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Abstract

A key component of modern conversational001
systems is the Dialogue State Tracker (or DST),002
which models a user’s goals and needs. Toward003
building more robust and reliable DSTs, we004
introduce a prompt-based learning approach005
to automatically generate effective adversar-006
ial examples to probe DST models. Two key007
characteristics of this approach are: (i) it only008
needs the output of the DST with no need for009
model parameters; and (ii) it can learn to gener-010
ate natural language utterances that can target011
any DST. Through experiments over state-of-012
the-art DSTs, the proposed framework leads to013
the greatest reduction in accuracy and the best014
attack success rate while maintaining good flu-015
ency and low perturbation ratio. We also show016
how much the generated adversarial examples017
can bolster a DST through adversarial training.018
These results indicate the strength of prompt-019
based attacks on DSTs and leave open avenues020
for continued refinement.021

1 Introduction022

Task-oriented dialogue systems aim to help users023

with tasks through a natural language conversa-024

tion. Example tasks include booking a hotel or025

completing a do-it-yourself project. A key com-026

ponent for enabling a high-quality task-oriented027

dialogue system is the Dialogue State Tracker028

(or DST) which plays an important role in under-029

standing users’ goals and needs (Wu et al., 2019;030

Hosseini-Asl et al., 2020; Li et al., 2021b; Dai031

et al., 2021; Feng et al., 2021; Zhao et al., 2021;032

Balaraman et al., 2021). For example in Figure 1a,033

given the user utterance “I am looking for a cheap034

restaurant in the center of the city”, the DST ex-035

tracts the user’s preference for booking a restaurant,036

which is typically represented as slot-value pairs037

such as (restaurant-price range, cheap) and038

(restaurant-area, center). The current state039

of the conversation is a primary driver of the subse-040

quent dialogue components (e.g., what is the next041

Dialogues

R: Is there anything else I can help you
with today?
U: I am looking for a cheap restaurant
in the center of the city.

Belief States 

(Domain-Slot, Value)

DST restaurant-price range, cheap

restaurant-area, center

(a) Dialogue state tracking task. R represents system response,
and U represents user utterance.

User Utterances

U: I am looking for a cheap restaurant.
U1: Can you give me the address of
a cheap restaurant please?

U2: Oh, I am looking for an uh,
expensive, cheap restaurant.

Belief States 

(Domain-Slot, Value)

DST
U: restaurant-price range, cheap ✓

U1: restaurant-price range, none ✗

U2: restaurant-price range, expensive ✗


(b) Adversarial examples. U1 and U2 are adversarial examples
based on U which maintain ground-truth values but lead DST
models to wrong predictions.

Figure 1: Dialogue examples and adversarial examples.

