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ABSTRACT

Embodied navigation is a foundational challenge for intelligent robots, demanding
the ability to comprehend visual environments, follow natural language instruc-
tions, and explore autonomously. However, existing models struggle to provide
a unified solution across heterogeneous navigation paradigms, often yielding low
success rates and limited generalization. We present OmniNav, a unified frame-
work that handles instruct-goal, object-goal, point-goal navigation, and frontier-
based exploration within a single architecture. First, we introduce a lightweight,
low-latency policy that predicts continuous-space waypoints (coordinates and ori-
entations) with high accuracy, outperforming action-chunk methods in precision
and supporting real-world deployment with control frequencies up to 5 Hz. Sec-
ond, at the architectural level, OmniNav proposes a fast-slow system design: a
fast module performs waypoint generation from relatively short-horizon visual
context and subtasks, while a slow module conducts deliberative planning us-
ing long-horizon observations and candidate frontiers to select the next subgoal
and subtask. This collaboration improves path efficiency and maintains trajec-
tory coherence in exploration and memory-intensive settings. Notably, we find
that the primary bottleneck lies not in navigation policy learning per se, but in
robust understanding of general instructions and objects. To enhance generaliza-
tion, we incorporate large-scale general-purpose training datasets including those
used for image captioning and referring/grounding into a joint multi-task regimen,
which substantially boosts success rates and robustness. Extensive experiments
demonstrate state-of-the-art performance across diverse navigation benchmarks,
and real-world deployment further validates the approach. OmniNav offers practi-
cal insights for embodied navigation and points to a scalable path toward versatile,
highly generalizable robotic intelligence.

1 INTRODUCTION

Embodied navigation (Gao et al., 2024; Gu et al., 2022) has emerged as a core problem in embodied
intelligence: enabling robots to perceive, understand, and explore real-world environments with-
out pre-built maps while following natural language instructions. To act reliably in dynamic, par-
tially observable environments, an agent must not only ground instantaneous visual inputs but also
maintain coherent spatiotemporal memory and perform active exploration. Application demands
for real-time responsiveness further increase the requirements for low-latency decision-making and
cross-environment generalization.

Current research largely revolves around three paradigms: point-goal (Liu et al., 2025b), instruct-
goal (Anderson et al., 2018; Ku et al., 2020), and object-goal (Yokoyama et al., 2024b; Xiang et al.,
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2025). point-goal tasks are well-specified and straightforward to evaluate but rely on explicit coor-
dinates rarely available in practice; instruction-goal aligns with human usage but often generalizes
poorly to unseen instructions or environments; object-goal is the most practical but requires robust
target recognition coupled with efficient path planning, making it the most challenging. Many ex-
isting methods remain customized, relying on task-specific data, which limits cross-task transfer
and the potential for mutual enhancement. Uni-Navid (Zhang et al., 2024a) proposed a VLM-based
discrete action predictor unifying vision-and-language navigation, object-goal navigation, embod-
ied question answering (Das et al., 2018), and following (Wang et al., 2025a), but its study of LLM
long-horizon planning is not sufficiently developed. MTU3D (Zhu et al., 2025) advances a “move
to understand” paradigm by coupling frontier exploration with visual localization in a single objec-
tive, yet requires constructing 3D object coordinates, leading to deployment complexity. Although
recent Video-LLMs (Wei et al., 2025; Qi et al., 2025; Zhang et al., 2024b) and VLAs (Sapkota
et al., 2025; Zitkovich et al., 2023; Ma et al., 2024) integrate vision, language, and action predic-
tion end to end, they still face bottlenecks in streaming video input, long-context management, and
low-latency inference: discretized action modeling sacrifices precision and flexibility; constrained
LLM call frequency and frequent context resets lead to deployment difficulties; besides, in practice,
the dominant failure mode often stems from inadequate understanding of generic instructions and
open-vocabulary objects rather than policy learning itself. These gaps call for a unified, efficient
framework that balances long/short-horizon reasoning with real-time responsiveness.

We present OmniNav, a unified embodied navigation framework that concurrently covers instruct-
goal, object-goal, point-goal, and frontier-based exploration within a single architecture. Inspired
by dual-system theory (Figure, 2024; Black et al., 2025), OmniNav coordinates a fast–slow sys-
tem (Black et al., 2025): a fast system reacts to comparatively short-horizon perception and current
tasks or subtasks, generating high-precision waypoints (coordinates and orientations) to support low-
latency control up to 5 Hz; a slow system deliberates over long-horizon observations and frontier
cues, leveraging a VLM’s chain-of-thought (Wei et al., 2022; Chen et al., 2025c; Liu et al., 2025a)
to decompose complex goals and select the next subgoal and subtask. The two are coupled through
a central memory module that uses a key–value (KV) cache to provide essential spatiotemporal
context, yielding decisions that are both locally agile and globally consistent.

