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Enhancing the robustness of deep learning models, particularly in the realm of
vision transformers (ViTs), is crucial for their real-world deployment. In this work,
we provide a finetuning approach to enhance the robustness of vision transformers
inspired by the concept of nullspace from linear algebra. Our investigation centers
on whether a vision transformer can exhibit resilience to input variations akin to
the nullspace property in linear mappings, which would imply that perturbations
sampled from this nullspace do not influence the model’s output when added
to the input. We start from the observation that many existing ViTs satisfy this
property because their patch embedding layer has a non-trivial nullspace. Then,
we extend the notion of nullspace to nonlinear settings and demonstrate that it is
possible to synthesize approximate nullspace elements for ViT’s encoder blocks
through optimization. Finally, we propose a finetuning strategy for ViTs wherein
we augment the training data with synthesized approximate nullspace noise. We
find that our finetuning approach significantly improves the models’ robustness to
both adversarial and natural image perturbations.1

1. Introduction
The field of computer vision has experienced significant advances, marked by the emergence of
Vision Transformers (ViTs) [1] as a notable milestone. Following this advancement, a series of
architectural refinements have been explored [2–4], paving the way for the development of vision
foundation models [5, 6] through the scaling up of both the model and dataset. Despite these strides,
robustness continues to be a pivotal concern for their practical deployment, as they exhibit fragility
in the face of imperceptible (adversarial) and perceptible perturbations.
Adversarial samples are generated by adding imperceptible noises to the input, aiming to cause the
model to produce incorrect and overly confident predictions [7–9]. Perceptible perturbations are
artifacts that arise from various operations, such as JPEG compression, simulatedweather effects (fog,
snow), or adjustments to the image’s brightness, hue, or contrast, to name a few [10]. The semantic
content of the image however, remains unchanged after perceptible or imperceptible perturbations.
Hence, we expect the model to output similar predictions for perturbed and unperturbed images.
Applying transformations to the input during training, known as data augmentation, is one of
the widely employed techniques for improving robustness. The underlying goal of applying aug-
mentations is to enforce invariance (i.e., consistency) under a predefined set of perturbations. To
induce adversarial robustness, worst-case adversarial perturbations are first identified through an
optimization procedure and then used to train the model [11, 12]. For robustness against perceptible
noise, augmentation strategies have evolved from simple transformations such as horizontal flips
and rotations to more complex augmentations like MixUp [13], CutMix [14], and AugMix [15].

1Code is available at: https://github.com/Liu-Hy/ns-vit.
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Figure 1: An illustration of the nullspace in three cases (projection function, left top; linear
function, left bottom; vision transformer, right). For these three cases, there exists some nullspace,
such that the output of the function with respect to the input will remain unperturbed regardless of
the perturbation strength. Also, the nullspace is function-specific (model-specific) and will not vary
for different samples.

There is an observable divide in the treatment of these two types of robustness [16]. Adversarial
noises are generated via an optimization process, whereas augmentations are defined heuristically
often by domain experts. It has also been observed that standard data augmentation strategies,
in isolation, do not improve adversarial robustness [17–19]. Additionally, adversarial training
(training with adversarial perturbations) often leads to a drop in performance on non-adversarial
images [11, 12, 20].
Here, we consider robustness a property of the model and thus agnostic to the noise type. To this end,
we consider the nullspace as the central theme of our study. The nullspace, a fundamental concept
in linear algebra, refers to the subspace of a domain that is mapped to zero by a linear mapping. By
definition, any vector from the nullspace, when added to the input of the linear mapping, does not
alter its output. In Figure 1, we present the concept of nullspace from different perspectives.
This paper first identifies that most off-the-shelf pre-trained ViT models exhibit a nontrivial nullspace
due to the linear patch embedding layer. Since this layer is the first block of a ViT, any invariance to
it implies invariance to the entire model. Consequently, a nontrivial nullspace also exists for ViTs. To
further explore robustness, we define the approximate nullspace of the transformer encoder and use
optimization methods to synthesize noise vectors approximating nullspace properties for nonlinear
blocks. Finally, we propose fine-tuning the model using these synthesized nullspace-like elements as
additive training data augmentation. This approach enlarges the approximate nullspace, enhancing
the model’s robustness. The main contributions of our paper include:

• We demonstrate connections between the robustness of vision transformers to the algebraic notion
of nullspace, substantiated by experimental results showing that enlarging the approximate
nullspace effectively improves the model robustness.

• We conduct comprehensive analysis on the existence of nullspace within transformer models.
We establish the existence of nullspace at the patch embedding layer, and empirically identify an
approximate nullspace at the nonlinear encoder level of transformers by validating their algebraic
properties.

