
PRIVATE DATA STREAM ANALYSIS FOR UNIVERSAL
SYMMETRIC NORM ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We study how to release summary statistics on a data stream subject to the con-
straint of differential privacy. In particular, we focus on releasing the family of
symmetric norms, which are invariant under sign-flips and coordinate-wise per-
mutations on an input data stream and include Lp norms, k-support norms, top-k
norms, and the box norm as special cases. Although it may be possible to de-
sign and analyze a separate mechanism for each symmetric norm, we propose a
general parametrizable framework that differentially privately releases a number
of sufficient statistics from which the approximation of all symmetric norms can
be simultaneously computed. Our framework partitions the coordinates of the
underlying frequency vector into different levels based on their magnitude and
releases approximate frequencies for the “heavy” coordinates in important levels
and releases approximate level sizes for the “light” coordinates in important lev-
els. Surprisingly, our mechanism allows for the release of an arbitrary number of
symmetric norm approximations without any overhead or additional loss in pri-
vacy. Moreover, our mechanism permits (1 + α)-approximation to each of the
symmetric norms and can be implemented using sublinear space in the streaming
model for many regimes of the accuracy and privacy parameters.

1 INTRODUCTION

The family of Lp norms represent important statistics on an underlying dataset, where the Lp norm
of an n-dimensional vector freqeuncy x is defined as the number of nonzero coordinates of x for
p = 0 and Lp(x) = (xp

1 + . . .+ xp
n)

1/p for p > 0. Thus, L0 norm counts the number of distinct
elements in the dataset and, e.g., is used to detect denial of service or port scan attacks in network
monitoring (Akella et al., 2003; Estan et al., 2003), to understand the magnitude of quantities such as
search engine queries or internet graph connectivity in data mining (Palmer et al., 2001), to manage
workload in database design (Finkelstein et al., 1988), and to select a minimum-cost query plan in
query optimization (Selinger et al., 1979). The L1 norm computes the total number of elements in
the dataset and, e.g., is used for data mining (Cormode et al., 2005) and hypothesis testing (Indyk
& McGregor, 2008), while the L2 norm, e.g., is used for training random forests in machine learn-
ing (Breiman, 2001), computing the Gini index in statistics (Lorenz, 1905; Gini, 1912), and network
anomaly detection in traffic monitoring (Krishnamurthy et al., 2003; Thorup & Zhang, 2004). Con-
sequently, Lp estimation has been extensively studied in the data stream model (Alon et al., 1999;
Indyk & Woodruff, 2005; Indyk, 2006; Li, 2008; Kane et al., 2011; Andoni, 2017; Braverman et al.,
2018b; Ganguly & Woodruff, 2018; Woodruff & Zhou, 2020; 2021). The simplest streaming model
is perhaps the insertion-only model, in which a sequence of m updates increments coordinates of an
n-dimensional frequency vector x and the goal is to compute or approximate some statistic of x in
space that is sublinear in both m and n.

In many cases, the underlying dataset contains sensitive information that should not be leaked.
Hence, an active line of work has focused on estimating Lp norms for various values of p, while
preserving differential privacy (Mir et al., 2011; Blocki et al., 2012; Smith et al., 2020; Bu et al.,
2021; Wang et al., 2021).

Definition 1.1 (Differential privacy). (Dwork et al., 2006) Given ε > 0 and δ ∈ (0, 1), a randomized
algorithm A : U∗ → Y is (ε, δ)-differentially private if, for every neighboring streams S and S′
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and for all E ⊆ Y ,
Pr [A(S) ∈ E] ≤ eε ·Pr [A(S′) ∈ E] + δ,

where streams S and S′ are neighboring if there exists a single update i ∈ [m] such that ui ̸= u′
i,

where u1, . . . , um are the updates of S and u′
1, . . . , u

′
m are the updates of S′.

For example, (Blocki et al., 2012) showed that the Johnson-Lindenstrauss transformation preserves
differential privacy (DP), thereby showing one of the main techniques in the streaming model for
L2 estimation already guarantees DP. Similarly, (Smith et al., 2020) showed that the Flajolet-Martin
sketch, which is one of the main approaches for L0 estimation in the streaming model, also preserves
DP. Notably, algorithmic designs for Lp estimation in the streaming model differ greatly and require
individual analysis to ensure DP, which can be quite difficult due to the complexity of the various
techniques. This is especially pronounced in the work of (Wang et al., 2021), who studied the
p-stable sketch that estimates the Lp norm for p ∈ (0, 2] (Indyk, 2006)1. (Wang et al., 2021)
showed that for p ∈ (0, 1], the p-stable sketch preserves DP, but was unable to show DP for p ∈
(1, 2], even though the general algorithmic approach remains the same. Thus the natural question
is whether differential privacy can be guaranteed for an approach that simultaneously estimates
the Lp norm in the streaming model, for all p. More generally, the family of Lp norms are all
symmetric norms, which are invariant under sign-flips and coordinate-wise permutations on an input
data stream. Symmetric norms thus also include other important families of norms such as the k-
support norms and the top-k norms.