OmniNav addresses the triad of real-time operation, fast–slow collaboration, and generalization.
A lightweight flow-matching policy (Bjorck et al., 2025) avoids the precision degradation and la-
tency accumulation inherent to action discretization; fast–slow collaboration ensures exploration
efficiency and trajectory coherence in long-memory scenarios; more importantly, training unifies
large-scale generic vision–language data (captioning, referring/grounding, etc.) with multiple nav-
igation tasks, significantly strengthening instruction following and open-vocabulary object percep-
tion to improve success rates and robustness. Our contributions are threefold:

• A unified architecture that, under a single training framework and policy, supports multiple
goal modalities (point, object, and instruction) as well as frontier-based exploration;

• An end-to-end fast–slow coordination with central memory that reconciles low-latency
control and high-level deliberation;

• A principled strategy to incorporate generic vision–language data into joint training, sys-
tematically improving cross-task and cross-environment generalization.

Extensive experiments set new state-of-the-art results across multiple navigation benchmarks, with
real-robot deployments further validating practicality. We contend that OmniNav charts a scalable
path toward multifunctional, highly generalizable embodied navigation systems.

2 RELATED WORKS

Vision Language Models for Navigation Leveraging their powerful generalization capabilities in
understanding and planning, Visual Language Models (VLMs) (Chiang et al., 2023; Liu et al., 2023;
Zhu et al., 2023) have been increasingly applied to the domain of robotic navigation, achieving
notable success. Prevailing methods (Dorbala et al., 2022; Zhou et al., 2024b; Long et al., 2024b)
typically employ VLMs to process multimodal instructions and directly decode low-level actions in
an autoregressive manner. However, this paradigm suffers from significant drawbacks: it is prone
to compounding errors in sequential prediction and is often hampered by slow inference speeds. In
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contrast, our approach draws inspiration from recent advances in Vision-Language-Action (VLA)
models (Zitkovich et al., 2023; Kim et al., 2024; Li et al., 2024). We introduce a novel architecture
that appends a flow-matching policy (Zhao et al., 2024; Chen et al., 2024; Zhou et al., 2024a; Hu
et al., 2025; Yang et al., 2025) to a VLM backbone. This design enables our model to generate entire
action trajectories non-autoregressively, leading to substantially improved prediction accuracy and
computational efficiency, especially when navigating unseen environments.

Dual-System Design Dual-system architectures have been widely adopted across various domains
to meet diverse operational demands. In the realm of Vision-Language-Action (VLA) models, sev-
eral works (Bjorck et al., 2025; Bu et al., 2025; Ge et al., 2024; Song et al., 2025) have implemented
dual-system designs to balance fast control execution and intelligent planning. Inspired by this
paradigm and motivated by the specific requirements of embodied navigation, we propose a novel
dual-system framework. Our framework consists of two complementary components. The first is a
fast system, a purely visual, end-to-end policy designed for direct deployment and is highly effective
in the majority of navigation scenarios. The second system is specifically engineered for challenging
long-horizon tasks. To serve as a long-term memory mechanism, we employ a planning strategy that
combines frontier-based exploration (Zhu et al., 2025) with images. This approach offers a more
concise implementation compared to alternative memory structures such as scene graphs (Team
et al., 2025) or complex semantic maps (Long et al., 2024a). These alternatives memory structures
can also be implementations for the slow system. The idea stays the same: the slow system is re-
sponsible for global planning, while the fast system handles local execution. This synergistic design
has proven its superiority by achieving State-of-the-Art performance on multiple benchmarks.

Frontier-based Navigation Recent studies on exploration and navigation adopt different strategies
for selecting informative targets in unknown environments. GOAT (Chang et al., 2023) and its
benchmark GOAT-Bench (Khanna et al., 2024) study lifelong navigation (Ren et al., 2025) and
object search using an object-instance memory and frontier exploration. Similarly, MTU3D (Zhu
et al., 2025) keep an object-goal memory built from 3D point clouds and semantic segmentation,
and combine this with frontier exploration. A different group of methods uses non-semantic frontier
exploration (Chang et al., 2023; Sakamoto et al., 2024; Nayak et al., 2025), where the next target is
usually just the closest frontier, sometimes adjusted by simple heuristics such as distance–heading
scores. OmniNav instead uses a semantics- and reasoning-aware frontier selection: it links each
frontier to its egocentric images, then uses explicit chain-of-thought reasoning over these views to
decide which frontier is more informative or promising for the current task.

