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Abstract

We develop a Gaussian Process model for accurate prediction of the dipole mo-
ments of water molecules by incorporating their equivariance under rotations.
While kernels guaranteeing such equivariances have been investigated in previ-
ous work, their evaluation is often computationaly prohibitive due to required
integrations over the involved groups. In this work, we propose an alternative
integration-free construction for equivariant kernels, relying on fundamental do-
main ideas previously explored in the scalar-valued invariant case, establishing a
data-efficient and computationally lightweight GP model for dipole moments.

1 Motivation

The incorporation of structural knowledge such as physical laws into statistical machine learning
models has gained significant attention for improving predictive accuracy and realism. In Gaus-
sian process (GP) modelling, various invariances and equivariances can be encoded through tailored
covariance kernels [Ginsbourger et al., 2012, Scheuerer and Schlather, 2012, Ginsbourger et al.,
2016, van der Wilk et al., 2018, Holderrieth et al., 2021, Henderson, 2023]. GPs offer closed-
form posterior distributions that facilitate uncertainty quantification and active learning for scientific
tasks [Ranković et al., 2024]. However, constructing covariance functions that account for equivari-
ance is computationally challenging, e.g. evaluating equivariant matrix-valued kernels [Reisert and
Burkhardt, 2007] may require nested integrations.

Across molecular chemistry, invariances and equivariances are ubiquitous — applying simultaneous
rigid motions on underlying atoms often results in unchanged scalar properties and in vectorial prop-
erties also invariant or affected by analogous motions (i.e. equivariance). While quantum chemical
methods typically guarantee exact invariance and equivariance due to their theoretical foundations,
ensuring these properties in computationally efficient models is less straightforward. Accordingly,
we study how GP models trained on such properties can produce invariant and equivariant predic-
tions for improved accuracy and efficiency.

The electric dipole moment, a vector indicating the imbalance in a molecule’s electron distribution,
is key to understanding intermolecular interactions [Israelachvili, 2011, Stone, 2013] and predicting
IR spectra intensities [Califano, 1976]. Estimating the dipole moment across a molecular surface
is computationally intensive, often requiring recalculations for numerous configurations, which can
take days even for small molecules. Therefore, accurate statistical models are crucial, as they reduce
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the number of required calculations while still effectively describing the dipole surface, thereby
making it feasible to predict IR spectra and manage computational costs for larger molecules.

Our main contributions are: (1) a novel class of computationally efficient integration-free equivariant
kernels (2) a demonstration of this kernel class over SO(2)- and SO(3)- equivariance, and (3) an
empirical validation on predicting dipole moments in quantum chemistry.

2 Background

Preliminaries For a detailed summary of the necessary background on the interplay between
matrix-valued kernels and group theory, we refer the reader to Reisert and Burkhardt [2007]. In
this work, we interchangeably denote multivariate Gaussian random fields as Gaussian Processes
(GP).

Dipole moments The electric dipole moment of a molecule is here modelled as a vector function
µ : x ∈ D ⊂ R3×s → µ(x) ∈ R3, where x = [x1, . . . ,xs] encodes the position vectors in
Euclidean space of the s atoms (xi, i = 1, ..., s) within the considered molecule. From physical
principles, µ is known to be translation-invariant and rotation-equivariant, i.e. for all x ∈ D,{

µ(t ⋆1 x) = µ(x) ∀t ∈ R3,

µ(g ⋆2 x) = ρgµ(x) ∀g ∈ SO(3),
(1)

where ⋆1 denotes the action of translations (encoded by elements of R3) on R3, ⋆2 denotes the usual
action of SO(3) on R3, and ρg ∈ R3×3 is the rotation matrix (representation) canonically associated
with g ∈ SO(3). The actions are extended to D with the conventions:

t ⋆1 x = [t ⋆1 x1, . . . , t ⋆1 xs] , g ⋆2 x = [g ⋆2 x1, . . . , g ⋆2 xs] .

In the considered case of water molecules where s = 3 and x2,x3 both stand for hydrogen atoms,
there is also permutation-invariance with respect to these two columns. Specifically, for all x ∈ D,

µ(η ⋆3 x) = µ(x) η ∈ Z/2Z, (2)

where ⋆3 stands for the action of Z/2Z that swaps (for η = 1̄) the second and third atoms.