In this paper, we show that not only does there exist a differentially private algorithm for the es-
timation of symmetric norms in the streaming model, but also that there exists an algorithm that
privately releases a set of statistics, from which estimates of all (properly parametrized) symmetric
norms can be simultaneously computed. To illustrate the difference, suppose we wanted to release
approximations of the Lp norm of the stream for k different values of p. To guarantee (ε, δ)-DP for

the set of k statistics, we would need, by advanced composition, to demand
(
O
(

ε√
k

)
,O

(
δ
k

))
-DP

from k instances of a single differentially private Lp-estimation algorithm, corresponding to the k
different values of p. Due to accuracy-privacy tradeoffs, the quality of the estimation will degrade
severely as k increases. By comparison, our algorithm releases a single set C of private statistics. By
post-processing, we can then estimate the Lp norms for k different values of p while only requiring
(ε, δ)-DP from C. Hence, our algorithm can simultaneously handle any large number of estimations
of symmetric norms without compromising the quality of approximation.

Theorem 1.2. There exists a (ε, δ)-differentially private algorithm that outputs a set C, from which
the (1+α)-approximation to any norm with maximum modulus of concentration at most M can be
computed, with probability at least 1− δ. The algorithm uses M2 · poly

(
1
α ,

1
ε , log n, log

1
δ

)
bits of

space.

The maximum modulus of concentration of a norm measures the worst-case ratio of the maximum
value to the median value of a norm on the L2-unit sphere for any restriction of the coordinates and
can intuitively quantify the complexity of computing a norm. For example, the L1 norm is generally
“easy” to compute and has maximum modulus of concentration O (log n).

We emphasize that prior to our work, there is no algorithm that can handle private symmetric norm
estimation, much less simultaneously for all parametrized symmetric norms. Although there is
specific analysis for various norm estimation algorithms, e.g., see the discussion on related work in
the supplementary material, these algorithms require a specific predetermined norm for their input.
Thus a separate private algorithm must be run for each estimation, which increases the overall space.
Moreover, for a large number of queries, the privacy parameter will need to be much smaller due to
the composition of privacy, and thus to ensure privacy, the utility of each algorithm is provably poor.
Our algorithm sidesteps both the space and accuracy problems and is the first and only work to do
so.

Applications. We briefly describe a number of specific symmetric norms that are handled by The-
orem 1.2 and commonly used across various applications in machine learning. We first note the
following parameterization of the previously discussed Lp norms.

1Lp for p ∈ (0, 1) does not satisfy the triangle inequality and therefore is not a norm, but is still well-
defined/well-motivated and can be computed
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Lemma 1.3. (Milman & Schechtman, 2009; Klartag & Vershynin, 2007) For Lp norms, we have
that mmc(L) = O (log n) for p ∈ [1, 2] and mmc(L) = O

(
n1/2−1/p

)
for p > 2.

Thus our algorithm immediately introduces a differentially private mechanism for the approximation
of Lp norms that unlike previous work, e.g., (Blocki et al., 2012; Sheffet, 2019; Choi et al., 2020;
Smith et al., 2020; Bu et al., 2021; Wang et al., 2021), does not need to provide separate analysis
for specific values of p. Moreover for constant-factor approximation, the space complexity is tight
with the optimal Lp-approximation algorithms that do not consider privacy, up to polylogarithmic
factors (Kane et al., 2010; Li & Woodruff, 2013; Ganguly, 2015; Woodruff & Zhou, 2021).
Definition 1.4 (Q-norm and Q′-norm). We call a norm L a Q-norm if there exists a symmetric
norm L′ such that L(x) = L′(x2)1/2 for all x ∈ Rn. Here, we use x2 to denote the coordinate-wise
square power of x. We also call a norm L′ a Q′-norm if its dual norm is a Q-norm.

The family of Q′-norms includes the Lp norms for 1 ≤ p ≤ 2, the k-support norm, and the box
norm (Bhatia, 2013) and thus Q′-norms have been proposed to regularize sparse recovery problems
in machine learning. For instance, (Argyriou et al., 2012) showed that Q′ norms have tighter relax-
ations than elastic nets and can thus be more effective for sparse prediction. Similarly, (McDonald
et al., 2014) used Q′ norms to optimize sparse prediction algorithms for multitask clustering.
Lemma 1.5. (Blasiok et al., 2017) mmc(L) = O (log n) for every Q′-norm L.

Theorem 1.2 and Lemma 1.5 thus present a differentially private algorithm for Q′-norm approxima-
tion that uses polylogarithmic space.
Definition 1.6 (Top-k norm). The top-k norm for a vector x ∈ Rn is the sum of the largest k
coordinates of |x|, where we use |x| to denote the coordinate-wise absolute value of x.

The top-k norm is frequently used to understand the more general Ky Fan k-norm (Wu et al., 2014),
which is used to regularize optimization problems in numerical linear algebra. Whereas the Ky
Fan k norm is defined as the sum of the k largest singular values of a matrix, the top-k norm is
equivalent to the Ky Fan k norm when the input vector x represents the vector of the singular values
of the matrix.
Lemma 1.7. (Blasiok et al., 2017) mmc(L) = Õ

(√
n
k

)
for the top-k norm L.