• We propose an effective data augmentation method by exploiting and enlarging the model’s
approximate nullspace, which enhances model robustness without architectural modifications and
only involves fine-tuningwithminimal additional data. Ourmethod is empirically validated across
multiple benchmark datasets, showing significant robustness improvements against adversarial
and out-of-distribution scenarios.
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2. Related Work
Data augmentation and Invariance: Data augmentation enforces invariance by training models to
predict consistently across different input views, offering a theoretical improvement in estimating
statistical risk [21, 22]. However, incorrect augmentation choices can degrade performance [21–23].
Early image augmentations such as flipping, cropping and rotation have evolved into advanced
techniques such as MixUp [13], CutMix [14], and strategies for chain augmentations, including Au-
toAugment for policy optimization, TrivialAugment [24], and RandAug [25]. AugMix [15] combines
transformations with a consistency loss, while differentiable augmentations optimize transformations
for specific tasks [26, 27]. Hounie et al. [28] frame data augmentation as an invariance-constrained
learning problem, using a relaxed invariance notion to model augmentation distributions. Unlike
these approaches, our work avoids reliance on pre-defined augmentations.
Robustness in ViTs: Research highlights Vision Transformers (ViTs) as more robust than Convolu-
tional Neural Networks (CNNs)[29, 30], with adversarial examples that exhibit low transferability
between these architectures[31], although some studies offer counterpoints [32]. ViTs demon-
strate insensitivity to patch-based transformations that distort semantics, relying on robust but
nonindicative features [33]. Robustness-enhancing methods for transformer-based models are often
model-agnostic, using data augmentation [34–37] and regularization [36, 38, 39], consistent with
broader robustness frameworks [40, 41]. For example, Xiao et al. [34] masks image patches using
class activation maps and refills them with random samples, while Chen et al. [38] adopts sharpness-
aware optimization for a smoother loss landscape. However, these approaches focus on external
modifications or optimization, often neglecting the intrinsic properties of the model.
Nullspace and Neural Networks: The study of nullspaces in neural networks began with Goggin
et al. [42], who exploredMLPs’ universal approximation by comparing input nullspaces and outputs.
Using the learning XOR example, they demonstrated that hidden layers enable MLPs to map inputs
to targets even if the targets reside in the nullspace of the inputs. More recently, Sonoda et al. [43]
mathematically analyzed nullspaces in fully connected networks.
In applications, Wang et al. [44] leveraged nullspaces in continual learning to map new tasks to the
nullspace of existing ones. As a novel architecture, NullSpaceNet [45] mapped inputs from the same
category to a joint nullspace rather than a feature space.

3. Nullspace and Invariance
When a mapping f : X → Y is invariant to some additive noise v, it implies the following:

f(x+ v) = f(x) ∀x ∈ X . (1)
This invariance has interesting connections to the concept of nullspace in linear algebra. Formally, the
nullspace of a linear mapping f is a set N identified by N = {v ∈ X |f(v) = 0}. For a non-trivial
nullspace N ≠ ϕ, we have f(x+ v) = f(x),∀v ∈ N ,∀x ∈ X . We can interpret this by saying that
the linear mapping is invariant to the noise vector sampled from its nullspace. For brevity, we refer
to this noise vector as nullspace noise.

3.1. Non-trivial Nullspace of the Patch Embedding Layer
Vision transformer [1] is a function fω with ω as the trainable weights. The function takes as input an
image x ∈ X c×h×w and outputs a classification response y ∈ Yk over k categories. c is the number
of channels (typically 3 for red, green, and blue), h, w correspond to height and width of the input
image. This neural network function can be broken down into 3 stages, namely:
• patch embedding stage, fθ : X c×r×r → Ud. This steps projects the input image patch of predeter-

mined dimensions c, r and r to a one-dimensional embedding of length d. It is ensured that
patches have no overlaps between them. Hence, the number of such non-overlapping patches
generated from the input image arem = h×w

r2 .
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(a) Sample null-space noise (b) Clean input image (c) Noisy input image
Figure 2: An example of nullspace noise. We show (a) sample input image, (b) noise generated by
the basis vectors of the nullspace and (c) noisy image as a result of adding the nullspace noise to the
input. Model’s predictions for the clean and noisy inputs are identical.

• self-attention stage, fϕ : U (m+1)×d → V(m+1)×d. In the next step, the generated patch embeddings
are passed through layers of self-attention modules to process long range interactions amongst
them. Apart from the m patch embeddings an additional embedding in form of cls token is
utilised in this step.

• classification stage, fψ : Vd → Yk. The final step is to perform the k-way classification. For this, we
simply keep the processed encoding corresponding to cls token and project it through a linear
classification layer.

Table 1: Nullspace dimensions for pre-trained
ViT models. Nullspace is trivial (0) when embed-
ding dimension exceeds input dimension.

Model Patch Size Emb. Dim. Null Dim.
tiny 16× 16 192 576
small 32× 32 384 2688

16× 16 384 384
base 32× 32 768 2304

16× 16 768 2
8× 8 768 0

large 32× 32 1024 2048
16× 16 1024 0

Since the first layer of the ViT is a linear map-
ping, according to the rank-nullity theorem, it
always has a non-trivial nullspace if cr2 > d. In
practice, for many ViT-based architectures, we
find that this is the case. In Table 1, we report the
identified nullspace dimensions for off-the-shelf
pre-trained ViT models.
Given the weights of the patch embedding layer
fθ, finding its nullspace is a standard practice
[46–48]. Let Bθ = {b1,b2, . . .bk} be the k ba-
sis vectors for this nullspace, we can sample an
element from Nθ as:

v = λ1b1 + λ2b2 + · · ·+ λdbk. (2)
The property of such a sample will be that the output of the patch embedding will effectively remain
preserved, fθ(x+v) = fθ(x). Since the output after the first layer remains unaffected, the final output
of the classification remains unchanged. In Figure 2, we provide visualization of noise synthesized
using basis vectors. This noise can be added to any input image with complete invariance. In
Section 3.2, we explore if it possible to learn a nullspace-like counterpart for the non-linear blocks of
ViTs.