3 Equivariant random field modeling

Due to the spatial dependence of dipole moments on the molecular configuration x, we model their
distribution as a R3-valued centred Gaussian random field Z = (Zx)x∈D , where D ⊂ R3×s rep-
resents the configuration space, and Zx denotes the random dipole moment vector at configuration
x. Z is characterized by a covariance kernel matrix function K : D ×D → R3×3, which encodes
the covariance structure of the dipole moments across different configurations.

Equivariant Kernels To encode our structural knowledge, Z must satisfy the invariance and
equivariance conditions given in (1) and (2). Specifically, we can establish that, for a group G
represented on Rp×p by ρ· : G → Rp×p and some action ⋆ of G on D, second-order centred Rp-
valued random fields have equivariant paths (up to a modification), if their matrix-valued kernel
K : D ×D → Rp×p, D ⊂ Rd satisfies the following condition [Reisert and Burkhardt, 2007]:

∀x,x′ ∈ D, g, h ∈ G, K(g ⋆ x, h ⋆ x′) = ρgK(x,x′)ρTh . (3)

For a linear, compact and unimodular group G, where the representation g 7→ ρg is continuous
if G is continuous, such an equivariant matrix-valued kernel function can be constructed by Haar
integration of a base kernel matrix function Ko over G:

K∫ (x,x′) =

∫
G2

ρTg Ko(g ⋆ x, h ⋆ x′)ρh dg dh. (4)

However, the absence of an analytical form for the integrations in (4) necessitates expensive quadra-
ture methods, which have so far made the incorporation of equivariances in GP models computation-
ally infeasible and unstable. This challenge was previously addressed by Glielmo et al. [2017], who
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Figure 1: Comparison of the log computational time for the equivariant kernels.

aimed to model interatomic force fields using equivariant multivariate GP regression. Restricting to
atoms of a single chemical species allowed them to represent molecule configurations as a scalar-
valued linear combination of Gaussian functions (via kernel embedding), yielding analytical forms
for the resulting kernels between configurations. We are not aware of extensions of this elegant
approach to systems involving several chemical species.

Integration Free Equivariant Kernels We now introduce a new class of equivariant matrix-
valued kernels that overcomes the problems of computational inefficiency and instability with ex-
isting equivariant kernels by combining a fundamental domain approach with a base matrix-valued
kernel. The following proposition formalises the construction of this efficient kernel, and we then
provide a first example for the case G = SO(2) demonstrating its significant computational advan-
tages.
Proposition 3.1. Let G be a linear group acting on D via ⋆ and possessing a unitary group rep-
resentation ρ· : G → Rp×p. Let A ⊂ D be a fundamental domain of ⋆ and Π : D → A be
mapping any x ∈ D to its representer in A. Let furthermore D̃ = {x ∈ D : |Stab⋆(x)| = 1} and
sΠ : D → G be a map such that for any x ∈ D, Π(x) = sΠ(x) ⋆ x. Then, for any matrix-valued
kernel KA on A, KΠ below defines an equivariant (w.r.t ⋆ and ρ) matrix-valued kernel on D̃:

KΠ(x,x′) = ρTsΠ(x)KA(Π(x),Π(x′))ρsΠ(x′). (5)

Remark 3.2. While there are several ways to define sΠ on points possessing a stabilizer with
cardinality ≥ 2, sΠ(x) is uniquely defined on D̃. We refer to any such sΠ as a section.
Example 3.3. Assume D = R2, p = 2, and G = SO(2) (with g ⋆ x being plainly defined as
x rotated by g). A fundamental domain is then given by A = {(x, 0), x ≥ 0} and its projector
is defined by Π(x) = (r(x), 0), where r(x) = ∥x∥2. Here, for x ̸= (0, 0), sΠ(x) is repre-
sented by the unique rotation matrix sending x to Π(x). For x = (0, 0), any rotation matrix
would do; we conventionally set sΠ((0, 0)) equal to the identity matrix. In Figure (1) we com-
pare the total computational times of the covariance matrices of the posterior distribution of the
GPs GP (0,KΠ) and GP (0,K∫ ) on [−1, 1]2, for different training and test set sizes. Here, K∫ is
computed by adaptive integration with the adaptIntegrate function in x on a maximum of 1000
function evaluations. The base kernel Ko is chosen to be the simple diagonal RBF kernel matrix
function Ko = diag

(
exp−∥x−x′∥2

2

2 , i ∈ {1, 2}
)
. The time difference for moderate training and

test sizes of 100 and 500 are substantial; while the posterior distribution of GP (0KΠ) requires a
total of 55 seconds to compute, GP (0,K∫ ) requires 33 hours.

