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ABSTRACT

In the open world, detecting out-of-distribution (OOD) data, whose labels are
disjoint with those of in-distribution (ID) samples, is important for reliable deep
neural networks (DNNs). To achieve better detection performance, one type of
approach proposes to fine-tune the model with auxiliary OOD datasets to amplify
the difference between ID and OOD data through a separation loss defined on model
outputs. However, none of these studies consider enlarging the feature disparity,
which should be more effective compared to outputs. The main difficulty lies in the
diversity of OOD samples, which makes it hard to describe their feature distribution,
let alone design losses to separate them from ID features. In this paper, we neatly
fence off the problem based on an aggregation property of ID features named Neural
Collapse (NC). NC means that the penultimate features of ID samples within a class
are nearly identical to the last layer weight of the corresponding class. Based on
this property, we propose a simple but effective loss called Separation Loss, which
binds the features of OOD data in a subspace orthogonal to the principal subspace
of ID features formed by NC. In this way, the features of ID and OOD samples are
separated by different dimensions. By optimizing the feature separation loss rather
than purely enlarging output differences, our detection achieves SOTA performance
on CIFAR10, CIFAR100 and ImageNet benchmarks without any additional data
augmentation or sampling, demonstrating the importance of feature separation in
OOD detection. The code will be published.

1 INTRODUCTION

In the open world, deep neural networks (DNNs) encounter a diverse range of input images, including
in-distribution (ID) data that shares the same distribution as the training data, and out-of-distribution
(OOD) data, which has labels that are disjoint from those of the ID cases. Facing the complex
input environment, a reliable network system must not only provide accurate predictions for ID
data but also recognize unseen OOD data. This necessity gives rise to the critical problem of OOD
detection (Cao et al., 2007; Liu et al., 2021), which has garnered significant attention in recent years,
particularly in safety-critical applications.

A rich line of studies detect OOD samples by exploring the differences between ID and OOD data in
terms of model outputs (Hendrycks & Gimpel, 2016; Liu et al., 2020), features (Sun et al., 2021; Zhu
et al., 2022; Sun et al., 2022b), or gradients (Huang et al., 2021; Wu et al., 2023). However, it has
been observed that models trained solely on ID data can make over-confident predictions on OOD
data, and the features of OOD data intermingle with those of ID features (Hendrycks & Gimpel, 2016;
Sun et al., 2022b). To develop more effective detection algorithms, a category of works focuse on the
utilization of auxiliary OOD datasets, which significantly improves detection performance on unseen
OOD data. One classical method, called Outlier Exposure (OE, Hendrycks et al. (2018)), employs a
cross-entropy loss between the outputs of OOD data and uniformly distributed labels to fine-tune
the model. Additionally, Energy method (Liu et al., 2020) proposes using the energy function as
its training loss and designs an energy gap between ID and OOD data. Building on these proposed
losses, recent works have concentrated on improving the quality of auxiliary OOD datasets through
data augmentation (Wang et al., 2024; 2023; Zheng et al., 2024) or data sampling (Ming et al., 2022a;
Chen et al., 2021; Jiang et al., 2023) to achieve better detection performance.
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Figure 1: Overview of our method. An example of a well-trained binary classification network,
where wi denotes the i-th weight of the last fully connected layer. The features of ID samples within
a class are nearly identical to the weight of the corresponding class, which is known as Neural
Collapse phenomenon. Based on this property, we propose to constrain OOD features on dimensions
orthogonal to FC weight subspace to explicitly separate the feature manifolds between ID and OOD
data.

Existing losses designed for auxiliary OOD data primarily focus on increasing the output discrepancy
between ID and OOD samples (Hendrycks et al., 2018; Liu et al., 2020). However, NONE of
these approaches consider enhancing the separability in the feature space. Insights from knowledge
distillation (Gou et al., 2021) and contrastive learning (Le-Khac et al., 2020) have demonstrated that
optimizing compactness or dispersion in the feature space is equally or even more important than
enforcing similar constraints in the output space. Furthermore, previous detection score function
design has shown the importance of employing feature information (Sun et al., 2021; 2022b; Zhu et al.,
2022), which can greatly improve detection performance. Therefore, when tackling the fine-tuning
problem using auxiliary OOD data, we propose that it is crucial to separate the features between
ID and OOD data, rather than merely enlarging their output differences.

Designing an effective feature separation loss for ID and OOD data is inherently challenging due to
the diversity of OOD samples that belong to various categories. This diversity results in a dispersion
of their features and difficulty in describing their feature distribution. Consequently, common feature
separation losses, such as maximizing the distance between the average features of different classes
(Ming et al., 2022b) or increasing the Kullback-Leibler divergence between ID and OOD feature
distributions (Kullback, 1997), are not suitable in our cases. Despite the intricate distribution of OOD
features posing a significant obstacle, in this paper, we derive solutions from the properties of ID
features.

