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ABSTRACT

Large Language Models (LLMs) present unprecedented opportunities for gener-
ating scientific questions. However, existing approaches face two key limitations:
heavy reliance on costly human annotations and the production of brittle, unverifi-
able outputs. To address these challenges, we propose AutoQG, a fully automated
multi-agent framework for evidence-grounded scientific QA generation. AutoQG
comprises three complementary agents: (i) KG Extraction Agent, which performs
ontology-guided knowledge graph construction with section-aware prompts for
precise information retrieval; (ii) KG Evaluation Agent, a multi-dimensional
evaluation module with iterative refinement to ensure accuracy and consistency;
and (iii) QA Generation Agent, which produces schema-constrained QA pairs
grounded in reasoning paths and explicit textual evidence. Applied to over 4,000
scientific papers, AutoQG constructs 243k triples and introduces AutoQG20k, a
benchmark containing more than 20,000 QA pairs. Each pair is explicitly linked
to its reasoning chains and supporting evidence, ensuring transparency and veri-
fiability. We further release AutoQG7k, a challenging subset designed with hard
questions that strong LLMs struggle to answer. Extensive experiments demonstrate
that AutoQG consistently outperforms strong baselines in both human evaluation
and LLM-as-a-Judge assessments. By transforming LLM output into a controlled
and auditable pipeline, AutoQG advances evidence-based AI for the understanding
of reliable scientific knowledge. Source code will be released upon publication.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in text comprehension
and knowledge extraction, presenting a transformative opportunity for navigating the expansive and
complex domain of scientific literature (OpenAI, 2023; Grattafiori et al., 2024; Reid et al., 2024). Yet,
this promise is met with a critical challenge when applying these models to scientific texts: knowledge
in this domain is inherently distributed. A key claim introduced in the abstract is often detailed in
the methods section and validated by evidence in the results. Existing approaches frequently fail
to synthesize this cross-sectional information into coherent reasoning chains, leading to question-
answering (QA) pairs that lack traceability and robust evidentiary support (Lee et al., 2025; Wang
et al., 2025). Consequently, without a principled framework to constrain their behavior, LLM outputs
often degrade into brittle factual recall or unverifiable claims, falling short of the methodological
rigor and auditability demanded by scientific inquiry (Schryen et al., 2025). This gap highlights the
urgent need for frameworks that transform the generative power of LLMs into a controlled, verifiable,
and evidence-grounded process, with a particular focus on generating high-fidelity scientific QA pairs
that capture reasoning chains and provide traceable evidence for knowledge claims.

Recent progress in scientific QA Generation has been defined by a trade-off between quality and
scalability. On one hand, manual annotation by domain experts yields high-quality benchmarks but is
costly and difficult to scale (Lála et al., 2023; Asai et al., 2024). On the other, automated methods,
while scalable, often produce shallow QA pairs that lack verifiability and prioritize factual recall over
higher-order reasoning (Auer et al., 2023; Wang et al., 2024). Even recent LLM-based frameworks
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Figure 1: An illustrative overview of our pipeline. The process begins with an academic paper, which is
segmented into section-aware chunks and transformed into a structured knowledge graph capturing the paper’s
core entities and relations. From this graph, we derive evidence-traceable QA pairs by linking each question and
answer directly to its underlying reasoning path and supporting text.

have yet to fully resolve this tension, as they are often not specifically tailored for the structured and
evidence-centric nature of scientific texts (Vladika & Matthes, 2024; Fang et al., 2024).

To bridge this gap between scalability and rigor, we posit that an intermediate structured representation
is necessary, one that can explicitly model the reasoning paths and evidentiary links within a document.
A knowledge graph (KG) is an ideal scaffold for this purpose (Lan et al., 2021). By transforming
unstructured text into a network of entities and their relationships (Zhang et al., 2022), a KG provides
an auditable backbone for generating complex questions that require multi-hop reasoning (Dong et al.,
2023) and are explicitly traceable to the source text (Yih et al., 2015). This principle is illustrated in
Figure 1, which shows how a structured knowledge graph serves as the foundation for generating
evidence-traceable QA pairs from scientific papers.

To overcome these limitations, we present AutoQG, a principled, fully-automatic multi-agent frame-
work that transforms pretrained LLMs into a controllable, evidence-traceable pipeline. First, the
KG Extraction Agent constructs a knowledge graph using section-aware prompts to navigate the
intricate structure of scientific literature. This process is ontology-guided: it uses an automatically
induced ontology as a guide to constrain the LLM’s output, rather than relying on a rigid, predefined
ontology. However, this flexible approach requires a rigorous validation step, which motivates our
second component: KG Evaluation Agent. This agent serves as a critical quality control mecha-
nism, performing a multi-dimensional evaluation and providing diagnostic feedback in an iterative
refinement loop that progressively improves the graph’s accuracy and consistency. Finally, once the
graph is validated, the QA Generation Agent transforms the refined knowledge into verifiable QA
pairs. It identifies multi-hop reasoning paths and applies schema-constrained prompting, ensuring the
generated questions are explicitly traceable to their reasoning chains and source evidence, which in
turn allows for fine-grained control over reasoning complexity.

In summary, our key contributions are threefold:

• We propose AutoQG, an automated multi-agent framework that enables high-fidelity sci-
entific QA generation by integrating ontology-guided and section-aware KG extraction,
multi-dimensional evaluation, and schema-constrained QA generation.

• We introduce two large-scale, evidence-traceable QA benchmarks derived from over 4,000
scientific papers: AutoQG20k, containing more than 20k QA pairs explicitly linked to
reasoning paths and supporting evidence, and the more challenging AutoQG7k, which
focuses on hard scientific questions that current LLMs struggle to answer.

• Through extensive experiments combining human and LLM-as-a-Judge evaluations, we
demonstrate that AutoQG consistently outperforms strong baselines. Furthermore, extensive
ablation studies quantify the significant contribution of each component of our framework.
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2 RELATED WORK

Scientific Comprehension Benchmarks. In evaluating the automatic comprehension of academic
papers, benchmark datasets are increasingly highlighting both domain knowledge and analytical
understanding. Widely used datasets such as emrQA (Pampari et al., 2018; Jin et al., 2019; Saikh et al.,
2022; Shamsabadi et al., 2024; Wang et al., 2024; Wellawatte et al., 2025; Phan et al., 2025) often
treat paper content as independent text segments, overlooking broader structural relationships within
academic articles and thus leaving certain information unutilized. Other datasets (Lála et al., 2023;
Bai et al., 2025; Skarlinski et al., 2024) adopt direct text-matching strategies without deeper semantic
modeling. While this design is well-suited for evaluating retrieval or surface-level comprehension, it
may be less effective for assessing tasks that demand higher-order reasoning or complex analytical
skills.

Academic QA Generation Methods. Current academic QA datasets are typically constructed
through two main paradigms: crowdsourced human annotation and LLM-based automatic generation.
In the crowdsourced approach, all labeling tasks are carried out manually, with quality controlled by
expert reviewers (Lála et al., 2023; Bai et al., 2025; Skarlinski et al., 2024; Asai et al., 2024). This
method yields high-quality data but requires strong domain expertise, incurs high costs, and makes
iterative refinement difficult. By contrast, LLM-based generation leverages prompting frameworks
and automated tools (Lee et al., 2023; Wan et al., 2024; Yu et al., 2025) offering scalability but
producing datasets that remain surface-level, focusing on factual recall rather than higher-order
reasoning or causal analysis.