action to take?, what is the appropriate response to 042

generate?). 043

For a conversational system designer, it is critical 044

that a deployed DST be robust and reliable, even 045

in the presence of a wide variety of user utterances. 046

Many of these systems are trained over previous 047

user utterances and so may have only limited cov- 048

erage of the space of these utterances. Further, 049

beyond these benign users, there is also a long his- 050

tory of spammer, trolls, and malicious users who 051

aim to intentionally undermine deployed systems. 052

Indeed, recent work has demonstrated that care- 053

ful construction of adversarial examples can cause 054

failures in the DST (Li et al., 2021b; Liu et al., 055

2021a), leading to incorrect slot-value pairs and 056

degraded user experience. These approaches, how- 057

ever, are mainly hand-crafted or based on heuris- 058

tics. As a result, there is a research gap in learning- 059

based methods for probing DSTs centered around 060

three key questions: (i) How can we systematically 061

learn effective adversarial examples? (ii) What 062

impact do such discovered examples have on the 063

quality of state-of-the-art DSTs? and (iii) Can we 064

build more robust DSTs even in the presence of 065

such adversarial examples? Further compounding 066

these questions are the inherent challenges of ad- 067

1



versarial examples in the context of a DST: that068

is, the examples should preserve the semantics of069

a non-adversarial input while leading to an incor-070

rect prediction even in the presence of the correct071

slot-value in the adversarial input as illustrated in072

Figure 1b. For example, an adversarial example073

based on the user utterance “I am looking for a074

cheap restaurant” that maps to the slot-value pair075

(restaurant-price range, cheap) should pre-076

serve the user intent for “cheap” while leading077

to the incorrect prediction (restaurant-price078

range, expensive).079

Hence, in this paper, we propose a novel prompt-080

based learning approach called PromptAttack to081

automatically generate effective adversarial exam-082

ples to probe DST models. Our approach builds083

on recent advances in prompt learning, which has084

demonstrated a strong ability in probing knowl-085

edge in pre-trained language models for many NLP086

tasks (Gao et al., 2021; Li and Liang, 2021; Liu087

et al., 2021b; Zhu et al., 2022). Concretely, we first088

show how to find effective adversarial prompts in089

both a discrete and a continuous setting. In both090

cases, our approach needs only the output of the091

DST (e.g., (restaurant-price range, cheap))092

with no need for model parameters or other model093

details. Second, we use the adversarial prompts094

to generate adversarial examples via a mask-and-095

filling protocol, resulting in natural language utter-096

ances that can be targeted at any DST. As a result,097

such a prompt-based attack can be widely applied.098

Through experiments over four state-of-the-art099

DSTs and versus competitive baselines, we find100

that the prompt-based framework leads to the great-101

est reduction in accuracy for all DSTs, ranging102

from a 9.3 to 31.0 loss of accuracy of the DST103

making a correct slot-value prediction. Further, we104

observe that PromptAttack results in the best attack105

success rate (that is, how many of the adversarial106

examples lead to incorrect predictions). Moreover,107

the generated adversarial examples maintain good108

fluency and low perturbation ratio, evidence that109

they are close to legitimate non-adversarial user110

inputs. We also show how such a prompt-based111

attack can be used to bolster a DST by augmenting112

the original training data with adversarial exam-113

ples, leading to a significant increase in accuracy114

(from 61.3 to 67.3). These and other results indi-115

cate the strength of prompt-based attacks on DSTs116

and leave open avenues for continued refinement.117

2 Related Work 118

Adversarial examples have been widely explored 119

to investigate the robustness of models (Goodfel- 120

low et al., 2015). Recent work in the NLP domain 121

has targeted tasks like text classification and infer- 122

ence (Pruthi et al., 2019; Ren et al., 2019; Morris 123

et al., 2020; Jin et al., 2020; Li et al., 2020; Yang 124

et al., 2022a; Lei et al., 2022), reading comprehen- 125

sion (Jia and Liang, 2017; Bartolo et al., 2021), 126

named entity recognition (Simoncini and Spanakis, 127

2021), and machine translation (Belinkov and Bisk, 128

2018). These works typically aim to construct 129

examples that are imperceptible to human judges 130

while misleading the underlying model to make an 131

incorrect prediction, while also maintaining good 132

fluency and semantic consistency with original in- 133

puts (Li et al., 2020). Only a few works have be- 134

gun to explore adversarial examples in DSTs like 135

CoCo (Li et al., 2021b), which aims to test the ro- 136

bustness of models by creating novel and realistic 137

conversation scenarios. They show that DST mod- 138

els are susceptible to both unseen slot values gener- 139

ated from in and out of the slot domain. Liu et al. 140

(2021a) propose a model-agnostic toolkit to test 141

the robustness of task-oriented dialogue systems 142

in terms of three aspects: speech characteristics, 143

language variety, and noise perturbation. The ad- 144

versarial examples are based on heuristics and it is 145

unclear how to adapt such an approach to new vic- 146

tim models effectively without more hand-crafted 147

templates. In contrast, we explore in this paper the 148

potential of a learning-based approach to generate 149

effective adversarial examples. 150

Prompt learning is a recently proposed paradigm 151

for using prompts to better probe and adapt large 152

pre-trained language models (PLMs) to a vari- 153

ety of NLP tasks like text classification and infer- 154

ence (Gao et al., 2021; Yang et al., 2022a), factual 155

probing (Zhong et al., 2021), summarization (Li 156

and Liang, 2021), and dialogue systems (Madotto 157

et al., 2021; Lee et al., 2021; Yang et al., 2022b; 158

Zhu et al., 2022). With the increase in the size 159

of PLMs, prompt learning has been shown to be 160

parameter-efficient (Liu et al., 2021b). There are 161

two types of prompts: discrete (or hard) prompts 162

and continuous (or soft) prompts. Discrete prompts 163

are human-designed text strings (Brown et al., 164

2020) while continuous prompts are continuous 165

embeddings. Soft prompts proposed by Lester et al. 166

(2021) prepend a sequence of continuous vectors 167

to the input, freeze the language model parameters, 168
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Change Fill in

belief states: [s] = [v]

belief states: 
restaurant-price range = expensive

Slot-Value Dict.

restaurant-price range,

cheap


restaurant-price range,

expensive


Template

Discrete PromptBelief States

(a) Discrete prompt construction. Discrete prompt is constructed by filling
pre-designed templates with slots extracted from the DST model and corre-
sponding random values.

DST Model loss
Prompt Dialogue

(b) Continuous prompt tuning. Continuous
prompt is prepended before the dialogue context
embeddings and tuned by optimizing the loss
while keeping DST model parameters fixed.

Prompt Dialogue

Black-Box
DST Model

Adversarial
Utterances

MLM Model

mask

(c) Adversarial example generation. The adversarial prompt (discrete or continuous) is prepended before the masked dialogue
context (or embeddings) to generate perturbations via mask-and-filling. After removing the adversarial prompt, the generated
adversarial example is used to attack victim models.

Figure 2: Overview of PromptAttack.
and then back-propagate the error during tuning.169