A recent observation named Neural Collapse (Papyan et al., 2020) gives us an inspiration, which
reveals that the penultimate features of ID samples within a class are nearly identical to the last fully
connected (FC) layer’s weights of the corresponding class. Conversely, the features of OOD samples
are scattered haphazardly throughout the feature space. A direct illustration 1 can be seen in Figure
1. Leveraging the property of ID features, we propose to constrain the features of OOD data on
dimensions orthogonal to the subspace (denoted as W) spanned by FC weights. The dimension of W
equals to the number of ID categories, while the overall feature space dimension is significantly larger.
Consequently, there are numerous redundant dimensions available for OOD features, indicating
the feasibility of our method. To pursue this orthogonality, we introduce a loss function named
Separation Loss (ref. Eq3), which calculates the absolute value of cosine similarity between OOD
features and the weights of the final FC layer. By optimizing this simple yet effective loss to zero, we
ensure that OOD features are distributed in entirely different dimensions from ID features, thereby
enhancing their separability. Our approach utilizes the NC property of ID features, allowing us to
avoid modeling OOD feature distributions while effectively segregating ID and OOD features. The
overall method can be widely applied as a stronger baseline compared to OE (Hendrycks et al., 2018),

1For binary classification, NC indicates that the angle between w1 and w2 should be 180◦. But in order to
show the general case of higher dimensions, we depict an angle of 90◦ in the figure.
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and seamlessly integrated with other approaches like ATOM(Chen et al., 2021), POEM(Ming et al.,
2022a), etc(Wang et al., 2024; 2023) by replacing the OE loss with our separation loss.

We conduct extensive experiments over representative OOD detection setups, achieving the SOTA
performance without any data augmentation or sampling algorithms (Ming et al., 2022a; Wang et al.,
2023) on CIFAR10 (Krizhevsky et al., 2009b), CIFAR100 (Krizhevsky et al., 2009b) and ImageNet
(Deng et al., 2009a) benchmarks. For example, on the CIFAR100 benchmark, by using our feature
separation loss, we achieve the average FPR95 of 29.58% and AUROC of 94.01%, outperforming
the traditional OE (Hendrycks et al., 2018) method by 8.19% on FPR95. Furthermore, our method
exhibits a very stable performance while comparable methods like DAL (Wang et al., 2024) struggle
with a high fluctuation, as Sec 4.5 shows. The contribution of our paper is summarized as follows:

• We are the first to propose the concept of feature separation when using auxiliary OOD
data to fine-tune models, while previous works pay more attention to the output separation,
providing new insights into the design of OOD data loss functions.

• To overcome the difficulty caused by OOD data diversity, we propose a feature separation
loss based on the neural collapse property of ID features, which constrains OOD features to
lie in dimensions where ID features are scarcely distributed.

• Our SOTA detection performance on representative OOD detection settings verify the
effectiveness of our feature separation loss, implying that our loss can be a stronger baseline
for future researches.

2 RELATED WORK

Post-hoc Detection. Given a model that is only trained by ID data, post-hoc detection approaches
design score functions based on it to distinguish ID and OOD data. One type method named density-
based (Lee et al., 2018; Kobyzev et al., 2020; Zisselman & Tamar, 2020; Kingma & Dhariwal, 2018;
Jiang et al., 2021; Choi et al., 2018) is to explicitly model the ID data with some probabilistic models
and flag test data in low-density regions as OOD samples. More popular approaches are to derive
confidence score based on model outputs (Hendrycks & Gimpel, 2016; Liang et al., 2017; Liu et al.,
2020), features (Sun et al., 2021; Zhu et al., 2022; Sun et al., 2022b; Lee et al., 2018; Ndiour et al.,
2020; Cook et al., 2020; Ndiour et al., 2020; Cook et al., 2020; Wang et al., 2022) or gradients (Huang
et al., 2021; Wu et al., 2023; Lee et al., 2023; Lust & Condurache, 2020; Sun et al., 2022a; Igoe
et al., 2022). For example, the classical maximum softmax probability method (Hendrycks & Gimpel,
2016) utilizes the model output probability of the predicted class as a confidence score and then
identifies samples with low scores as OOD data.

Contrastive Learning based Detection. Different from post-hoc methods based on vanilla-trained
models, such methods generally apply contrastive losses defined on ID data in the model training
process to obtain better feature representations for OOD detection. For example, KNN+ (Sun et al.,
2022b) utilizes the SupCon loss (Khosla et al., 2020), which encourages alignment of features within a
class and dispersion of features of different classes, to train a network to obtain greater differentiation
between ID and OOD samples. Besides, CSI (Tack et al., 2020) contrasts original samples with
their distributionally-shifted augmentations to improve detection performance. Recent advancements,
such as CIDER (Ming et al., 2022b), combine a compactness loss to cluster samples near their class
prototypes and a dispersion loss to maximize angular distances between different class prototypes,
providing a more direct and clearer geometric interpretation for the disparity between ID and OOD
samples.

Auxiliary OOD Data based Detection. With access to part of OOD data, previous works design
training algorithms to utilize auxiliary OOD data for OOD detection. One type method is to propose
unsupervised training loss functions (Hendrycks et al., 2018; Liu et al., 2020; Bai et al., 2023), such
as the Kullback-Leibler divergence between OOD output probability and uniformly distributed label
(Hendrycks et al., 2018), to fine-tune the model. Based on the proposed losses, another type is to
select OOD data close to the decision boundary (Ming et al., 2022a) or conduct data augmentation
through adversarial attack (Chen et al., 2021; Wang et al., 2024) and model perturbations (Wang et al.,
2023) in the training process, which can tight the boundary so that pushing unseen OOD data far
away from it. In general, using auxiliary OOD data in the training process can significantly improve
detection performance, achieving better results compared with other detection approaches.
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3 METHOD

3.1 PRELIMINARY

OOD Detection Problem. The framework for OOD detection is outlined as follows. We consider a
classification problem involving C classes, where X represents the input space and Y denotes the
label space. The joint data distribution over X × Y is referred to as DXY . Let fθ : X 7→ Y be a
model trained on samples drawn independently and identically distributed (i.i.d.) from DXY with
parameters θ. Then, the distribution of ID data is the marginal distribution of DXY over X , denoted
as Din. Conversely, the distribution of OOD data is represented as Dout, whose label set does not
intersect with Y . The primary objective of OOD detection is to determine whether a test input x
originates from Din or Dout. Typically, this decision is made using a score function S as follows:

Gλ(x) =

{
ID if S(x, f) ≥ λ

OOD if S(x, f) ≤ λ

where λ is a threshold. Samples with scores higher than λ are classified as ID data. The threshold is
usually set based on ID data to ensure that a high fraction of ID data (e.g., 95%) is correctly identified
as ID samples.

