmin log

2n

ε2

)
, (6)

with probability at least 1− ε1 − ε2.153

Proof can be found in Appendix A.2. For our task, let the training loss be upper-bounded by L. The154

value of L can be determined easily by training networks on noisy datasets and observing the loss155

distribution [1].156

Conservative search and selection criteria. In this paper, we will use the concentration inequalities157

(5) and (6) to present conservative search and the overall sample selection criterion. Specifically,158

we exploit their lower bounds and consider the selected number of examples during training. The159

selection of the examples that are less selected is encouraged.160
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Algorithm 1 CNLCU Algorithm.
1: Input θ1 and θ2, learning rate η, fixed τ , epoch Tk and Tmax, iteration tmax;
for T = 1, 2, . . . , Tmax do

2: Shuffle training dataset S̃;
for t = 1, . . . , tmax do

3: Fetch mini-batch S̄ from S̃;
4: Obtain S̄1 = arg minS′:|S′|≥R(T )|S̄| `

?(θ1, S
′); // calculated with Eq. (7) or Eq. (8)

5: Obtain S̄2 = arg minS′:|S′|≥R(T )|S̄| `
?(θ2, S

′); // calculated with Eq. (7) or Eq. (8)
6: Update θ1 = θ1 − η∇`(θ1, S̄2);
7: Update θ2 = θ2 − η∇`(θ2, S̄1);

end
8: Update R(T ) = 1−min

{
T
Tk
τ, τ
}

;

end
9: Output θ1 and θ2.

Denote the number of times one example was selected by nt(nt ≤ t). Let ε = 1
2t . For the161

circumstance with soft truncation, the selection criterion is162

`?s = µ̃s −
σ2(t+ σ2 log(2t)

t2 )

nt − σ2
. (7)

Let ε1 = ε2 = 1
2t , for the situation with hard truncation, by rewriting (6), the selection criterion is163

`?h = µ̃h −
2
√

2τminL(t+
√

2to)

(t− to)
√
t

√
log(4t)

nt
. (8)

Note that we directly replace t with nt. If an example is rarely selected during training, nt will be far164

less than n, which causes the lower bounds to change drastically. Hence, we do not use the mean of165

all training losses, but use the mean of training losses in fixed-length time intervals. More details166

about this can be checked in Section 3.167

For the selection criteria (7) and (8), we can see that they consist of two terms and have one term168

with a minus sign. The first term in Eq. (7) (or Eq. (8)) is to reduce the uncertainty of small-loss169

examples, where we use robust mean estimation on training losses. The second term, i.e., the170

statistical confidence bound, is to encourage the network to choose the less selected examples (with a171

small nt). The two terms are constraining and balanced with σ2 or τmin. To avoid introducing strong172

assumptions on the underlying distribution of losses [8], we tune σ and τmin with a noisy validation173

set. For the mislabeled data, although the model has high uncertainties on them (i.e., a small nt)174

and tends to pick them, the overfitting to the mislabeled data is harmful. Also, the mislabeled data175

and clean data are rather hard to distinguish in some cases as discussed. Thus, we should search176

underlying clean data in a conservative way. In this paper, we initialize σ and τmin with small values.177

This way can reduce the adverse effects of mislabeled data and meanwhile select the clean examples178

with large losses, which helps generalize. More evaluations will be presented in Section 3.179

The overall procedure of the proposed method, which combats noisy labels by concerning uncertainty180

(CNLCU), is provided in Algorithm 1. CNLCU works in a mini-batch manner since all deep learning181

training methods are based on stochastic gradient descent. Following [12], we exploit two networks182

with parameters θ1 and θ2 respectively to teach each other. Specifically, when a mini-batch S̄ is183

formed (Step 3), we let two networks select a small proportion of examples in this mini-batch with184

Eq. (7) or (8) (Step 4 and Step 5). The number of instances is controlled by the function R(T ), and185

two networks only select R(T ) percentage of examples out of the mini-batch. The value of R(T )186

should be larger at the beginning of training, and be smaller when the number of epochs goes large,187

which can make better use of memorization effects of deep networks [12] for sample selection. Then,188

the selected instances are fed into its peer network for parameter updates (Step 6 and Step 7).189