3.2. The Generalized Nullspace from the Encoder
So far we have demonstrated that a non-trivial nullspace exists for the patch embedding layer,
and hence the entire vision transformer is invariant to all perturbations in that space. We move
further down the structure of ViT and investigate whether the encoder is also invariant to certain
perturbations. The self-attention layer is non-linear, which means the notion of nullspace cannot
be directly applied to fϕ. However, the invariance property that can be implied from the nullspace
of linear functions, that any vector from this set will not alter the function’s output when added to
any input, is still desirable in the nonlinear case when it comes to the robustness of neural models.
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In fact, data augmentation can often be formulated as a process of adding noise to the input and
enforcing invariance. Therefore, to study the ViTs’ inherent invariance to input perturbations, we
extend the notion of nullspace to the nonlinear setting and define the Generalized Nullspace, Ñϕ, of
the transformer encoder fϕ, as below:

Ñϕ = {v|fϕ(u+ v) = f(u) ∀u ∈ U}, (3)
Here, we use the tilde accent ·̃ to distinguish Ñϕ from the conventional nullspace Nϕ. We term it the
Generalized Nullspace because it depicts invariance in both linear and nonlinear settings, and that
for a linear fuction fθ we have Nθ ⊆ Ñθ, since any vector sampled from the conventional nullspace
of a linear function satisfies this invariance property. If such a set exists, it directly implies that the
transformer model is robust to certain perturbations in the input space. Our theoretical analysis
established the following sufficient conditions for the existence of a nontrivial generalized nullspace.
(The complete proof is given in Appendix A.)
Proposition 1. Consider a self-attention layer with h heads and {(Qi,Ki,Vi)}hi=1 as its query, key and
value projection matrices. If the following conditions are met

1. QiK
⊤
i is symmetric for i = 1, . . . , h

2. The row space R(V⊤
i ) ⊆ R(QiK

⊤
i ) for i = 1, . . . , h

3. for somem ̸= n,QmK⊤
m has colinearity withQnK

⊤
n , i.e. for some k the kth row ofQmK⊤

m, denoted
as rm,k, satisfies rm,k ̸= 0 and rm,k ∈ R(QnK

⊤
n )

then there exists at least oneW such thatW ̸= 0 and headi(X+W) = headi(X) for all attention head i in
this layer and arbitrary X.
Remark 1. Condition 1 can be met ifQi andKi satisfy some special relation. For example, letPDP−1

be a diagonalization of a real symmetric matrix A. If Qi = BP and Ki = B(P−1)⊤D, then we have
QiK

⊤
i = BAB⊤ to be symmetric.

In addition, evidence has shown that,QiK
⊤
i can be empirically symmetric, especially for ViTs, when

the attention heads are visualized and correlation of parameters is calculated [49].

(a) Noise influence on the model output under dif-
ferent regularization strengths

(b) ℓ2 norm of learned noise under different regularization
strengths

Figure 3: Exploratory experiments on the generalized nullspace. (a) Solid lines (–) represents the
model performance under the learned noise, and dashed lines (· · ·) represent the performance after
random permutation of the elements of the learned noise vector. (b) by changing the regularization
strengths, we explore noise in the generalized nullspace at different magnitudes.

3.3. Synthesizing (approximate) nullspace noise
Although our theory suggests a sufficient condition for the existence of generalized nullspace,
analytically finding Ñϕ or probing its existence for generic transformers is challenging. Thus, as an
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exploratory experiment, we employ a numeric method: we search for individual element, ṽϕ, of this
set. This element is an additive perturbation that brings minimal influence to the output of fϕ on
the data distribution. We introduce a regularization term on the norm of ṽϕ to prevent the trivial
solution of 0.

Lϕ(ṽ) = Eu∈D ∥fψ(f0ϕ(u+ ṽ))− fψ(f0ϕ(u))∥︸ ︷︷ ︸
I

−λ log(∥ṽ∥). (4)

Here, ∥·∥ is the ℓ2 norm, f0ϕ is the representation of the cls token output by fϕ, and λ is the regular-
ization coefficient. I resembles a weaker notion of invariance compared to Equation (1). Equation (4)
minimizes the ℓ2 norm between the predicted logits with and without the noise. Alongside the
self-attention stage, we have also incorporated the classification stage into the loss, since the target of
our study is to minimize the impact on the final output of the network. To learn the noise vector, we
initialize ṽ by sampling from a uniform distribution, and minimize the loss with gradient descent.
We use ViT-S and ViT-B models with patch size 32 for evaluation. We employ ImageNette [50] as the
dataset for this experiment, which is a subset of ImageNet consisting of 10 categories. We learn ṽ on
the training dataset (≈ 9500 images) and perform evaluation on the validation set (≈ 4000 images).
To quantitatively evaluate learned ṽϕ, in Figure 3 (a) we report the percentage of matching classi-
fications with and without learned nullspace noise, and the mean squared error computed at the
output probabilities (hereafter “MSE confidence”). We consider a prediction to be matched if the
assigned category for input is the same with and without adding the perturbation. By varying the
regularization strength, we get noise vectors of different magnitude (Figure 3 (b)), all being fairly
benign to the model’s predictions. However, if we randomly reset the vectors’ direction by permuting
their elements, the noise significant degrades the model’s predictions.
The experiment shows the feasibility of learning elements that approximately conform to our defini-
tion of generalized nullspace with good precision, and also indicates that at different magnitudes
there are certain directions in the input space toward which the perturbation is fairly benign to the
model. In Appendix E, we further empirically show that the learned noise vectors exhibit good
properties under scalar multiplication and convex combinations within certain scope of parameters,
similar to the closure property of a vector space.