In particular, the top-k norm for a vector of singular values when k = n is equivalent to the Schatten-
1 norm of a matrix, which is a common metric for matrix fitting problems such as low-rank approx-
imation (Li & Woodruff, 2020).

2 PRELIMINARIES

In this section, we introduce definitions and simple or well-known results from differential privacy,
sketching algorithms, and symmetric norms. For notation, we use [n] for an integer n > 0 to denote
the set {1, . . . , n}. We also use the notation poly(n) to represent a constant degree polynomial in
n and we say an event occurs with high probability if the event holds with probability 1 − 1

poly(n) .
Similarly, we use polylog(n) to denote poly(log n).

Sketching algorithms. Given a frequency vector x ∈ Rn on a data stream, the AMS algorithm
for L2-estimation first generates a sign vector σ ∈ {−1,+1}n and sets S1 = (⟨σ, x⟩)2. The AMS
algorithm then repeats this process b = 6

α2 independent times to obtain dot products S1, . . . , Sb, sets
Z2 to be the arithmetic mean of S1, . . . , Sb, and reports Z.

We define the L2 norm of a vector x ∈ Rn by L2(x) =
√

x2
1 + . . .+ x2

n.
Definition 2.1 (ν-approximate η L2-heavy hitters). Given an accuracy parameter ν ∈ (0, 1), a
threshold parameter η, and a frequency vector x ∈ Rn, compute a set H and a set of approximations
x̂k for all k ∈ H such that:

(1) If xk ≥ ηL2(x) for any k ∈ [n], then k ∈ H , so that H contains all η L2-heavy hitters of
x.

(2) There exists a universal constant C > 0 so that if xk ≤ Cη
2 L2(x) for any k ∈ [n], then

k /∈ H , so that H does not contain any index that is not an Cη
2 L2-heavy hitter of x.
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(3) If k ∈ H for any k ∈ [n], then compute (1± ν)-approximation to the frequency xk, i.e., a
value x̂k such that (1− ν)xk ≤ x̂k ≤ (1 + ν)xk.

We introduce and use a private variant PRIVCOUNTSKETCH of the well-known COUNTSKETCH
algorithm (Charikar et al., 2004) by adding noise to each coordinate and then using a standard
private threshold routine to ensure differential privacy. Specifically, PRIVCOUNTSKETCH first uses
the COUNTSKETCH data structure to obtain an estimated frequency for each coordinate. It then adds
Laplacian noise with scale parameter O

(
1

η2ν2

)
to each estimated frequency and then acquires a

threshold T from the L2 norm estimation algorithm AMS and releases all coordinates (and estimated
frequencies) whose estimated frequencies are at least νηT

2 + X , where X is Laplacian noise with

scale parameter O
(

1
η2ν2

)
. Then PRIVCOUNTSKETCH gives the following guarantees:

Lemma 2.2. There exists a one-pass streaming algorithm PRIVCOUNTSKETCH that takes an ac-
curacy parameter ν ∈ (0, 1) and a threshold parameter η2 and outputs a list H that contains all
indices k ∈ [n] of an underlying frequency vector x with xk ≥ η L2(x) and no index k ∈ [n]
with xk ≤ η(1 − ν)L2(x). For each k ∈ H , PRIVCOUNTSKETCH also reports a estimated fre-

quency x̂k such that (1− ν)xk −O
(

logm
ην

)
≤ x̂k ≤ (1 + ν)xk +O

(
logm
ην

)
. The algorithm uses

O
(

1
η2ν2 log

2 n
)

bits of space and succeeds with probability 1− 1
poly(m) .

Symmetric norms. We now introduce preliminaries for symmetric norms.
Definition 2.3 (Symmetric norm). A function L : Rn → R is a symmetric norm if L is a norm
and for all x ∈ Rn and any vector y ∈ Rn that is a permutation of the coordinates of x, we have
L(x) = L(y). Moreover, we have L(x) = L(|x|), where |x| is the coordinate-wise absolute value
of x.
Definition 2.4 (Modulus of concentration). Let x ∈ Rn be a random variable drawn from the
uniform distribution on the L2-unit sphere Sn−1 and let bL denote the maximum value of L(x) over
Sn−1. The median of a symmetric norm L is the unique value ML such that Pr [L(x) ≥ML] ≥ 1

2

and Pr [L(x) ≤ML] ≥ 1
2 . Then the ratio mc(L) := bL

ML
is the modulus of concentration of the

norm L.