3 APPROACH

Multimodal Input tokenizations To handle all four task types through a unified interface, text,
coordinates, and visual history are converted into a set of discrete tokens consumable by a Large-
Language Model (LLM) see Fig. 1. We use Qwen2.5-VL-3B-Instruct (Bai et al., 2025) as the
base model and extend it with a coordinate modality. During streaming inference, a key–value (KV)
cache is maintained to reduce latency. Text tokens: Derived from natural-language task descriptions,
object category labels, and point-goal commands, are all converted into a standardized instruction
sequence. Coordinate tokens: Candidate search regions are represented as sets of 2D coordinates and
heading angles, sourced from point-goal inputs or subgoal positions generated by the slow system.
These coordinates are processed via an MLP to dense embeddings that serve as coordinate tokens.
Image tokens: The central memory maintains a ring buffer of pose-stamped images. For the fast
system, it spatiotemporally samples from the historical image sequence, maintaining a maximum
number of images (e.g., 20 frames). For the slow system, it samples images from the spatiotemporal
neighborhood of candidate frontiers. All images are encoded with a ViT to produce image tokens.

Fast Thinking System OmniNav operates at a high frequency, designed to execute either subtasks
provided by a slow system or end-to-end multi-task navigation, as shown in Fig. 1. It parallelly
outputs a sequence of 5 continuous-space waypoints, wt:t+H ∈ RH×5 with H = 5. We formulate
waypoint prediction as a conditional diffusion generation task. The input coordinates are first em-
bedded by an MLP and then encoded together with the images and texts by the VLM. The VLM
performs deep fusion over these features, and the resulting fused features are used as conditions
for the diffusion model, guiding waypoint generation. This design preserves the VLM’s semantic
understanding while enabling rich interactions between language-guided context and the waypoint,
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Figure 1: The fast system can independently handle multi-task navigation, using the VLM backbone
and a flow-matching policy to rapidly generate waypoints. Building on this, a slow thinking module
is integrated to enable long-term memory and planning: it constructs long-range spatial and semantic
memory using frontiers and images, and provides subgoal cues. The collaboration between the
slow and fast proceeds as follows: the slow system uses frontiers or memory to generate high-level
subgoals, once a subgoal is determined, the fast system takes over and progressively produces low-
level waypoint sequences, ultimately reaching the target.

leading to robust instruction following. Compared with conventional autoregressive methods, the
policy head achieves an speedup and, with a history of 20 frames, supports an inference rate of
5 Hz for real-time closed-loop control. At the same time, it produces smoother and more precise
trajectories.

We employ a variant of the Denoising Transformer (DiT) (Peebles & Xie, 2023) to model waypoint
sequences. The policy network consists of self-attention blocks that operate on noised tokens to
capture temporal and spatial dependencies within the waypoint sequence, and cross-attention blocks
that attend to the vision-language context OV LM . The output is a sequence of H = 5 spatial-
temporal waypoints w(i)

t ∈ R5, i = 1, . . . , H , each encoding:

w
(i)
t =

(
x(i), y(i), sin θ(i), cos θ(i), c(i)

)
, (1)

where (x(i), y(i)) denotes the 2D position, θ(i) is the orientation (represented via sine-cosine em-
bedding to avoid discontinuity at π/ − π), and c(i) ∈ {0, 1} is a binary completion flag indicating
whether the “arrive” command should be triggered at the i-th waypoint.

Conditional flow matching policy is employed (Lipman et al., 2022). Given a ground-truth waypoint
sequence wt:t+H , noise ϵ ∼ N (0, I), and a time parameter τ ∈ [0, 1], the input is constructed as:

wτ
t:t+H = τwt:t+H + (1− τ)ϵ, (2)

and the policy π is trained to estimate the denoising residual ϵ−wt:t+H by minimizing:

Eτ,ϵ

[∥∥π(OV LM ,wτ
t:t+H)− (ϵ−wt:t+H)

∥∥2] . (3)

At inference, waypoints are generated via S = 5 steps of Euler integration. Starting from initial
noise w0

t:t+H ∼ N (0, I), we iteratively refine the sequence:

wτ+∆τ
t:t+H = wτ

t:t+H +
1

S
π(OV LM ,wτ

t:t+H), ∆τ =
1

S
, (4)

with τ increasing from 0 to 1. The final denoised output w1
t:t+H serves as the predicted waypoints.
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Slow Thinking System The slow thinking system is the deliberative planning module for hierarchi-
cal active exploration. Its core responsibilities are twofold: when the target appears in the current or
historical field of view, it can quickly localize the target and generate the coordinates of the subgoal
that drive the fast system to progressively approach it, when the target is not observed, it selects
subgoal position with strong semantic relevance to the target to explore next. This process demands
both exploration and environmental understanding. The former requires the model to navigate and
discover the environment, while the latter involves a core task: predicting the spatial coordinates of
the target based on input camera poses and images, this grounds the model’s semantic understanding
in a concrete, geometric output.