4. Nullspace Noise Augmented Finetuning
In this section, we investigate the application of the synthesized nullspace noise. As we discussed
previously, the model is weakly invariant to the learnt noise (I in Equation (4)) and the set as
a result of this relaxed notion is an approximate nullspace. To more accurately quantify this, we
define the ϵ-Approximate Generalized Nullspace as follows (later called “ϵ-approximate nullspace” or
“approximate nullspace” for brevity):

Ñϕ(ϵ) = {ṽ|Eu∈D ∥f(u+ ṽ)− f(u)∥ ≤ ϵ}, (5)

where f(·) = Softmax(fψ(f
0
ϕ(·))). It is easy to verify that ∀ϵ > 0,0 ∈ Ñϕ(ϵ), and that ∀ϵ2 > ϵ1 > 0,

Ñϕ(ϵ1) ⊆ Ñϕ(ϵ2).
We believe that the existence of approximate noise vectors is a property of the model. As these vectors
exhibit relaxed invariance, we also believe that they play a key role in model’s inherent robustness
under a variety of distribution shifts. Hence, if we can further improve invariance on approximate
nullspace elements, we can potentially make the model more robust. With this belief, we propose to
fine-tune a pre-trained ViT with the learnt nullspace noise vector as an added (encoder level)
input perturbation. The motivation behind this is to enlarge the (approximate nullspace) set of
noise vectors to which the model is invariant.
Formally, we employ a bi-level optimization approach, where the inner problem finds the best noise
vector and the outer problem finds the model that is the most tolerant to such noise, as shown below.
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min
ϕ

Eu∈D ℓ(fψ(f
0
ϕ(u+ ṽ∗

ϕ)),y)

where ṽ∗
ϕ = argmax

ṽ
∥ṽ∥ s.t. ṽ ∈ Nϕ(ϵ).

(6)

Here, ℓ(·) is the cross-entropy loss. While this optimization problem can also be solved in different
ways, we use an efficient heuristic: we initialize the noise with a large enough sampling limit,
minimize Lϕ(ṽ) by gradient descent according to the loss function in Equation 7, and early stop it as
soon as it enters Ñϕ(ϵ), as shown in Equation 8.

Lϕ(ṽ) = Eu∈D ∥fψ(f0ϕ(u+ ṽ))− f0ψ(fϕ(u))∥ (7)
v̂∗ = SGD(Lϕ(ṽ), ṽ0, ϵ). (8)

Here, v̂∗
ϕ is the approximate solution for ṽ∗

ϕ, SGD(Lϕ(ṽ), ṽ0, ϵ)denotes the gradient descent algorithm
that minimizes the lossLϕ(ṽ) starting from its initial value ṽ0 until it satisfies the conditionLϕ(ṽ) < ϵ.
The noise norm starts from a large value and gets gradually reduced during the process. When early
stopping is triggered, we obtain noise vectors that are close to the boundary of the ϵ-approximate
nullspace. For more details of our method, please refer to Algorithm 1 in Appendix B.

5. Experiments

5.1. Implementation Details
In this section, we conduct evaluation of our nullspace augmented finetuning method (Section 4) on
several benchmarks. By making the model more tolerant to noise in the ϵ-approximate nullspace, we
hope to expand the nullspace itself and observe its effect on the model’s robustness under different
settings.
Starting from a pretrained model, we use the ϵ-approximate nullspace noise as data augmentation
to fine-tune the model. The noise is generated every 40 training steps according to Equation (8)
with an ϵ of 0.03. The experiment was done within one epoch of training on the ImageNet-1k
[51] dataset. We used the vanilla ViT-small and ViT-base models, and ViT-base(DAT) which is
the current SOTA on ImageNet-C dataset on the EasyRobust benchmark2, trained using Discrete
Adversarial Training [52]. We evaluated the model performance in a wide range of settings to test
its performance on the i.i.d dataset, under adversarial attacks and distribution shifts. For adversarial
attacks we utilize FGSM [7], DamageNet [53], PatchFool [54] and CW [55]. Among them, FGSM
and CW are gradient-based white-box attacks, DamageNet consists of pre-generated adversarial
examples, and PatchFool targets localized, adversarial patches of an image. For distribution shift we
employ ImageNet-C [10], ImageNet-A [56], ImageNet-V2 [57], Imagenet-R [58], ImageNet-Sketch
[59] and Stylized-Imagenet [60]. ImageNet-C consists of validation images modified by applying
corruptions in the form of weather effects, noises, etc. ImageNet-A applies the imagenet objects
in hard contexts. ImageNet-R and ImageNet-Sketch consist of imagenet categories in different art
forms. ImageNet-Stylized applies texture transfer onto the ImageNet validation images to create
shape-texture contradictions.
We use the EasyRobust library [61] for code implementation and the checkpoints of ViT-base(DAT).
For more implementation details please see our supplementary document.