Finetune Model with Auxiliary OOD Data. In this paper, we consider the task of using auxiliary
OOD data to fine-tune the model (Hendrycks et al., 2018; Liu et al., 2020; Ming et al., 2022a; Wang
et al., 2024), which can effectively enlarge the discrepancy between ID and unseen OOD data. Let’s
denote the auxiliary OOD dataset as Daux

out , which is a subset of real OOD datasets but has different
distributions from the test OOD datasets in the experiments for fair comparison. One classical method
is the Outlier Exposure (OE, (Hendrycks et al., 2018)), which designs an outlier exposure loss that
calculates the cross-entropy function between OOD outputs and uniformly distributed labels. The
equation is as follows:

LOE(x) = − 1

C

C∑
j=1

log fj(x), (1)

where fj(x) denotes the j-th element of the model output f(x). The final training objective of OE is
to simultaneously minimize cross-entropy loss on ID data and outlier exposure loss on OOD data,
which can be formalized as:

min
f

E(x,y)∼Din
LCE(x, y) + λEx∼Daux

out
LOE(x) (2)

where λ is a hyper-parameter. This optimization problem is regarded as a basic setting in auxiliary
OOD data approaches. Most of subsequent methods adopt the same or similar loss functions that
encourage ID and OOD data to differ in the output space. For example, POEM (Ming et al., 2022a)
designs a data sampling algorithm for efficient training, and DAL (Wang et al., 2024) employs
adversarial features to calculate the OE loss to minimize the generalization gap between auxiliary
and real unseen OOD data.

3.2 MOTIVATION

Previous works have focused on increasing the discrepancy between ID and OOD data in the output
space, while in this paper, we propose to explicitly enlarge the disparity of their features. Intuitively,
separating features of ID and OOD data should be beneficial to OOD detection compared to solely
augmenting the output differences. Existing feature separation functions in other fields, such as the
dispersion loss that enlarges the distance between the average features of different classes (Ming et al.,
2022b; Khosla et al., 2020), are not suitable for diverse OOD data since their features are dispersed
instead of clustering around the mean. To design a separation loss that can handle the complicated
distribution of OOD features, we delve into the property of ID features. A recent observation named
NC (Papyan et al., 2020) gives us a new insight, which reveals that the penultimate features of ID
samples within a class are nearly identical to the last layer weight of the corresponding class. This
intriguing property has stimulated many fields of research, including low-dimensional characteristics
of ID features (Garrod & Keating, 2024; Rangamani et al., 2023) and model generalization analysis
(Kothapalli, 2022; Hui et al., 2022). Particularly, several works employ the principal component
spaces identified by NC to design detection score functions (Liu & Qin, 2023; Zhang et al., 2024;
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Haas et al., 2022; Ammar et al., 2023), which demonstrates the large potential of NC applied in
OOD detection. We conduct empirical experiments on CIFAR10 to validate the NC property, as
Figure 2(a) shows, where we plot the feature distribution of test ID samples under weight basis space.
Furthermore, with the comparison of OOD features of vanilla and OE-trained model (Figure 2(a) vs.
Figure 2(b)), we discover that although the outlier exposure loss only optimizes the output of training
OOD samples, it implicitly changes the distribution of test unseen OOD features, making them
more clustered and far way from test ID features. However, from the 3D visualization of features
in Figure 2(e), it can be observed that the features of test unseen OOD data almost lie in the same
subspace as ID features, without taking advantage of the new dimension (z-axis) to further widen
the ID-OOD difference. Based on the above observations, we then design a feature separation loss
without modeling OOD feature distributions as follows.

(a) Vanilla model (b) OE-trained model (c) Our model

(d) Vanilla model (e) OE-trained model (f) Our model

Figure 2: Visualization of features projected into the two-dimensional space consisted of w1 and w2

(ref. Figure 1) and the three-dimensional space consisted of w1, w2 and the principal eigenvector
of OOD features on CIFAR10 benchmark. The Class-1 and Class-2 represent features of test ID
samples of class-1 and class-2, and the Outlier means features of test unseen OOD data, i.e. SVHN.
It can be observed that the feature separability between ID and OOD data gradually increases from
left (Vanilla model) to right (Our model).

3.3 FEATURE SEPARATION LOSS

Our key idea is to confine the features of OOD data to dimensions where ID features are sparsely
distributed. Considering that the principal subspace of ID features is C-dimensional, as determined
by the NC property, while the overall feature space has a significantly larger dimensionality, there
exist ample redundant dimensions that can accommodate OOD features. In pursuit of our goal, a
straightforward condition arises: zTwi = 0, i = 1, 2, ..., C, where z denotes the normalized feature
of OOD data, and wi denotes the normalized fully connected layer weight for class i. According
to this condition, we devise a Separation Loss for OOD data, which computes the average absolute
value of the cosine similarity between z and wi. The specific equation is as follows:

LSep =
1

C

C∑
i=1

∣∣zTwi

∣∣ (3)