In the fast–slow system collaboration, the fast system is not just a low-level controller following
preset coordinates or smoothing a pre-planned path. It must constantly use raw visual input to move
toward its subgoal. For example, if it gets a coordinate from the slow system but a wall blocks the
straight-line path, the fast system must use visual cues to find a path that avoids the obstacle. If it
gets a target coordinate from object memory, it can adjust its final pose based on what it currently
sees, such as stopping precisely at the left, right, or center of the object. By continuously updating
and refining its waypoints while moving, the fast system can reach targets more accurately.

Frontier (Zhu et al., 2025) is employed to guide the active exploration. We maintain a 3D occupancy
map, which categorizes each region as explored or unknown, and frontiers are then identified as the
boundary points between explored and unknown regions. In addition, to comprehend past temporal
and spatial information, we construct a memory bank (Zhu et al., 2025; Olton, 1977; Xu et al., 2024;
Zhou et al., 2023). This repository archives a history of observations, storing the visual data and
corresponding pose information (coordinates and orientations) after every executed action. We then
design a sampling strategy that connects this historical context to future exploration by collecting
all historical images captured near the agent’s current location. It then evaluates each frontier by
iterating through these images, sampling the one whose original capture viewpoint is most suitably
aligned with the frontier’s spatial coordinates. This image thereby becomes a visual proxy for that
frontier.

During frontier selection, the model engages in comprehensive spatial and content reasoning, reflect-
ing its capability to actively explore unknown environments and propose subgoal locations related
to the target object. For example, when searching for a toilet, it prioritizes exploration locations in
the bathroom; when searching for a television, it seeks locations associated with the living room.
Moreover, if the target object appears in memory or within the current view, it outputs the target’s
existing location. We incorporate explicit chain-of-thought (CoT) (Lin et al., 2025; Wang et al.,
2025b; Zhao et al., 2025) reasoning into the slow system’s prediction process to enable transparent
process expression, achieving interpretability and self-correction. This also allows for richer textual
outputs that strengthen the model’s grasp of logic and improve complex reasoning performance.
Fig.2 illustrates the slow system’s reasoning process.

4 DATA AND TRAINING

Data in the embodied domain is typically organized as a data pyramid (Bjorck et al., 2025), with
internet data and human video data at the bottom, simulation or synthetic data in the middle, and
real-robot data at the top. Our dataset follows this rich composition as well, including general web
data, simulation data, and a very small amount of real-robot data detailed in Fig. 3

4.1 GENERAL DATASET

It is found in our experiment that models can learn the navigation paradigm relatively easily, whereas
general-purpose capabilities remain challenging. To strengthen these abilities, we extended the train-
ing data with broad-coverage general-purpose datasets. General-purpose datasets (general QA, im-
age captioning, OCR, chart understanding, coding, and math) complement Vision-and-Language
Navigation (VLN) by supplying foundational skills in language understanding, visual semantics,
OCR recognition, structured reasoning, and algorithmic planning. These capabilities improve in-
struction comprehension, path planning, and overall robustness. They also introduce commonsense
and functional priors, such as “bath towels are commonly found in bathrooms”. We draw on the
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Figure 2: Reasoning process by the slow system for exploration. For the “find the bathtub” task,
the model reasons over the frontier set using memory and semantic priors, iteratively generating
subgoals for the next exploration.

Figure 3: Data composition overview. Four data types are used for training: Navigation task data,
Embodied Q&A data, General MLLM data and Grounding and referring data.

open-source MAmmoTH-VL corpus (Guo et al., 2024), and subsampled examples to expand our
general capabilities; the composition ratios are shown in Fig. 3.

We further incorporated grounding and referring data to more reliably ground linguistic targets and
relations to concrete pixels, instances, and locations in the scene, thereby yielding policies that are
more interpretable, robust, and generalizable. This includes fine-grained language-to-target map-
ping—for example, precisely localizing language like “red sofa,” “door with a handle,” or “the
second chair” to the correct image regions to support instance-level disambiguation. It also en-
compasses spatial and relational understanding, such as learning to ground spatial prepositions and
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relations (“to the left/in front of/at the corner”), and extracting actionable turning and stopping cues
from relational descriptions like “the door next to the painting” or “after passing the hallway, turn
right at the first intersection.” The referring and grounding data are sourced from RefCOCO se-
ries (Chen et al., 2025b) and Objects365 (Shao et al., 2019).