In this paper, we explore both approaches in the170

design of our prompt-based attack framework.171

Recent works have begun to explore how172

prompts can be helpful in exposing fundamental173

flaws in large language models. In (Yang et al.,174

2022a), the authors show how to manually design175

prompts for classification tasks to flip the output176

of a model. However, it is time-consuming to de-177

sign and find proper prompts that are most effective178

to generate adversarial examples that could attack179

victim models successfully. It is an open question180

how to leverage prompts for uncovering effective181

adversarial prompts.182

3 PromptAttack183

Our prompt-based learning approach proceeds in184

two stages. In the first, our goal is to identify ad-185

versarial prompts that can effectively probe a DST186

to reveal gaps in its robustness. In the second, we187

use these prompts to create adversarial examples188

that can attack DSTs successfully while maintain-189

ing good fluency. Figure 2 shows an overview of190

the proposed approach. In the following, we first191

formalize DSTs and the problem of probing a DST.192

Then, we introduce the details of PromptAttack.193

3.1 Task Formulation194

DST Task. Let CT = {(r1, u1), . . . , (rT , uT )}195

represent a T -turn dialogue, where ri and ui(1 ≤196

i ≤ T ) are the system response and user ut-197

terance at the i-th turn, respectively. Each198

turn (ri, ui) contains several slots (e.g., arrive199

by, leave at) in a specific domain (e.g., taxi),200

where we denote the N domain-slot pairs as201

S = {s1, . . . , sN}. At turn t, we denote cur-202

rent user utterance ut and previous dialogue con-203

text Ct = {(r1, u1), . . . , (rt−1, ut−1), rt}. A DST204

model aims to extract the dialogue belief state205

Bt = {(s1, v1), . . . , (sN , vN )} for ut, where vj 206

is the associated value for each slot sj(1 ≤ j ≤ 207

N). For example, given a dialogue (“. . . . I am 208

looking for expensive Mediterranean food.”), the 209

DST model aims to extract expensive for the slot 210

restaurant-price range and Mediterranean 211

for the slot restaurant-food. 212

Attacking a DST. Given dialogue history Ct, cur- 213

rent user utterance ut, and dialogue belief states Bt, 214

the purpose of an adversarial attack on a DST is 215

to intentionally perturb the original user utterance 216

ut to get an adversarial example u
′
t with the two 217

following characteristics: (i) it should mislead the 218

DST model f to incorrectly predict B
′
t; and (ii) it 219

should be fluent in grammar and consistent with the 220

semantics of the original utterance ut by keeping 221

the slot-value-related information in ut unchanged. 222

If the adversary can achieve f(u
′
t) = B

′
t, we say 223

the adversarial example u
′
t attacks f successfully. 224

3.2 Finding Adversarial Prompts 225

We begin by focusing on the first stage of Prompt- 226

Attack: how to find the most effective adversarial 227

prompts. We explore both discrete prompts (as 228

illustrated in Figure 2a) and continuous prompts 229

(as illustrated in Figure 2b). A discrete prompt 230

approach is a human-designed natural language 231

prompt that is easy to interpret. We pair this with 232

a treatment of continuous prompts that have more 233

representation capacity. 234

Discrete prompt construction. To begin with, 235

how can we design discrete prompts? For the DST 236

task, it is time-consuming to manually design sen- 237

tences containing values that are opposite to the 238

ground truth values for each slot as adversarial 239

prompts. Thus, we apply an intuitive template de- 240

rived from belief states as an adversarial prompt 241

template: “belief states: [s] = [v];”. First, we use 242

the DST model to extract value vi for each slot si 243
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in ut. If vi is not empty, the corresponding slot244

name si is filled in [s]. Then we pick a random245

value v
′
i from a predefined in-domain Slot-Value246

Dictionary (Li et al., 2021b) where v
′
i and vi are247

under the same slot si. The new random value248

v
′
i is used to fill the [v] in the template. Thus,249

the adversarial prompt becomes “belief states: si250

= v
′
i;”. As in Figure 2a, given ut (“I am looking251

for cheap food.”), the predicted Bt is {(restaurant-252

price range, cheap)}, then the adversarial prompt253

is “belief states: restaurant-price range = expen-254

sive”, where “expensive” is a random value that is255

different from the predicted value “cheap”.256

Such a template does not have access to true257

slot-value pairs of the test set and only utilizes the258

predictions from the victim models. Since the dis-259

crete prompts are human-designed, they are more260

human-readable and easier to interpret. However,261

to obtain a prompt for each input, victim models262

must be queried multiple times, which may be un-263

realistic in some scenarios. Hence, we take the264

next step to search for better prompts in the embed-265

ding space of the model. Specifically, we directly266

optimize the continuous input embedding space267

through continuous prompt tuning to find the ad-268

versarial prompt vectors that are most effective.269

Continuous prompt tuning. Continuous prompts270

are input-agnostic sequences of embeddings with271

tunable parameters that are optimized directly in272

the continuous embedding space of the model, as273

shown in Figure 2b. In our task, the length of274

continuous prompt patt is m, denoted as patt =275

p1 . . . pm where each pi ∈ Rd(1 ≤ i ≤ m)276

is a dense vector with the same dimension d as277

the DST’s input embedding (e.g., 768 for TripPy).278

Given initialization of patt, we concatenate it with279

the representation of user utterance eu and update280

it by keeping all other model parameters fixed and281

optimize the loss of the training set. To find the ad-282

versarial prompts patt that could lead DST models283

f to wrong predictions B
′
t effectively, we maxi-284

mize the loss for the ground truth belief states Bt285

for all user utterance in the training set with the286

following objective:287

argmax
patt

Eu∼U [L (Bt, f (patt; eu))] ,288

where U are user utterances and L is the loss func-289

tion of the DST task. By maximizing the loss290

for the ground truth belief states we aim to find291

prompts that force the model to make the most292

wrong predictions by pushing far apart from the293

ground truth, like guessing “expensive” instead of 294

“cheap” for ut (“I am looking for cheap food.”). 295

In addition, we explore an alternative tun- 296

ing objective – minimizing the loss. We re- 297

place all the non-empty values in Bt to empty 298

(e.g., (restaurant-price range, expensive) 299

changes to (restaurant-price range, none)) 300

and then minimize the loss: 301

argmin
patt

Eu∼U

[
L
(
B

′
t, f (patt; eu)

)]
, 302

where B
′
t is the set of target belief states. Different 303

from our previous tuning objective, here we aim to 304

find prompts that force the model to fail to extract 305

the correct value for the slot from user utterances. 306

For example, the DST will fail to extract “cheap” 307

for slot price range in ut (“I am looking for cheap 308

food.”) and thus the predicted belief states will 309

become (restaurant-price range, none). 310

3.3 Adversarial Example Construction 311

Next, we focus on the second stage of Prompt- 312

Attack: how can we use these prompts to create 313

adversarial examples that can attack DSTs success- 314

fully while maintaining good fluency? After obtain- 315

ing the adversarial prompts, we use them to gener- 316

ate adversarial examples via mask-and-filling (Li 317

et al., 2021a; Yang et al., 2022a; Lei et al., 2022) by 318

pre-trained masked language models. Specifically, 319

we tokenize user utterance ut to a list of tokens, 320

ut = [w1
u, w

2
u, . . . , w

n
u ]. Then we randomly mask 321

tokens that are not values in Bt, slot-related words, 322

or stopwords with a special token [MASK] and de- 323

note the masked ut as umt = [w1
u,[MASK], . . . , w

n
u ]. 324

Shown in Figure 2c, we concatenate the adversar- 325

ial prompts and the masked utterance um
t and use 326

a masked language model M to predict masked 327

text pieces and generate the perturbations based 328

on surrounded context. As shown in Table 1, for 329

discrete prompt pd
att, the input for M would be 330

the concatenation of pd
att and um

t while for con- 331

tinuous prompt pc
att, the input would be the con- 332

catenation of pc
att and embedding of masked user 333

utterance e1u [MASK] enu. Hence, with patt and the 334

capability of MLM, the model M will fill in the 335

blanks with context-consistent tokens which can 336

keep the sentence fluency while maximizing the 337

risk of the DST making wrong predictions, denoted 338

as P ([MASK] = w|patt;um
t ), where w is the gener- 339

ated perturbation. After filling [MASK] with w and 340

removing patt, the filled user utterances are used 341

as adversarial examples to attack victim models. 342
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Method patt + um
t (or emu )