Although the modulus of concentration quantifies the “average” behavior of the norm L on Rn,
norms with challenging behavior can still be embedded in lower-dimensional subspaces. For in-
stance, the L1 norm satisfies mc(L) = O (1), but when x ∈ Rn has fewer than

√
n nonzero

coordinates, the norm max(L∞(x), L1(x)/
√
n) on the unit ball becomes identically L∞(x) (Bla-

siok et al., 2017), which requires Ω(
√
n) space (Alon et al., 1999) to estimate. Hence, we further

quantify the behavior of a norm L by examining its behavior on all lower dimensions.
Definition 2.5 (Maximum modulus of concentration). For a norm L : Rn → R and every k ≤ n,
define the norm L(k) : Rk → R by L(k)((x1, . . . , xk)) := L((x1, . . . , xk, 0, . . . , 0)). Then the
maximum modulus of concentration of the norm L is mmc(L) := max

k≤n
mc(L(k)) = max

k≤n

b
L(k)

M
L(k)

.

Definition 2.6 (Important Levels). For x ∈ Rn and ξ > 1, we define the level i as the set Bi =
{k ∈ [n] : ξi−1 ≤ |xk| ≤ ξi}. We define bi := |Bi| as the size of level i. For β ∈ (0, 1], we say
level i is β-important if bi > β

∑
j>i bj and biξ

2i ≥ β
∑

j≤i bjξ
2j .

Informally, level i is β-important if (1) its size is at least a β-fraction of the total sizes of the higher
levels and (2) its contribution is roughly a β-fraction of the total contribution of all the lower levels.
We would like to show that to approximate a symmetric norm L(x), it suffices to identify the β-
important levels and their sizes for a fixed base ξ > 1.
Lemma 2.7. (Blasiok et al., 2017) Let s = O (log n). If a level i is β-important, then
either ξ2i ≥ α2βε2

log2 m
F2(x) or there exists j ∈ [s] such that bi ≥ 2j log2 m

α2ε2 and ξ2i ∈[
α2βε2

log2 m
· F2(x)

2j , α2βε2

log2 m
· F2(x)

2j−1

]
.

Lemma 2.7 implies that if level i is β-important, then either (1) it will be identified by using
PRIVCOUNTSKETCH with threshold α2β

log2 m
on the stream or (2) its contribution can be well-
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approximated by using PRIVCOUNTSKETCH with threshold α2βε2

log2 m
on a substream formed by sam-

pling coordinates of the universe with probability 1
2j . We thus split our algorithm and analysis to

handle these cases. In particular, we call a frequency level i “high” if ξ2i ≥ α2βε2

log2 m
F2(x). We call a

frequency level i “medium” if ξ2i ≥ α2β′ε2

2j F2(x) > T and bi ≥ O
(

2j log2 m
α2ε2

)
for a certain β′ > 0

and a threshold T . We call a frequency level i “low” if ξ2i ≥ α2β′ε2

2j F2(x) and bi ≥ O
(

2j log2 m
α2ε2

)
,

but T ≥ α2β′ε2

2j F2(x).

3 ALGORITHMIC INTUITION AND OVERVIEW

In this section, we give a brief technical overview of both our algorithmic intuition and how our ap-
proaches differ from previous (non-private) work. We defer the full proofs and additional discussion
of related work to the supplementary material.

Our starting point is the Lp estimation algorithm of (Indyk & Woodruff, 2005), which was
parametrized by (Blasiok et al., 2017) to handle symmetric norms. For a (1 + α)-approximation,
the algorithm partitions the n coordinates of the frequency vector x into powers of ξ-based on their
magnitudes, where ξ > 1 is a fixed function of α. Each partition forms a level set, but (Indyk &
Woodruff, 2005; Blasiok et al., 2017) showed that it suffices to accurately count the size of each
important level set and zero out to the other level sets, where a level set is considered important if
its size is large enough to contribute an α2

logm fraction of the symmetric norm.

Private symmetric norm estimation in the centralized setting. To preserve (ε, δ)-differential
privacy, one initial approach would be to treat the statistics as a histogram and add Laplacian noise
with scale O

(
1
ε

)
to the frequency of each element. However, the level sets consisting of elements

with frequencies between [ξi, ξi+1) for small i, say i = 0, could be largely perturbed by such
Laplacian noise. Fortunately, if i is small, the corresponding level set must contain a large number
of elements if it is important, so it seems possible to privately release the size Γi of the level set.
Indeed, we can show that the L1 sensitivity of the vector corresponding to level set sizes is small
and so we can add Laplacian noise with scale O

(
1
ε

)
to each level set size. Hence if the level set has

size Γi roughly Ω
(

1
αε

)
, then the Laplacian noise will affect Γi by a (1 + α)-factor.

Unfortunately, there can be level sets that are both important and small in size. For example, if there
is a single element with frequency m, then the size of the corresponding level set is just one. Then
adding Laplacian noise with scale O

(
1
ε

)
will severely affect the size of the level set and thus the

estimation of the symmetric norm. On the other hand, for m > 1
αε , the frequency of the coordinate

is quite large so again it seems like we can just add Laplacian noise with scaleO
(
1
ε

)
and output the

noisy frequency of the coordinate.