4.2 MULTI-TASK NAVIGATION DATASET

Point-goal data. We use the open-source Citywalker corpus (Liu et al., 2025b), which consists of
first-person city-walking videos collected from public YouTube channels. Each trajectory comprises
a single forward-view sequence. Long videos are segmented into 2-minute clips, then the camera
pose for every frame are recovered by DPVO (Deep Patch Visual Odometry) (Teed et al., 2023).

Instruct-goal data. Under Habitat’s VLN-CE (continuous environment) setting and Matterport3D
scens (Chang et al., 2017), based on the public instruction–path pairs from R2R (Anderson et al.,
2018) and RxR (Ku et al., 2020). For each trajectory, we store a panoramic sequence composed of
three-views (front, left, right), the action and waypoint sequences, and the natural-language instruc-
tion.

Object-goal data. Specifically, open-vocabulary object navigation (OVON) data (Yokoyama et al.,
2024b). In Habitat-Matterport3D (HM3D) (Ramakrishnan et al., 2021) scenes, we randomly sample
(start pose, target object category) pairs. The built-in shortest-path navigation algorithm is used to
move the agent to the vicinity of the target. The same content are recorded as the instruct-goal data
for each trajectory.

Object-goal (with frontier-based exploration) data. At each step the agent updates its occupancy
map and visible region to identify all current frontiers. A policy then selects one frontier—favoring
the shortest path while introducing limited randomness—as the current subgoal. Once the target
object is found, the exploration episode terminates successfully, yielding a trajectory (Zhu et al.,
2025). Each trajectory record includes a single forward-view frame sequence, a unexplored frontiers
sequence and a natural-language instruction.

Embodied QA. ScanQA (Azuma et al., 2022) focuses on real-world indoor 3D scene understanding,
with QA pairs centered on object locations, attributes, and spatial relations. R2R-EnvDrop (Tan
et al., 2019) addresses continuous visual navigation: scenes are from Matterport3D, trajectories
are from R2R-CE, and the navigation instruction–trajectory pairs are recast into a QA format to
strengthen alignment between linguistic expressions and visual observations.

Navigation data Process.Each action step corresponds to a 3D continuous pose, described jointly
by position and orientation. Taking the agent’s current front-view coordinate frame as the origin,
all other trajectory points are transformed into this local frame. Then, we project each 3D pose
onto the ground plane, keeping only the planar coordinates (x, y) and the heading angle (θ), and
we additionally attach an “arrival” flag to each step. In this way, each trajectory point is ultimately
represented as a quadruple (x, y, θ, arrive), which serves as the primary target for waypoint op-
timization. Under this abstraction, since the underlying simulator ensure that any valid 2D path
passing through a stair region can be realized as a 3D trajectory across floors, this representation
naturally supports multi-floor navigation in HM3D: moving from one floor to another is encoded as
following a sequence of 2D poses from the stair entrance to the stair exit, while the vertical motion
is handled implicitly by the simulator. At the same time, the agent always receives 3D visual obser-
vations with full geometric information, so the stair structure and floor changes are reflected in the
visual features.

4.3 DISCRETE AND CONTINUOUS JOINT TRAINING

We adopt a two-stage training paradigm to balance language–vision semantics and continuous con-
trol. In Stage 1, we use an autoregressive (AR) objective to predict discrete variables (e.g., navigation
action chunks, general-purpose semantic data, Embodied QA, grounding and referring data; see the
four data types in Fig. 3), to achieve alignment between language–vision and action. In Stage 2, we
attach a flow-matching policy to the shared backbone to predict continuous waypoints, and perform
joint training by including 20% of the Stage-1 discrete data to prevent degradation of the base VLM
during continuous-control fine-tuning. The continuous waypoint coordinates are normalized using
min-max normalization to ensure stable training and better convergence.
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A joint training scheme is particularly critical for Vision-and-Language Navigation (VLN), which
requires strong general knowledge and semantic understanding, leading to substantial improvements
in success rates in open environments. Stage 1 is trained with 96 NVIDIA H20 GPUs for 120 hours,
and Stage 2 is trained with 64 NVIDIA H20 GPUs for 48 hours with lower learning rate.