5.2. Experiment: Robustness Evaluation
We evaluated the effect of nullspace finetuning to improve the robustness of vision transformers
under different settings. We used the official mCE score as the evaluation metric for ImageNet-C,
where a lower mCE indicates better robustness, and we used the accuracy score for all other settings.
We used 100−mCE before taking the average in all settings.

2https://github.com/alibaba/easyrobust
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Table 2: Effect of our nullspace augmented finetuning (NS) method on different models evaluated on
multiple benchmark datasets. Excluding DAT, vanilla ViT-S and ViT-B, the values for the baselines are directly
reported from the corresponding papers. For DAT, we report the reproduced results following their evaluation
setting.

Methods Clean Adversarial Robustness Out of Distribution Robustness AveragePatchFool CW FGSM DamageNet A C↓ V2 R Sketch Stylized

ViT-S 74.19 0.68 4.63 13.79 29.82 16.35 71.13 62.51 34.67 14.26 12.15 26.54
ViT-S + NS (ours) 77.47 19.10 9.37 25.95 32.43 20.77 55.98 66.5 41.61 25.67 16.02 34.45
ViT-B 77.68 15.92 12.54 25.65 38.69 23.88 62.16 66.05 41.63 16.31 17.97 34.01
ViT-B + MixUp [13] 77.80 – – – – 12.20 61.80 – 34.90 – – –
ViT-B + RandAugment [25] 79.10 – – – – – 43.60 – 23.00 – – –
ViT-B + PR [33] 78.20 – – – – – 47.60 – 21.40 – – –
ViT-B + RandAugment + PR 79.30 – – – – – 43.60 – 23.80 – – –
ViT-B + AugMix [15] 78.80 – – – – – 42.20 – 24.90 – – –
ViT-B + AugMix + PR 79.30 – – – – – 41.60 – 25.70 – – –
ViT-B + SAM [38] 79.90 – – – – – 43.50 67.50 26.40 – – –
RobustViT-B [62] 80.40 – – – – 23.00 – 69.80 35.40 35.80 – –
ViT-B + NS 81.42 23.52 14.23 36.50 40.44 24.55 47.82 70.25 44.85 26.35 19.02 39.39
ViT-B + DAT[52] 81.47 22.64 23.59 48.80 43.31 23.83 45.95 70.24 48.68 36.94 23.99 43.41
ViT-B + DAT + NS 81.33 24.14 23.61 48.98 43.67 24.22 45.91 70.14 48.48 37.25 23.87 43.61

Table 3: Comparison of our NS method with PGD-based adversarial robustness methods of Madry and
TRADES.We report the performance for a ViT-S model.

Method clean FGSM DamageNet A C (↓) V2 R Sketch Stylized
ViT-S 74.19 13.79 29.82 16.35 71.13 62.51 34.67 14.26 12.15
Madry 70.53 39.37 49.91 9.37 81.74 58.88 39.04 21.36 10.76
TRADES 74.02 38.85 36.28 16.53 73.11 63.37 40.86 26.43 13.22

NS 77.47 25.95 32.43 20.77 55.98 66.5 41.61 25.67 16.02

The result in Table 2 shows that our nullspace finetuning method consistently improves the robust-
ness of models under distribution shifts and adversarial attacks, yielding a large gain in average
performance for the vanilla ViT-small and ViT-base model, and slightly outperforms various base-
lines consistently while also slightly outperforming DAT. This not only shows that our nullspace
finetuning method is effective but also validates our previous hypothesis about the connection
between the tolerance to nullspace and the robustness of transformer models.

5.3. Experiment: Adversarial Finetuning

In this experiment, we compare our method with fine-tuning using two PGD adversarial training
methods, Madry [63] and TRADES [12] on the ViT-S model. TRADES, in each training iteration,
generates adversarial examples using PGD and updates the model’s parameters to minimize the
worst-case loss on these adversarial examples while also minimizing the standard classification loss
on clean data. Madry, on the other hand, focuses exclusively on minimizing the worst-case loss on
adversarial examples. In Table 3, we observe that Madry and TRADES provide better performance
for adversarial evaluation. This is expected as the methods are catered for improving adversarial
robustness. However, this exclusivity leads to relatively poorer performance in a wider benchmark
evaluation. Compared to our method, Madry and TRADES perform considerably lower in the
natural OOD setting.

5.4. Enlarged Approximate Nullspace

To gain more insight about the dynamics of our nullspace finetuning method, wemonitor the l2 norm
of the learned noise and various performance metrics during the training, as shown in Fig. 4. Before
the nullspace finetuning, it was hard to optimize the noise into the ϵ region even with increased
training, so the norm started with a high value. As the training starts, we find that the noise was
always able to enter the ϵ region. In Appendix C, we show the MSE probability of the learned noise
vectors after each round of noise learning, which were all smaller than ϵ. More importantly, the norm
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Table 4: Impact of ϵ on the final performance. Moreover, we also compare our NS method against random ϵ
noise based finetuning.