Through minimizing the LSep loss, the OOD feature z tends to be distributed in the dimensions
that are orthogonal to wi, i = 1, 2, ..., C. Figures 2(c) and 2(f) illustrate the features of our model
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fine-tuned using LSep. As observed, the features of outlier samples are indeed distributed in different
dimensions from wi, resulting in a larger discrepancy between ID and OOD features. Except for
the LSep loss, we also propose an assistant loss that encourages ID features (denote as zID) within a
class to align closely with the FC weight of their corresponding class (denote as wy). We term this
loss function as LClu as it promotes neural collapse phenomenon (Papyan et al., 2020), enabling ID
features within a class more clustered. The formulation is as follows:

LClu = −zTIDwy (4)

Our empirical experiment in Sec 4.4 indicates that adding LClu in the training loss can further improve
the detection performance. Combining the above two losses, the final optimization problem can be
formulated as:

min
f

E(x,y)∼Din
(LCE + αLClu) + Ex∼Daux

out
(λLOE + βLSep) (5)

where α, λ and β are hyper-parameters. In our experiments, we use the common setting λ = 0.5 in
previous works (Hendrycks et al., 2018) and set α = 1.0 and β = 1.0 for simplicity.

3.4 OVERALL FRAMEWORK

Train. Based on the optimization problem outlined in Eq.5, we detail the training procedure as
follows. Depending on the model’s initial state, we employ different training strategies. The critical
factor is whether the model is well-trained on ID data. Notably, the neural collapse phenomenon
occurs when the network is fully converged on ID data. Therefore, if the network is well-trained, we
can directly apply Eq.5 to fine-tune the model; otherwise, we need to firstly utilize cross-entropy loss
to train the model for convergence and then use our loss to fine-tune the model.

Test. After fine-tuning the model with our loss, we propose a new score function to detect OOD
samples. Since our method simultaneously optimizes the outputs and features of OOD data, a more
proper score function is the sum of the traditional MSP (Hendrycks & Gimpel, 2016) and the average
cosine similarity between features and wi. Mathematically, it can be expressed as:

S(x, f) = max
i

eyi∑C
j eyj

+
1

C

C∑
i=1

∣∣zTwi

∣∣ (6)

where y denotes the model output f(x). Our experiments in Sec 4.5 compare the performance of
using our score function with only using the MSP score. The result indicates that our method also
performs well under MSP score, but slightly better under our proposed score function.

4 EXPERIMENTS

In this section, we first conduct experiments on CIFAR10, CIFAR100 and ImageNet benchmarks to
validate the superiority of our method in Sec 4.1. Then, we consider a variety of model architectures to
further verify the effectiveness of our method in Sec 4.2. Subsequently, we study the hyper-parameter
sensitivity of our method in Sec 4.3 and explore the contribution of each loss part in Sec 4.4. In
the last part, we discuss the fluctuation of performance, the influence of different score functions,
and the numerical result of feature separation degree in Sec 4.5. In our Appendix, we report more
experimental results, including combining our loss with other output-based losses except for OE
(Hendrycks et al., 2018) in Appendix A.1, detailed results on diverse networks in Appendix A.2, and
performance on hard OOD detection settings proposed in CSI (Tack et al., 2020) in Appendix A.3.
To begin with, we introduce our experiment setups as follows.

OOD Datasets. For CIFAR benchmarks, we randomly choose 300K samples from the 80 Million
Tiny Images (Torralba et al., 2008) as our auxiliary OOD dataset. And we adopt five routinely used
datasets as the test OOD datasets, including SVHN (Netzer et al., 2011), LSUN (Yu et al., 2015),
iSUN (Xu et al., 2015), Texture (Cimpoi et al., 2014) and Places365 (Zhou et al., 2017), which have
non-overlapping categories w.r.t. CIFAR datasets. For ImageNet benchmark, we use a validation
subset of ImageNet-21k-p dataset as auxiliary OOD dataset, following the setting in DAL (Wang
et al., 2024). And we adopt four commonly-used OOD datasets for evaluation, including iNaturalist
(Van Horn et al., 2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2017) and Textures (Cimpoi
et al., 2014).
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Pre-training Setups. For CIFAR benchmarks, we employ Wide ResNet-40-2 (Zagoruyko & Ko-
modakis, 2016) trained for 200 epochs, with batch size 128, init learning rate 0.1, momentum 0.9,
weight decay 0.0005, and cosine schedule. For ImageNet benchmarks, we directly use the pre-trained
ResNet50 (He et al., 2016) model in Pytorch as the baseline network.

Fine-tuning Setups. For both CIFAR10 and CIFAR100 benchmarks, we adopt the model parameter
of the 99th epoch in the pre-training process as our initial network parameters, and then add auxiliary
OOD data to train the model for 50 epochs with ID batch size 128, OOD batch size 256, initial
learning rate 0.07, momentum 0.9, weight decay 0.0005 and cosine schedule. This setting is aligned
with experiments in DAL (Wang et al., 2024). Since the initial model is not sufficiently converged,
we add our proposed LSep and LClu into the training loss after 25th epoch of the whole fine-tuning
stage. For ImageNet benchmark, we use the pre-trained model in Pytorch as initial network, and then
fine-tune the model for 5 epochs with ID/OOD batch size 64, initial learning rate 1e−4, momentum
0.9, weight decay 0.0005 and cosine schedule.

Compared Methods. We compare our method with post-hoc approaches, contrastive learning based
methods, and auxiliary OOD data based methods. The post-hoc methods include MSP (Hendrycks &
Gimpel, 2016), Energy (Liu et al., 2020), Maha (Lee et al., 2018), and KNN (Sun et al., 2022b). The
contrastive learning based methods include CSI (Tack et al., 2020), CIDER (Ming et al., 2022b), and
KNN+ (Sun et al., 2022b). The auxiliary OOD data based methods include OE (Hendrycks et al.,
2018), Energy-OE (Liu et al., 2020), POEM (Ming et al., 2022a), and DAL (Wang et al., 2024). For
OE and Energy-OE, we adopt the same training setting as ours, since we have discovered that their
recommended setting in the original paper performs much worse than our setting. For other methods,
we adopt their suggested setups but unify the backbones for fairness.