5 EXPERIMENTS

Table 1: Main comparison with prior methods on the Val-Unseen split of R2R-CE and RxR-CE.
Method Observation R2R-CE Val-Unseen RxR-CE Val-Unseen

S.RGB Pano. Depth Odo. NE↓ OS↑ SR↑ SPL↑ NE↓ SR↑ SPL↑
HPN+DN* (Krantz et al., 2021) ✓ ✓ ✓ 6.31 40.0 36.0 34.0 - - -
CMA* (Hong et al., 2022) ✓ ✓ ✓ 6.20 52.0 41.0 36.0 8.76 26.5 22.1
Sim2Sim* (Krantz & Lee, 2022) ✓ ✓ ✓ 6.07 52.0 43.0 36.0 - - -
GridMM* (Wang et al., 2023b) ✓ ✓ ✓ 5.11 61.0 49.0 41.0 - - -
DreamWalker* (Wang et al., 2023a) ✓ ✓ ✓ 5.53 59.0 49.0 44.0 - - -
Reborn* (An et al., 2022) ✓ ✓ ✓ 5.40 57.0 50.0 46.0 5.98 48.6 42.0
ETPNav* (An et al., 2024) ✓ ✓ ✓ 4.71 65.0 57.0 49.0 5.64 54.7 44.8
HNR* (Wang et al., 2024) ✓ ✓ ✓ 4.42 67.0 61.0 51.0 5.50 56.3 46.7

AG-CMTP (Chen et al., 2021) ✓ ✓ ✓ 7.90 39.0 23.0 19.0 - - -
R2R-CMTP (Chen et al., 2021) ✓ ✓ ✓ 7.90 38.0 26.0 22.0 - - -
InstructNav (Long et al., 2024a) ✓ ✓ ✓ 6.89 - 31.0 24.0 - - -
LAW (Raychaudhuri et al., 2021) ✓ ✓ ✓ 6.83 44.0 35.0 31.0 10.90 8.0 8.0
CM2 (Georgakis et al., 2022) ✓ ✓ ✓ 7.02 41.0 34.0 27.0 - - -
WS-MGMap (Chen et al., 2022) ✓ ✓ ✓ 6.28 47.0 38.0 34.0 - - -
AO-Planner (Chen et al., 2025a) ✓ ✓ 5.55 59.0 47.0 33.0 7.06 43.3 30.5
Seq2Seq (Krantz et al., 2020) ✓ ✓ 7.77 37.0 25.0 22.0 12.10 13.9 11.9
CMA (Krantz et al., 2020) ✓ ✓ 7.37 40.0 32.0 30.0 - - -
NaVid (Zhang et al., 2024b) ✓ 5.47 49.0 37.0 35.0 - - -
Uni-NaVid (Zhang et al., 2024a) ✓ 5.58 53.5 47.0 42.7 6.24 48.7 40.9
NaVILA (Cheng et al., 2024) ✓ 5.22 62.5 54.0 49.0 6.77 49.3 44.0
StreamVLN (Wei et al., 2025) ✓ 4.98 64.2 56.9 51.9 6.22 52.9 46.0
CorrectNav (Yu et al., 2025) ✓ 4.24 67.5 65.1 62.3 4.09 69.3 63.3
OmniNav(w/o policy-head) ✓ 4.36 65.0 59.8 57.5 3.87 64.1 53.9
OmniNav ✓ 3.74 74.6 69.5 66.1 3.77 73.6 62.0

Table 2: Evaluation of object-goal navigation on HM3D-OVON, where * indicates OmniNav with
slow thinking system.

Method Observation Val-Seen Val-Seen-Synonyms Val-Unseen
S.RGB Depth Odo. SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑

BC ✓ 11.1 4.5 9.9 3.8 5.4 1.9
DAgger ✓ 11.1 4.5 9.9 3.8 5.4 1.9
RL ✓ 18.1 9.4 15.0 7.4 10.2 4.7
DAgRL ✓ 41.3 21.2 29.4 14.4 18.3 7.9
BCRL ✓ 39.2 18.7 27.8 11.7 18.6 7.5
VLFM (Yokoyama et al., 2024a) ✓ ✓ ✓ 35.2 18.6 32.4 17.3 35.2 19.6
DAgRL+OD (Yokoyama et al., 2024b) ✓ ✓ ✓ 38.5 21.1 39.0 21.4 37.1 19.8
Uni-NaVid (Zhang et al., 2024a) ✓ 41.3 21.1 43.9 21.8 39.5 19.8
MTU3D (Zhu et al., 2025) ✓ ✓ ✓ 55.0 23.6 45.0 14.7 40.8 12.1

OmniNav ✓ 46.6 23.3 50.4 28.5 43.5 27.3
OmniNav*(w/ cot) ✓ ✓ ✓ 56.1 30.0 68.6 38.8 59.2 33.2

Metrics We evaluate navigation performance using success rate (SR), oracle success rate (OS), suc-
cess weighted by path length (SPL), and navigation error (NE). Our evaluation protocol is consistent
with prior work (Zhang et al., 2024a; Zhu et al., 2025) and follows standard practice.