ϵ Finetuning FGSM DamageNet A C (↓) V2 R Sketch Stylized

0.01 NS 26.04 33.65 20.45 56.26 66.47 41.4 23.34 15.85
Random 21.54 28.81 17.07 55.13 61.98 34.97 14.43 12.14

0.03 NS 25.95 32.43 20.77 55.98 66.5 41.61 25.67 16.02
Random 23.18 29.61 16.91 54.68 62.2 35.05 14.77 12.34

0.1 NS 25.38 33.09 20.16 56.41 66.47 40.42 22.66 15.78
Random 23.93 30.56 16.47 54.52 62.48 34.66 14.99 12.35

of the learned noise gradually increases along the process of model fine-tuning. The fluctuation
may have mainly resulted from the randomness in mini-batches and the optimization dynamics.

Figure 4: Change trend of multiple metrics with
training steps. "Adversarial" is the average perfor-
mance of the 4 adv. robustness settings, "OOD" is the
average score on the six OOD datasets, and "avg" is
the total average. All values are divided by their initial
values to show the trend more clearly.

The model allows for noises with larger and
larger norms to be within ϵ-approximate, which
informally suggests an enlarging ϵ-approximate
nullspace. Accompanied by the trend is the in-
crease in robustness scores in bothOODand adver-
sarial settings, which corroborates our findings.

5.5. Ablation Study

We conduct an extensive study to analyse the per-
formance of our method under choice of ϵ. Fur-
thermore, we also compare our approach with a
simple baseline of using an ϵ noise sampled from
a Gaussian distribution.
From Table 4, we can infer that the nullspace noise
based finetuning is relatively robust to the choice
of ϵ. Moreover, compared to using randomly gen-
erated ϵ-noise, our nullspace based training pro-
vides significant performance boost. This obser-
vation stands across different values of ϵ.

6. Discussion

Applications in Model Patenting In addition to the applications we discussed, we consider another
potential usage of our findings is to patent a ViT after a model is trained, as the nullspace will be
unique property of any set of weights of certain ViT architectures. Different from the existing line
of research in model watermarking [64–66], the patenting through nullspace will not require any
additional steps during training, although will face limited usage scenarios in comparison.
Applications in Image Watermarking Using the nullspace noise, it is possible to apply signatures
onto input images without harming the output or operability of the networks. In the supplementary
document, we present the cases where certain marks in form of nullspace noise can be superimposed
on any desired input image.
Potential Limitation about the Nullspace Approximation Different from the nullspace defined in
linear algebra, the nullspace of the entire ViT can only be approximated because of the non-linearity
in the network architecture. However, it is worthy mentioning that we can still calculate the exact
nullspace of ViT if we only consider the patch embedding layer, through which, our results will
qualitatively deliver the same message, but with quantitative differences.
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7. Conclusion
In this work, we have explored the concept of nullspace in Vision Transformers (ViTs) to understand
their robustness. Our findings demonstrate that a non-trivial nullspace indeed exists for Vision
Transformers, a direct consequence of the patch embedding layer. This discovery implies that there
are elements that, when added to an input, do not affect the output of the network, potentially offering
an explanation for the robustness exhibited by ViTs. Moreover, we have extended the definition of
nullspace, preserving a property that implies invariance of amapping’s output to input perturbations,
and empirically identified a space that exhibits such property within the input space of the non-linear
transformer encoder. By linking the presence of nullspace with our extended definition to the general
robustness of a network, we were able to devise a new approach to improve the robustness of ViTs.
Our empirical results suggest that fine-tuning ViTs with the learnt nullspace noise can significantly
enhance their robustness to a variety of robustness benchmarks.
This study offers a new perspective to the robustness of vision transformers. We believe these
findings can assist in furthering the robustness of ViTs, potentially facilitating advancements in the
development of more resilient models. Looking forward, there is more to explore in this direction.
Future research could focus on the development of efficient algorithms for learning nullspace and
investigate its presence in other architectures and layers of deep neural networks.
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Supplementary Material

A. Proof of Proposition 1
Let d be the hidden dimension of the attention layer. Qi,Ki ∈ Rd×dk where dk = d/h. rank(QiK

⊤
i ) ≤

rank(K⊤
i ) ≤ dk. Consider the sum of row spaces S = R(Q1K

⊤
1 ) + R(Q2K

⊤
2 ) + · · ·+R(QhK

⊤
h ). S

is a subspace of Rd. For i = 1, . . . , h, choose a basis for R(QiK
⊤
i ), denoted as Bi = {b1, · · · ,bni},

|Bi| = ni ≤ dk. Without loss of generality, let rm,k ∈ Bm.

S = span(
h⋃
i=1

Bi), so

dim (S) = dim

(
span

(
h⋃
i=1

Bi

))
= dim

span


 h⋃
i=1
i̸=m

Bi

 ∪ (Bm \ {rm,k})




≤

∣∣∣∣∣∣∣
 h⋃
i=1
i ̸=m

Bi

 ∪ (Bm \ {rm,k})

∣∣∣∣∣∣∣ ≤ (h− 1)dk + (dk − 1) = d− 1.

(9)

So, ∃w ∈ Rd,w ̸= 0 and w ∈ S⊥. This means for i = 1, . . . , h,w ∈
(
R
(
QiK

⊤
i

))⊥
,w ∈ N

(
QiK

⊤
i

)
.