4 Water molecule dipole moment prediction

We now provide an explicit example of how to apply our Eq. (5) to a quantum chemistry problem.
In particular, we consider the case of water molecules, where x ∈ D ⊂ R3×3 now represents the
position vectors of an oxygen and two hydrogen atoms. As baseline kernel, we take diagonal squared
exponential matrix-valued kernels:

K(·;θ) : D ×D → Rp×p, (x,x′) 7→ diag

(
σ2
i exp−

∥x− x′∥22
2ℓ2i

, i ∈ {1, 2, 3}
)
,

where θ =
(
ℓ1, σ

2
1 , . . . , ℓ3, σ

2
3

)
denotes the vector containing the tunable kernel lengthscale and

variance hyperparameters. For ease of notation we write K = K(·;θ).
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Constructing a tailored matrix-valued kernel To construct matrix-valued kernels that lead to
computationally efficient GP models honoring invariances and equivariances from Equations (1) and
(2), we construct an integration-free rotation-equivariant (as well as translation and hydrogen swap
invariant) kernel matrix function KΠ. Our construction requires a fundamental domain endowed
with a matrix-valued kernel KA, as well as a suitably defined projection mapping Π : D → A, also
expressible via an associated section sΠ : D → SO(3) (such that for x ∈ D, Π(x) = sΠ(x) ⋆2 x).

For the translation-invariance of (1), we arrange the configurations relative to the position of the
oxygen atom and consider only x̄ = (−x1) ⋆1 x = x− x1. To honor (2), we ensure (by swapping
columns when necessary) that r̄1 = ∥x̄1∥2 ≥ ∥x̄2∥2 = r̄2. We then build a rotation matrix R(x) ∈
R3×3 based on three elementary rotations, such that for some a, b ∈ R, R(x)x̄1 = (0, r̄1, 0) and
R(x)x̄2 = (a, b, 0) . We eventually obtain KΠ by taking

KΠ(x,x′) = R(x)⊤KA(Π(x),Π(x′))R(x′),

where Π(x) is parametrised by (r̄1, a, b) only. Notice that Π is invariant under ⋆1, ⋆2, ⋆3. Let us
remark that choices of A,Π and sΠ are not unique. Here, KA is chosen of the same form as K(·;θ)
(yet with inputs in R3).

Experimental Results We utilise a dataset of dipole moments µ obtained from 850 water
molecule configurations x, which were computed using quantum chemical methods. For details
on the dataset generation process, see Appendix B. To enhance the dataset’s diversity and represen-
tativeness, we applied random rotations to the data points. See Appendix B for a visualisation of
this augmented dataset. We compare the predictive accuracy of GP models for the dipole moments
of water molecules using the baseline kernel K and the proposed kernel KΠ.

For additional comparison, we include invariances separately with the following kernels:

1. Translation-invariance:
K2(x,x

′) = K(x̄, x̄′)

2. Permutation-invariance:
K4(x,x

′) = K(Π⋆3
(x),Π⋆3

(x′)),

Π⋆3
(x) =

{
[x1,x3,x2], if r̄1 < r̄2,

x, otherwise

3. Permutation and translation-invariance:
K3(x,x

′) = K(Π⋆1,3
(x),Π⋆1,3

(x′)),

Π⋆1,3
(x) = (−x1) ⋆1 Π⋆3

(x).

We train the GPs using Adam optimisation over 1000 iterations, with all kernel hyperparameters ini-
tialised to 1, maximising the training likelihood. In Figure (2), we see that the proposed integration-
free equivariant GP consistently outperforms the base GP across all training set sizes, the small order
of magnitudes of thet RMSE suggest that our proposed model is accurate enough for use in quantum
chemistry.