Evaluation Metrics. We report two classical metrics in this paper: 1) FPR95: the false positive rate
of OOD samples when the true positive rate of ID samples is at 95%. 2) AUROC: the area under
the receiver operating characteristic curve. A lower FPR95 and a higher AUROC indicate better
detection performance.

4.1 MAIN RESULTS

The main results are shown in Table 1 and Table 2, where we report the FPR95 and AUROC across
the considered real OOD datasets 2. Compared to methods based on vanilla or contrastive learning
models, whose training datasets only contain ID samples, incorporating auxiliary OOD data into the
training process can significantly reduce the FPR95 and improve the AUROC, indicating that this
direction is valuable to explore. Compared to the classical OE approach (Hendrycks et al., 2018),
our method reduces the average FPR95 by 0.87% on CIFAR10, 8.30% on CIFAR100, and 2.93%
on ImageNet, just by adding our Separation and Cluster losses into the training procedure. This
result demonstrates the effectiveness of our proposed losses. In addition to the OE approach, we
also compare our method with other advanced works, including the classical work that studies data
sampling strategies (POEM, Ming et al. (2022a)) and the adversarial feature augmentation work
that aims to mitigate the impact of OOD distribution discrepancy (DAL, Wang et al. (2024)). It
is worth noticing that our method does not employ any data augmentation or selection algorithms,
while exhibiting superior performances on CIFAR and ImageNet benchmarks. On CIFAR100, our
method outperforms the best baseline DAL by 2.00% on FPR95 and 1.18% on AUROC. Based on
the outstanding performance of our method, we suggest that the feature separation loss, which is
simple yet effective, can be used as a basic training function like OE loss (Hendrycks et al., 2018) in
the further works.

Table 1: Results on ImageNet-1k benchmark with auxiliary OOD data. The best result is in bold.

Method iNaturalist SUN Places Textures Average ID Acc↑FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
OEHendrycks et al. (2018) 48.30 88.91 61.40 83.09 70.36 80.78 58.60 82.78 59.66 83.89 76.04

DALWang et al. (2024) 47.92 89.12 61.20 83.22 70.55 80.79 57.91 83.02 59.39 84.04 75.94
Ours 43.01 90.17 60.11 83.56 68.46 81.31 55.35 83.45 56.73 84.62 76.10

2The symbol ∗ in the table means the results are cited from DAL (Wang et al., 2024)
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Table 2: Results on CIFAR10 and CIFAR100 benchmarks. The best result is in bold.

Method SVHN LSUN iSUN Textures Places365 Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10

With vanilla training

MSPHendrycks & Gimpel (2016) 44.22 93.61 27.56 96.12 69.62 85.29 60.02 88.53 65.68 86.25 53.42 89.96
EnergyLiu et al. (2020) 31.81 94.65 4.6 98.96 50.06 89.75 49.68 90.09 42.28 90.82 35.69 92.85
MahaLee et al. (2018) 42.67 90.71 18.96 96.46 28.86 93.76 26.22 92.81 86.78 69.14 40.70 88.58
KNNSun et al. (2022b) 44.76 92.55 27.38 95.34 43.84 91.24 37.64 92.82 49.23 87.89 40.57 91.97

With contrastive learning

CSI∗Tack et al. (2020) 17.37 97.69 6.75 98.46 12.58 97.95 25.65 94.70 40.00 92.05 20.47 96.17
CIDERMing et al. (2022b) 6.76 98.44 7.45 98.76 26.03 95.93 22.85 95.75 43.70 91.94 21.36 96.16
KNN+∗Sun et al. (2022b) 3.28 99.33 2.24 98.90 17.85 97.65 10.87 97.92 30.63 94.98 12.97 97.32

With auxiliary OOD data

OEHendrycks et al. (2018) 1.40 99.54 0.85 99.64 2.20 99.26 2.80 99.26 9.55 97.39 3.36 99.02
Energy-OELiu et al. (2020) 0.75 99.50 0.90 98.98 1.50 99.22 2.75 98.92 9.05 97.33 2.99 98.79
POEMMing et al. (2022a) 25.66 95.43 94.97 76.44 1.58 99.64 20.62 95.73 53.39 88.38 39.24 91.10

DALWang et al. (2024) 0.75 99.28 0.75 99.62 0.70 99.33 2.35 98.99 8.90 97.10 2.69 98.86
Ours 0.40 99.28 0.60 99.68 1.60 99.25 2.45 98.83 7.40 97.60 2.49 98.93

CIFAR-100

With vanilla training

MSPHendrycks & Gimpel (2016) 74.79 79.64 54.72 86.46 93.85 56.92 88.76 68.48 83.24 71.95 79.07 72.69
EnergyLiu et al. (2020) 70.18 87.15 17.15 97.05 91.37 65.50 84.77 76.72 78.91 75.77 62.75 80.44
MahaLee et al. (2018) 77.73 78.01 98.46 63.44 47.74 88.76 54.93 82.53 97.22 54.11 75.22 73.37
KNNSun et al. (2022b) 71.86 83.31 78.89 70.09 79.60 70.86 72.89 80.05 80.91 71.33 76.83 75.13