By condition 2, N(Vi) ⊇ N(QiK
⊤
i ), so w ∈ N

(
QiK

⊤
i

)
∩N(V⊤

i ).

Then, we can choose W wherein each row is a multiple of w. We have WVi = 0, and for any input
to the encoderX ∈ Rn×d,

WQiK
⊤
i X

⊤ +XQiK
⊤
i W

⊤ +WQiK
⊤
i W

⊤ = 0. (10)

Consider the output of attention head,

headi(X+W) = Softmax

(
(X+W)QiK

⊤
i (X+W)

⊤
√
dk

)
(X+W)Vi

= Softmax

(
XQiK

⊤
i X

⊤ +WQiK
⊤
i X

⊤ +XQiK
⊤
i W

⊤ +WQiK
⊤
i W

⊤
√
dk

)
XVi

= Softmax

(
XQiK

⊤
i X

⊤
√
dk

)
XVi = headi(X).

(11)
Adding the noiseW does not change the output of any attention head for arbitrary inputX, which
completes our proof.
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B. Algorithm and implementation details

We present the algorithm of our data augmentation with nullspace noise in Algorithm 1.

Algorithm 1: Data augmentation with nullspace noise
1 Input: transformer model with patch embedding layer fe, encoder fϕ and linear classifier fψ

parameterized by e, ϕ, ψ respectively; training data T ; batch size B; sampling limit A; noise
nullity threshold ϵ; noise learning rate ηv ; model learning rate ηf ; number of outer iterations
K, noise training step T , model training step S

2 for k = 0, · · · ,K − 1 do
3 Sample initial noise v ∼ U(−lim, lim)
4 for t = 0, · · · , T − 1 do
5 Sample a minibatch (X,y) ∼ T
6 ComputeU← fe(X)
7 Compute logits Z← fψ(f

0
ϕ(U)), Z′ ← fψ(f

0
ϕ(U+ [v])) # "[v]" means

broadcasting the noise v along the sample dimension
8 Compute δ ← 1

B

∑B
i=1∥Softmax(z′i)− Softmax(zi)∥2 # zi is sample logit

9 if σ < ϵ then
10 break
11 end
12 Calculate ℓ← 1

B

∑B
i=1∥z′i − zi∥2

13 Update v← v −∇vℓ
14 end
15 for s = 0, · · · , S − 1 do
16 Sample a minibatch (X,y) ∼ T
17 ComputeU← fe(X)
18 Compute logits Z← fψ(f

0
ϕ(U)), Z′ ← fψ(f

0
ϕ(U+ [v]))

19 Compute loss L ← 1
B

∑B
i=1(ℓ(zi, yi) + ℓ(z′i, yi)), where ℓ is the cross-entropy loss

20 Update model parameters (ψ, ϕ, e)← (ψ, ϕ, e)−∇(ψ,ϕ,e)L
21 end
22 end
23 Output: model weight (ψ, ϕ, e)

Hyperparameters We fine-tuned the ViT model forK = 20 rounds in all settings. In each round,
we initialized the noise with sampling limit A = 3, optimized it with learning rate ηv = 0.1 and set
a threshold of ϵ = 0.03. We empirically found that T = 3000 is enough to trigger early stopping
so that the learned noise satisfies the ϵ threshold. We used ηf = 10−5 to fine-tune the model for
S = 40 iterations in each round. We set batch size B = 128, and slightly different from the vanilla
SGD in Alg 1, we used the AdamW optimizer [67] and cosine learning rate scheduler with defualt
hyperparameters for both the noise and the model training.
The original ViT-B + DATmodel [52] used the Exponential Moving Average (EMA) for evaluation3,
so we also used EMA to evaluate the performance of ViT-B + DAT fine-tuned with our method. For
all the other settings, we used single model without ensemble for evaluation. We used ϵ = 1/255 for
the FGSM attack consistent with [52].

Computation time The experiments were conducted on a combination of A100, V100 GPUs and a
3090 GPU, depending on the availability. Although we only used about 10% of the ImageNet-1k [51]
training data to fine-tune the model, the main computation time is on training the nullspace noise.
One run of our experiment (20 rounds) takes the time roughly equivalent to 8 epochs of standard
training on ImageNet-1k.

3https://github.com/alibaba/easyrobust
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C. Change trend of the noise influence with the fine-tuning steps

Beside the trend of noise norm and performance metrics in Fig. 4, we also keep track of the influence
of the learned noise in terms of MSE probability (3.2) at every 80 steps of the model fine-tuning. As
shown in Table 5, the noise influence is always lower than ϵ = 0.03, which means early stopping is
triggered and the model enters the ϵ region.

Table 5: MSE probability of the noise at different fine-tuning steps.
Fine-Tuning Step 40 120 160 280 360 440 520 600 680 760
MSE Probability 0.028 0.027 0.026 0.029 0.028 0.029 0.027 0.025 0.028 0.026

(a) Influence of ϵ noise under multiplication with different α (b) Influence of ϵ noise under convex combination with different
α1, α2

Figure 5: Validation of the properties of the ϵ-approximate nullspace.