Automatic Knowledge Graph Construction. Recent advances in knowledge graph (KG) construc-
tion have largely relied on large language models (LLMs) and pre-trained language models (PLMs),
with methods primarily formulated as structured information extraction under few-shot or zero-shot
settings (Agrawal et al., 2022; Li et al., 2023a; Han et al., 2023; Li et al., 2024b; Liu et al., 2024; Li
et al., 2023b). Structured parsing strategies (Li et al., 2023a; Xue et al., 2024; Sainz et al., 2024; Li
et al., 2024a) enable triple generation that implicitly embeds reasoning paths, yet outputs are often
constrained by handcrafted templates (Kim et al., 2023; Ding et al., 2024), limited generalization to
unseen relations (Zhang et al., 2023), and unstable zero-shot performance in specialized domains
(Gutierrez et al., 2022). Benchmark evaluations on BLURB, TACRED, and Re-DocRED (Wadhwa
et al., 2023; Xue et al., 2024; Bai et al., 2025; Kim et al., 2025) further reveal that automatic metrics
underestimate true performance, as many false positives are semantically valid. While recent studies
explore quality-controlled or iterative pipelines (Gao et al., 2025; Wan et al., 2023; Jiao et al., 2023),
most approaches still lack explicit reasoning or evidence modeling, limiting their reliability for
explainable KG-QA.

3 METHOD

3.1 OVERVIEW

We propose a multi-agent framework that constructs structured academic knowledge graphs from
papers and generates evidence-traceable, difficulty-controllable QA pairs—without manual an-
notation or model finetuning. As illustrated in Figure 2, the system follows a three-stage con-
struct–evaluate–generate paradigm. Each stage is formally defined below.

3.2 KG EXTRACTION AGENT: SECTION-AWARE AND ONTOLOGY-GUIDED EXTRACTION

The KG Extraction Agent serves as the entry point of our multi-agent pipeline, transforming raw
scientific text into a structured knowledge graph. It leverages the zero-shot generation capabilities of
large language models by mapping their abstract understanding of text into concrete, ontology-aligned
triples. Scholarly documents are first normalized into a canonical discourse structure. Each section Sk

is paired with a prompt template Φk that encodes inductive biases reflecting its discourse role, further
constrained by a predefined knowledge ontology. The full prompts are provided in Appendix A.4.

This design stands in clear contrast to flat prompting baselines, which treat the document as a single
undifferentiated text stream and often produce sparse or noisy triples. By constraining the extraction
process with both discourse-aware prompts and explicit ontology guidance, the agent suppresses
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Figure 2: The proposed multi-agent pipeline for constructing academic knowledge graphs and generating
multi-hop QA pairs from scientific papers.

spurious entities and improves both density and precision of extracted relations. For instance, consider
a sentence from the Methods section:

“We trained Model-A on the CIFAR-100 dataset with a learning rate of 0.001.”

A flat baseline may only extract:
(Model-A, trainedOn, CIFAR-100)

whereas our section-specific template, guided by predefined relation types in the ontology, yields
richer and more precise triples:
(Model-A, evaluatedOn, CIFAR-100), (Model-A, hasHyperparameter, learning rate=0.001).

To ensure schema alignment and reduce hallucinations, in-context exemplars are incorporated directly
into prompts, aligning outputs with the ontology. Moreover, extraction is designed as an iterative
process: if the downstream KG Evaluation Agent detects low-confidence triples or cross-section
inconsistencies, it returns structured feedback that is injected into the extractor’s next prompt. This
establishes a controllable, self-correcting feedback loop that progressively guides the agent toward
higher-quality outputs.

Formally, given a document D segmented into canonical sections {S1, . . . , Sm}, the agent applies
Φk to each Sk, producing candidate triples of the form (h, r, t, ξ), where h and t denote entities, r
is an ontology-aligned relation type, and ξ is an evidence locator (e.g., character offsets or section
identifiers). The global extracted graph is the union:

G0 =

m⋃
k=1

{(h, r, t, ξ)},

with triples serialized together with provenance metadata to support fine-grained auditing and
downstream reasoning.

3.3 KG EVALUATION AGENT: MULTI-DIMENSIONAL SCORING AND ITERATIVE REFINEMENT

The KG Evaluation Agent serves as a graph-level auditor, providing rigorous quality control for
the candidate graph G generated by the extraction agent. This agent’s role goes beyond verifying
individual triples, as it is designed to capture global properties that simple checks cannot reveal.
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To operationalize this audit, the evaluator performs a multi-dimensional assessment across five
interpretable criteria: Domain Fit (sdom), Accuracy (sacc), Consistency (scon), Completeness (scom),
and Granularity (sgra). Each dimension is estimated via targeted LLM prompts (see Appendix A.5),
producing a quality vector

q(G) = (sdom, sacc, scon, scom, sgra) ∈ [0, 1]5.

The overall graph quality is then defined as a weighted aggregation of these scores:

Q(G) =

5∑
i=1

wi · si,
5∑

i=1

wi = 1,

where the weights {wi} are calibrated via ablation studies (§5), with higher emphasis placed on
accuracy and consistency as they are most predictive of downstream QA performance. This transforms
qualitative review into a principled and transparent quality signal.

Crucially, evaluation is not a static scoring step but a corrective supervision loop. When Q(G) < τ ,
the evaluator generates actionable diagnostics—for instance, “low-confidence triples concentrated
in Methods” or “entity Model-A inconsistently referenced across Methods and Results.” These
diagnostics are injected into the extractor’s next-round prompts, converting a score into targeted
guidance. Formally,

G(t+1) = R
(
G(t), q(G(t))

)
,

where R(·) denotes a refinement operator that integrates evaluator feedback into the section-aware,
ontology-constrained extraction process. Iteration continues until Q(G) ≥ τ , yielding a finalized,
auditable graph G⋆.

Through this design, the evaluator elevates extraction from a one-shot process into a robust, self-
correcting pipeline. It not only detects deficiencies but prescribes remedies, ensuring that the resulting
knowledge graph is reliable, verifiable, and a solid foundation for downstream QA generation.

3.4 QA GENERATION AGENT: SCHEMA-CONSTRAINED AND EVIDENCE-TRACEABLE QA

From the validated graph G∗, the QA Generation Agent identifies multi-hop reasoning paths that are
explicitly traceable to textual evidence spans in the source document D. Formally, a reasoning chain
is represented as

P = (e1
r1−→ e2

r2−→ . . .
rk−→ ek+1),

where ei are entities and ri are ontology-aligned relations. Each path P is paired with its supporting
evidence evidence(P ).

A schema-constrained LLM instantiation explicitly maps each reasoning path and its grounded
evidence into a structured question–answer pair (prompts in Appendix A.6). Let fθ denote the LLM,
Ψ(·) a schema-constrained prompt template, and δ(·) a constrained decoding policy (e.g., type/format
validator). For any path P ⊆ G∗ with evidence Γ(P ), the QA pair is generated as:

(Q,A) = δ
(
fθ
(
Ψ(P,Γ(P ))

))
.

This formulation tightly couples questions, answers, supporting spans, and reasoning chains. The
complete QA corpus is therefore defined as:

Q =
{
(Q,A, P,Γ(P )) : (Q,A) = δ(fθ(Ψ(P,Γ(P )))), P ⊆ G∗}.

Here Q denotes the question, A the answer, P the reasoning path in the knowledge graph G∗, and
Γ(P ) the evidence set grounded in the source text. The schema constraints in Ψ and δ enforce
type-correct entities and valid answer formatting, ensuring both structural validity and evidence
traceability. By varying the hop length k and relation types, the generator provides explicit control
over reasoning difficulty.