3 Experiments190

In this section, we evaluate the robustness of our proposed method to noisy labels with comprehensive191

experiments on the synthetic balanced noisy datasets (Section 3.1), synthetic imbalanced noisy192

datasets (Section 3.2), and real-world noisy dataset (Section 3.3).193

5



3.1 Experiments on Synthetic Balanced Noisy Datasets194

Datasets. We verify the effectiveness of our method on the manually corrupted version of the195

following datasets: MNIST [22], F-MNIST [58], CIFAR-10 [21], and CIFAR-100 [21], because196

these datasets are popularly used for the evaluation of learning with noisy labels in the literature197

[12, 65, 54, 23]. The four datasets are class-balanced. The important statistics of the used synthetic198

datasets are summarized in Appendix B.1.199

Generating noisy labels. We consider broad types of label noise: (1). Symmetric noise (abbreviated200

as Sym.) [53, 31, 26]. (2) Asymmetric noise (abbreviated as Asym.) [32, 57, 52]. (3) Pairflip noise201

(abbreviated as Pair.) [12, 65, 71]. (4). Tridiagonal noise (abbreviated as Trid.) [68]. (5). Instance202

noise (abbreviated as Ins.) [9, 56]. The noise rate is set to 20% and 40% to ensure clean labels are203

diagonally dominant [32]. More details about above noise are provided in Appendix B.1. We leave204

out 10% of noisy training examples as a validation set.205

Baselines. We compare the proposed method (Algorithm 1) with following methods which focus on206

sample selection, and implement all methods with default parameters by PyTorch, and conduct all the207

experiments on NVIDIA Titan Xp GPUs. (1). S2E [62], which properly controls the sample selection208

process so that deep networks can better benefit from the memorization effects. (2). MentorNet [16],209

which learns a curriculum to filter out noisy data. We use self-paced MentorNet in this paper. (3).210

Co-teaching [12], which trains two networks simultaneously and cross-updates parameters of peer211

networks. (4). SIGUA [13], which exploits stochastic integrated gradient underweighted ascent to212

handle noisy labels. We use self-teaching SIGUA in this paper. (5). JoCor [52], which reduces the213

diversity of networks to improve robustness. Other types of baselines such as adding regularization214

are provided in Appendix B.2. Note that we do not compare the proposed method with some state-215

of-the-art methods, e.g., SELF [39] and DivideMix [24]. It is because their proposed methods are216

aggregations of multiple techniques. We mainly focus on sample selectionin in learning with noisy217

labels. Therefore, the comparison is not fair. Here, we term our methods with soft truncation and218

hard truncation as CNLCU-S and CNLCU-H respectively.219

Network structure and optimizer. For MNIST, F-MNIST, and CIFAR-10, we use a 9-layer CNN220

structure from [12]. Due to the limited space, the experimental details on CIFAR-100 are provided221

in Appendix B.3. All network structures we used here are standard test beds for weakly-supervised222

learning. For all experiments, the Adam optimizer [20] (momentum=0.9) is used with an initial223

learning rate of 0.001, and the batch size is set to 128 and we run 200 epochs. We linearly decay224

learning rate to zero from 80 to 200 epochs as did in [12]. We take two networks with the same225

architecture but different initializations as two classifiers as did in [12, 65, 52], since even with the226

same network and optimization method, different initializations can lead to different local optimal227

[12]. The details of network structures can be checked in Appendix C.228

For the hyper-parameters σ2 and τmin, we determine them in the range {10−1, 10−2, 10−3, 10−4}229

with a noisy validation set. Here, we assume the noise level τ is known and set R(T ) = 1 −230

min{ TTk
τ, τ} with Tk=10. If τ is not known in advanced, it can be inferred using validation sets231

[29, 66]. As for performance measurement, we use test accuracy, i.e., test accuracy = (# of correct232

prediction) / (# of testing). All experiments are repeated five times. We report the mean and standard233

deviation of experimental results.234

Experimental results. The experimental results about test accuracy are provided in Table 1, 2, and235

3. Specifically, for MNIST, as can be seen, our proposed methods, i.e., CNLCU-S and CNLCU-H,236

produce the best results in the vast majority of cases. In some cases such as asymmetric noise, the237

baseline S2E outperforms ours, which benefits the accurate estimation for the number of selected238

small-loss examples. For F-MNIST, the training data becomes complicated. S2E cannot achieve the239

accurate estimation in such situation and thus has no great performance like it got on MNIST. Our240

methods achieve varying degrees of lead over baselines. For CIFAR-10, our methods once again241

outperforms all the baseline methods. Although some baseline, e.g., Co-teaching, can work well242

in some cases, experimental results show that it cannot handle various noise types. In contrast, the243

proposed methods achieve superior robustness against broad noise types. The results mean that our244

methods can be better applied to actual scenarios, where the noise is diversiform.245

