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Abstract

Large language models (LLMs) have demon-
strated impressive zero-shot abilities in solving
a wide range of general-purpose tasks. However,
it is empirically found that LLMs fall short in
recognizing and utilizing femporal information,
rendering poor performance in tasks that require
an understanding of sequential data, such as se-
quential recommendation. In this paper, we aim to
improve temporal awareness of LLMs by design-
ing a principled prompting framework. Specifi-
cally, we propose three prompting strategies to
exploit temporal information within historical in-
teractions for LLM-based sequential recommen-
dation. Besides, we emulate divergent thinking
by aggregating LLM ranking results derived from
these strategies. Evaluations on MovieLens-1M
and Amazon Review datasets indicate that our
proposed method significantly enhances the zero-
shot capabilities of LLMs in sequential recom-
mendation tasks.

1. Introduction

Large language models (LLMs) such as ones with commer-
cially available APIs including ChatGPT (Achiam et al.,
2023) and Claude' have emerged as one of the primary, if
not the de facto, choices in a wide range of applications
thanks to their remarkable capabilities in dealing with natu-
ral language and generalizing to various domains without
further fine-tuning. In deed, an emerging trend is to use
natural language as a uniform interface and leverage the
LLMs to complete a task.

Following this trend, recent research has been exploring the
use of LLMs for processing sequential data, with applica-
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Figure 1: LLM-based sequential recommendation base-
lines show comparable performance even when historical
interactions (Sequential) order is randomized (Random).
Tempura significantly boosts performance by utilizing his-
torical orders, i.e., temporal information.

tions such as sequential recommendation (SRS) (Hou et al.,
2023b; Bao et al., 2023), which require LLMs to compre-
hend temporal patterns within user historical interactions.
In the case of sequential movie recommendation, historical
interactions such as users’ movie watching records can be
represented as natural language (i.e., movie titles and other
meta data) for the LLMs to process and recommend the next
movie, instead of item identifiers which are typically used in
traditional recommender systems (Kang & McAuley, 2018;
Sun et al., 2019). The extensive generalization ability and
vast world knowledge (Wang et al., 2020; Singhal et al.,
2023) of LLMs endow them with the potential to serve as a
single model for many recommendation domains without
fine-tuning, making it a general, capable, and easy-to-use
alternative to traditional recommender systems that usually
specialize in one selected domain and require extensive
training or fine-tuning.

However, recent research shows that LLLMs exhibit a lim-
ited sensitivity to temporal information in the input text,
particularly in discerning changes in user interests (Hou
et al., 2023b). In Figure 1, we compare the recommenda-
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tion performance of LLM-based methods using randomized
(denoted as Random) versus correctly ordered (denoted
as Sequential) historical interactions on two widely-used
SRS datasets. Both methods show similar performance, sug-
gesting that LLMs are not effectively utilizing the temporal
information present in the input text. This limitation stems
from a lack of specialized mechanisms within LLMs to auto-
matically recognize and utilize temporal information, which
is crucial for understanding the context and progression
within the data.

In this paper, we focus on improving LLMs’ awareness and
interpretation of temporal information, particularly within
the SRS scenario. Temporal information is ubiquitous
in real-world applications, such as recommender systems
(McAuley, 2022), intelligent document processing (Fischer,
2001) and financial market analysis (Tsay, 2005). By ef-
fectively capturing and integrating this temporal aspect, we
have the opportunity to significantly enhance the understand-
ing of user preferences via LLMs, thus providing users with
better recommendations that suit their backgrounds, needs,
and preferences. This improvement is also important for
boosting the effectiveness of LLMs in downstream appli-
cations, where accurate user preference modeling is cru-
cial (McAuley, 2022). To this end, we design a principled
prompting framework, which is training-free and domain
agnostic. We name our approach as Tempura (phonetically
similar to Temporal Prompt). Our main contributions are:

* We propose a principled method to construct in-context
examples (Min et al., 2022) for sequential recommenda-
tion, by analyzing how Transformer-based SRS models
(e.g., Kang & McAuley (2018)) learn to utilize temporal
information.