In summary, the QA Generation Agent completes our closed-loop framework by integrating three
key mechanisms: schema-driven constraints for structural validity, explicit path–evidence coupling
for traceability, and exemplar conditioning for difficulty control. Together, these principles transform
LLM capabilities into a systematic and reproducible pipeline for building high-quality academic QA
resources.
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Table 2: Evaluation of knowledge graph extraction quality, comparing zero-shot and LLM-based methods using
manual annotated gold-set (Precision/Recall/F1) and LLM-as-a-Judge scores. All LLM-as-a-Judge scores are
averaged across three LLM judges, and the Final column reports the average over evaluation dimensions.

Category Method Gold-set Evaluation LLM-as-a-Judge Evaluation

Prec. Rec. F1 Dom Acc Con Com Gra Final

Zero-shot
Extraction
Methods

Self-Prompting 35.7 35.7 35.7 4.9 5.0 5.2 5.1 5.6 5.2
QA4RE 32.3 30.4 31.3 5.8 5.1 5.0 5.5 5.3 5.3
ChatIE 16.5 34.1 21.4 5.9 5.3 5.2 5.6 5.3 5.3

LLM-based
Extraction
Methods

Gemini-1.5-pro 23.4 17.5 20.0 8.9 6.9 7.1 6.2 7.1 7.3
DeepSeek-V2.5 37.0 34.0 37.0 8.1 7.3 7.7 6.5 7.4 7.4
Claude-3.5 Opus 30.0 28.6 29.3 9.1 7.0 7.4 6.7 7.2 7.5

o3 35.0 26.4 30.1 8.1 7.3 7.5 7.3 7.4 7.5
o1 53.8 26.4 35.4 9.3 8.1 8.8 6.8 7.7 8.1

Ours 73.6 71.2 72.3 9.3 8.5 8.9 7.5 7.5 8.3

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We construct a large-scale corpus by collecting
scholarly articles from multiple open repositories12. In to-
tal, it comprises over 4,000 papers, from which our frame-
work automatically generates more than 20,000 high-quality
QA pairs, forming AutoQG20k. Furthermore, we release the
AutoQG7k benchmark, a challenging subset designed with
harder QA pairs that current powerful LLMs struggle to
answer. Detailed statistics are provided in Table 1.

Table 1: Dataset statistics of AutoQG20k

and AutoQG7k

Metric AutoQG20k AutoQG7k

Papers 4,435 4,435
Triples 243,214 243,214
QA pairs 20,424 7,921

Evaluation. To evaluate the effectiveness of our framework, we assess both the quality of the
constructed knowledge graphs and the generated QA pairs. We adopt a dual evaluation strategy:
(i) Human evaluation, where a subset of papers from our corpus is manually annotated under a
double-blind protocol to provide gold standards; and (ii) LLM-as-a-Judge, where external LLMs
are employed to provide multi-dimensional quality assessments. In addition, for QA generation
evaluation, we also conduct human scoring to verify the reliability and fairness of the LLM-as-a-Judge
results. Detailed evaluation criteria for KG quality and QA generation are presented in Sections 4.2
and 4.3.

Implementation Details. We implement our multi-agent pipeline using the LangGraph3 framework,
which models the workflow as a state machine with explicit routing and retry mechanisms. For
generations, we primarily use GPT-4o and GPT-4-turbo with temperature fixed at 0.0 to ensure
deterministic outputs.

4.2 MULTI-DIMENSIONAL EVALUATION ON KNOWLEDGE GRAPH EXTRACTION

Baselines. We evaluate the effectiveness of our section-aware and ontology-guided extraction strategy
against two categories of representative baselines:

• Zero-shot Baseline Methods – including Self-Prompting, QA4RE, and ChatIE. These ap-
proaches serve as strong relation extraction baselines at the sentence- and document-level,
operating in a zero-shot setting under predefined schemas.

1https://arxiv.org
2https://aclanthology.org
3https://www.langchain.com/langgraph
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Table 3: Human evaluation and LLM-as-a-Judge evaluation results. All LLM-as-a-Judge scores are averaged
across three independent judges. Scores are averaged across QA pairs and reported on a 0–10 scale.

Human Evaluation (0–10) LLM-as-a-Judge (0–10)

Method Rel Ans Distr Flu Reas Evid Rel Ans Distr Flu Reas Evid

Gemini-1.5 Pro 8.6 8.4 8.3 9.2 8.1 8.0 8.1 8.9 8.6 9.3 7.6 8.0
DeepSeek-V2.5 8.8 8.5 8.8 9.0 7.9 8.2 8.9 9.0 8.3 9.5 8.0 8.0
Ours 9.8 9.8 8.9 9.4 8.4 9.7 9.6 9.6 9.0 9.5 8.5 9.6

Rel

AnsDistr

Flu

Reas Evid

8910

Gemini-1.5 Pro DeepSeek-V2.5
Ours

(a) Six-Dimension Radar Chart of human evalua-
tion results

7.5 8 8.5 9 9.5 10

8

9

10 Global r = 0.874
Gemini: r = 0.761

DeepSeek-V2.5: r = 0.772

Ours: r = 0.982

Human Evaluation (0–10)
L

L
M

-a
s-

a-
Ju

dg
e

(0
–1

0)

Gemini-1.5 Pro

DeepSeek-V2.5

Ours

(b) Human vs. LLM-as-a-Judge (scatter + per-model fits +
global fit)

Figure 3: Comparison of Human and LLM-as-a-Judge evaluations: (a) Radar chart across six dimensions; (b)
Scatter plot with individual regression lines for each model and an overall (dashed) global regression.

• LLM-based Extraction Methods – including representative LLMs, which construct knowl-
edge graphs directly from text by prompting with predefined schemas (the full schema is
provided in Appendix A.10).

Metrics. We assess knowledge graph quality through both human and automated evaluation protocols.
For human evaluation, we report precision, recall, and F1 scores on a gold dataset of 30 manually
annotated papers. The distribution of annotators and detailed annotation guidelines are provided in
Appendix A.2. For automated evaluation, we adopt an LLM-as-a-Judge protocol, where multiple
strong LLMs (GPT-5, Claude-3.5-Sonnet, and Qwen-2.572B) independently score each extracted
graph along five interpretable dimensions: Dom: domain fit (alignment with the target domain), Acc:
accuracy (factual correctness of triples), Con: consistency (absence of contradictions across sections),
Com: completeness (coverage of relevant relations), and Gra: granularity (level of detail captured).

As shown in Table 2, the results highlight: (i) Human-Verifiable Precision. Our framework achieves
F1 = 72.3, far surpassing all baselines (best = 37.0), demonstrating accurate and complete extraction;
(ii) Multi-Dimensional Superiority. It consistently outperforms across all five LLM-as-a-Judge
dimensions, with the highest final score (8.3). These gains can be attributed to the integration
of section-aware extraction, ontology-guided constraints, and iterative refinement. By leveraging
discourse roles, our extractor reduces noise and captures domain-relevant triples with higher coverage;
ontology alignment further suppresses spurious relations and enforces structural validity; and the
evaluator’s feedback loop ensures cross-sectional consistency and completeness.

4.3 QA GENERATION AND MULTI-DIMENSIONAL EVALUATION

We further assess the quality of multi-hop QA pairs generated by our framework.

Baselines. Given the fully automatic and annotation-free nature of our approach, we compare against
strong LLM baselines, including Gemini-1.5-Pro, Qwen2.572B, and DeepSeek-V2.5.

7
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Table 4: Extended evaluation of the generated QA benchmark under two settings: AutoQG20k (left block) and
AutoQG7k (right block).Results are Strict Accuracy (%) on QA pairs, difficulty-controlled hops and accuracy
with Evidence, where the evidence setting is evaluated on 3-hop questions.