Figure 2: Predictive scores (mean ± sd over 103 reps) of GP models versus training set size.
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5 Conclusion and perspectives

We have introduced an integration-free method to construct a class of equivariant GP models. By
leveraging fundamental domains, we eliminate the need for cumbersome integration over groups,
significantly reducing the computational burden whilst leveraging prior knowledge of invariances
and equivariances, enabling accurate predictions in small training data regimes. Our approach sig-
nificantly enhances the modelling of dipole moments of water molecules by incorporating physical
principles directly into the Gaussian process framework. The obtained numerical results are in fact
very promising and open avenues of research on the short and longer term. Ongoing work include
testing different scenarios on KA and its hyperparameters, looking into equivariances with respect
to reflections, comparing KΠ to K∫ in feasible settings in terms of both accuracy and computational
cost, and also analysing more precisely how the benefits are split among the account of the different
invariances and equivariances. Investigating potential synergies with recent developments pertaining
to kernels on graphs, Lie groups, and other structures is also of interest (See, e.g., Azangulov et al.
[2024]). Future work include implementing resulting kernels into open source software toward GP
prediction of molecular properties and active learning (see for instance [Moss and Griffiths, 2020,
Griffiths et al., 2024]) and extend our approach to other molecular systems and tensor properties like
polarisability volume, broadening the applicability of equivariant GP modeling in scientific research.
Furthermore, future work may include comparisons between the fundamental domain approach and
extensions of Glielmo et al. [2017] in dipole moment estimation and potentially in further contexts.
On the theoretical side, further studying the proposed class of kernels and their properties calls
for in-depth investigations on fundamental domains (potentially calling for variations in associated
definitions and assumptions).
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zation Commission (DigiK) of the University of Bern Perception via the project “Statistics, Econo-
metrics and Probability”. The authors would also like to thank the reviewers and all persons having
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Weigend, Artur Wodyński, and Jason M. Yu. Turbomole: Modular program suite for ab initio
quantum-chemical and condensed-matter simulations. Journal of Chemical Physics, 152(18):
184107, 2020.

Renato Berlinghieri, Brian L. Trippe, David R. Burt, Ryan Giordano, Kaushik Srinivasan, Tamay
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A Group and representation theory

In this section we briefly describe the preliminaries on groups and group representations which are
necessary to construct equivariant kernel matrix functions.
Definition A.1. A group (G, ◦) is a set G equipped with a binary operation

◦ : G×G → G, (a, b) 7→ a ◦ b

which satisfies

1. ∀a, b, c ∈ G, a ◦ (b ◦ c) = (a ◦ b) ◦ c

2. ∃e ∈ G s.t. ∀a ∈ G, a ◦ e = e ◦ a = a

3. ∀a ∈ G, ∃a−1 ∈ G s.t. a ◦ a−1 = a−1 ◦ a = e.

Definition A.2. If the set G is furthermore a topological space and the group operation ◦ as well as
its inverse ◦−1 are continuous with respect to the topology of G, we call G a topological group. In
addition, a topological group G is compact if it is compact with respect to its topology, i.e. if each
open cover of G admits a finite open subcover.
Definition A.3. A group representation ρ maps elements from a group G to L(V ) where V is a finite
dimensional Hilbert space and L(V ) the space of linear transformations on V. Furthermore ρ is a
homomorphism, i.e. for any g1, g2 ∈ G, ρ(g1 ◦ g2) = ρ(g1)ρ(g2).

Definition A.4. A group G is called a linear group if there exists an injective homomorphism ϕ :
G → GL(n,K) to the general linear group GL(n,K) for some integer n and some field K, such
that the image ϕ(G) is a closed set in the natural topology on GL(n,K), which corresponds to the
topology induced by the standard norm on Kn.

As consequence, a linear group admits invertible matrix-valued representations.
Definition A.5. A linear group representation is called unitary if for any g ∈ G it holds ρg−1 = ρ†g.

Following Reisert and Burkhardt [2007], it can be shown that any representation of a finite group or
of a compact continuous group with continuous representation is equivalent to a unitary representa-
tion.
Definition A.6. A measure µ defined on the σ−algebra generated by the open sets of a compact
group G, called the Borel algebra of G, is called left translation-invariant if for any open subset
S ⊂ G and g ∈ G it holds µ(gS) = µ(S), where gS = {g ◦ s|s ∈ S}.

By Haar’s theorem, on any compact group there exists a unique left translation-invariant measure,
called the left Haar measure. Analogously, there exists a unique right translation-invariant measure,
called the right Haar measure.
Definition A.7. A compact group is said to be unimodular, if its right and left Haar measure coin-
cide.

It can be shown that representations of compact, linear, unimodular groups have determinant one,
which simplifies reparametrisations in Haar integrals

∫
G
f(g) dg.

