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Abstract

The identification and localisation of pathological
tissues in medical images continues to command
much attention among deep learning practitioners.
When trained on abundant datasets, deep neural
networks can match or exceed human performance.
However, the scarcity of annotated data complicates
the training of these models. Data augmentation
techniques can compensate for a lack of training
samples. However, many commonly used augmenta-
tion methods can fail to provide meaningful samples
during model fitting. We present local gamma aug-
mentation, a technique for introducing new instances
of intensities in pathological tissues. We leverage
local gamma augmentation to compensate for a bias
in intensities corresponding to ischemic stroke le-
sions in human brain MRIs. On three datasets, we
show how local gamma augmentation can improve
the image-level sensitivity of a deep neural network
tasked with ischemic stroke lesion segmentation on
magnetic resonance images.

1 Introduction

The potential of deep neural networks to identify
and localise pathological tissues in medical images
continues to motivate research into novel training
methods. In theory, deep architectures can achieve
arbitrarily high levels of performance. In practice,
however, these algorithms are trained on insufficient
quantities of data. Overfitting arises as a result,
and the full potential of these algorithms remains
unrealised.

Traditional approaches to the data scarcity prob-
lem use data augmentation to expand the size of
the dataset. A typical setup selects a collection of
data-agnostic operations which come from parame-
terized families of spatial and intensity transforma-
tions. Examples include affine transformations, elas-
tic transformations, global gamma transformations,
additive and multiplicative noise transformations,
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blurring transformations, and brightness transforma-
tions. An unlimited collection of novel samples can
then be obtained by fixing probability distributions
on the parameter spaces and sampling augmentation
parameters from them.

Though a dataset can be enlarged in this fashion,
the approach may not provide relevant samples for
image models tasked with classifying or segmenting
regions of interest. Moreover, the augmentations
themselves are not guaranteed to have an apprecia-
ble impact on model training. For example, the liter-
ature often claims that elastic deformations improve
deep neural network performance [1–4]. Nonethe-
less, these transformations do not appear in all well-
known augmentation pipelines (for example, [5]),
and some research indicates that these transforma-
tions can impair a network’s performance [6, 7]. The
latter examples fit into the claim in [8] that the ef-
fectiveness of a data augmentation pipeline depends
crucially on the content of a dataset.

Thus, for models tasked with identifying and lo-
calising pathological tissues in medical images, prac-
titioners are developing augmentation techniques
that target these tissues. Recent work [4, 6, 9–11]
has focused on local augmentations that expose deep
networks to additional examples by isolating and
altering regions of interest.

We contribute a simple, targeted method of local
data augmentation for a pathology segmentation
model and apply this method to the problem of is-
chemic stroke lesion segmentation on multi-modal
magnetic resonance images. The method exploits
both the single-parameter family of gamma transfor-
mations and ischemic stroke lesion segmentation
maps to mitigate an intensity bias in the train-
ing data. We compare local gamma augmentation
against a baseline without it, and we show an im-
provement in image-level sensitivity as a result.

2 Related Work

Gamma transformations frequently appear in proba-
bilistic data augmentation pipelines for deep segmen-
tation networks. The training pipeline for nnU-Net
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Figure 1. Depiction of local gamma augmentation. An image I(x) and its gamma transformation Iγ(x)
are multiplied pointwise with a segmentation map and combined to produce an image IM,γ(x) featuring an
augmentation of a pathology.

[5] uniformly samples parameters for both gamma
compression and gamma expansion, with a bias
toward gamma expansion parameters. A similar
gamma augmentation scheme for a tumour segmen-
tation network appears in [3], with equal weighting
of gamma compression and gamma expansion. In
[12], random channel-wise gamma augmentations
are applied to RGB images of retinal vessels, with
a strong bias toward gamma expansion. In [13],
random gamma compressions augment the satura-
tion and value channels of HSV images of retinal
vessels. In all cases, the gamma transformations are
applied to the whole image and are uninformed by
any features of the dataset.

Other applications for global gamma aug-
mentations include generative modeling, out-of-
distribution benchmarking, and unsupervised do-
main adaptation. In [14], log-normally distributed
gamma transformations assist in the construction of
synthetic MRI training data for a segmentation net-
work. In [15], gamma augmentations help to produce
synthetic training data for a contrast-agnostic MRI-
to-CT generation network. In [16], the intensity
distribution shifts induced by gamma transforma-
tions are used to assess the robustness of image seg-
mentation networks. Moreover, the authors observe
that gamma compression impairs a segmentation
network’s ability to localise white-matter hyperin-
tensities. In [17], a GAN framework is trained to
simulate global intensity distribution shifts using
instance-specific gamma transformations.