Category Model AutoQG20k AutoQG7k

3-hop 2-hop 1-hop with Evidence 3-hop

Base
Models

GPT-4 71.4 88.7 89.9 99.1 40.1
Llama-3.18B 65.5 78.2 83.0 91.3 36.3
Qwen-2.514B 67.3 81.3 86.0 99.7 30.6
DeepSeek-V2.5 64.7 82.7 86.9 98.6 33.7
Gemini-1.5 Flash 65.8 77.3 87.5 98.7 29.0
Gemma-312B 73.2 84.0 95.2 92.6 33.2
Phi-2 71.0 81.2 89.5 98.0 45.4
WizardLM-270B 64.6 72.4 89.6 92.6 35.9

Reasoning
Models

Claude-3.5 Opus 73.7 87.0 84.0 98.9 55.1
DeepSeek-R1 82.5 88.0 94.0 98.1 50.8
o1 82.3 84.0 95.0 98.2 50.0
o3 86.3 87.5 90.6 99.2 65.7
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Figure 4: Comprehensive evaluation of the proposed benchmark on large language models. Left: performance
trends under controlled reasoning difficulty by varying knowledge graph path length. Center: comparison of
QA performance with and without evidence grounding. Right: results on AutoQG7k and AutoQG20k.

Metrics. Rel: relevance (alignment of QA with context and evidence), Ans: answerability (whether
the question can be correctly answered from the provided information), Distr: distractor quality
(plausibility and challenge of incorrect options), Flu: fluency (clarity and grammatical correctness of
the question and options), Reas: reasoning depth (extent to which multi-hop reasoning is required),
and Evid: Evidence Traceability: Explicit grounding in source text and path. Furthermore, we
conducted a rigorous double-blind human evaluation across six distinct dimensions. The evaluation
was meticulously designed: all QA pairs were presented in a uniform style and randomized order.

As Table 3 shows, our framework achieves the best performance across all six dimensions, consistently
surpassing strong LLM baselines. The largest gains are in relevance, answerability, and evidence,
demonstrating that schema constraints and evidence grounding yield accurate and explicitly traceable
QA pairs. Figure 3(a) further illustrates our method’s higher scores and uniformly expanded radar
shape, indicating balanced improvements. Figure 3(b) reveals a near-perfect correlation between
human and LLM-as-a-Judge scores (r=0.982 for our method), confirming human-verifiable outputs.

5 A MULTI-PERSPECTIVE LLM ASSESSMENT WITH AUTOQG

To provide a holistic evaluation of our framework, we conduct a multi-perspective assessment of the
constructed benchmark, focusing on three core dimensions: the reliability of difficulty control, the
effectiveness of evidence traceability, and the robustness of LLM-based answering across diverse
models.
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Our framework regards reasoning depth by treating the length of knowledge graph paths as a proxy,
and thus measures model performance on QA pairs derived from 1–3 hop reasoning chains within the
same graph. For evidence traceability, we compare QA accuracy under two settings: with and without
providing the corresponding reasoning path as explicit supporting evidence. Representative examples
of QA pairs with varying path lengths and evidence availability are included in the Appendix A.3.

The extended evaluation in Table 7 and Figure 4 demonstrates the following key findings: (i)
Difficulty Control. Reasoning path length directly correlates with task difficulty: as path length
increases from 1-hop to 3-hop, model accuracy consistently decreases, confirming that path length
is an effective proxy for reasoning depth; (ii) Evidence Traceability. Providing the reasoning path
as supporting evidence substantially boosts accuracy, with most models approaching nearly 100%
correctness. This highlights the strong evidence-grounded nature of our generated QA pairs; and
(iii) Model Robustness. Advanced reasoning-oriented LLMs consistently outperform base models,
indicating that our benchmark effectively distinguishes models by their reasoning capabilities rather
than surface-level memorization. A representative example where most models fail is presented in
Appendix A.8.

6 ABLATION STUDY

6.1 COMPONENT-WISE ABLATION ON AGENTS

We further conduct an ablation study to quan-
tify the contribution of each design compo-
nent.
Metrics. For the ablation study, we assessed
the quality of the QA pairs generated using
the same dimensions and the LLM-as-a-Judge
protocol detailed in Section 4.3.
Settings. We remove one component at a time
from different agents: (i) the KG Generation
Agent by disabling Section-aware Prompt-
ing (SP) or Ontology Constraints (OC); (ii)
the KG Evaluation Agent by removing the it-
erative feedback refinement loop (FB); and
(iii) the QA Generation Agent by dropping
question-format constraints (QF) or evidence
grounding (E).

Table 5: Ablation study on the contribution of each
module. Results are averaged across 3 LLM judges.

Setting Rel↑ Ans↑ Distr↑ Flu↑ Reas↑ Evid↑

Ours 9.6 9.6 9.0 9.5 8.5 9.6

KG Generation Agent
w/o SP 9.2 9.0 7.0 9.3 5.5 8.8
w/o OC 8.8 8.5 6.0 9.0 5.0 8.9

KG Evaluation Agent
w/o FB 9.3 9.3 7.5 9.0 7.5 9.1

QA Generation Agent
w/o QF 9.0 9.0 7.2 9.2 6.1 8.9
w/o E 9.1 8.9 7.0 9.1 5.8 8.2

The ablation results in Table 5 highlight the complementary roles of all three agents in our framework.
The KG Generation Agent is crucial for reasoning depth and distractor quality, as removing section-
aware prompting (SP) or ontology constraints (OC) causes sharp drops in these dimensions. The KG
Evaluation Agent mainly contributes to stability, with the absence of the feedback loop leading to
noticeable declines in reasoning depth and coherence. The QA Generation Agent proves decisive
for final QA quality: removing question-format constraints (QF) or evidence grounding (E) results
in severe degradation of reasoning depth and evidence traceability. Overall, the strong performance
of the full model stems from the synergy of these components, each indispensable for producing
accurate, interpretable, and evidence-grounded QA pairs.

6.2 ABLATION STUDY ON INPUT MODALITIES

Beyond component-wise ablation, we further investigate how different input modalities contribute to
QA generation. This study compares structured knowledge (KG) and unstructured source text (Sent)
to examine whether relational structure or local linguistic grounding provides greater benefit.

Settings. We evaluate four input configurations: (i) KG + Sent (ours), which concatenates the
KG reasoning path with the corresponding original text spans; (ii) Sent-only, which uses only the
textual sentences containing KG node mentions without explicit KG structure; (iii) KG-only, which
linearizes KG triples without textual spans; and (iv) Random-Sent, which samples length-matched
but KG-irrelevant sentences from the same paper.
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Table 6: Ablation on input modalities.

Strategy Rel Ans Distr Flu Reas Evid

S0 (KG + Sent) – Ours 9.6 9.6 9.0 9.5 8.5 9.6
S1 (Sent-only) 9.4 9.5 8.5 9.4 8.0 9.1
S2 (KG-only) 9.4 9.5 8.3 9.45 8.3 9.4
S3 (Random-Sent) 8.0 8.2 7.8 9.4 7.5 8.5

The comparison highlights the distinct roles of structural and textual inputs. The hybrid setting (S0)
consistently yields the highest performance, demonstrating that KG and Sent are complementary
rather than interchangeable. Compared with Sent-only (S1), adding KG structure substantially boosts
Reasoning Depth and Distractor Quality ( +0.5), preventing the generation of shallow fact-retrieval
questions. In contrast, compared with KG-only (S2), retaining the original text spans is critical for
maintaining Evidence Traceability (avoiding a 0.2 drop) and Fluency, indicating that high-level
relational reasoning must remain anchored to the linguistic context of the source paper.

Overall, these findings show that the KG provides a logical scaffold for compositional reasoning, while
textual spans offer semantic grounding. Their combination is essential for generating high-quality,
interpretable, and verifiable scientific QA pairs.