* Inspired by the results in neuroscience (Nobre & Van Ede,
2018; Griffiths et al., 1998), we add explicit structure
analysis in input sequences as additional prompts, partic-
ularly temporal cluster analysis, to enhance the temporal
understanding capabilities of LLMs.

* We emulate the process of divergent thinking (Runco,
1991) by aggregating ranking results derived from various
prompting strategies.

* We evaluate our method on MovieLens-1M and Ama-
zon Review datasets, the results show that our proposed
method significantly enhances the zero-shot capabilities
of LLMs in sequential recommendation tasks.

2. Related Works

LLMs for recommendation. Recently, the use of LLMs in
recommendation systems has garnered significant research
interest due to their capability to comprehend and encap-
sulate a user’s preferences and past interactions through
natural language (Fan et al., 2023; He et al., 2023). Current
LLM-based recommender systems are primarily designed

for rating prediction (Kang et al., 2023; Bao et al., 2023) and
sequential recommendation tasks (Wang & Lim, 2023; Hou
et al., 2023b; Xu et al., 2024). In both tasks, a user’s previ-
ous interactions with items, along with other optional data
like the user profile or item attributes, are concatenated to
formulate a natural language prompt. This is then fed into an
LLM with options for no fine-tuning (Wang & Lim, 2023),
full-model fine-tuning (Chen, 2023) or parameter-efficient
fine-tuning (Bao et al., 2023). Liu et al. (2023a) designs a
series of prompts to evaluate ChatGPT’s performance over
five recommendation tasks. Wang et al. (2023) develops
a ChatGPT-based agent to improve recommendation abil-
ity by using tools such as SQL and Web search. Contrary
to existing works that focus on the tentative evaluation of
LLMs’ ability in recommendation, we focus on improving
the LLM’s inefficacy of utilizing temporal information by
designing temporal-aware prompting strategies.

Sequential recommendation. Sequential recommendation
(SRS) (Hidasi et al., 2015; Kang & McAuley, 2018) aims to
predict the next interacted items based on historical interac-
tion sequences. Early works follow the Markov assumption
(Rendle et al., 2010), by designing various neural network
models to capture user preference within interaction se-
quences, including Recurrent Neural Network (Hidasi et al.,
2015; Li et al., 2017), Convolutional Neural Network (Tang
& Wang, 2018), Transformer (Kang & McAuley, 2018; Sun
et al., 2019), Graph Neural Network (Chang et al., 2021;
Wu et al., 2019). However, most of these approaches are
developed based on item IDs (Kang & McAuley, 2018) or
attributes (Zhang et al., 2019) defined on specific domains,
making it difficult to be generalized to other domains. Re-
cently, Hou et al. (2023a), Hou et al. (2022) and Li et al.
(2023) propose to learn unified item representations for
SRS based on pretrained language models. They follow the
paradigm that pretraining an unified text-based sequence
encoder on source domains and then fine-tune the encoder
on the target domain. However, all aforementioned methods
need massive user interaction sequences on a specific do-
mains and can not be easily transfer to unseen domains. In
contrast, we propose utilizing LLMs to establish a domain-
agnostic learning process for sequential recommendation
systems. Our approach is training-free and readily general-
izable to unseen domains using only prompts.

3. Methodology

In this section, we introduce Tempura in detail. As shown
in Figure 2, Tempura consists of three major components:
1) a in-context learning module that learns sequential rec-
ommendation tasks from sequences of historical interac-
tions; 2) a temporal structure analysis module that enhances
the model’s understanding by explicitly integrating clus-
ter structures within the sequences; 3) a prompt ensemble
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Figure 2: An illustrative overview of Tempura. We learn sequential recommendation via two kinds in-context demonstra-
tions. Explicit cluster structure analysis is conducted to improve the temporal understanding capabilities of LLMs. Each
prompting strategy independently generates a respective ranking by LLMs (marked by different colors). Rankings from
different prompting strategies are aggregated to form the final ranking.

module that aggregates recommendation results from var-
ious prompting strategies. We begin with the definition of
notations to be used in our technical discussions.