New approach: classifying and separately handling high, medium, and low frequency levels.
The main takeaway from these challenges is that we should handle different level sets separately.
We partition the levels into three groups after defining thresholds T1 and T2, with T1 > T2. We
define the “high frequency levels” as the levels whose coordinates exceed T1 in frequency. The
intuition is that because the high frequency levels have such large magnitude, their frequencies can
be well-approximated by running an L2-heavy hitters algorithm on the stream S.

We define the “medium frequency levels” as the levels whose coordinates are between T1 and T2

in frequency. These coordinates are not large enough to be detected by running an L2-heavy hitters
algorithm on the stream S. However, the sizes of these level sets must be large if the level set is
important. Thus there exists a substream Sj for which a large number of these coordinates are sub-
sampled and their frequencies can be well-approximated by running an L2-heavy hitters algorithm
on the substream Sj .

Finally, we define the “low frequency levels” as the levels whose coordinates are less than T2 in fre-
quency. These coordinates are small enough that we cannot add Laplacian noise to their frequencies
without affecting the level sets they are mapped to. Instead, we show that L1 sensitivity for the level
set estimations is particularly small for the low frequency levels. Thus, for these frequency levels,
we report the size of the frequency levels rather than the identities of the heavy-hitters. We remark
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that if our goal was to just approximate the symmetric norms without preserving differential privacy,
then it would suffice to just consider the high and medium frequency levels, since the low frequency
levels are particularly problematic when Laplacian noise is added to the frequency vector. We also
remark that we only use the thresholds T1 and T2 for the purposes of describing our algorithm – in
the actual implementation of the algorithm, the thresholds T1 and T2 will be implicitly defined by
each of the substreams. We summarize our new approach in Figure 1.

Low Level Sets Subsampling Noisy level set sizes Private level set sizes

Medium Level Sets Subsampling PRIVCOUNTSKETCH Private level set sizes

High Level Sets PRIVCOUNTSKETCH Private coordinate magnitudes

Fig. 1: Illustration of separate handling of the high, medium, and low level sets.

Private symmetric norm estimation in the streaming model. Although the previously discussed
intuition builds towards a working algorithm, the main caveat is that so far, we have mainly discussed
the centralized model, where space is not restricted and so each coordinate and thus each level set
size can be counted exactly. In the streaming model, we cannot explicitly track the frequency vector,
or even the frequencies of a constant fraction of coordinates. Instead, to estimate the sizes of each
level set, (Indyk & Woodruff, 2005; Blasiok et al., 2017) take the stream S and form s = O (log n)
substreams S1, . . . , Ss, where the j-th substream is created by sampling the universe of size n at
a rate of 1

2j−1 . Then Sj will only consist of the stream updates to the particular coordinates of x
that are sampled. Thus in expectation, the frequency vector induced by Sj will have sparsity ∥x∥0

2j−1 .
Similarly, if a level set i has size Γi, then Γi

2j−1 of its members will be sampled in Sj in expectation.
It can then be shown through a variance argument that if level set i is important, then there exists an
explicit substream j from which Γi can be well-approximated using the L2-heavy hitter algorithm
COUNTSKETCH and as a result, the symmetric norm of x can be well-approximated. The main
point of the subsampling approach is that if there exists a level set with large size consisting of small
coordinates, then the coordinates will not be detected by the COUNTSKETCH on S, but because Sj

has significantly smaller L2 norm, then the coordinates will be detected by COUNTSKETCH on Sj .

However, adapting the subsampling and heavy-hitter approach introduces additional challenges for
privacy. For instance, we can analyze the L2-heavy hitter algorithm COUNTSKETCH and show
that although the L1 sensitivity of the estimated frequency for a single coordinate is small, the L1

sensitivity of the estimated frequency for all the coordinates is large. Instead, we use the view
that COUNTSKETCH is a composition function that first only estimates frequencies for the top
poly

(
1
α ,

1
ε , log n

)
and then outputs only those estimates that are above a certain threshold. Sim-

ilarly, the Laplacian noise added to privately use COUNTSKETCH can alter the sizes of a significant
number of level sets for small coordinates. Thus for the small coordinates (corresponding to the
substreams Sj with large j), we invoke COUNTSKETCH with much higher accuracy, so that with
high probability, it will return exactly the frequencies for the small coordinates. For example, note
that if the frequency fk of a coordinate k ∈ [n] is at most 1

2α2ε , then any (1+α2ε)-approximation to
fk can be rounded to exactly recover fk. This decreases the L1 sensitivity of the vector of estimated
level set sizes, therefore allowing us to add Laplacian noise without greatly affecting the quality of
approximation.

4 PRIVATE SYMMETRIC NORM ESTIMATION ALGORITHM

In this section, we give our algorithm that releases a set of private statistics from which an arbi-
trary number of symmetric norms can be well-approximated. In particular, recall that it suffices
to approximate the sizes of the important levels and identity the non-important levels, so that their
contributions can be set to zero.
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4.1 RECOVERY OF HIGH FREQUENCY LEVELS

As a warm-up, we describe our algorithm for recovering the high frequency levels, whose coor-
dinates have sufficiently large magnitude and thus their frequencies can be well-approximated by
running an L2-heavy hitters algorithm on the stream S. Moreover, with high probability, adding
Laplacian noise will not affect the level sets because the frequencies are so large. Thus it simply
suffices to return the noisy estimated frequencies of each of the elements in the high frequency
levels. This algorithm is the simplest of our cases and we give the algorithm in full in Algorithm 1.