With contrastive learning

CSI∗Tack et al. (2020) 64.50 84.62 25.88 95.93 70.62 80.83 61.50 86.74 83.08 77.11 61.12 95.05
CIDERMing et al. (2022b) 16.47 96.23 45.45 81.64 66.01 82.21 49.79 87.48 82.66 68.39 52.08 83.19
KNN+∗Sun et al. (2022b) 32.50 93.86 47.41 84.93 39.82 91.12 43.05 88.55 63.26 79.28 45.20 87.55

With auxiliary OOD data

OEHendrycks et al. (2018) 38.70 92.90 18.30 96.67 36.35 92.59 43.05 91.00 52.45 87.86 37.77 92.21
Energy-OELiu et al. (2020) 17.75 96.94 34.00 94.82 60.75 87.32 45.70 90.09 53.50 89.08 42.34 91.65
POEMMing et al. (2022a) 45.41 90.70 3.01 99.24 18.60 95.79 51.37 83.85 84.13 73.93 40.5 88.87

DALWang et al. (2024) 16.45 96.10 17.00 96.52 36.95 90.88 38.40 91.72 48.55 88.91 31.47 92.82
Ours 17.95 96.52 12.50 97.64 27.00 93.85 41.70 91.37 48.20 90.64 29.47 94.00

4.2 DIFFERENT ARCHITECTURES

To further verify the effectiveness of our method, we evaluate and compare our performance with other
approaches on more network architectures, including ResNet18 (He et al., 2016) and DenseNet121
(Huang et al., 2017). The results are shown in Table 3, where our method exhibits consistently
superior performance across various architectures on CIFAR10 and CIFAR100 benchmarks. For
instance, we reduce the FPR95 by 4.55% compared to DAL (Wang et al., 2024) with ResNet18
architecture on CIFAR100 benchmark. Detailed results can be seen in Appendix A.2.

Table 3: Results on different network architectures on CIFAR10 and CIFAR100 benchmarks. We
report the average FPR95/AUROC across five OOD datasets. The best result is in bold.

Method CIFAR-10 CIFAR-100
WRN-40-2 ResNet18 DenseNet-121 WRN-40-2 ResNet18 DenseNet121

OEHendrycks et al. (2018) 3.36/99.02 6.35/97.35 10.79/97.54 37.77/92.21 56.96/90.19 62.08/86.76
DALWang et al. (2024) 2.69/98.86 3.61/98.20 9.75/97.71 31.47/92.82 54.89/90.95 61.25/87.66

Ours 2.49/98.93 3.52/98.75 8.90/97.74 29.47/94.00 50.34/90.90 59.13/88.45

4.3 HYPER-PARAMETER SENSITIVITY

In this section, we study the influence of coefficient α and β in Eq. 5 on the detection performance.
Specifically, we evaluate our method on CIFAR10 benchmark with α ∈ {0.1, 0.5, 1.0, 2.0} and
β ∈ {0.1, 0.5, 1.0, 2.0}. Experiment results are shown in Table 4. Notably, our approach is not
sensitive to the choice of hyper-parameters. Furthermore, we discover that using α = 0.1 and β = 0.1
can achieve better performance of our method than our previous report.

Table 4: Influence of loss coefficient α and β. We report the average FPR95/AUROC across five
OOD datasets on CIFAR10 benchmark. The best result is in bold, and the result for the parameter
used in our main experiment is underlined.

CIFAR10 β = 0.1 β = 0.5 β = 1.0 β = 2.0

α = 0.1 2.21/99.13 2.41/99.03 2.40/99.12 2.60/98.97
α = 0.5 2.45/98.91 2.52/98.90 2.51/99.07 2.43/99.08
α = 1.0 2.49/98.77 2.34/98.92 2.49/98.93 2.44/99.01
α = 2.0 2.46/98.73 2.51/98.24 2.36/98.38 2.67/98.72
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4.4 ABLATION STUDY

Considering our training objective loss contains four parts: LCE, LClu, LOE, and LSep, we explore
the contribution of each part to the final detection performance in this section. The cross-entropy loss
LCE is used for ensuring ID accuracy, thus we skip it when discussing the detection performance.
The rest three parts, one (LOE) is for output discrepancy and the other two (LClu and LSep) is for
feature separation. We firstly evaluate the performance of purely using cross-entropy loss (LCE) and
outlier exposure loss (LOE), namely OE method (Hendrycks et al., 2018). And then we discuss three
situations: 1) adding LClu; 2) adding LSep; 3) adding LClu and LSep. The results are shown in Table
5. Comparing the No.1 and No.3, it shows that our feature separation loss significantly improves
detection performance compared to OE method. Additionally, only using cluster loss damages the
performance but integrating it with separation loss can achieve the best result. The underlying reason
is that the cluster loss only controls the property of ID features, but has negligible effect on enlarging
the discrepancy between ID and OOD features when purely using it.

Table 5: Performance of our method under different training losses. The OE means using cross-
entropy loss and outlier exposure loss. The No.2, No.3, No.4 settings are based on the OE setting,
respectively adding cluster loss, separation loss, and cluster+separation losses.