3.1. Problem Definition

Given a user’s historical interactions H = {i;}"_;, ordered
chronologically up to timestamp n, the task of sequential
recommendation involves ranking a set of candidate items
C = {i;}7L, for the subsequent timestamp n + 1. Ttems of
higher interest are expected to be ranked at more prominent
positions. In practice, candidate items are typically selected
from the entire item set Z, where m < |Z|, through candi-
date generation models (Covington et al., 2016). Further,
we follow the approach of Hou et al. (2022) by associating
each item ¢ with a descriptive text ¢;, which could be the
item’s name and its attributes or properties.

Different from training-based SRS models, we leverage
general-purpose LLMs (e.g., ChatGPT) to solve the recom-
mendation task in an instruction-following paradigm (Wei
et al., 2021). Specifically, for each user, we construct a
history prompt from the user’s historical interactions H, and
a candidate item prompt from the candidate item set C. The
aforementioned prompts are concatenated along with an in-
struction that explicitly describes the recommendation task,
forming the final prompt for LLMs. LLMs are anticipated
to generate rankings of C, reflecting user preferences, in
accordance with the format specified by the instruction. A
post-hoc text parser is employed to convert the natural lan-
guage rankings generated by LLMs into structured ranked
lists, which is used to calculate the ranking metrics (Hou

et al., 2023b).

3.2. Sequential Recommendation via In-Context
Learning

Given the vast scale of LLMs, fine-tuning domain-specific
models becomes impractical. Thus, we propose to learn
sequential recommendation via in-context learning, offering
a training-free approach that can be easily adapted across
various domains by leveraging the world knowledge and
comprehension capabilities of LLMs (Hou et al., 2023b;
Harte et al., 2023). To this end, we first analyze the learning
process of training-based SRS models, and then mapping
it onto the principles of constructing effective in-context
demonstrations.

The key distinction between SRS and other recommender
systems lies in the SRS model’s requirement to not only
identify a user’s preferences based on historical user-item
interactions but also to track the evolution of the user’s
interests over time. Training-based SRSs depend on learning
from large-scale user-item interaction data via GRUs (Hidasi
et al., 2015) or Transformers (Sun et al., 2019). We utilize
In-Context Learning (ICL) (Min et al., 2022) as a training-
free alternative to learn a SRS model. We follow Dai et al.
(2022) to analyze the learning process of training-based
SRSs. Given the historical interaction sequence of an user,
a trained Transformer-based SRS, such as SASRec (Kang
& McAuley, 2018), can be represented as,

fSASRec(mn) = (WO + AW)IBn (1)

where W) is the initialized parameter matrix, AW is the



Submission and Formatting Instructions for ICML 2024

update matrix and x,, is the representation of a candidate
item. The output of Fgasrec is the score of the examined
candidate item. In the back-propagation algorithm, AW is
computed by accumulating the outer products of historic
item representations /7 and the error signals e; of their
corresponding outputs:

n—1
AW = Zei@)azg, )
i=1

where error signals e; is the prediction error on the historic
item x}. Thus, the trained SASRec can also be rewritten
into,

Fsasrec(Tn) = (Wo + AW)z,,
n—1
= Wox,, + Z(ei ® )Ty
i=1
= Wox, + LinAwt(E, X', z,,),

where LinAtt(V, K, q) denotes the linear attention operation,
in which we regard error signals E as values and interacted
items X' as keys, and the current input x,, as the query. The
learning process of the SASRec model can be expained as
the model predicting the next item in a sequence based on
preceding items and updating itself based on the prediction
error. The trained SASRec model is designed to update user
preferences as the sequence expands, effectively tracking
the evolution of the user’s interests.