7 CONCLUSION

We introduced AutoQG, a multi-agent framework that transforms LLMs into a controllable pipeline
for evidence-traceable QA generation. Applied to over 4,000 papers, it produced 243k triples and
introduced the AutoQG20k and AutoQG7k benchmarks, explicitly linking more than 20,000 QA pairs
to reasoning paths and evidence. Our framework outperformed strong baselines, demonstrating
that ontology guidance and structured evaluation can reliably convert LLMs into pipelines that
enhance precision, recall, and reasoning depth, providing a scalable benchmark for scientific QA.
Nevertheless, challenges remain, including domain sensitivity, limited ontology coverage, and risks
of bias propagation at scale. As future work, we will leverage the generated dataset to train a domain-
adapted academic LLM, moving toward more robust, verifiable, and interpretable AI systems for
scientific knowledge.
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A APPENDIX

A.1 USAGE OF LARGE LANGUAGE MODELS

The large language model (LLM) was employed solely for the purpose of polishing and refining
the language of the manuscript. It assisted in improving grammatical accuracy, clarity, and overall
readability. All intellectual content, ideas, and conclusions remain entirely those of the authors.

A.2 KG ANNOTATION DETAILS

To establish the gold standard for our knowledge graph evaluation, we recruited seven master’s
students with strong backgrounds in natural language processing and machine learning to serve as
annotators. Each annotator was assigned five papers and instructed to manually construct knowledge
graphs in TTL format, following the predefined ontology detailed in Appendix A.4. The annotation
process was overseen by a domain expert to ensure the quality and consistency of the output. The
resulting manually annotated graphs served as the gold dataset for evaluating the performance of our
KG Extraction Agent against various baselines.

A.3 QA PAIR EXAMPLES

Three-Hop QA Example

Reasoning Path:
KISA outperforms−−−−−−−→ SelfAttn evaluatedOn−−−−−−−→ SemEval2010Task8 measures−−−−−→ F1

Context:

•“The integrated models improve performance by at least 0.9 F1 score and achieve new
state-of-the-art results.”

•“Besides TACRED, another dataset called SemEval2010-Task8 ... is used to evaluate the
generalization ability.”

•“We use the official macro-averaged F1 score as evaluation metric.”

Question:
Which model outperformed the Self-Attention model on the SemEval2010 Task 8 by utilizing
which specific evaluation metric?

Options:

A. The KISA model outperformed the Self-Attention model using the official macro-averaged
F1 score as the evaluation metric.

B. The KISA model surpassed the Self-Attention model using the average precision score on
the SemEval2010 Task 8.

C. The Self-Attention model was outperformed by the KISA model, which used the micro-
averaged recall score for evaluation.

D. The Self-Attention model was outperformed by the KISA model evaluated by the area under
the ROC curve on SemEval2010 Task 8.

Correct Answer: A

Explanation:
The KISA model outperformed the Self-Attention model on SemEval2010 Task 8 using the
official macro-averaged F1 score, as explicitly indicated by the reasoning path and evidence.
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Two-Hop QA Example

Reasoning Path:
CameraSystemForFaceDetection uses−−→ RFIDEnergyHarvesting type−−→ Technology

Context:

•“The camera system runs solely on energy harvested from RFID readers.”

•“The camera system runs solely on energy harvested from RFID readers.”

Question:
What type of technology enables the camera system described in the paper to function solely
on energy harvested from RFID readers?

Options:
A. RFID-based energy harvesting technology, which captures and converts energy from RFID

systems.
B. Solar panel technology, which converts sunlight into electrical energy to power devices.
C. Piezoelectric energy harvesting technology, which generates power from mechanical stress.
D. Thermoelectric generators, which produce electricity from temperature differences.

Correct Answer: A

Explanation:
The camera system is explicitly described as operating with energy harvested from RFID
readers. Therefore, the correct answer is RFID-based energy harvesting technology, consistent
with the reasoning path and supporting evidence.

One-Hop QA Example

Reasoning Path:
LuisCeze type−−→ Author

Context:

•“Amrita Mazumdar, Thierry Moreau, Armin Alaghi, Luis Ceze, Mark Oskin, Sung Kim,
Meghan Cowan, Visvesh Sathe are mentioned as contributors.”

Question:
Which of the following accurately describes the professional role of Luis Ceze in the context
provided in the paper?

Options:
A. Luis Ceze is mentioned as an author among other contributors in the paper.
B. Luis Ceze is recognized as the sole contributor and leading expert in the paper.
C. Luis Ceze is the primary editor responsible for reviewing and editing the paper.
D. Luis Ceze is a guest speaker who provided insights for the paper’s development.

Correct Answer: A

Explanation:
Based on the knowledge graph path and context, Luis Ceze is listed along with other contribu-
tors as an author. No evidence supports alternative roles such as editor or guest speaker.

A.4 KG CONSTRUCTION AGENT PROMPTS

To ensure transparency and reproducibility, we provide the exact schema and prompt templates used
in our framework. The schema defines the set of entity and relation types used to construct academic
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knowledge graphs, while the prompts demonstrate how section-aware, ontology-guided extraction
and evaluation are operationalized in practice. These resources allow others to replicate our pipeline
and adapt it to new domains.

Knowledge Graph Schema

Entity Types:
• Core Academic: Models (GPT-4, BERT, Llama-2), Datasets (SQuAD, GLUE), Metrics

(Accuracy, F1), Methods (Fine-tuning, LoRA), Algorithms (Attention, SGD), Architectures
(Transformer).

• Research Context: Papers, Authors, Organizations (OpenAI, Google), Tools (PyTorch,
TensorFlow), Venues (ACL, NeurIPS).

• Measurement: Scores, Parameters (7B, 175B), Configurations (hyperparameters, settings).
Relation Types:
• Performance/Evaluation: :evaluatedOn, :achievesScore, :measures, :outperforms,
:comparedWith

• Development/Creation: :basedOn, :improves, :proposes, :developedBy,
:implementedIn

• Training/Application: :trainedOn, :finetunedOn, :uses, :appliedTo,
:optimizedFor

• Research/Citation: :addresses, :publishedIn, :citedBy
• Structural: :partOf, :enabledBy, :resultIn, :relatedTo
Mandatory Metadata:
:contextText "original_text_snippet"

Knowledge Extraction Prompt

Role: Expert extractor for academic knowledge. Output ontology-aligned triples for multi-hop
reasoning and QA.
Selective Extraction (≤ 200 Triplets):
• Focus on major models, datasets, metrics, methods, and results.
• Extract only significant scores, parameters, comparisons, and settings.
• Skip minor mentions and redundant details.
Triple Format:
:Entity1 :relation :Entity2 ;

:contextText "Original snippet..." .

Examples:
:GPT-4 :evaluatedOn :WinoGrande ;

:contextText "GPT-4 was evaluated on WinoGrande dataset" .
:GPT-4 :achievesScore "94.2"^^xsd:float ;

:contextText "GPT-4 achieved 94.2% accuracy" .
:ThisPaper :proposes :LogitLens ;

:contextText "This paper proposes LogitLens" .

Success Criteria: 150–200 high-quality triples, schema-aligned, evidence-traceable, and
relevant for QA.

A.5 KG EVALUATION AGENT PROMPT

To complement the extraction schema, we also release the evaluation prompt used for graph-level
quality assessment. The evaluator is designed to score an entire sectioned knowledge graph rather than
individual triples, providing structured diagnostics and a weighted final score across five dimensions
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(domain fit, accuracy, consistency, completeness, and granularity). This ensures that graph evaluation
is transparent, reproducible, and aligned with downstream QA requirements.