No. Method CIFAR10 CIFAR100
FPR95↓ AUROC↑ FPR95↓ AUROC↑

1 OE Hendrycks et al. (2018) 3.36 99.02 37.77 92.21
2 +LClu 3.62 98.96 39.91 91.22
3 +LSep 2.65 99.00 33.30 93.42
4 +LClu+LSep 2.49 98.93 29.47 94.00

4.5 DISCUSSION

Cosine Similarity vs. Euclidean Distance. Our designed loss is calculated based on cosine similarity,
which then induces dimensionality separation between ID and OOD features. In this part, we compare
with an intuitive loss design, that is, maximizing the Euclidean distance between OOD features and
weights of the last FC layer, with our orthogonality-based loss LSep to illustrate the importance
of utilizing redundant dimensions to enlarge feature discrepancy. Since maximizing the Euclidean
distance will cause its value to approach infinity, we instead use 1

∥z−wi∥ for OOD features and
∥zID − wy∥ for ID features as the training loss in the Euclidean distance setting, and then minimize
this loss to fine-tune the model. The comparison results are presented in Table 6, where the cosine
similarity loss significantly outperforms Euclidean distance loss. The underlying reason may be that
our separation loss utilizes new dimensions to separate ID and OOD features. When faced with
unseen OOD data, the feature variations tend to fall on the new dimension, resulting in minimal
changes on the output.

Table 6: Comparison between using the Euclidean distance and cosine similarity (ours) as the training
loss to separate ID-OOD features.

Method SVHN LSUN iSUN Textures Places365 Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10

Euclidean 1.70 99.48 1.15 99.60 3.20 99.22 4.55 98.95 12.55 95.97 4.63 98.64
Ours 0.40 99.28 0.60 99.68 1.60 99.25 2.45 98.83 7.40 97.60 2.49 98.93

CIFAR-100

Euclidean 51.95 85.97 19.95 96.13 42.35 87.45 44.80 88.18 56.95 85.29 43.20 88.60
Ours 17.95 96.52 12.50 97.64 27.00 93.85 41.70 91.37 48.20 90.64 29.47 94.00

Fluctuation in Detection Performance. We have observed considerable fluctuations in the perfor-
mance of the DAL method (Wang et al., 2024) under repeated experiments with identical settings.
Therefore, we evaluate the mean and variance of performance after repeating the same experiment five
times. The results, shown in Table 7, indicate that our approach exhibits greater stability, particularly
on the CIFAR100 benchmark. Notably, even the OE method shows the FPR95 variance of 1.137%
on CIFAR100, whereas our method maintains a variance of only 0.027%.
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Table 7: Fluctuation in detection performance of different methods.

Method CIFAR10 CIFAR100
FPR95↓ AUROC↑ FPR95↓ AUROC↑

OE Hendrycks et al. (2018) 3.22±0.0017 99.07±0.0014 36.29±1.137 92.31±0.013

DAL Wang et al. (2024) 2.87±0.0234 98.82±0.0027 30.44±2.216 93.07±0.075

Ours 2.49±0.0007 98.92±0.0033 29.50±0.027 93.98±0.014

Different Score Functions. Since we use our proposed score function in Eq 6 to detect OOD samples
while other auxiliary OOD data based methods only employ MSP score (Hendrycks & Gimpel, 2016),
in this part, we also evaluate our model using MSP score for a fair comparison. The results in Table 8
demonstrate that our approach also achieves commendable performance under the MSP score, with
only a slight decline compared to using the proposed score function.

Table 8: Performance of adopting different score functions in our method.

Method Score Function CIFAR10 CIFAR100
FPR95↓ AUROC↑ FPR95↓ AUROC↑

Ours MSP 2.77 98.76 29.96 93.27
Eq. 6 2.49 98.93 29.47 94.00

Feature Separation Degree. In this part, we evaluate the degree of feature separation between
ID and OOD data to validate the effectiveness of our proposed loss. Leveraging the NC property
of ID features, we use the FC weight as the intermediary to design our measurement standards.
Specifically, we propose three metrics, respectively defined by the Euclidean distance and cosine
similarity between features and the weight of the predicted class, and the reconstruction error to
the subspace spanned by FC weights. The results are shown in Table 9, where OOD means unseen
test OOD data instead of auxiliary OOD samples. It can be seen that our model presents higher
differences under the three metrics compared to vanilla and OE-trained models.

Table 9: Feature separation degree of different methods measured by three metrics. The higher
difference (Diff) means better discrepancy between ID and OOD features.

Method Euclidean Distance Cosine Similarity Reconstruction Error
ID OOD Diff↑ ID OOD Diff↑ ID OOD Diff↑

Vanilla 0.80 1.12 0.32 0.69 0.47 0.22 0.19 0.32 0.13
OE 0.86 1.21 0.35 0.79 0.32 0.47 0.41 0.83 0.42

Ours 0.69 1.16 0.47 0.75 3e−5 0.75 0.43 0.86 0.43

5 CONCLUSION

In this paper, we propose a novel training loss to enhance the feature discrepancy between ID and
OOD data during model fine-tuning with auxiliary OOD datasets. Given the inherent diversity and
complexity of distributions of OOD features, we leverage the Neural Collapse property of ID features,
which indicates that the penultimate features of ID samples within a class are nearly identical to
the last layer weight of the corresponding class, to pursue dimensionality separation between ID
and OOD features. Based on the idea, we introduce a separation loss that confines OOD features to
dimensions that are orthogonal to the principal subspace of ID features formed by NC. Our extensive
experiments validate the effectiveness of our feature separation loss, achieving SOTA performance
on CIFAR10, CIFAR100 and ImageNet benchmarks. We believe that our study will inspire further
researches into pursuing feature separation when employing auxiliary OOD data to fine-tune models
in OOD detection.
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A APPENDIX

A.1 COMBINATION WITH OTHER OUTPUT-BASED LOSS

In our main paper, we utilize our feature separation loss based on OE method (Hendrycks et al., 2018)
since it is the most classical approach. In this section, we also combine our feature separation loss
with another output-based loss to demonstrate our wide availability. We adopt Energy-OE approach
(Liu et al., 2020) as our basic loss, which is a commonly-used output-based loss. The mathematical
formula is as follows:

min
f

LCE + λLenergy (7)