Let q = Wgx, represent the attention query vector for
the input candidate item x,,. An ICL-based SRS can be
represented as,

Fien(q) = Wzst + AWicL)q

where Wzs1 = Wy X (Wx X)7T is the initialized param-
eters to be updated and Wyg q is the attention result in
zero-shot learning (ZSL) setting, where no demonstration
are given. X denotes the input representations of query
tokens before x,,, such as the task description of sequential
recommendation. Based on the results of Dai et al. (2022),
the second term can be rewritten into,

AVVICLq = Lil‘lAtt(WvX/, WKX/, q),

where X’ denotes the input representations of demonstra-
tions. Here we observe a similar form between Fsasrec and
FicL, where Wy, X' can be explained as the error signal
from historic items. This analogy illustrates that by utiliz-
ing historic items as in-context demonstrations, an LLM
can learn to capture the temporal information within the
sequence of historical interactions. Hou et al. (2023b) dis-
cussed using the last item in the history as an in-context

demonstration. Based on our analysis, this method is equiv-
alent to training the SASRec model solely with the last
historical interaction, a practice insufficient for capturing
the dynamic nature of historical interactions. Thus, we are
motivated to use several historical interactions as demon-
strations to improve the temporal awareness of LLMs.

Proximal temporal demonstrations (PCL). Based on the
above principle, we design the following prompt to learn to
capture temporal information via ICL,

(Proximal temporal demonstrations

I have watched these movies in order: [
1, you should recommend
, now I have watched item ) e
Now recommend a new movie to me.

Placeholders, highlighted in orange, structure the input for
our model. The first placeholder captures the initial n — k
historic items, serving as the context for inferring user pref-
erences. The subsequent placeholder is designated for the
n— k-1 item, illustrating the next item to be recommended
based on the current context. Following this, we inform the
LLM that the n — k + 1 item has been interacted with, indi-
cating that the n — k + 2 item is the next recommendation
target. This setup is repeated to create k-shot demonstra-
tions. We utilize the most recent k items as demonstrations
to capture the proximal interest of the user. We denote this
prompting strategy as PCL.

Global interest demonstrations. In previous studies (Kang
& McAuley, 2018; Hou et al., 2023b), the number of his-
toric items was constrained by the limited input length of
models. Thus the whole interaction history is typically trun-
cated and the most recent items are remained. Empirically,
we also observed that extending the context window has
limited impact on improving performance and may even
detract from it. The reason could be: 1) the prolong context
distract LLMs (Liu et al., 2023b); 2) too old history has
little impact on the current user interest in the SRS scenario.
However, simply omitting distant historic items risks over-
looking users’ long-term interests. Hence, we randomly
sample a subset of historic items from the whole history
sequence to retain user’s global interest. Specifically, we
use the same template as PCL, but the context is filled with
randomly sampled historic items. Similarly, we incorporate
the most recent items as in-context examples. We denote
this prompting strategy as GCL.

3.3. Temporal Structure Analysis

It has been recognized in the neuroscience area that the hu-
man brain is more sensitive to temporal structures (Nobre &
Van Ede, 2018; Griffiths et al., 1998) - “Embedded relation-
ships among the attributes of events over different timescales
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carry predictions that guide proactive sensory and motor
preparation in the brain”. Only providing item sequences
may make it difficult for LLM to identify and utilize tempo-
ral patterns inside the sequence. Thus, we are motivated to
explicitly provide temporal structures to LLM. Specifically,
we conduct cluster analysis on the item sequence according
to two criteria: items that are (1) temporally proximate and
(2) share similar features should be clustered. In practice,
we also use LLMs to complete the cluster tasks and find it
can provide reasonable cluster results. The results are used
as additional input to the LLM for ranking.

Structure analysis prompt

I have watched these movies in order: [

]. Analyze the clusters within
the history. Two criteria: 1) Similar items
should be clustered together; 2) Temporal
close similar items should be clustered.