Sectioned KG Evaluator Prompt

Role. You are an evaluator for a sectioned knowledge graph extracted from an academic paper.
Score the entire graph (not individual triples) using only the given question, ontology, and
sectioned evidence. Return JSON only (no extra text).
Inputs
• Task/Question: {QUESTION}
• Ontology & constraints (optional): {ONTOLOGY_OR_RULES}
• Sectioned KG snippet (RDF/Turtle-like): {SECTIONED_TURTLE_BLOCK}
Notes: Entities/relations may contain :sourceSection, :sourceChunk, and :contextText.
What you must do
• Parse the snippet into a graph (nodes/edges) with per-edge provenance {section, chunk,
evidence}.

• Section-aware evidence: prefer evidence from the same sourceSection; if multiple, choose
the strongest/clearest contextText.

• Compute graph-level diagnostics:
– triple_count, entity_count, section_coverage (present / missing),
– conflict_count, missing_slot_rate, redundancy_rate,
– granularity_notes, evidence_coverage (portion of edges with contextText).

Scoring dimensions (0–10) & section rules
• Domain Fit – Alignment to task/question and paper domain across sections. Abstract/Con-

clusion weight high-level relevance; Methods/Results weight task-level relevance.
• Accuracy – Proportion of edges explicitly entailed by evidence; penalize speculation unless

typical for the section (e.g., Discussion).
• Consistency – Cross-section coherence: contradictions, unit/time/version mismatches,

ontology violations.
• Completeness – Coverage of section-appropriate slots/metadata; use missing_slot_rate.
• Granularity – Appropriate detail (normalized terms, alias resolution, versions, metric

names/values); penalize systematically coarse/fine patterns per section norms.

final_score = 0.20× domain_fit+ 0.20× accuracy

+ 0.20× consistency+ 0.20× completeness

+ 0.20× granularity

(round to one decimal).
Output (JSON only)
Return a single JSON object. Keep reasons concise (each reason ≤ 30 chars; summary_advice
≤ 120 chars; each top_fix ≤ 60 chars).

{
"meta": {
"triple_count": <int>,
"entity_count": <int>,
"section_coverage": {
"present": ["Abstract","Methods","..."],
"missing": ["Results","..."]

},
"evidence_coverage": <0-1>,
"conflict_count": <int>,
"redundancy_rate": <0-1>,
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"missing_slot_rate": <0-1>,
"granularity_notes": ["...","..."]

},
"scores": {
"domain_fit": {"score": <0-10>, "reason": "$\leq$30 chars"},
"accuracy": {"score": <0-10>, "reason": "$\leq$30 chars"},
"consistency": {"score": <0-10>, "reason": "$\leq$30 chars"},
"completeness": {"score": <0-10>, "reason": "$\leq$30 chars"},
"granularity": {"score": <0-10>, "reason": "$\leq$30 chars"}

},
"final_score": <0-10 one-decimal>,
"summary_advice": "$\leq$ 120 chars, prioritized",
"top_fixes": [
"Fix 1 ($\leq$ 60 chars)",
"Fix 2 ($\leq$ 60 chars)",
"Fix 3 ($\leq$ 60 chars)"

]
}
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A.6 QA GENERATION AGENT PROMPT

QA Generation Prompt (System)

Role: Expert generator of educational multiple-choice questions grounded in academic paper
knowledge graphs.
Task: Produce one high-quality MCQ with four options (A–D) from a 3-hop KG reasoning
path anchored to a specific paper section.
Constraints:
• Require multi-hop reasoning that follows the provided path end-to-end.
• Create exactly four options with only one correct answer.
• Keep options plausible yet clearly distinguishable; include mildly misleading overlaps.
• Use an academic, precise, objective style in English.
• Ground the question in the given section context; ensure it is answerable from the informa-

tion provided.
• Prefer phenomena that deviate from common knowledge and are surprising.
• You may use a term a domain expert would understand but that is likely ambiguous for an

LLM; this term must not appear elsewhere in the text.
• Each option must contain more than 10 words.
• Integrate internal–external knowledge: incorporate internal domain knowledge not verbatim

in the paper while keeping the answer derivable from the provided path and context.
• Make the item challenging but resolvable without external resources beyond the provided

inputs.
Output Format (JSON only):
{

"question": "Clear, specific question text",
"options": {
"A": "First option (must be longer than 10 words)",
"B": "Second option (must be longer than 10 words)",
"C": "Third option (must be longer than 10 words)",
"D": "Fourth option (must be longer than 10 words)"

},
"correct_answer": "A/B/C/D",
"explanation": "Brief explanation of why the answer is correct"

}

Success Criteria: One valid-JSON output; reasoning explicitly implied by the 3-hop path;
options long, plausible, and non-ambiguous; single correct answer with a concise justification.

QA Generation Prompt (User)

Inputs: Section name, knowledge path, and supporting context from the paper.
Instruction: Based on the following knowledge graph path and the accompanying section-
level context, generate one multiple-choice question that requires reasoning through the entire
3-hop path. The item should test understanding of entities and relations involved.
Template (model receives the following fields):
KNOWLEDGE PATH:
{path_description}=
CONTEXT FROM PAPER:
{context_text}
SECTION: {section}

Return: Respond with valid JSON only following the schema in the System prompt.
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A.7 MORE EVALUATION RESULTS ON LLMS

To provide a more comprehensive view of our benchmark, we extend the main evaluation by reporting
additional results on a broader set of large language models in the Appendix. Consistent with the main
paper, our analysis emphasizes three complementary dimensions: (i) Difficulty Control, measured
by model performance across 1–3 hop reasoning paths; (ii) Evidence Traceability, quantified by
accuracy with and without providing supporting paths; and (iii) Model Robustness, evaluated through
comparisons between reasoning-oriented and base LLMs, as shown in Table 7.

Table 7: Extended evaluation of the generated QA benchmark under two settings: AutoQG20k (left block) and
AutoQG7k (right, QA-Pair only). Results are Strict Accuracy (%) on QA pairs, difficulty-controlled hops, and
accuracy with/without evidence.

Category Model AutoQG20k AutoQG7k

1-hop 2-hop 3-hop Acc (w/ Ev.) QA-Pair

Base Models

GPT-4o 95.2 91.0 72.5 96.1 43.3
Mistral Large 2 94.2 91.0 76.4 95.2 55.3
WizardLM-270B 89.6 72.4 64.6 92.6 35.9
Qwen-2.514B 86.0 81.3 67.3 99.7 30.6
DeepSeek-V2.5 86.9 82.7 64.7 98.6 33.7
Gimini-1.5-flash 87.5 77.3 65.8 98.7 29.0
GLM-4 83.1 75.0 65.6 98.7 29.0
Claude-haiku 82.9 79.7 60.2 99.7 31.4
Mistral-7B (Base) 85.7 82.0 62.2 99.2 28.0
DBRX 83.4 79.2 56.2 90.8 30.7

Reasoning Models
Claude-3.5 Sonnet 86.0 84.0 75.8 95.9 52.9
Grok-2 94.0 88.0 69.6 92.9 41.9
Mistral-7B 76.5 69.2 60.7 90.9 27.6
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A.8 CASE STUDY ON LLM FAILURE CASES

Example QA Pair

Question:
In the study described in the researchcontextandstudydesign section, how was the approach
for balancing functional requirements and non-functional requirements (NFRs) presented to
the experts?
Options:

A. The approach was embedded within the closed questions of the questionnaire on a
4-point Likert scale.

B. Experts were invited to a workshop where the approach was discussed in detail
before starting the questionnaire.

C. It was detailed at the beginning of the study to introduce experts to the main focus of
research.

D. It was presented in the third part of a questionnaire that included both open and
closed questions.

Correct Answer: D
Reasoning Path:
Questionnaire → Open and Closed Questions → Three Parts → Approach for Balancing
Functional and NFRs
Context:
“The questionnaire comprised 20 open questions and 4 closed questions... Finally, in the third
part we presented the experts our approach for balancing functional and NFRs.”