Ablation study. We first conduct the ablation study to analyze the sensitivity of the length of time246

intervals. In order to avoid too dense figures, we exploit MNIST and F-MNIST with the mentioned247

noise settings as representative examples. For CNLCU-S, the length of time intervals is chosen in248
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Noise type Sym. Asym. Pair. Trid. Ins.
Method/Noise ratio 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

S2E 98.46
±0.06

95.62
±0.91

99.05
±0.02

98.45
±0.26

98.56
±0.32

94.22
±0.79

99.02
±0.09

97.23
±1.26

97.93
±1.26

94.02
±2.39

MentorNet 95.04
±0.03

92.08
±0.42

96.32
±0.17

90.86
±0.97

93.19
±0.17

90.93
±1.54

96.42
±0.09

93.28
±1.37

94.65
±0.73

90.11
±1.26

Co-teaching 97.53
±0.12

95.62
±0.30

98.25
±0.08

95.08
±0.43

96.05
±0.96

94.16
±1.37

98.05
±0.06

96.18
±0.85

97.96
±0.09

95.02
±0.39

SIGUA 92.31
±1.10

91.88
±0.92

93.96
±0.82

62.59
±0.15

93.77
±1.40

86.22
±1.75

94.92
±0.83

83.46
±2.98

92.90
±1.82

86.34
±3.51

JoCor 98.42
±0.14

98.04
±0.07

98.05
±0.37

94.55
±1.08

98.01
±0.19

96.85
±0.43

98.45
±0.17

96.98
±0.25

98.62
±0.06

96.07
±0.31

CNLCU-S 98.82
±0.03

98.31
±0.05

98.93
±0.06

97.67
±0.22

98.86
±0.06

97.71
±0.64

99.09
±0.04

98.02
±0.17

98.77
±0.08

97.78
±0.25

CNLCU-H 98.70
±0.06

98.24
±0.06

99.01
±0.04

98.01
±0.03

98.44
±0.19

97.37
±0.32

98.89
±0.15

97.92
±0.05

98.74
±0.16

97.42
±0.39

Table 1: Test accuracy (%) on MNIST over the last ten epochs. The best two results are in bold.

Noise type Sym. Asym. Pair. Trid. Ins.
Method/Noise ratio 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

S2E 89.99
±2.07

75.32
±5.84

89.00
±0.95

81.03
±1.93

88.66
±1.32

67.09
±4.03

89.53
±2.63

77.29
±3.97

88.65
±2.12

79.35
±3.04

MentorNet 90.37
±0.17

86.53
±0.65

89.69
±0.19

67.21
±2.94

87.92
±1.08

83.70
±0.49

88.74
±0.33

85.63
±0.59

87.52
±0.15

83.27
±1.42

Co-teaching 91.48
±0.10

88.80
±0.29

91.03
±0.14

68.07
±4.58

90.77
±0.23

86.91
±0.71

91.24
±0.11

89.18
±0.36

90.60
±0.12

87.90
±0.45

SIGUA 87.64
±1.29

87.23
±0.72

76.97
±2.59

45.96
±3.40

69.59
±5.75

68.93
±2.80

79.97
±3.23

76.14
±4.24

76.92
±5.09

74.89
±4.84

JoCor 91.97
±0.13

89.96
±0.19

90.95
±0.21

79.79
±2.39

91.52
±0.24

87.40
±0.58

92.01
±0.17

89.42
±0.33

91.43
±0.71

87.59
±0.94

CNLCU-S 92.37
±0.15

91.45
±0.28

92.57
±0.15

83.14
±1.77

92.04
±0.26

88.20
±0.44

92.24
±0.17

90.08
±0.34

91.69
±0.10

89.02
±1.02

CNLCU-H 92.42
±0.21

91.60
±0.19

92.60
±0.18

82.69
±0.43

91.70
±0.18

87.70
±0.69

92.33
±0.26

90.22
±0.71

91.50
±0.21

88.79
±1.22

Table 2: Test accuracy on F-MNIST over the last ten epochs. The best two results are in bold.