3.4. Prompt Ensemble

The most straightforward way to combine various prompt-
ing strategies is to concatenate them and use the resulted
long prompt. However, this approach risks exceeding the
context length limitations of LLMs. Moreover, it has been
observed that LLMs may lose important information within
overly lengthy prompts (Liu et al., 2023b). To effectively
utilize different prompting strategies, we propose ensem-
bling the respective ranking outcomes derived from each. In
this approach, we create several LLM sessions and obtain
ranking lists with different prompts. Following Hou et al.
(2023b), we explicitly define the output format for the rank-
ing results produced by LLMs, and subsequently extract the
ranking list using a post-hoc text parser. These ranking lists
are aggregated to obtain the final ranking, as the process
shown in Figure 2. Existing research also highlights the
benefits of collaboration among multiple LLMs (Wu et al.,
2023). Specifically, we assign scores to each rank in the
ranking list. For instance, in a ranking list of 20 items, the
item in the 1st place receives 20 points, the 2nd place item
gets 19 points, and so on, decreasing by one point per rank.
Finally, we sum the scores for each item across all rankings.

4. Experiments

In this section, to fully demonstrate the effectiveness of
Tempura in improving temporal awareness of LLMs, we
conduct a set of extensive experiments to study the follow-
ing research questions: (1) Can Tempura improve LLM’s
performance on sequential recommendation compared to
other methods? (2) Can Tempura enhance the sensitivity
of LLMs to temporal information in the input data? (3)
How do factors like history length, the number of in-context

examples or the choice of backbone LLMs influence the
effectiveness of Tempura?

4.1. Setup

Datasets. The experiments are conducted on three widely-
used public sequential recommendation datasets: (1) the
movie rating dataset MovieLens-1M (Harper & Konstan,
2015) (ML-1M) where user rated movies are regarded as
interactions, (2) one category from the Amazon Review
dataset (Ni et al., 2019) named Games where reviews are
regarded as interactions, and (3) another category from Ama-
zon Review dataset named Kindle. We sort the interactions
of each user by timestamp, with the oldest interactions first,
to construct the corresponding interaction sequences. The
movie or product titles are used as the descriptive text of an
item.

Evaluation configurations. Following existing works
(Kang & McAuley, 2018; Sun et al., 2019; Hou et al.,
2023b), we apply the leave-one-out strategy for evalua-
tion. For each interaction sequence, the last item is used
as the ground-truth item. We adopt the widely used metric
NDCG@N to evaluate the ranking performance over the
given candidate set C where N < |C|. In the remainder
of this paper, unless otherwise specified, |C| is set to 20.
The candidate set consists of one ground-truth item and 19
randomly sampled negative items.

Baselines. We consider three prompt-based baselines dis-
cussed in (Hou et al., 2023b): Sequential prompting:
Arrange the historical interactions in chronological order.
Recency-focused prompting (RF): In addition to the se-
quential interaction records, a sentence is additionally added
to emphasize the most recent interaction. In-context learn-
ing (ICL): Similar to PCL, but only use the most recent
historic item as the in-context example. We also consider
three methods designed for domain generalization: BM25
(Robertson et al., 2009) ranks items according to the textual
similarity between candidates and historic items. UniSRec
(Hou et al., 2022) equips textual item representations with
an MoE-enhanced adaptor for domain fusion and adaptation.
VQ-Rec (Hou et al., 2023a) learns vector-quantized item
representations, which can map item text into a vector of dis-
crete indices (i.e., item codes) and use them to retrieve item
representations from a code embedding table in recommen-
dations. Additionally, we report the results with each single
prompting strategy, as well as the results from ensembling
PCL and cluster analysis.

Training-based methods such as (Kang & McAuley, 2018;
Sun et al., 2019) are not considered as baselines because:
(1) They are designed based on item IDs, which can not
be generalized to new domains with new ID spaces. (2)
Our research focuses on improving the temporal awareness
of LLMs, as evidenced by improved performance in se-
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Table 1: Performance comparison on ML-1M and Amazon Review datasets. We highlight the best performance in bold.