PromptAttackd belief states: [s] = [v]; t1u [MASK] tnu
PromptAttackc p1 p2 . . . pm

⊕
e1u [MASK] enu

Table 1: Adversarial example generation for discrete
prompts and continuous prompts.

4 Experimental Setup343

Our experiments are designed to test the effective-344

ness of the proposed prompt-based approach to345

attack DST models. We structure the experiments346

around four research questions: RQ1: Are adver-347

sarial examples learned by PromptAttack effective348

and transferable? And how do these examples com-349

pare against baseline (non-prompt) approaches?350

RQ2: Are the generated adversarial examples of351

good quality? That is, are they fluent with a low352

perturbation ratio? RQ3: What impact do the de-353

sign choices of PromptAttack have, i.e., the ratio354

of perturbed tokens and prompt length? RQ4: And355

finally, can the generated adversarial examples be356

used to improve the performance of current DST357

models to improve their robustness?358

4.1 Dataset359

We evaluate our methods on the widely used and360

challenging multi-domain dialogue dataset, Mul-361

tiWOZ 2.1 (Eric et al., 2020),1 which contains362

over 10,000 dialogues spanning seven domains.363

Following existing work (Li et al., 2021b; Lee364

et al., 2021; Yang et al., 2022a), we keep five365

domains (train, taxi, restaurant, hotel, attraction)366

with 30 domain-slot pairs and follow the standard367

train/validation/test split.368

4.2 Evaluation Metrics369

We evaluate the proposed methods with a stan-370

dard set of metrics (Jin et al., 2020; Li et al., 2020,371

2021a; Simoncini and Spanakis, 2021): Joint goal372

accuracy (JGA): the average accuracy of predict-373

ing all (domain-slot, value) pairs in a turn correctly.374

Attack success rate (ASR): the proportion of gen-375

erated adversarial examples that successfully mis-376

lead model predictions. Perturbation ratio (PER):377

the percentage of perturbed tokens in the sentence.378

Each replace action accounts for one token per-379

turbed. A lower perturbation ratio indicates more380

semantic consistency (Li et al., 2020). Perplexity381

(PPL): a metric to evaluate the fluency of sentences.382

We calculate the perplexity of adversarial examples383

through GPT-2 (Radford et al., 2019). PPL is calcu-384

lated across all the adversarial examples. A lower385

1github.com/budzianowski/multiwoz, MIT License.

PPL score indicates higher fluency and naturalness 386

of the adversarial examples. 387

4.3 Baseline Methods 388

We compare our methods with strong baselines ca- 389

pable of attacking a DST. TP and SD are two meth- 390

ods maintaining the dialogue act labels unchanged 391

and implemented by the LAUG toolkit (Liu et al., 392

2021a). For a fair comparison, we do not apply 393

slot value replacement which would modify the 394

slot values in the original utterances. TP (Text 395

Paraphrasing) uses SC-GPT (Peng et al., 2020) to 396

generate a new utterance conditioned on the origi- 397

nal dialogue acts as data augmentation. SD (Speech 398

Disfluency) mimics the disfluency in spoken lan- 399

guage by filling pauses (“um”), repeating the previ- 400

ous word, restarting by prepending a prefix “I just” 401

before the original user utterance, and repairing by 402

inserting “sorry, I mean” between a random slot 403

value and the original slot value (Liu et al., 2021a). 404

SC-EDA (Liu et al., 2021a) injects word-level per- 405

turbations by synonym replacement, random inser- 406

tions, swaps, and deletions without changing the 407

true belief states. BERT-M is introduced in this 408

paper as another baseline method. First, we ran- 409

domly mask tokens that are not slot-value related 410

and not stopwords. Then, we use BERT (Devlin 411

et al., 2019) to generate perturbations based on the 412

top-K predictions via mask-and-filling, where in 413

our experiments K = 20. We sorted the top 20 414

tokens based on the possibility scores and pick the 415

one with lowest possibility to fill the masked po- 416

sition. The filled user utterance is regarded as the 417

adversarial example. 418

4.4 Victim Models 419

We choose the TripPy DST (Heck et al., 2020) as 420

our base model to train our adversarial prompts, 421

since classification-based models have better per- 422

formance and are more robust than generation- 423

based models (Liu et al., 2021a). Demonstrating 424

the susceptibility of TripPy to our adversarial ex- 425

amples can reveal the limitations of current DSTs, 426

but we further explore the transferability of the 427

prompt-based attacks. 428

Transferability reflects the generalization of the 429

attack methods, meaning that adversarial examples 430

generated for one model can also effectively at- 431

tack other models (Zhang et al., 2020). Hence, we 432

also evaluate the prompt-based approach learned 433

over TripPy by targeting our adversarial exam- 434

ples on other popular DSTs: TRADE (Wu et al., 435

5
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2019), SimpleTOD (Hosseini-Asl et al., 2020), and436