D. Approximate Nullspace Properties

To explore the property of the ϵ-approximate nullspace, we conduct an experiment to observe the
behavior of the learned noise vectors under scalar multiplication and convex combination. For this,
we first construct a set of m ϵ-approximate nullspace vectors V = {vi}mi=1 starting from different
random initializations using ϵ = 0.033. For scalar multiplication, we vary the scaling factor α
and report the mean influence of αv on the model’s predictions in terms of MSE probabilities
(Figure 5(a)). For convex combination, we sample n different pairs of nullspace vectors from V,
denoted as P = {(vJk,1

,vJk,2
)}n
k=1

, where Jk,1,Jk,2 ∈ {1, 2, . . . ,m},∀k ∈ {1, . . . n}. Then, we vary
α1 and α2 between [0, 1]with a grid size of 0.1, and for each combination of (α1, α2), we evaluate the
influence of the convex combination α1vJk,1

+ α2vJk,2
on the model’s prediction in MSE probability,

averaged over all values of k. In practice we setm = 100, n = 10. The influence of the linear combined
noise at each point of the grid is visualized as a heatmap as shown in Figure 5(b).
The results in Figure 5 show that the approximate nullspace has similar property to vector space
in terms of closure under addition and scalar multiplication within a certain range of coefficients.
When the scaling factor α < 1, we see a clear trend that the MSE probability of the scaled noise is
less than αϵ. In the linear combination case, the line α1 + α2 = 1 is well within the contour line of
MSE probability being 0.033, showing that the convex combination of a pair of ϵ noise vector is still
ϵ-approximate.
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E. Watermarking Images
Watermarking as image, usually used to convey ownership information or verify content of the data,
has been studied extensively [68–71]. A watermark can be either imperceptible or perceptible. and
perceptible watermarking applies a noticeable marker to convey the protected nature of the data
[72]. In this section, we explore to utilize nullspace noise to apply a perceptible watermark on the
image which does not alter the test-time forward process.
Figure 6 shows an example watermarking approach using the nullspace noise. Here, we emboss
the ICML logo onto the natural images. The resulting modified image, attains the final predictions
close to the original image. (100%match in the final output prediction and 10−4 difference in the
predicted confidence value of the assigned class.)
Method details: With basis vectors of the nullspace, we can construct a watermark to be overlaid on
the original image without affecting the output of the network. Given a source (user’s image) and a
target image (watermark), we simply need to estimate the scalar parameters corresponding to the
basis vectors to satisfy∑i<m

i=0 eiλi = vθ ≈ ∆xj .
ei are the basis vectors for the nullspace, λi are their corresponding scalar co-efficients which are to
be determined and ∆xj is the changed required to convert jth original image patch to jth watermark
image patch. This can be achieved through a constrained optimisation of the following form:

min∥∆xj −
i<m∑
i=0

eiλi∥p. (12)

Here, ∆xj is the difference between the jth channel of a source and target image and λi is the ith
nullspace basis vector of the patch embedding layer with the corresponding variable scalar ei. We
use a least-square solver to solve for the solution (Available readily with packages such as Numpy).

F. Targeted Nullspace Noise
Due to the dimension reduction effect of the patch embedding layer in most ViTs, we can transfer an
image to be visually similar to another image by human perception, without changing the output of
the original image perceived by the model. This differs from adversarial examples in the following
aspects:

1. The working direction to construct an adversarial example is the other way around. If the
transformed image is to be considered an adversarial example, then our source becomes the
target for adversarial training and our target becomes the source.

2. Generating targeted nullspace noise requires no backpropagation through the network
3. Not only does the final prediction on the transformed image matches the source image, the

saliency maps also match. This is displayed in Fig. 7

Though the transformation is not perfect, we can spot that the transformed images are visually
similar to target images rather than source images. Even with this difference in the input space,
transformed images and source images are classified into the same category with roughly the same
confidence.
As recent studies have shown, fooling can also be extended to the interpretability methods (XAI)
Dombrowski et al. [73] partially due the limitations exposed by recent studies [73–75]. However, in
contrast to these works aiming to fool specific XAI method, our nullspace noise only depends on the
model, not the XAI method.
In Fig. 7(b), we show the interpretability maps as generated by LRP [76]. From the figure, we can
observe that the heatmaps generated by source and transformed images are identical whereas, the
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Figure 6: Watermark superposition using the nullspace basis vectors.
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(a) Triplet of Source, target and transformed images

(b) Saliency maps for the corresponding images from the row above.
Figure 7: Targeted nullspace noise. Transformed images appear visually as target images but are
interpreted as source images by the model. The equivalence between source and transformed images
is not only in terms of the final predictions but also in the interpretability maps depicted in (b).

transformed image heatmaps substantially differ from target images’. Though only reported for
LRP, we observed that a similar observation holds across different interpretability approaches. Here,
we only presented the results on LRP, as in the context of ViTs, we found the heatmaps from other
methods to be lacking (also pointed out by authors of LRP).
In Fig. 8 we show the saliency maps generated by different XAI methods. Even though the maps
generated by methods other than LRP are poor (hard to interpret), we see that the source and
transformed respond similarly to these methods.
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(a) Attention [76] (b) Grad-CAM [77]

(c) Rollout [78] (d) LRP [76]
Figure 8: Interpretability maps generated via different methods for (source, target, transformed)
images
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