Instruct goal As shown in Table 1, On the R2R-CE and RxR-CE benchmarks, we compare our
model against all relevant competitors, including both discrete and continuous prediction methods.
Notably, using only its fast system and pure RGB inputs, OmniNav achieves state-of-the-art success
rates on both benchmarks. It surpasses the previous leading model by improving the success rate by
4.4% on R2R-CE and 4.3% on RxR-CE.

Object goal To further validate open vocabulary generalization, we also compare OmniNav with
prior methods on the HM3D-OVON benchmark. As shown in Table 2, under purely visual inputs,
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OmniNav already surpasses the best existing approach by 2.7%. However, given that the OVON task
demands long-horizon and global planning, the limitations of a purely reactive fast system—such as
getting trapped in local loops and exhibiting poor map coverage—become particularly pronounced.
Therefore, we incorporate the slow system integrated with frontier-based reasoning, which neces-
sitates the use of depth and odometry information to build and maintain an occupation map. This
augmentation equips the agent with global spatial awareness and the capacity for proactive explo-
ration, ultimately leading to superior overall performance(exceeding the strongest prior method by
18.4%).

Point goal We compare point-goal performance on the CityWalker benchmark, a state-of-the-art
point-goal method that supports outdoor navigation scenarios. CityWalker adopts MAOE (Mean
Average Orientation Error) as an open-set evaluation metric. On this open-set metric, our approach
still outperforms the benchmark method (OmniNav:11.53% vs CityWalker:15.23%).

Ablation Study The independent and synergistic contributions of the four key components poli-
cies are evaluated as show in Table.1 and Table.3. 1) Fast system: autoregressively action chunks
generation vs. continuous waypoints generation by flow-matching policy. On R2R-CE, RxR-CE,
and OVON benchmarks, the degradation is substantial for action chunks. Their semantic tokens
(e.g., left, right) align more easily with language, making them suitable for the first-stage training.
However, because action chunks are coarse-grained motion control, continuous waypoints are better
suited for fine-grained control. 2) Slow system (planning with frontier and long-term visual mem-
ory). We primarily compare with/without the slow system on long-horizon exploration in OVON
and find the largest improvements here. Once previously explored areas are recorded, the agent
reduces redundant exploration and improves efficiency. Moreover, decomposing active exploration
into subgoals (e.g., “go to the bedroom first”) and letting the fast system quickly approach each
subgoal forms a hierarchical ”plan–execute” loop, which better matches human reasoning and be-
havior in unfamiliar environments. 3) General data (general MLLM and referring/grounding). With
the slow system enabled, adding the general-purpose datasets yields further stable gains. 4) CoT
(explicit chain-of-thought outputs). Using CoT makes the basis for subgoal selection in the slow
system transparent, enabling process-level self-check and correction. It reduces cumulative errors
in long chains and complex semantic tasks, producing stable improvements. When all four are en-
abled, performance is best: the slow system provides semantically plausible long-horizon subgoals;
the policy head executes with high precision and low latency; general data injects commonsense and
language–vision alignment; and CoT provides auditable processes and self-correction.

Table 3: Ablation study on HM3D-OVON Val-Unseen
Method Module Val-Unseen

policy-head slow-system general data COT SR↑ SPL↑
OmniNav 35.3 22.1

✓ 43.5 27.3

OmniNav* ✓ ✓ 55.9 30.7
✓ ✓ ✓ 57.7 32.9
✓ ✓ ✓ ✓ 59.2 33.2

Real-world deployment In real-robot deployment see Fig. 4, we deploy the fast system component
of the model architecture—comprising the VLM and the policy head on a cloud server with an RTX
3090 GPU. The history buffer holds up to 20 front-view frames with at a resolution of 120×106,
while the current input is tri-view at 480×426. The system runs at over 5 Hz. For all tasks, it outputs
waypoints, which are then fed into the onboard speed control module, which, based on the current
speed and maximum acceleration, generates a set of candidate speeds. It then selects the optimal
speed to approach the waypoint (selection criteria: minimize speed changes to maintain high speed
as much as possible, and be closest to the target waypoint).

Deploying the full slow system in real-world settings requires additional engineering, such as robust
real-time integration with LiDAR/depth estimation. This paper mainly focuses on validating the
effectiveness of the dual-system collaboration framework in terms of navigation performance and
behavior. A full physical deployment of the complete slow system, and systematic optimization of its
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performance under real-world constraints (including detailed latency–frequency trade-off analysis),
constitutes an important avenue for future research.

Figure 4: Real-world deployment. It shows third-person view of the three different navigation
tasks which are deployed in a zero-shot setting. The gradient blue arrows indicate the trajectory,
and the yellow box marks the target location. Our model demonstrates highly effective navigation
performance on the real quadruped robot.