Definition A.8. A left group action of a group G on a set X is a function

Φ: G×X → X

(g, x) 7→ g.x

satisfying for any x ∈ X, g, h ∈ G :

1. e.x = x
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2. g.(h.x) = (g ◦ h).x

If X is a finite dimensional vector space and G is compact, linear and has a continuous representation
ρ of the same dimension as X, we can express the action of G on X as left multiplication, i.e.
g.x = ρgx.

Fundamental domains
Definition A.9. The orbit of a point x ∈ X under the action Φ is the set

OΦ(x) = {g.x|g ∈ G}.

A point x ∈ X is said to be a fixed point of Φ if g.x = x for any g ∈ G. For any x ∈ X , we further
define the stabilizer (or stabilizer group) of x under Φ to be StabΦ(x) = {g ∈ G : g.x = x}.
Definition A.10. A subset A ⊂ X is said to be a fundamental domain of Φ, if it is a system of
representatives of the orbits of Φ.
Remark A.11. With the latter fundamental domain definition, A is a subset of X that contains
exactly one representative from each orbit under the action of G. That is, for any two distinct
elements x, y ∈ A, there is no group element g ∈ G such that g.x = y. Furthermore it holds that⋃

g∈G g.A = X. For each x ∈ X there exists a unique representative in the fundamental domain,
denoted here Π(x) ∈ OΦ(x)

⋂
A. We refer to Π(x) as the representer of x in A.

A.1 Proof of Proposition (3.1)

First, it directly follows that KΠ is positive definite as for any two sets of n vectors a1, . . . ,an ∈ Rp

and x1, . . . ,xn ∈ Rd,∑
1≤i,j≤n

aT
i KΠ(xi,xj)aj =

∑
1≤i,j≤n

aT
i ρ

T
sΠ(xi)

KA(Π(xi),Π(xj))ρsΠ(xj)aj

=
∑

1≤i,j≤n

bTi KA(Π(xi),Π(xj))bj

≥ 0,

where bi := ρsΠ(xi)ai and the last inequality follows from positive definiteness of KA. Since the
projector Π is constant on the orbits it holds

KΠ(g ⋆ x, h ⋆ x′) = ρTsΠ(g⋆x)KA(Π(g ⋆ x),Π(h ⋆ x′))ρsΠ(h⋆x′)

= ρTsΠ(g⋆x)KA(Π(x),Π(x′))ρsΠ(h⋆x′).

For x ∈ D̃, sΠ(g ⋆ x) = sΠ(x) ◦ g−1 and thus ρsΠ(g⋆x) = ρsΠ(x)ρg−1 . Hence,

KΠ(g ⋆ x, h.x′) = ρgρ
T
sΠ(x)KA(Π(x),Π(x′))ρsΠ(x′)ρ

T
h

= ρgKA(x,x
′)ρTh .

B Data generation

The dipole moments were generated by optimising an initial guess for the geometry using the RI-
MP2 module in the TURBOMOLE quantum chemistry program. The theory for this module is
described in the original MP2 paper by Møller and Plesset [1934] and the RI-MP2 paper by Weigend
and Häser [1997]. Furthermore, a cc-pVDZ basis set was used, as created by Dunning [1989]. Using
this optimised structure, a numerical hessian was found. diagonalising the mass weighted Hessian
then gave a set of three Normal coordinates, corresponding to bending, symmetric and asymmetric
bond stretch. Using the static grid method [Toffoli et al., 2007] in the MIDASCPP program package
a grid of twenty points was constructed along each normal coordinate. These points were linearly
spaced between the classical turning points of the tenth excited state of the quantum mechanical
oscillator approximation which can be constructed from the mass weighted hessian. Furthermore,
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three twenty by twenty grids were constructed describing displacements along two out of the three
coordinates simultaneously. Combined with the optimised structure this gives 1261 geometries.
For each of these geometries, the electric dipole moment was calculated using the RI-MP2 method
and a cc-pVDZ basis set in TURBOMOLE. To ensure dataset efficiency, 410 pairs of points that
were rotations of each other were identified and removed. The remaining 851 points were then
randomly rotated to cover a larger region of Cartesian space. This approach samples the geometries
of chemical interest around the optimised structure and them rotates them in space resulting in a
diverse and representative dataset.

Figure 3: A realisation of the dataset: (light) blue indicate positions of the hydrogen atoms, red the
position of the oxygen atoms and orange the dipole moments.
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