CoCo (Li et al., 2021b), one of the state-of-the-art437

models2.438

5 Experimental Results439

Given this setup, we now investigate the four ex-440

perimental research questions in turn.441

5.1 Attack Effectiveness (RQ1)442

First, are the adversarial examples learned by443

PromptAttack effective? Table 2 summarizes the444

results for three versions of PromptAttack versus445

the baselines for the four different DSTs (TripPy,446

CoCo, SimpleTOD, and TRADE). We consider447

the discrete version of PromptAttack (denoted as448

PromptAttackd) and two continuous versions: one449

is optimized by maximizing the training loss (de-450

noted as PromptAttackcx), while the other one451

is optimized by minimizing the loss (denoted as452

PromptAttackcn).453

Attack Performance. First, let’s focus on the454

TripPy column. All versions of PromptAttack455

are learned over TripPy and then applied here so456

we can assess the susceptibility of a popular DST457

to adversarial examples. The four baselines lead458

to some degradation in terms of accuracy (JGA),459

with SD performing the best with a JGA of 56.5460

(a 4.8 drop from the original DST).3 The three461

prompt-based learning approaches result in strong462

degradation in terms of accuracy, ranging from 7.7463

to 9.3 drops relative to the original. We observe464

that our PromptAttack models significantly out-465

perform SC-EDA, TP, and BERT-M, the methods466

without introducing new slot values in the adversar-467

ial examples, in terms of JGA and ASR. Compared468

with the best baseline method among these three,469

BERT-M, PromptAttackcn decreases the JGA by470

6.9 and increases ASR by 13.2, respectively. In471

addition, for the method introducing new slot val-472

ues, SD, PromptAttackcn outperforms it by 4.5 and473

8.9. Hence, these observations reveal the attack ef-474

fectiveness of our proposed PromptAttack methods475

2These models are fine-tuned on MultiWOZ 2.1 us-
ing code from CoCo (https://github.com/salesforce/
coco-dst). BSD 3-Clause License.

3We attribute this good attack performance since although
this method maintains ground truth slot-value labels un-
changed, it prepends new slot values before the original slot
values in the user utterance. This operation is effective be-
cause it can easily confuse the model to decide which slot
values are the truth slot values. In contrast, our prompt-based
approaches are designed to make very few changes and to
avoid introducing new slot values.

over these baselines no matter whether the methods 476

introduce new slot values or not. 477

Transferability. To test the transferability of the 478

generated adversarial examples, we take the ex- 479

amples trained over TripPy and then use them to 480

attack other victim models CoCo, SimpleTOD, 481

and TRADE. For CoCo and SimpleTOD, we see 482

that PromptAttack outperforms these four base- 483

lines. Our best method PromptAttackc achieves 484

52.8 and 25.0 JGA when attacking CoCo and 485

SimpleTOD, showing better transferability than 486

PromptAttackd. For TRADE, PromptAttackc 487

shows better attack performance than baselines 488

without introducing new slot values significantly. 489

Specifically, PromptAttackcx shows a decrease of 490

10.2 and a increase of 22.6 in terms of JGA and 491

ASR, respectively. In general, our PromptAttack 492

methods show good transferability: the adversarial 493

examples generated for one victim model can also 494

be used to attack another model effectively. 495

5.2 Adversarial Example Quality (RQ2) 496

Next, we examine whether the generated adversar- 497

ial examples are of good quality. First, are they 498

fluent with low perturbation ratio? We measure 499

the perturbation ratio (PER) between the original 500

input and adversarial examples, and the fluency 501

by computing the perplexity (PPL). The lower per- 502

turbation ratio represents fewer perturbed tokens 503

in original utterances and lower perplexity indi- 504

cates better fluency. From Table 3 we observe that 505

the PromptAttack methods achieve low perplexity 506

and show good fluency with quite low perturba- 507

tion ratio. Specifically, our method PromptAttackd 508

achieves 159.4 PPL, showing better fluency than 509

PromptAttackc and baselines. Although SC-EDA 510

has lower perturbation ratio than our methods, it 511

shows less attack effectiveness (Section 5.1) and 512

worse fluency. Thus, there are trade-offs between 513

perturbation ratio and attack effectiveness. 514

Second, do the adversarial examples preserve the 515

semantics of the un-perturbed original sentences? 516

That is, does an utterance asking for a cheap restau- 517

rant lead to an adversarial example that also asks 518

for a cheap restaurant though tricking the DST to 519

output expensive? To answer this question, we 520

perform a human evaluation over three criteria: se- 521

mantics preservation, grammatical correctness, and 522

accuracy. We first shuffled 150 examples: 50 orig- 523

inal un-perturbed sentences, 50 adversarial exam- 524

ples with a 7.7% perturbation ratio, and 50 with a 525

6
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Method TripPy CoCo SimpleTOD TRADE
JGA↓ / ∆ / ASR↑ JGA↓ / ∆ / ASR↑ JGA↓ / ∆ / ASR↑ JGA↓ / ∆ / ASR↑

Original 61.3 / - / - 62.6 / - / - 56.0 / - / - 49.4 / - / -
SC-EDA 60.5 / -0.8 / 1.9 61.9 / -0.7 / 1.6 53.6 / -2.4 / 9.5 48.8 / -0.6 / 4.9

TP 60.3 / -1.0 / 5.6 61.5 / -1.1 / 4.7 52.6 / -3.4 / 19.3 48.8 / -0.6 / 14.1
SD∗ 56.5 / -4.8 / 9.3 56.1 / -6.5 / 11.4 38.8 / -17.2 / 36.6 31.7 / -17.7 / 39.9

BERT-M 58.9 / -2.4 / 5.0 60.1 / -2.5 / 4.8 49.6 / -6.4 / 16.4 45.9 / -3.5 / 11.5
PromptAttackd 53.6 / -7.7 / 16.0 53.7 / -8.9 / 16.9 38.9 / -17.1 / 37.9 35.8 / -13.6 / 34.0
PromptAttackcx 53.3 / -8.0 / 16.3 54.1 / -8.5 / 16.3 25.0 / -31.0 / 60.0 35.7 / -13.7 / 34.1
PromptAttackcn 52.0 / -9.3 / 18.2 52.8 / -9.8 / 18.4 37.4 / -18.6 / 40.6 35.8 / -13.6 / 33.3

Table 2: Attack effectiveness results on MultiWOZ 2.1. JGA (%): joint goal accuracy; ∆ (%): the absolute
difference between original JGA and JGA after attacking; ASR (%): attack success rate. ↓ (↑) denotes whether the
lower (or higher) the better from an attack perspective. *: denotes the method that introduces new slot values.