the range from 3 to 8. For CNLCU-H, the length of time intervals is chosen in the range from 10 to249

15. Note that the reason for their different lengths is that their different mechanisms. Specifically,250

CNLCU-S holistically changes the behavior of losses, but does not remove any loss from the loss set.251

We thus do not need too long length of time intervals. As a comparison, CNLCU-H needs to remove252

some outliers from the loss set as discussed. The length should be longer to guarantee the number of253

examples available for robust mean estimation. The experimental results are provided in Appendix254

B.4, which show the proposed CNLCU-S and CNLCU-H are robust to the choices of the length of255

time intervals. Such robustness to hyperparameters means our methods can be applied in practice and256

does not need too much effect to tune the hyperparameters.257

Furthermore, since our methods concern uncertainty from two aspects, i.e., the uncertainty from both258

small-loss and large-loss examples, we conduct experiments to analyze each part of our methods.259

Also, as mentioned, we compare robust mean estimation with non-robust mean estimation when260

learning with noisy labels. More details are provided in Appendix B.4.261

3.2 Experiments on Synthetic Imbalanced Noisy Datasets262

Experimental setup. We exploit MNIST and F-MNIST. For these two datasets, we reduce the number263

of training examples along with the labels from “0” to “4” to 1% of previous numbers. We term264

such synthetic imbalanced noisy datasets as IM-MNIST and IM-F-MNIST respectively. This setting265

aims to simulate the extremely imbalanced circumstance, which is common in practice. Moreover,266

we exploit asymmetric noise, since these types of noise can produce more imbalanced case [41, 32].267

Other settings such as the network structure and optimizer are the same as those in experiments on268

synthetic balanced noisy datasets.269
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Noise type Sym. Asym. Pair. Trid. Ins.
Method/Noise ratio 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

S2E 80.78
±0.88

69.72
±3.94

84.03
±1.01

75.04
±1.24

81.72
±0.93

61.50
±4.63

81.44
±0.59

64.39
±2.82

79.89
±0.26

62.42
±3.11

MentorNet 80.92
±0.48

74.67
±1.17

80.37
±0.26

71.69
±1.06

77.98
±0.31

69.39
±1.73

78.02
±0.29

71.56
±0.93

77.02
±0.71

68.17
±2.52

Co-teaching 82.35
±0.16

77.96
±0.39

83.87
±0.24

73.43
±0.62

80.94
±0.46

72.81
±0.92

81.17
±0.60

74.37
±0.64

79.92
±0.57

73.29
±1.62

SIGUA 78.19
±0.22

77.67
±0.41

75.14
±0.36

52.76
±0.68

74.41
±0.81

61.91
±5.27

75.75
±0.53

74.05
±0.41

74.34
±0.39

67.98
±1.34

JoCor 80.96
±0.25

76.65
±0.43

81.39
±0.74

69.92
±1.63

80.33
±0.20

71.62
±1.05

79.03
±0.13

74.33
±1.09

78.21
±0.34

71.46
±1.27

CNLCU-S 83.03
±0.21

78.25
±0.70

85.06
±0.17

75.34
±0.32

83.16
±0.25

73.19
±1.25

82.77
±0.32

74.37
±1.37

82.03
±0.37

73.67
±1.09

CNLCU-H 83.03
±0.47

78.33
±0.50

84.95
±0.27

75.29
±0.80

83.39
±0.68

73.40
±1.53

82.52
±0.71

74.79
±1.13

81.93
±0.25

73.58
±1.39

Table 3: Test accuracy (%) on CIFAR-10 over the last ten epochs. The best two results are in bold.