NQ@K denotes NDCGQ@ K.

Method ML-1M Games Kindle
N@l N@5 N@10 N@1 N@5 N@I0 N@l N@5 N@10
BM25 400 13.14 2053 16.50 30.09 37.19 650 18.07 24.96
UniSRec 9.00 20.08 2672 1950 34.86 40.82 500 1621 25.03
VQ-Rec 9.50 19.52 27.11 550 16.76 2527 430 1422 23.58
Sequential 21.43 4257 4859 24.12 4726 53.03 1020 2796 33.72
RF 26.56 4599 5127 2563 50.02 53.72 11.11 2877 35.71
ICL 2640 47.51 5332 2600 49.68 53.63 13.07 30.82 3641
Cluster 27.00 45.82 52.04 26.15 4741 5239 1320 2577 34.07
PCL 20.16 4844 5421 29.00 5156 55.11 11.55 29.45 36.46
GCL 30.50 48.53 5326 3200 5161 56.63 10.00 3145 36.67
PCL + Cluster 30.50 48.35 54.88 3550 53.89 58.74 12.00 30.15 38.23
Tempura 3150 48.64 5449 39.00 56.51 60.95 14.00 32.17 37.59

54 A ¥\"_‘
2\0, 53 1
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® 51 Sequential
8 ICL
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Figure 3: Performance vs. history length |#| (ML-1M).

quential recommendations. We believe that training-based
methods essentially learn dataset-specific biases and thus
cannot be readily adapted to other domains. Existing study
(Hou et al., 2022) shows that training-based methods exhibit
significantly reduced performance when applied to domains
outside their training scope. Our study aligns with recent
research focusing on studying the cross-domain abilities
of sequential recommendation models. Accordingly, we
compare our method with SOTA cross-domain methods
UniSRec and VQ-Rec.

Implementation details. Considering economic and ef-
ficiency factors, we follow (Hou et al., 2023b; Xu et al.,
2024) to randomly sample 200 users along with their his-
torical interactions for each dataset. Unless specified, we
use the Azure OpenAl API gpt-3. 5—turbo’. We set

https://azure.microsoft.com/en—-us/
pricing/details/cognitive-services/

Table 2: Performance of Tempura with randomized items,
clusters and correctly ordered inputs.

Item-R  Cluster-R  Correct

ML-IM  51.78 52.47 54.49
Games  51.83 54.18 60.95
Kindle  34.13 33.92 37.59

history length |7{| as 15 and use the most recent 5 inter-
actions as demonstrations in PCL. We found the length of
the history significantly affects performance; therefore, we
also searched for the optimal |7{| for baselines. Empirically,
|#| = 10 yielded the best results for baselines in general.
All the reported results are the average of three repeat runs
to reduce the effect of randomness.

Main results. We present the results on three datasets in Ta-
ble 1. We can observe our prompting strategies in the third
group improves upon existing baselines across all metrics.
It is interesting to observe that PCL outperforms ICL sig-
nificantly, where more demonstrations are used in PCL but
ICL only use the last interaction as demonstration. This ob-
servation align with our analysis that more demonstrations
are needed to learn to utilize temporal information in his-
torical interaction sequences. Although the Cluster strategy
exhibits limited performance on its own, it can significantly
enhance performance when combined with other strategies
in an ensemble. Additionally, we provide a case study of
cluster analysis results in Section 4.4. By comparing individ-
ual prompting strategies with two ensemble-based methods,
we find that ensembling consistently enhances performance

openai-service/
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by leveraging the strengths of different strategies. This sug-
gests that different strategies emphasize various aspects,
resulting in complementary results.

55.0

54.5 1

54.0 1
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NDCG@10 (%)

1 2 3 4 5 6 7
#In-context examples

Figure 4: Impact of #in-context examples in PCL. Several
more examples can improve performance.