Method PER↓ PPL↓
Original - 173.7
SC-EDA 13.1 773.8

TP 74.4† 352.4
SD∗ 30.4† 270.4

BERT-M 28.1 221.3
PromptAttackd 28.1 159.4
PromptAttackcx 28.1 175.5
PromptAttackcn 28.1 177.6

Table 3: Adversarial example quality results. PER: per-
turbation ratio; PPL: perplexity of generated adversarial
examples representing fluency. † denotes that results are
from original papers.

28.1% perturbation ratio (following the analysis in526

Section 5.3.1). For the adversarial examples, each527

attacks the victim model successfully leading to528

an accuracy of 0. Following (Jin et al., 2020; Li529

et al., 2020), we ask three human judges to rate530

how well a randomly chosen sentence preserves531

the semantics of the original sentence (semantic),532

how grammatically correct the sentence is (gram-533

mar), on a scale from 1 to 5, and whether all the534

ground truth slot-value pairs could be predicted535

from the sentence (accuracy). We report in Table 4536

the average score across the three judges.537

As we can see, the semantic score and grammar538

score of the adversarial examples are close to the539

original ones.4 We find that when the perturbation540

is reasonable (around 8%), the semantics of the541

original sentence are preserved quite well (4.8 for542

the original versus 4.3 for an adversarial example).543

Further, the grammatical quality of the sentence is544

also preserved well (4.8 versus 4.4). For accuracy,545

note that while we keep the ground-truth values546

and slot-related words unchanged in the adversarial547

examples, perturbations on surrounding words lead548

to drops in cases where the judges can correctly549

predict the output based on the adversarial sentence550

4Curiously, the semantic score is not 5 for the original sen-
tences, but slightly lower at 4.8. Since some of the sentences
may lack additional context from neighboring sentences there
are cases where the judges rated lower than 5.

(0.7 versus 0.9 for the original). We have included 551

additional error analysis in Appendix E. 552

Semantic Grammar Accuracy
Original 4.8 4.8 0.9

Adv (7.7%) 4.3 4.4 0.7
Adv (28.1%) 3.3 3.8 0.5

Table 4: Human evaluation results. Adv (*): adversarial
examples with different perturbation ratios which lead
victim model’s accuracy to 0.

5.3 Impact of PromptAttack Design (RQ3) 553

We now explore the impact of different settings on 554

our proposed methods. 555

5.3.1 Ratio of Perturbed Tokens 556

First, our prompt-based approach can control how 557

many tokens we want to change in the user utter- 558

ances, which gives it flexibility. Since perturbation 559

ratio represents the semantic consistency between 560

the original examples and adversarial examples and 561

there are trade-offs between the attack effectiveness 562

and perturbation ratio, it is important to investigate 563

the influence of the ratio of perturbed tokens on 564

attacking ability. 565

We take max(1, perturbation_ratio∗ lt) as the 566

number of perturbed tokens, where lt denotes the 567

length of pre-processed utterances. We set the per- 568

turbation ratio of tokens that we could perturb to 569

10%, 30%, 50%, 80%, and 100%, that is 7.7%, 570

10.2%, 15.2%, 22.6%, and 28.1% of the average 571

length of all input examples. More data analysis 572

can be found in Appendix B). 573

Table 5 shows the evaluation of attack perfor- 574

mance and fluency of generated adversarial ex- 575

amples from PromptAttackcx and PromptAttackcn. 576

We observe that for these two methods, the more 577

tokens we perturb, the lower JGA and higher ASR 578

we get, showing better attack ability, which is con- 579

sistent with our intuition. Thus, as the ratio of 580

perturbed tokens increases, our proposed method 581

7



PromptAttack achieves better attack performance582

while maintaining good fluency.

7.7% 10.2% 15.2% 22.6% 28.1%
(1.0) (1.5) (2.3) (3.5) (4.4)

Pcx

JGA↓ 59.0 58.1 56.6 55.1 53.3
ASR↑ 4.6 6.3 9.5 12.8 16.3
PPL↓ 159.4 155.9 157.5 167.0 175.5

Pcn

JGA↓ 58.9 58.1 56.4 54.0 52.0
ASR↑ 4.9 6.2 9.7 14.4 18.2
PPL↓ 169.0 173.7 177.1 172.2 177.6

Table 5: Results of PromptAttackcx (Pcx) and
PromptAttackcn (Pcn) with different perturbation ra-
tio. (*) denotes the average perturbed token numbers.583

5.3.2 Prompt Length584

Next, we explore the effect of different continu-585

ous prompt lengths. Shorter prompts have fewer586

tunable parameters, which means under the same587

training setting, it would be faster to optimize588

and find the most effective adversarial prompts.589

We train continuous prompts with different length:590

5, 10, and 15 tokens using PromptAttackcx. Ta-591

ble 6 shows that under different prompt lengths,592

with the increase of perturbation ratio, the model593

achieves better attack performance. Under the594

same perturbation ratios, the model with 5-token595

prompt achieves modest lower JGA and higher596

ASR. For example, when perturbation ratio is597

28.1%, PromptAttackcx with 5-token prompt gains598

lower JGA than PromptAttackcx with 10-token599

prompt and PromptAttackcx with 15-token prompt600

by 0.2 and 0.8, respectively, and higher ASR by 0.4601

and 1.2, showing slightly better attack performance.602

603
P5 P10 P15

JGA↓ ASR↑ JGA↓ ASR↑ JGA↓ ASR↑
7.7% 59.0 4.6 59.2 4.3 59.3 4.6
10.2% 58.1 6.3 58.5 5.9 58.5 6.0
15.2% 56.6 9.5 57.0 8.8 57.2 8.8
22.6% 55.1 12.8 55.3 12.6 55.7 12.3
28.1% 53.3 16.3 53.5 15.9 54.1 15.1

Table 6: Results of PromptAttackcx with different
prompts length and perturbation ratios. P∗ denotes the
prompt length.