Lenergy = E(xin,y)∼Din
(max(0, E(xin)−min))

2

+ Exout∼Daux
out

(max(0,mout − E(xout)))
2

(8)

where E(x) = −T · log
∑

i Cefi(x)/T is the energy score function, and λ, min, and mout are hyper-
parameters. We adopt the recommended setting in Energy-OE (Liu et al., 2020) to set the parameters
and finetune our model. Combining our feature separation loss with the basic method, we obtain our
training objective loss as follows:

min
f

LCE + λLenergy + αLClu + βLSep (9)

In our experiments, we still set α = 1.0 and β = 1.0 for consistency with previous setting. The
results are shown in Table 10, where our method significantly reduces the FPR95 by 6.35% on
CIFAR100 benchmark compared to the basic Energy-OE approach, convincingly demonstrating our
wide availability and effectiveness.

Table 10: Combination with Energy-OE loss on CIFAR10 and CIFAR100 benchmarks. The best
result is in bold.

Method SVHN LSUN iSUN Textures Places365 Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10

Energy-OE Liu et al. (2020) 0.75 99.50 0.90 98.98 1.50 99.22 2.75 98.92 9.05 97.33 2.99 98.79
Ours 1.20 99.33 0.65 99.14 1.75 99.33 2.20 99.08 7.55 97.88 2.67 98.95

CIFAR-100

Energy-OE Liu et al. (2020) 17.75 96.94 34.00 94.82 60.75 87.32 45.70 90.09 53.50 89.08 42.34 91.65
Ours 11.05 97.65 21.35 96.40 52.95 88.63 42.65 91.14 51.95 88.81 35.99 92.53

A.2 DETAILED RESULTS ON DIFFERENT ARCHITECTURES

We report the detailed results with ResNet18 and DenseNet121 architectures on CIFAR10 and
CIFAR100 benchmarks in Table 11.

Table 11: Detailed Results with ResNet18 and DenseNet121 architectures. The best result is in bold.

Method SVHN LSUN iSUN Textures Places365 Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10

ResNet18

OE 3.55 97.46 4.35 98.00 4.20 97.58 7.95 97.47 11.70 96.25 6.35 97.35
DAL 0.75 99.38 1.70 98.94 2.10 98.05 4.35 98.20 9.15 96.45 3.61 98.20
Ours 0.50 99.60 2.10 99.19 3.10 99.02 3.15 98.71 8.75 97.26 3.52 98.75

DenseNet121

OE 4.40 98.51 4.40 98.68 22.80 96.19 5.55 98.52 16.80 95.78 10.79 97.54
DAL 3.10 98.65 3.10 99.05 21.40 96.56 5.55 98.46 15.60 95.85 9.75 97.71
Ours 4.45 98.73 4.45 98.86 13.90 97.41 4.90 98.76 16.80 95.94 8.90 97.94

CIFAR-100

ResNet18

OE 55.75 92.95 35.45 93.96 70.10 87.37 65.00 88.38 58.50 88.29 56.96 90.19
DAL 51.55 93.40 32.35 94.65 69.75 88.90 63.50 89.52 57.30 88.31 54.89 90.95
Ours 36.70 93.29 34.90 94.12 66.00 88.68 57.35 90.01 56.75 88.39 50.34 90.90

DenseNet121

OE 59.40 90.35 48.70 90.15 70.65 83.28 66.90 85.36 64.75 84.65 62.08 86.76
DAL 47.00 92.81 60.05 87.88 55.20 88.65 65.40 86.90 78.60 82.07 61.25 87.66
Ours 67.40 90.49 37.15 92.77 65.15 85.68 63.00 87.13 62.95 86.18 59.13 88.45
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A.3 HARD OOD DETECTION

In addition to testing on the regular OOD datasets, we further consider three hard OOD datasets
proposed in Tack et al. (2020), which are considered more difficult to distinguish from ID samples.
Following the same setting in (Tack et al., 2020; Sun et al., 2022b; Wang et al., 2024), we evaluate
our detection performance on LSUN-Fix (Yu et al., 2015), ImageNet-Resize (Deng et al., 2009b) and
CIFAR100 (Krizhevsky et al., 2009a) with CIFAR10 as the ID dataset. Specific results are shown in
Table 12. As we can see, our method shows comparable performance with DAL (Wang et al., 2024)
over three hard OOD datasets, outperforming the baseline OE method by 2.55% on FPR95 on the
ImageNet-Resize dataset.

Table 12: Hard OOD detection on CIFAR10 benchmark.

Methods LSUN-Fix ImageNet-Resize CIFAR-100
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

With contrastive learning

CSI∗ 39.79 93.63 37.47 93.93 45.64 87.64
CIDER 8.98 98.56 43.45 93.82 55.84 90.0
KNN+∗ 24.88 95.75 30.52 94.85 40.00 89.11

With auxiliary OOD data

OEHendrycks et al. (2018) 1.00 99.53 7.20 98.48 25.05 94.86
DALWang et al. (2024) 0.65 99.59 3.75 98.63 26.00 94.35

Ours 0.75 99.07 4.65 98.42 24.60 94.69

16


	Introduction
	Related work
	Method
	Preliminary
	Motivation
	Feature Separation Loss
	Overall Framework

	Experiments
	Main Results
	Different architectures
	Hyper-parameter Sensitivity
	ablation study
	Discussion

	Conclusion
	Appendix
	Combination with other output-based loss
	Detailed results on different architectures
	Hard OOD Detection