Case Study on Incorrect Answers by LLMs. We analyze a representative failure case in which
most LLMs struggle to answer correctly. This example requires a three-hop reasoning chain that
links the questionnaire to its division into three parts and finally to the presentation of the proposed
approach, yet many models fail to follow this path and instead latch onto superficial cues. Distractor
options are particularly challenging, as references to Likert scales or common research practices
(e.g., introducing the method at the beginning) appear plausible and mislead models into incorrect
selections. Success thus hinges on capturing the precise detail that the approach was presented in
the third part of the questionnaire, which most models overlook. We also note that inconsistencies
in dataset annotations (e.g., mismatched explanations and correct answers) can exacerbate model
errors. This case highlights that our benchmark effectively probes weaknesses in multi-hop reasoning,
evidence grounding, and robustness against distractors.

A.9 QA HUMAN EVALUATION DETAILS

We conducted a double-blind human evaluation to rigorously assess the quality of the generated QA
pairs. The evaluation was performed by a separate group of annotators who were blind to the source
of each QA pair. We collected QA pairs from multiple sources, including our framework and various
baselines, and presented them to the annotators in a randomized, interleaved fashion. This approach
prevented annotators from inferring the source and ensured an unbiased assessment. The annotators
were provided with a detailed scoring rubric to evaluate each QA pair across six key dimensions:
Relevance, Answerability, Distractor Quality, Fluency, Reasoning Depth, and Evidence Traceability.
The scoring criteria for each dimension are summarized in the table 8.
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Dimension Definition Scoring Guideline (0–10, with Ex-
ample)

Relevance Alignment of QA with context, path,
and evidence.

0: Irrelevant; 10: Fully relevant.
High score if QA targets core meth-
ods/results, not background.

Answerability Answer can be derived from pro-
vided context/path.

0: Unanswerable; 10: Clearly an-
swerable. Penalize if external knowl-
edge is needed.

Distractor Quality Plausibility and misleadingness of
distractors.

0: Trivial/repetitive; 10: Plausible
and non-trivial.

Fluency Clarity and naturalness of language. 0: Unclear; 10: Fluent and academic.
High score if concise and grammati-
cally correct.

Reasoning Depth Need for multi-hop reasoning/evi-
dence integration.

0: Fact recall; 10: Multi-hop reason-
ing. Reflects difficulty control.

Evidence Traceability Explicit grounding in source text and
path.

0: No link; 10: Explicitly linked.
High score if tied to specific find-
ings/experiments.

Table 8: Evaluation dimensions for QA pairs with scoring rubric (0–10 scale).

A.10 THE PROMPT OF KG CONSTRUCTION OF REPRESENTATIVE LLMS FOR KG EVALUATION

Knowledge Graph Schema

Entity Types:
• Core Academic: Models (GPT-4, BERT, Llama-2, Transformer), Datasets (WinoGrande,

SQuAD, GLUE), Metrics (Accuracy, F1, BLEU, ROUGE, Perplexity), Methods (Fine-
tuning, LoRA, Pre-training), Algorithms (Attention, Backpropagation, SGD), Architectures
(Encoder-Decoder, Attention-only).

• Research Context: Papers, Authors, Organizations (OpenAI, Google, Meta), Tools (Py-
Torch, TensorFlow, Hugging Face), Venues (ACL, NeurIPS, journals).

• Measurement: Scores, Parameters (7B, 175B), Configurations (hyperparameters, experi-
mental settings).

Relation Types:
• Performance & Evaluation: :evaluatedOn, :achievesScore, :measures,
:outperforms, :comparedWith

• Development & Creation: :basedOn, :improves, :proposes, :developedBy,
:implementedIn

• Training & Application: :trainedOn, :finetunedOn, :uses, :appliedTo,
:optimizedFor

• Research & Citation: :addresses, :publishedIn, :citedBy
• Structural: :partOf, :enabledBy, :resultIn, :relatedTo
Mandatory Metadata:
:contextText "original_text_snippet"
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A.11 ERROR ANALYSIS AND REPRESENTATIVE CASES

To understand the typical failure modes of our KG extraction module, we conducted a detailed
qualitative error analysis on a manually annotated subset consisting of 42 incorrect triples. The errors
fall into three major categories: (1) incorrect relations, (2) over-extraction, and (3) under-extraction.
Table 9 summarizes representative examples, along with their error mechanisms.

Table 9: Summary of error categories and mechanisms.

Error Type Ratio Gold Prediction Mechanism

Incorrect Relation 57.1% basedOn uses Verb-pattern drift; misunderstand-
ing methodological vs. imple-
mentation semantics

Incorrect Relation
(Causalization
Bias)

— relatedTo arisesFrom Over-inference of causality; se-
mantic over-mapping

Semantic Reversal — appliedTo retrievesFrom Directionality confusion; role in-
version

Granularity
Mismatch (Over-
extraction)

38.1% basedOn uses,
implements

Predicting multiple fine-grained
relations instead of one abstract
relation

Context Misalign-
ment

— basedOn uses Confusion between hyperparame-
ter usage and algorithmic design
dependency

Entity-type Mis-
match

— extends improvesOver Cross-level abstraction drift; tech-
nical hierarchy confusion

Entity-type Mis-
match (Resource-
level)

— uses usesKG Over-specific inference at re-
source level

Under-extraction 4.8% missing — Long-context cues not captured;
discourse-level limitations

The majority of failures arise from verb-pattern drift and semantic over-mapping, where surface-level
verb cues (e.g., “use”, “incorporates”, “arises from”) incorrectly trigger fine-grained or causally
loaded relations. A second major error source is granularity mismatch: the model often produces
several fine-grained relations instead of one abstract conceptual relation (e.g., predicting both uses
and implements instead of the gold basedOn). Finally, we observe entity-type mismatches that reveal
cross-level abstraction inconsistencies (e.g., model-level vs. concept-level), as well as occasional
under-extraction due to long-context dependency failures.

These patterns align with our earlier findings and directly motivate the improvement strategies pro-
posed in the main text, particularly the need for contextual verb–relation disambiguation, hierarchical
relational modeling, and enhanced discourse-level understanding.

A.12 REASONING PATH STRATEGY.

To ensure that the reasoning chains used for QA generation are meaningful rather than arbitrary, the
QA Generation Agent does not sample reasoning paths randomly. Instead, we employ a structure-
constrained traversal strategy that enforces semantic coherence across sections while preventing
trivial or circular reasoning. To quantify the contribution of this design, we compare three traversal
strategies as follows:

To evaluate the impact of the traversal strategy, we follow the six-dimensional LLM-as-a-Judge
protocol described in Section 4.3 and report averaged scores on AutoQG20k:

Across all dimensions, the structure-constrained traversal (P0) yields the strongest results, with
the most pronounced gain observed in the Reasoning dimension (8.5 vs. 7.9/8.2). This indicates
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Strategy Hop Constraints Rationale & Design Logic

P0: AutoQG (Ours) ≤3 hops; acyclic; cross-
sectional; prefers 2–3
hops

Encourages semantic information synthesis
across different sections (e.g., Method →
Result) and suppresses logically vacuous
loops

P1: Pure Random Walk Random walk, hops ∈
{1, . . . , 5}

Represents unconstrained exploration over
shallow and deep paths

P2: Length-fixed Ran-
dom

Random walk, ≤3 hops Controls for hop length to isolate whether
structural constraints (rather than length)
yield performance gains

Strategy Rel Ans Distr Flu Reas Evid

P0: AutoQG (Ours) 9.6 9.6 9.0 9.5 8.5 9.6
P1: Random Paths 9.5 9.0 8.6 9.4 7.9 9.1
P2: Length-Constrained Random 9.5 9.0 8.6 9.5 8.2 9.3

that enforcing cross-sectional and acyclic paths prevents purely local or shallow reasoning and
encourages the model to integrate heterogeneous evidence. The same constraint also leads to higher
Answerability and Evidence Traceability, suggesting that meaningful path design directly improves
QA fidelity rather than simply increasing hop count.