5.4 Defense against Attack (RQ4)604

Finally, we turn to the challenge of defending a605

DST in the presence of such adversarial examples.606

We aim to answer two questions: i) can our gener-607

ated adversarial examples be used to improve the608

performance of current DST models? and ii) can609

our attack method bypass such a defense method?610

One of the most effective approaches to increase611

the robustness of a model is adversarial training,612

which injects adversarial examples into the training613

data to increase model robustness intrinsically (Bai 614

et al., 2021). Specifically, we first apply our attack 615

methods on the original training dataset to gen- 616

erate adversarial examples. Then we re-train the 617

TripPy model on the training set augmented by the 618

adversarial training examples and evaluate the per- 619

formance on original test set. As shown in Table 7, 620

the new defended DST model improves JGA on 621

the original test set from 61.3 to 67.3 by 6.0, which 622

outperforms results reported by the state-of-the-art 623

DST model CoCo (62.6) by 4.7. This encourag- 624

ing result shows that adversarial examples from 625

our attack method can be a good source for data 626

augmentation. 627

To evaluate the robustness of such an augmented 628

DST model against our proposed attack methods, 629

we next test how well our adversarial examples 630

perform. From Table 7 we observe that the attack 631

methods still show strong attack ability on the new 632

DST model. Thus, there is an opportunity to ex- 633

plore stronger defense methods to strengthen DSTs 634

against such prompt-based attacks.

JGAd JGAo ASRd ASRo

Original 67.3 61.3 - -
SC-EDA 66.5 60.5 1.8 1.9

TP 65.9 60.3 5.5 5.6
SD∗ 61.4 56.5 10.1 9.3

BERT-M 64.5 58.9 5.0 5.0
PromptAttackd 60.0 55.8 12.6 11.3
PromptAttackcx 58.3 53.3 16.3 16.3
PromptAttackcn 56.8 52.0 18.5 18.2

Table 7: Defense results. d: defended DST model; o:
original DST model.

635

6 Conclusion 636

In this paper, we present a prompt-based learning 637

approach that can generate effective adversarial 638

examples for probing DST models. Through exper- 639

iments over four state-of-the-art DSTs, our frame- 640

work achieves the greatest reduction in accuracy 641

with the best attack success rate. Moreover, the 642

generated adversarial examples maintain good flu- 643

ency and low perturbation ratio, evidence that they 644

are close to legitimate non-adversarial user inputs. 645

We also show our generated adversarial examples 646

can bolster a DST by augmenting the original train- 647

ing data with adversarial examples. We find that 648

both discrete and continuous adversarial prompts 649

are capable of generating effective adversarial ex- 650

amples. Discrete prompts are more interpretable 651

while continuous prompting allows us to search for 652

optimal adversarial prompts more efficiently, and 653

generates more effective adversarial examples. 654
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Limitations655

The natural idea to improve robustness is to add ad-656

versarial examples to the training set and retrain the657

model. However, generating adversarial examples658

for a large training set can be very time-consuming.659

For our cases, generating adversarial examples for660

training data is time-consuming. Thus, it would661

be interesting to explore more efficient methods662

that implicitly involved adversarial examples in the663

training process, e.g., (Yang et al., 2022a).664

Ethics Statement665

The proposed methods could also be applied to666

natural language generation tasks, like dialogue667

response generation. The misuse of such methods668

may generate biased or offensive responses.669
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A Implementation Details 934

A.1 Constructing Adversarial Examples 935

We use the TripPy DST model (Heck et al., 2020) 936

as the victim model, which uses the 12-layer pre- 937

trained BERT-base-uncased model (Devlin et al., 938

2019) as the context encoder and has 768 hidden 939

units, 12 self-attention heads, and 110M parame- 940

ters. We train our adversarial prompts for 10 epochs 941

with an initial learning rate of 1 × 10−4. The LR 942

decay linearly with a warmup proportion of 0.1. 943

We use Adam optimizer for optimization and set 944

the maximum input sequence length of user utter- 945

ance lu to 180 and the number of prompt tokens 946

lp to {5, 10, 15}. The total length of the input is 947

lu + lp. The training batch size is 64 and the evalu- 948

ation batch size is 1. We evaluate the checkpoint of 949

the prompt for each epoch and choose the one that 950

leads to the lowest JGA on the validation set as our 951

final adversarial prompt. The MLM model used 952

to generate the adversarial examples via mask-and- 953

filling is also BERT-base-uncased. 954

A.2 Training Defense Model 955

We train the TripPy defense DST model on the 956

training dataset augmented with adversarial exam- 957

ples following the training setting in (Heck et al., 958

2020). The model uses the pre-trained BERT-base- 959

uncased transformer as the context encoder front- 960

end, which has 12 hidden layers with 768 hidden 961

units and 12 self-attention heads each (Heck et al., 962

2020). The initial learning rate is set to 1× 10−4 963

with a warmup proportion of 0.1 and let the LR 964

decay linearly after the warmup phase. We use 965

Adam optimizer for optimization and dropout on 966

the BERT output with a rate of 30%. The training 967

batch size is 48 and the model is trained for 10 968

epochs with early stopping employed based on the 969

JGA on the validation set. The experiments are run 970

on 2 NVIDIA TITAN Xp GPUs. 971

B Data Analysis 972

Figure 3 shows the distribution of length of original 973

user utterance lo, the length of utterances after re- 974

moving stop words, slot and value related tokens lt, 975

and the difference between them, that is ∆ = lo−lt. 976

We can see, 95.5% of user utterances have fewer 977

than 10 tokens that could be perturbed and 59.3% 978

of them could perturb less than 4 tokens. 979
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Figure 3: Data analysis. lo: original length of user
utterance; lt: after data pre-processing, the number of
available tokens that can be perturbed; ∆: lo − lt.