Algorithm 1 Algorithm to privately estimate the high levels

Input: Privacy parameter ε > 0, accuracy parameter α ∈ (0, 1)
Output: Private estimation of the frequencies of the coordinates of the high frequency levels

1: β ← O
(

α5

mmc(L)2 log5 m

)
, β′ ← O

(
α2βε2

log2 m

)
2: Run PRIVCOUNTSKETCH on the stream S with threshold α2β′ and failure probability 1

poly(m)

3: for each heavy-hitter k ∈ [n] reported by PRIVCOUNTSKETCH do
4: Let f̃k be the frequency estimated by PRIVCOUNTSKETCH

5: x̂k ← x̃k + Lap
(

8
β′ε

)
6: return x̂k

We first show that coordinates in high frequency levels are identified and their frequencies are accu-
rately estimated and similarly that if a coordinate does not have high frequency, it will not be output
by Algorithm 1.

Lemma 4.1. Suppose x2
k ≥

α2βε2

log2 m
F2(x) and m =

Ω(log5 m)
α5β2ε5 . Then with high probability, Algo-

rithm 1 outputs x̂k such that (1−α2)xk ≤ x̂k ≤ xk. On the other hand if x2
k < α2βε2

2 log2 m
F2(x), then

with high probability, Algorithm 1 outputs x̂k such that x̂k < 3α2βε2

4 log2 m
F2(x).

We now justify the privacy and space complexity of Algorithm 1.

Lemma 4.2. Algorithm 1 is
(
ε
4 ,

δ
4

)
-differentially private for δ = 1

poly(m) and uses space mmc(L)2 ·
poly

(
1
α ,

1
ε , logm

)
.

4.2 RECOVERY OF MEDIUM FREQUENCY LEVELS

In this section, we describe our algorithm for recovering the medium frequency levels, whose co-
ordinates do not have sufficiently large magnitude to be detected by running an L2-heavy hitters
algorithm on the stream S, but have sufficiently large size, so that there exists some j ∈ [s] across
the s subsampling levels such that the coordinates can be detected by running an L2-heavy hitters
algorithm on the stream Sj . On the other hand, their magnitudes are sufficiently large so that with
high probability, adding Laplacian noise will not affect the level sets. We give the algorithm in full
in Algorithm 2.

We first upper bound the second frequency moment (and hence the L2 norm) of each substream.
This is necessary because we want to detect the coordinates of the medium frequency levels as
L2-heavy hitters for each substream, but if the substream has overwhelmingly large L2 norm, then
we will not be able to find coordinates of the medium frequency levels. However, it may not be
true that F2(Sj) is significantly smaller than F2(S) with high probability. For example, if there
were a single large element, then the probability it is sampled at level s is 1

2s , which is roughly
1
n > 1

poly(m) . Instead, we note that PRIVCOUNTSKETCH benefits from the stronger tail guarantee,
which states that not only does PRIVCOUNTSKETCH with threshold η < 1 detect the elements k
such that (fk)2 ≥ ηF2(S), but it also detects the elements k such that (fk)2 ≥ ηF2(Stail(1/η)),
where Stail(1/η) is the frequency vector f induced by S, with the largest 1

η entries instead set to
zero (Braverman et al., 2017; 2018a).

Lemma 4.3. With high probability, F2((Sj)1/(α2β′ε2)) ≤ 200 logm
2j F2(x) for all j ∈ [s].
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Algorithm 2 Algorithm to privately estimate the medium levels

Input: Privacy parameter ε > 0, accuracy parameter α ∈ (0, 1)
Output: Private estimations of the sizes of the medium frequency levels

1: β ← O
(

α5

mmc(L)2 log5 m

)
, β′ ← O

(
α3βε2

log2 m

)
, ξ ← (1 +O (ε))

2: γ ← (1/2, 1) uniformly at random, ℓ←
⌈
logξ(2m)

⌉
, s← O (log n)

3: for j ∈ [s] with 2j > logn
β′αε do

4: Form stream Sj by sampling elements of [n] with probability 1
2j

5: Run PRIVCOUNTSKETCHj on stream Sj with threshold α2β′ε2 and failure probability
1

poly(m)

6: for each heavy-hitter k ∈ [n] reported by PRIVCOUNTSKETCHj do
7: Let x̂k be the frequency estimated by PRIVCOUNTSKETCHj

8: if x̂k > logn
β′αε then

9: x̃k ← x̂k + Lap
(

8
β′ε

)
10: for i ∈ [ℓ] with m2

2j+1 > γξ2i ≥ 2j > O
(

logn
β′α2ε

)
do

11: Let b̃i be the number of indices k ∈ [n] such that γξ2i ≤ x̃k < γξ2i+2

12: b̂i ← 2j

(1+O(α)) b̃i

13: return b̂i

We now show that conditioned on the event that the L2 norm of the subsampled streams are not
too large, then we can well-approximate the frequency of any coordinate of the medium frequency
levels, provided that they are sampled in the substream.
Lemma 4.4. Suppose i is a β-important level and k ∈ [n] is in level i, so that xk ∈ [ξi, ξi+1). If
F2((Sj)1/(α2β′ε2)) ≤ 200 logm

2j F2(x) for all j ∈ [s], then k is sampled in stream Sj with 2j > logn
β′αε ,

then with high probability, Algorithm 2 outputs x̂k such that (1− α2)xk ≤ x̂k ≤ xk.