4.2. Sensitivity of Temporal Information

In this paper, we aim to improve temporal awareness by
designing temporal-aware prompting strategies. To evaluate
whether these proposed strategies effectively capture and
utilize temporal information within historical interaction
sequences, we compare the performance with randomized
and correctly ordered histories. We hypothesize that an
approach adept at utilizing temporal information should
demonstrate superior performance with correctly ordered
history. Specifically, our manipulation occurs at two levels:
the item level and the cluster analysis level. At the item
level, we alter the order of individual items, while at the
cluster analysis level, we rearrange the order of clusters de-
rived from cluster analysis. We present the results in Table
2. After randomizing the history, performance on all the
datasets drop significantly. This phenomenon indicates that
understanding and effectively utilizing temporal informa-
tion within historical interaction sequences is crucial for
capturing and predicting users’ future interests.

4.3. Ablation Study

Impact of history length. It has been reported in Hou
et al. (2023b) that increasing the number of historical user
behaviors does not improve the ranking performance, but
even negatively impacts the ranking performance. To study
the impact of history length on Tempura, we vary the his-
tory length |#| used for constructing the prompt from 15
to 50. We compare Tempura with the standard baseline
Sequential and the best performing baseline ICL. Here his-
tory length || is the maximum allowed history length, the
real history length could be shorter. We did not include
the results on Games and Kindle since the user interaction
history on these two datasets is short.

The results are reported in Figure 3. We observe that utiliz-
ing a longer history does not improve performance; in fact,
it results in decreased performance on the ML-1M dataset.
We hypothesize that the extensive history distracts LLMs,
making it difficult for baselines to understand the evolution
of user interests. By using temporal-aware prompts and the
prompt ensemble strategy, Tempura demonstrates robust
performance even with long historical interaction sequences.

Impact of the number of in-context examples. We uti-
lize a user’s historic items as in-context demonstrations to
understand the temporal information in his / her behavior
sequence. It is important to understand how many examples
are needed. To this end, we study the performance with dif-
ferent number of examples in PCL. We keep the total length
of the user’s history as 15 and use the latest & items as exam-
ples, setting k to values in the set [1, 3, 5, 7]. We report the
results on the ML-1M and Games datasets in Figure 4. We
can observe more examples can boost the performance sig-
nificantly than only one demonstration. As we analyzed in
Section 3.2, LLMs learn to utilize temporal information by
learning to predict a series of historical items. However, it is
not always the case that more is better. It is observed that a
slight performance drop with more examples. We speculate
that longer prompts may cause distraction for LLMs.

Results on GPT-4. More advanced LLMs, like GPT-4
(Achiam et al., 2023), demonstrate enhanced capabilities
in knowledge, understanding, and reasoning. Therefore,
we evaluate the sequential recommendation performance
using GPT-4 to determine if Tempura can also augment
GPT-4’s capabilities. Specifically, we apply Tempura to
gpt-4-0603. We present the results in Table 4. It has
been observed that GPT-4 exhibits a robust capacity for se-
quential recommendation, even when employing the most
standard prompting strategy, Sequential. Notably, the im-
provement is most significant on the Kindle dataset, leading
to the hypothesis that GPT-4 possesses extensive knowl-
edge about Kindle books. The performance improvement
with GPT-4 shows its strong ability in understanding and
utilizing temporal information. By applying Tempura, the
performance can be further improved when the backbone
LLM is more powerful.

4.4. Case Study

We present an example result from the cluster anal-
ysis conducted on the Games dataset. We employ
gpt-3.5-turbo to cluster historic items using the
prompt discussed in Section 3.2. The historic items was
successfully clustered into 4 clusters, accompanied by a
generated summary for each cluster. It can be easily ob-
served that the user’s most recent interest lies in action
shooting games. With this analysis, the target item can be
easily identified since it is a first-person action-adventure
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Table 3: Case study of structure analysis in the historical interaction sequence.

Cluster 1: [Mad Max - PlayStation 4, Metal Gear Solid V: The Phantom Pain - PlayStation 4].