C Data Augmentation980

In Section 5.4, TripPy trained on original training981

data augmented with our generated adversarial ex-982

amples improves TripPy by 6.0% and outperforms983

CoCo by 4.7% when evaluated on the original test984

set following the same post-processing strategy as985

CoCo (Li et al., 2021b). When using TripPy’s de-986

fault cleaning, the comparison results with previous987

methods are shown in Table 8.

Model JGA (%)
TRADE (Wu et al., 2019) 46.0†

TripPy (Heck et al., 2020) 55.29†

SimpleTOD (Hosseini-Asl et al., 2020) 55.76†

ConvBERT-DG + Multi (Mehri et al., 2020) 58.70†

TripPy + SCoRE (Yu et al., 2021) 60.48†

TripPy + CoCo (Li et al., 2021b) 60.53†

Ours 60.56
TripPy + SaCLog (Dai et al., 2021) 60.61†

Table 8: DST results on MultiWOZ 2.1. † denotes
results from original papers.

988

D Case Study989

In Table 9, we showcase some examples of the ad-990

versarial examples generated from baseline meth-991

ods and our methods.992

E Error Analysis993

Although we keep the ground-truth values and994

slot-related words unchanged in the adversarial ex-995

amples, perturbations on surrounding words may996

lead to low human evaluation results. Here we997

show some adversarial examples that attack the998

victim model successfully in Table 10. For case999

1, changing “night” to “hour” affects the meaning1000

of the sentence but is consistent with ground truth1001

“1”. However, the victim model predicts “two” for1002

slot “book_stay”. For cases 2 and 3, we could 1003

see by modifying words “well” and “restaurant”, 1004

which are not related to ground-truth slot-values, 1005

the victim model can not identify “six” and “enter- 1006

tainment” for slot “book_people” and “attraction- 1007

type”. For cases 4, 6, and 9, the adversarial exam- 1008

ples modified words “star”, “leaves”, and “price 1009

range” that are related to slot names “stars”, “depar- 1010

ture”, and “pricerange” and cause victim models 1011

can not identify the corresponding values. In future 1012

work, it’s important to consider more comprehen- 1013

sively to prevent modifying slot-related words. For 1014

case 5, the new words “office” confuse the model 1015

and make it ignore the values “center” and predict 1016

“none” for slot “area”. For cases 7, 9, and 10, “fish- 1017

ing”, “french english”, and “street” in adversarial 1018

examples lead victim models prediction new value 1019

“fishing boat”, “french”, and “cambridge street” 1020

for slots “attraction-type”, “restaurant-food”, and 1021

“train-departure”. For case 8, the remove of “arriv- 1022

ing” leads victim model predict “none” for “train- 1023

arriveBy”. 1024
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Methods User Utterance Predictions Accuracy
Ori Can you give me the address of the adc theatre

please?
attraction-name-adc theatre 1.0

LAUG-SD Oh, can you give me the address of the uh, galleria
nope, adc theatre please?

attraction-name-none; restaurant-
name-galleria

0.0

LAUG-TP Adc theatre sounds good. What is the address? attraction-name-none 0.0
BERT-M Can you email me the address of the adc theatre

please?
attraction-name-adc theatre 1.0

PromptAttackd Can you give me the name of the adc theatre please? attraction-name-adc theatre 1.0
PromptAttackc Can you give me the support of the adc theatre

please?
attraction-name-none 0.0

Table 9: Cases of adversarial examples generated from different attacking methods. Bold indicates the difference
from original user utterance.

No. Original Example Adversarial Example Ground Truth Predictions
1 How about 1 night? Would that

work?
How about 1 hour? Would that
work?

hotel-book_stay-1 hotel-book_stay-two

2 The restaurant is for six as well. The restaurant is for six as t. restaurant-
book_people-6

restaurant-book_people-
none

3 I’m also looking for some enter-
tainment close to the restaurant.
Any suggestions?

I’m also looking for some enter-
tainment close to the internet.
Any suggestions?

attraction-type-
entertainment

attraction-type-none

4 Can you find me a three star
place to stay?

Can you find me a three some
place to stay?

hotel-stars-3 hotel-stars-none

5 What’s the phone number for the
one in the center?

What’s the phone number for the
office in the center?

hotel-area-center hotel-area-none

6 I’m also looking for a train that
leaves leicester.

I’m also looking for a train that
is leicester.

train-departure-
leicester

train-departure-leicester,
train-destination-
leicester

7 Any interesting boats on the
east side of town?

Any fishing boats on the east
side of town?

attraction-type-
boats

attraction-type-fishing
boats

8 I also need a train to Cambridge
arriving at 10:15 on Thursday.

I will need a train to Cambridge
university at 10:15 on Thurs-
day.

train-arriveBy-10
: 15, train-
day-thursday,
train-destination-
cambridge

train-leaveAt-10 : 15,
train-arriveBy-none,
train-day-thursday, train-
destination-cambridge

9 I’m looking for a restaurant in
the north part and in cheap price
range.

I’m looking for a restaurant
in the north part and in cheap
french english.

restaurant-area-
north, restaurant-
pricerange-cheap

restaurant-area-north,
restaurant-food-french,
restaurant-pricerange-
cheap

10 Can you help me find a train de-
parting from cambridge going
to kings lynn?

Can you help me find a train de-
parting from cambridge street
to kings lynn?

train-departure-
cambridge, train-
destination-kings
lynn

train-departure-
cambridge street, train-
destination-kings lynn

Table 10: More examples.
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