Unfortunately, Lemma 4.4 only provides guarantees for the coordinates of the medium frequency
levels that are sampled. Thus, we still need to use Lemma 4.4 to show that a good estimator to the
sizes of the medium frequency levels can be obtained from the estimates of the coordinates of the
medium frequency levels that are sampled. In particular, we show that rescaling the empirical sizes
of the medium frequency levels forms a good estimator to the actual sizes of the medium frequency
levels.

Lemma 4.5. Consider a β-important level i with ξ2i ∈
[
βα2ε2

log2 m
· F2(x)

2j , βα2ε2

log2 m
· F2(x)

2j−1

]
for some

integer j > 0 and ξi > logn
β′αε . If F2((Sj)1/(α2β′ε2)) ≤ 200 logm

2j F2(x) for all j ∈ [s], then k

is sampled in stream Sj with 2j >, then with high probability, Algorithm 2 outputs b̂i such that
(1−O (α))bi ≤ b̂i ≤ bi, where bi is the size of level i.

We now analyze the priavcy and the space complexity of Algorithm 2
Lemma 4.6. Algorithm 2 is

(
ε
4 ,

δ
4

)
-differentially private for δ = 1

poly(m) and uses space mmc(L)2 ·
poly

(
1
α ,

1
ε , logm

)
.

4.3 RECOVERY OF LOW FREQUENCY LEVELS

In this section, we describe our algorithm for recovering the low frequency levels, whose coordi-
nates have magnitude small enough that we cannot add Laplacian noise to their frequencies without
affecting the corresponding level set sizes. We instead report the sizes of the level sets for the low
frequency levels rather than the identities and approximate frequencies of the heavy-hitters. Thus
we must add Laplacian noise to the sizes of the level sets; we show that L1 sensitivity for the level
set estimations is particularly small for the low frequency levels and thus the Laplacian noise does
not greatly affect the estimates of the level set sizes. We note that this approach does not work for
the high frequency levels because the high frequency levels may have small level set sizes, so that
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adding Laplacian noise to the sizes can significantly affect the resulting estimates of the level set
sizes. Similarly, it is more challenging to argue the low L1 sensitivity for the level set estimations
for the medium frequency levels. Hence, both the algorithm and analysis are especially well-catered
to the low frequency levels. We give the algorithm in full in Algorithm 3.

Algorithm 3 Algorithm to privately estimate the low levels

Input: Privacy parameter ε > 0, accuracy parameter α ∈ (0, 1)
Output: Private estimations of the sizes of the low frequency levels

1: β ← O
(

α5

mmc(L)2 log5 m

)
, β′ ← O

(
α2βε
logn

)
, ξ ← (1 +O (ε))

2: γ ← (1/2, 1) uniformly at random, ℓ←
⌈
logξ(2m)

⌉
, s← O (log n)

3: for j ∈ [s] with 2j ≤ logn
β′αε do

4: Form stream Sj by sampling elements of [n] with probability 1
2j

5: Run PRIVCOUNTSKETCHj on stream Sj with threshold β′′ := O
(

β′α2ε3

log2 n

)
6: for each heavy-hitter k ∈ [n] reported by PRIVCOUNTSKETCHj do
7: Let x̂k be the frequency estimated by PRIVCOUNTSKETCHj

8: for i ∈ [ℓ] with O
(

logn
β′α2ε

)
≥ 2j+1 > γξ2i ≥ 2j do

9: Let b̃i be the number of indices k ∈ [n] such that γξ2i ≤ x̂k < γξ2i+2

10: b̂i ← 2j

(1+O(α))

(
b̃i + Lap

(
8
ε

))
11: return b̂i

We first show that the estimates of the level set sizes for the low frequency levels are accurate.

Lemma 4.7. Consider a β-important level i with ξ2i ∈
[
βα2ε2

log2 m
· F2(x)

2j , βα2ε2

log2 m
· F2(x)

2j−1

]
for some

integer j > 0 and ξi ≤ logn
β′αε . If F2((Sj)1/(α2β′ε2)) ≤ 200 logm

2j F2(x) for all j ∈ [s], then k

is sampled in stream Sj with 2j >, then with high probability, Algorithm 3 outputs b̂i such that
1−O (α))bi ≤ b̂i ≤ bi, where bi is the size of level set i.