As for performance measurements, we use test accuracy. In addition, we exploit the selected ratio of270

training examples with the imbalanced classes, i.e., selected ratio=(# of selected imbalanced labels /271

# of all selected labels). Intuitively, a higher selected ratio means the proposed method can make272

better use of training examples with the imbalanced classes, following better generalization [18].273

Experimental results. The test accuracy achieved on IM-MNIST and IM-F-MNIST is presented in274

Figure 2. Recall the experimental results in Table 1 and 2, we can see that the imbalanced issue is275

catastrophic to the sample selection approach when learning with noisy labels. For IM-MNIST, as276

can be seen, all the baselines have serious overfitting in the early stages of training. The curves of test277

accuracy drop dramatically. As a comparison, the proposed CNLCU-S and CNLCU-H can give a278

try to large-loss but less selected data which are possible to be clean but equipped with imbalanced279

labels. Therefore, our methods always outperform baselines clearly. In the case of Asym. 10%, our280

methods achieve nearly 30% lead over baselines. For IM-F-MNIST, we can also see that our methods281

perform well and always achieve about 5% lead over all the baselines. Note that due to the huge282

challenge of this task, some baseline, e.g., S2E, has a large error bar. In addition, the baseline SIGUA283

performs badly. It is because SIGUA exploits stochastic integrated gradient underweighted ascent on284

large-loss examples, which makes the examples with imbalanced classes more difficult to be selected285

than them in other sample selection methods.286

The selected ratio achieved on IM-MNIST and IM-F-MNIST is presented in Table 4. The results287

explain well why our methods perform better on synthetic imbalanced noisy datasets, i.e., our methods288

can make better use of training examples with the imbalanced classes. Note that since we give a289

try to large-loss but less selected data in a conservative way, the selected ratio is still far away from290

the class prior probability on the test set, i.e., 10%. However, a little improvement of the selection291

ratio can bring a considerable improvement of test accuracy. These results tell us that, in the sample292

selection approach when learning with noisy labels, improving the selected ratio of training examples293

with the imbalanced classes is challenging but promising for generalization. This practical problem294

deserves to be studied in depth.295

3.3 Experiments on Real-world Noisy Datasets296

Experimental setup. To verify the efficacy of our methods in the real-world scenario, we conduct297

experiments on the noisy dataset Clothing1M [59]. Specifically, for experiments on Clothing1M, we298

use the 1M images with noisy labels for training and 10k clean data for test respectively. Note that299

we do not use the 50k clean training data in all the experiments. For preprocessing, we resize the300

image to 256×256, crop the middle 224×224 as input, and perform normalization. The experiments301

on Clothing1M are performed once due to the huge computational cost. We leave 10% noisy training302

data as a validation set for model selection. Note that we do not exploit the resampling trick during303

training [24]. Here, Best denotes the test accuracy of the epoch where the validation accuracy was304

optimal. Last denotes test accuracy of the last epoch. For the experiments on Clothing1M, we use a305

ResNet-18 pretrained on ImageNet as did in [52]. We also use the Adam optimizer and set the batch306

size to 64. During the training stage, we run 15 epochs in total and set the learning rate 8× 10−4,307

5× 10−4, and 5× 10−5 for 5 epochs each.308
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Dataset IM-MNIST IM-F-MNIST
Method/Noise ratio 10% 20% 30% 40% 10% 20% 30% 40%

S2E 0.13
±0.12

0.11
±0.05

0.09
±0.02

0.05
±0.01

0.13
±0.04

0.17
±0.03

0.16
±0.02

0.12
±0.04

MentorNet 0.10
±0.02

0.15
±0.02

0.12
±0.03

0.13
±0.02

0.12
±0.01

0.15
±0.03

0.09
±0.01

0.14
±0.02

Co-teaching 0.09
±0.03

0.07
±0.02

0.05
±0.01

0.12
±0.01

0.17
±0.05

0.04
±0.00

0.13
±0.04

0.07
±0.01

SIGUA 0.04
±0.00

0.04
±0.00

0.01
±0.00

0.02
±0.00

0.03
±0.00

0.02
±0.00

0.04
±0.00

0.00
±0.00

JoCor 0.11
±0.04

0.08
±0.01

0.07
±0.03

0.06
±0.02

0.05
±0.01

0.13
±0.04

0.13
±0.03

0.07
±0.02

CNLCU-S 0.60
±0.11

0.37
±0.09

0.39
±0.04

0.38
±0.06

0.35
±0.03

0.39
±0.04

0.36
±0.03

0.30
±0.02

CNLCU-H 0.57
±0.13

0.32
±0.01

0.37
±0.07

0.32
±0.05

0.34
±0.02

0.35
±0.06

0.32
±0.04

0.28
±0.03

Table 4: Selected ratio (%) on IM-MNIST and IM-F-MNIST. The best two results are in bold.
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Figure 2: Test accuracy vs. number of epochs on IM-MNIST and IM-F-MNIST. The error bar for
standard deviation in each figure has been shaded.