Cluster summary: Action games on PlayStation 4.

Cluster 2: [Star Wars: Battlefront - Standard Edition - PlayStation 4, Fallout 4 - PlayStation 4,

Just Cause 3 - PlayStation 4, Far Cry Primal - PlayStation 4 Standard Edition].

Cluster summary: Open-world action games on PlayStation 4.

Cluster 3: [Tom Clancy$ The Division - PlayStation 4, Uncharted 4: A Thief§ End - PlayStation 4,
Homefront: The Revolution - PlayStation 4, Deus Ex: Mankind Divided - PlayStation 4].

Cluster summary: Action games with a focus on story and/or multiplayer on PlayStation 4.

Cluster 4: [Rise of the Tomb Raider: 20 Year Celebration - PlayStation 4, Dishonored 2 - PlayStation 4,
Resident Evil 7: Biohazard - PS4 Digital Code, Horizon Zero Dawn - PlayStation 4, Tom Clancy’s

Ghost Recon Wildlands - PlayStation 4].

Cluster summary: Single-player action shooting games with a focus on exploration and/or stealth on PS4.

Target item: Prey - Pre-load - PS4 Digital Code

Table 4: Performance with GPT-4 (NDCG@10). Tempura
can further improve the performance when the backbone
LLM is more powerful.

Method  ML-IM Games Kindle
Sequential ~ 55.75 66.43  57.65
ICL 54.82 67.84 5472
Tempura 58.39 68.13 58.59

shooting game, aligning with the user’s latest interest.

4.5. Computational Costs and Latency Analysis

Our Tempura is built upon the capabilities of commercial
LLMs, such as GPT-3.5 and GPT-4, leveraging their ad-
vanced natural language understanding and generation capa-
bilities. The running cost associated with Tempura varies
to the complexity and length of the descriptive texts used for
specific datasets. For instance, in the case of the MovieLens
dataset, we use movie titles as descriptive texts, whereas
for the Amazon Game dataset, game titles are used. This
variance in descriptive text complexity directly influences
the computational resources required, thereby affecting the
overall cost of running Tempura.

To approximate the running cost of a single Tempura run,
we refer to the API pricing detailed on the OpenAl website?.
Each Tempura execution involves 4 API calls: 3 calls for
ranking and 1 call for structure analysis. To provide a sense
of the cost of running Tempura, we base our cost calcula-
tion on the assumption that each of these API calls processes
an input of 1,000 tokens and generates an output of 500 to-
kens. Utilizing the gpt—-3.5-turbo-0125 model, the

*https://openai.com/pricing

price per API call under these conditions is calculated to be
$0.00125. Therefore, the total cost for a single recommen-
dation cycle using Tempura is $0.005. The latency of a
Tempura run is directly related to the inference latency of
employed LLMs. When using gpt-3.5-turbo-0125,
it takes around 15s to finish a full Tempura run. We will
add a more comprehensive computation costs and latency
analysis to understand the cost-benefit trade-offs of using
Tempura. Although latency is not our main focus in this
paper, we believe that, with the rapidly evolving inference
technologies and the related infrastructure, the latency ob-
served in our current paper can be reduced significantly
soon, rendering our framework and other LLM-based rec-
ommendation systems more practical for real-world use
cases.

5. Conclusion

In this paper, we focus on improving the temporal aware-
ness of LLMs through the study of the sequential recom-
mendation problem. Specifically, we introduce two kinds
of prompting strategies: one to learn sequential recommen-
dations via in-context learning and another to explicitly
analyze the temporal structures in historical interaction se-
quences. An ensemble strategy is adopted to aggregate
results from various prompting strategies. Our study demon-
strates that by incorporating specific prompting strategies,
LLMs can significantly improve in capturing and utilizing
temporal information. This advancement not only strength-
ens the capabilities of LLMs in sequential recommendation
tasks but also opens up new avenues for applying these
models in time-sensitive domains.


https://openai.com/pricing
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