We then argue the privacy and space complexity of Algorithm 3.
Lemma 4.8. Algorithm 3 is

(
ε
4 ,

δ
4

)
-differentially private for δ = 1

poly(m) and uses space mmc(L)2 ·
poly

(
1
α ,

1
ε , logm

)
.

4.4 PUTTING THINGS TOGETHER

We would like to combine the subroutines from the previous sections to output a private dataset
for symmetric norm estimation. Thus it remains to describe how to privately partition the co-
ordinates into the high, medium, and low frequency levels. To that end, we remark that al-
though PRIVCOUNTSKETCH actually provides an estimated frequency for each coordinate, for
our purposes, we only need estimated frequencies for the L2-heavy hitters and there are at most
K := O

(
1
η2

)
possible L2-heavy hitters with whichever threshold η that we choose, e.g., η = α2β′

in Algorithm 1. Thus it suffices to observe that we can privately partition the coordinates into the
high, medium, and low frequency levels by first privately outputting the top K estimated frequencies
and then partitioning the coordinates according to their noisy estimated frequencies, which can be
viewed as post-processing. In particular, (Qiao et al., 2021) observes that it suffices to add Laplacian
noise with scale 8

ηε to each of the frequencies and then outputting the top K noisy estimated fre-
quencies to achieve ε

4 -differential privacy. We now finally put together the results from the previous
sections to show the following result. In particular, correctness follows from applying Lemma 2.7
to Lemma 4.1, Lemma 4.5, and Lemma 4.7, while privacy and the space complexity follow from
Lemma 4.2, Lemma 4.6, and Lemma 4.8.
Theorem 4.9. There exists a (ε, δ)-differentially private algorithm that outputs a set C, for
δ = 1

poly(m) . From C, the (1 + α)-approximation to any norm with maximum modulus of
concentration at most M can be computed, with probability at least 1 − δ. The algorithm uses
M2 · poly

(
1
α ,

1
ε , logm

)
bits of space.

9



REFERENCES

Aditya Akella, Ashwin Bharambe, Mike Reiter, and Srinivasan Seshan. Detecting ddos attacks on
isp networks. In Proceedings of the Twenty-Second ACM SIGMOD/PODS Workshop on Manage-
ment and Processing of Data Streams, pp. 1–3, 2003. 1

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. 1, 4

Alexandr Andoni. High frequency moments via max-stability. In 2017 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP, pp. 6364–6368, 2017. 1

Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse prediction with the k-support norm. In
Advances in Neural Information Processing Systems 25: Annual Conference on Neural Informa-
tion Processing Systems, pp. 1466–1474, 2012. 3

Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013. 3

Jaroslaw Blasiok, Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer, and Lin F. Yang.
Streaming symmetric norms via measure concentration. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC, pp. 716–729, 2017. 3, 4, 5, 6

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-lindenstrauss transform
itself preserves differential privacy. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pp. 410–419, 2012. 1, 2, 3

Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang, and David P.
Woodruff. Bptree: An l2 heavy hitters algorithm using constant memory. In Proceedings of the
36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS, pp.
361–376, 2017. 7

Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou. Nearly
optimal distinct elements and heavy hitters on sliding windows. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, pp.
7:1–7:22, 2018a. 7

Vladimir Braverman, Emanuele Viola, David P. Woodruff, and Lin F. Yang. Revisiting frequency
moment estimation in random order streams. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP, pp. 25:1–25:14, 2018b. 1

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. 1

Zhiqi Bu, Sivakanth Gopi, Janardhan Kulkarni, Yin Tat Lee, Judy Hanwen Shen, and Uthaipon
Tantipongpipat. Fast and memory efficient differentially private-sgd via JL projections. CoRR,
abs/2102.03013, 2021. 1, 3

Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data streams.
Theor. Comput. Sci., 312(1):3–15, 2004. 4

Seung Geol Choi, Dana Dachman-Soled, Mukul Kulkarni, and Arkady Yerukhimovich.
Differentially-private multi-party sketching for large-scale statistics. Proc. Priv. Enhancing Tech-
nol., 2020(3):153–174, 2020. 3

Graham Cormode, S. Muthukrishnan, and Irina Rozenbaum. Summarizing and mining inverse dis-
tributions on data streams via dynamic inverse sampling. In Proceedings of the 31st International
Conference on Very Large Data Bases, pp. 25–36, 2005. 1

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensitiv-
ity in private data analysis. In Theory of Cryptography, Third Theory of Cryptography Conference,
TCC, Proceedings, pp. 265–284, 2006. 1

Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting active flows on
high speed links. In Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement,
pp. 153–166, 2003. 1

10



Sheldon J. Finkelstein, Mario Schkolnick, and Paolo Tiberio. Physical database design for relational
databases. ACM Trans. Database Syst., 13(1):91–128, 1988. 1

Sumit Ganguly. Taylor polynomial estimator for estimating frequency moments. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP Proceedings, Part I, pp.
542–553, 2015. 3

Sumit Ganguly and David P. Woodruff. High probability frequency moment sketches. In 45th
International Colloquium on Automata, Languages, and Programming, ICALP, pp. 58:1–58:15,
2018. 1
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