6 CONCLUSION & FUTURE WORKS

Conclusion The core of OmniNav is a fast–slow dual-system architecture: the fast system, condi-
tioned on VLM-fused multimodal context, employs a flow-matching policy to generate future con-
tinuous waypoints, achieving low latency, and high-precision closed-loop control; the slow system
plans subgoals and subtasks supported by long-horizon visual memory and frontiers, and introduces
explicit CoT for interpretability and self-correction. This architecture supports most basic tasks in
embodied navigation. Through unified multimodal tokenization, different tasks (instruct goal, ob-
ject goal, point goal) are seamlessly handled within a single model. On the training side, we adopt a
two-stage scheme, where the second stage’s joint training of discrete and continuous values prevents
continuous-control fine-tuning from eroding the base VLM’s capabilities—an approach that can be
broadly applicable. We also incorporate sizable general-purpose data and referring/grounding data
to bolster language understanding, visual semantics, structured reasoning, and commonsense priors
for VLN, thereby improving generalization and robustness in embodied navigation. Experimentally,
OmniNav improves success rates over the current best on R2R-CE and on RxR-CE, achieves the best
performance on OVON, and benefits further from the slow-system design. Real-world quadruped
robot deployment demonstrates the engineering feasibility of up to 5 Hz cloud inference with tri-
view inputs and a 20-frame history buffer. Overall, the high spatial precision and low latency of
continuous waypoints, the unified multimodal interface, the fast–slow system collaboration, and
joint training collectively underpin OmniNav’s strong performance across benchmarks, evidencing
solid open-set generalization and practical deployment potential.

10



REFERENCES

Dong An, Zun Wang, Yangguang Li, Yi Wang, Yicong Hong, Yan Huang, Liang Wang, and Jing
Shao. 1st place solutions for rxr-habitat vision-and-language navigation competition (cvpr 2022).
arXiv preprint arXiv:2206.11610, 2022.

Dong An, Hanqing Wang, Wenguan Wang, Zun Wang, Yan Huang, Keji He, and Liang Wang. Etp-
nav: Evolving topological planning for vision-language navigation in continuous environments.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 3674–3683, 2018.

Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki Kawanabe. Scanqa: 3d question an-
swering for spatial scene understanding. In proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 19129–19139, 2022.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.
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A APPENDIX

A.1 ANALYSIS OF TRAINING DATA AND MODEL SCALE

Analysis of Training Data The three additional data components shown in Figure 3 are ablated indi-
vidually. A qualitative analysis of specific examples reveals the following: 1) Removing Embodied
Q&A or Grounding/referring noticeably degrades performance on small background objects (e.g.,
“picture”, “flowerpot”), suggesting these data improve recognition of small objects. 2) Removing
General MLLM data leads to failures on irregular objects (e.g., “handrail”, “stair”), implying gen-
eral vision–language data helps with such targets. These findings motivate constructing specific
datasets to address failure modes. For example, the model still struggles with “carpet” and “clothes”
where complex folds and textures are involved; we therefore can curate dedicated VQA-style data
emphasizing these patterns to strengthen fine-grained visual reasoning on texture-heavy objects.

Table 4: Ablation Study of Data on HM3D-OVON Val-Unseen
Embodied Q&A Data Grounding and Referring Data General MLLM Data Ovon-Unseen

55.9
✓ ✓ 56.5

✓ ✓ 56.7
✓ ✓ 57.0
✓ ✓ ✓ 57.7

Analysis of Model Scale The influence of model size (Embodied Q&A, Grounding and Referring,
and General MLLM data) is also analyzed. When including these additional data, the 3B and 7B
models exhibit nearly identical navigation performance, indicating that once such data are incorpo-
rated, simply scaling up the model size brings little further improvement.

In contrast, in the absence of this additional data, a noticeable performance gap emerges, with the
7B model outperforming the 3B model. Our analysis suggests two key factors: 1) the performance
of the 3B model appears to be constrained by data sufficiency rather than its inherent capacity.
When provided with diverse and abundant data, its performance becomes comparable to that of the
7B model, indicating that model size itself is not the primary bottleneck in this data-rich scenario.
2) based on an analysis of failure cases, we find that further performance gains are limited by the
intrinsic difficulty of the task: regardless of model size, the recognition of complex objects such as
clothes and mirrors remains unstable.

Beyond these two ablation study, a more systematic study of scaling laws and optimal training
configurations—e.g., how data quality, data composition, and more model size jointly affect per-
formance—would also be highly valuable. Due to computational limits we have not yet conducted
such a systems-level exploration, and we view this as an important direction for future work.

Table 5: Ablation Study of Model Size on HM3D-OVON Val-Unseen
Model Additional Data Ovon-Unseen

3B 55.9
7B 57.2
3B ✓ 57.7
7B ✓ 57.9
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