A.13 ADDITIONAL RESULTS ON QA GENERATION

To further ensure that our conclusions remain robust against the newest generation of large language
models, we extend our evaluation to a broader set of frontier models, including the most recent GPT
and Gemini variants, as well as competitive open-source models. All models were evaluated under
the same LLM-as-a-Judge protocol used in Section 4.3, ensuring fair and fully comparable scoring
across dimensions.

Table 10: Comparison with newly released frontier LLMs on QA generation quality. Our method maintains a
consistent lead across all evaluation dimensions.

Model Rel Ans Distr Flu Reas Evid

gpt-5 7.4 7.2 7.4 8.6 6.8 6.9
gpt-5-mini 8.0 7.9 8.3 9.0 7.5 7.7
gpt-5.1 9.4 9.0 9.2 9.4 8.6 8.4
claude-sonnet-4-thinking-all 8.4 7.9 8.7 9.3 7.6 7.6
Baichuan4 8.9 8.6 9.0 9.4 8.0 7.9
Qwen_Qwen3-32B 8.2 8.0 8.0 8.9 7.4 7.5
THUDM_GLM-4-32B-0414 8.6 8.3 8.7 9.3 7.8 7.8
THUDM_GLM-4-9B-0414 7.7 7.5 7.6 8.8 7.1 7.1
doubao-seed-1-6-thinking-250715 8.4 8.0 8.4 9.2 7.6 7.6
gemini-2.5-pro-exp-03-25-thinking 8.6 8.4 8.7 9.3 7.8 7.9
glm-4 7.6 7.4 7.5 8.6 7.0 7.0
llama-3.1-70b-instruct 7.0 6.9 7.2 8.2 6.6 6.6
Ours 9.6 9.6 9.0 9.5 8.5 9.6

The expanded comparison firmly supports the findings reported in the main paper. Our method
consistently maintains the highest performance across all key metrics, even when evaluated against
the most recent frontier systems such as GPT-5.1 and Gemini-2.5-Pro-Thinking. The stability of
relative model rankings across strong LLMs further demonstrates the robustness and discriminatory
power of our evaluation setup, confirming that the advantages of our framework are not tied to older
model versions but remain valid against the current state of the art.
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A.14 FREE-FORM QUESTION GENERATION USING AUTOQG

Although the main paper focuses on multiple-choice questions (MCQs) to enable deterministic
and scalable evaluation, the proposed Path→Question generation mechanism is inherently format-
agnostic. To verify the generalizability of AutoQG beyond MCQs, we conducted an additional study
in which the QA pipeline was used to generate free-form short-answer questions using the same
KG-guided reasoning process.

Evaluation Dimensions. To ensure a robust assessment of short-answer QA quality, we designed
a six-dimensional evaluation protocol shown in Table 11, capturing both linguistic properties and
reasoning/evidence requirements.

Table 11: Evaluation dimensions for free-form QA generation.

Dimension Abbreviation Description

Relevance Rel Degree to which the question is grounded in the given KG path and support-
ing section context.

Answer Quality AnsQ Correctness and completeness of the reference answer with respect to the
intended semantics of the question.

Factual Correctness Fact Faithfulness of all factual statements in the answer relative to the provided
evidence, without hallucination or unsupported inference.

Clarity & Fluency Flu Linguistic clarity, phrasing naturalness, and structural coherence of both
question and answer.

Reasoning Depth Reas Degree to which answering the question requires multi-step reasoning or
integration of distributed information rather than direct lookup.

Evidence Traceability Evid Extent to which the answer can be explicitly supported by evidence from the
KG path or context span.

Experimental Results. The scoring results for free-form QA generation are shown in Table 12.

Table 12: LLM-as-a-Judge results for free-form QA generation.

Rel AnsQ Fact Flu Reas Evid

9.6 9.5 9.5 9.5 8.5 9.6

These findings confirm that AutoQG extends robustly to open-ended short-answer formats. The high
Factual Correctness score (9.5) highlights the low hallucination rate, attributable to the KG path
acting as an explicit and verifiable content plan guiding answer construction. Evidence Traceability
remains strong (9.6) even without the constrained answer space of MCQs, indicating that the KG
structure continues to enforce transparency and verifiability in free-form generation.

A.15 COST ANALYSIS OF THE AUTOQG MULTI-AGENT PIPELINE

This section presents additional analysis of the computational cost of the AutoQG multi-agent pipeline.
Although AutoQG coordinates multiple specialized agents, the decomposition substantially improves
efficiency by reducing the token length per call and distributing reasoning across smaller modules,
preventing the exponential scaling commonly observed in long-context end-to-end prompting.

Multi-Agent Cost Efficiency. Table 13 compares AutoQG against a single-call end-to-end prompt-
ing baseline. While AutoQG triggers more calls per paper, its modularization dramatically reduces
the average token count per call while yielding significantly higher QA quality.

Table 13: Cost characteristics and QA performance: End-to-end prompting vs. AutoQG.

Setting Avg. Calls / Paper Avg. Tokens / Call QA Quality Rel Ans Distr Reas

End-to-end LLM QA 13,421.61 13,421.61 7.31 8.0 8.9 7.4 2.4
AutoQG (multi-agent) 23,592.53 4,831.52 8.45 9.6 9.6 9.1 8.4
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The results show that multi-agent decomposition functions as a cost-control mechanism. By bounding
sequence length and separating extraction, evaluation, and question formation, AutoQG yields a
+1.14 improvement in overall QA quality and a +6.0 improvement in reasoning depth while keeping
token consumption manageable and predictable.

A.16 REPRODUCIBILITY AND OPEN-SOURCE DEPLOYMENT

AutoQG is not structurally tied to closed-source LLMs. Because each agent functions independently,
fine-tuning or replacing any component does not affect the others. To examine practical portability,
we re-executed the full workflow using compact open-source models. The KG Extraction Agent and
QA Generation Agent used Qwen-7B-Instruct, and the KG Evaluation Agent used DeepSeek-V2.5.

Table 14: KG evaluation performance using open-source models within AutoQG.

Model Dom Acc Con Com Gra Overall QG

AutoQG (Qwen-7B-Instruct) 7.0 7.7 7.0 6.0 6.3 7.0
AutoQG (DeepSeek) 9.0 8.3 8.3 7.0 7.3 8.0

Table 15: QA generation performance using open-source models within AutoQG.

Model Rel Ans Distr Flu Reas Evid

AutoQG (Qwen-7B-Instruct) 8.6 8.3 7.7 9.0 7.4 8.3
AutoQG (DeepSeek) 9.4 9.1 8.5 9.5 8.4 9.2

Final Cost Estimate. When deployed with DeepSeek-based agents, the full pipeline (extraction →
evaluation → QA generation) averages $0.06 per paper. The modular architecture therefore ensures
both (i) high fidelity and (ii) low-cost reproducibility: computational cost grows linearly rather than
exponentially with task complexity, and each agent can be fine-tuned or replaced independently for
fully open-source deployment.
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