Experimental results. The results on Clothing1M are provided in Table 5. Specifically, the proposed309

methods get better results than state-of-the-art methods on Best, which achieve an improvement of310

+1.28% and +0.99% over the best baseline JoCor. Likewise, the proposed methods outperform all the311

baselines on Last. We achieve an improvement of +1.01% and +0.54% over JoCor. Note that the312

results are a bit lower than some state-of-art methods, e.g., [64] and [46], because of the following313

reasons. (1). We follow [52] and use ResNet-18 as a backbone. The state-of-art methods [64, 46]314

use ResNet-50 as a backbone. Our aim is to make the experimental results directly comparable with315

previous papers [52] in the same area. (2). We only focus on the sample selection approach and do316

not employ other advanced techniques, e.g., introducing the prior distribution [46] and combining317

semi-supervised learning [24, 39, 28].

Methods S2E MentorNet Co-teaching SIGUA JoCor CNLCU-S CNLCU-H
Best 67.34 68.36 69.37 62.89 70.09 71.37 71.08
Last 65.90 67.42 68.62 58.73 69.75 70.76 70.29

Table 5: Test accuracy (%) on Clothing1M. The best two results are in bold.

318 4 Conclusion319

In this paper, we focus on promoting the prior sample selection in learning with noisy labels, which320

starts from concerning the uncertainty of losses during training. We robustly use the training losses at321

different iterations to reduce the uncertainty of small-loss examples, and adopt confidence interval322

estimation to reduce the uncertainty of large-loss examples. Experiments are conducted on benchmark323

datasets, demonstrating the effectiveness of our method. We believe that this paper opens up new324

possibilities in the topics of using sample selection to handle noisy labels, especially in improving325

the robustness of models on imbalanced noisy datasets.326
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[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing489

the appropriate section of your paper or providing a brief inline description. For example:490

• Did you include the license to the code and datasets? [No] The code and the data are491

proprietary.492

Please do not modify the questions and only use the provided macros for your answers. Note that the493

Checklist section does not count towards the page limit. In your paper, please delete this instructions494

block and only keep the Checklist section heading above along with the questions/answers below.495

1. For all authors...496

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s497

contributions and scope? [Yes]498

(b) Did you describe the limitations of your work? [Yes]499

(c) Did you discuss any potential negative societal impacts of your work? [No]500

(d) Have you read the ethics review guidelines and ensured that your paper conforms to501

them? [Yes]502

2. If you are including theoretical results...503

(a) Did you state the full set of assumptions of all theoretical results? [Yes]504

(b) Did you include complete proofs of all theoretical results? [Yes]505

3. If you ran experiments...506

(a) Did you include the code, data, and instructions needed to reproduce the main exper-507

imental results (either in the supplemental material or as a URL)? [Yes] The code508

and instructions are provided in the supplemental material. The used datasets can be509

publicly downloaded. Besides, the code for generating noisy labels is provided.510

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they511

were chosen)? [Yes] See Section 3.512

(c) Did you report error bars (e.g., with respect to the random seed after running experi-513

ments multiple times)? [Yes] See Section 3.1 and 3.2.514

(d) Did you include the total amount of compute and the type of resources used (e.g., type515

of GPUs, internal cluster, or cloud provider)? [Yes] See “Baselines” in Section 3.1.516

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...517

(a) If your work uses existing assets, did you cite the creators? [Yes] We use MNIST,518

F-MNIST, CIFAR-10, CIFAR-100, and Clothing1M in this paper. We cite the creators,519

which can be checked in Section 3.520

(b) Did you mention the license of the assets? [N/A]521

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]522

523

(d) Did you discuss whether and how consent was obtained from people whose data you’re524

using/curating? [N/A]525

(e) Did you discuss whether the data you are using/curating contains personally identifiable526

information or offensive content? [N/A]527

5. If you used crowdsourcing or conducted research with human subjects...528

(a) Did you include the full text of instructions given to participants and screenshots, if529

applicable? [N/A]530

(b) Did you describe any potential participant risks, with links to Institutional Review531

Board (IRB) approvals, if applicable? [N/A]532

(c) Did you include the estimated hourly wage paid to participants and the total amount533

spent on participant compensation? [N/A]534
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