Local image augmentations arise in many train-
ing schemes. CarveMix [11] augments MRI training
data by inserting pathologies from one image into
a second image. Moreover, for brain tumours, the
authors use deformable image registration to gen-

erate plausible intracranial mass effects. CarveMix
is also used in [4] to augment MRIs featuring mul-
tiple sclerosis lesions. Mask-based augmentations
which corrupt image data, such as random erasing
[18] and CutOut [19], have been explored in medical
image analysis scenarios and show mixed results.
The authors in [6] show that random erasing, which
replaces random image patches with independent
and identically distributed point intensities, impairs
the performance of a melanoma classification model.
In [9], a white matter tract segmentation algorithm
is fine-tuned on MRIs in which random subsets of
white matter tracts are cut out. In [10], the authors
observe that masked image modelling can improve
the performance of a prostate lesion classifier.

3 Methods

3.1 Gamma transformations

Let I(x) be an image with intensity values in the
range [0, 1]. A gamma transformation is defined
by a choice of γ > 0 via I(x) → I(x)γ . Thus a
gamma transformation yields a pointwise, non-linear
transformation of I.

Gamma transformations generalize to images with
arbitrary values by conjugation with min-max nor-
malization:

I(x) −→ (m2 −m1)

(
I(x)−m1

m2 −m1

)γ

+m1, (1)

where m1 = minx I(x) and m2 = maxx I(x).
A choice of γ between 0 and 1 gives a gamma

transformation which increases intensities and is
called a gamma compression. For γ greater than 1,
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the defined transformation decreases intensities and
is called gamma expansion.

3.2 Local gamma augmentations

To adapt gamma transformations to a local region
of interest, we alter the min-max normalization in
equation 1 as follows. Given a binary function M(x),
let S = {x : M(x) = 1} be the set of foreground
points of M . Set m̃1 = minx S and m̃2 = maxx S.
Then the map

Iγ(x) = (m̃2 − m̃1)

(
I(x)− m̃1

m̃2 − m̃1

)γ

+ m̃1 (2)

applies a non-linear transformation which is normal-
ized relative to the foreground S.

We then complete the local gamma transformation
by usingM(x) as a mask to mix intensity-augmented
pathological tissue in S with normal tissue outside
S:

IM,γ(x) = (1−M(x))⊙ I(x) +M(x)⊙ Iγ(x), (3)

where ⊙ denotes pointwise multiplication. Local
gamma augmentation is depicted in Figure 1, with a
segmentation map indicating diseased brain tissue.

When used to augment image data, gamma trans-
formations are randomly chosen by sampling γ from
a probability distribution. Typical choices include
the log-normal distribution for a weakly constrained
value of γ or a Beta distribution supported in a fixed
interval. Rather than sampling gamma parameters
as in [5], in which γ is drawn from the uniform dis-
tribution on the interval [0.7, 1.5], we instead sample
from a mixture of uniform distributions:

γ ∼ 1

2
U(0.7, 1.0) +

1

2
U(1.0, 1.5). (4)

Thus we effectively partition this interval into a half-
open gamma compression interval [0.7, 1.0) and a
closed gamma expansion interval [1.0, 1.5]. During
each choice of γ, one of the two intervals is selected
with equal probability.

Figure 2 depicts various local and global gamma
transformations applied to a diffusion-weighted im-
age from the ISLES-2022 dataset. In this image, one
can see a clear increase in contrast between healthy
brain tissue and diseased brain tissue for γ < 1,
whereas this contrast is decreased for γ > 1. This
differs from global gamma transformations, in which
the local contrast between healthy and pathological
tissue remains.

4 Data

4.1 Training Data

The models were trained on a multi-site in-house
brain MRI dataset consisting of 1308 studies, com-
prising of 420 ischemic strokes, 265 tumors and 234

hemorrhages, as well as 530 normal studies with-
out abnormalities. Each study consisted of three
MRI sequences: fluid-attenuated inversion recov-
ery (FLAIR), diffusion-weighted imaging (b0, b1000,
and ADC), and either susceptibility-weighted imag-
ing (SWI) or T2* gradient echo (T2*GRE). These
sequences were annotated by an in-house medical
team and verified by a certified neuroradiologist.

Medical experts classify presentations of ischemic
stroke on MRI according to their age [20]. The
various classes include hyperacute ischemic stroke,
which has the shortest time window from stroke
onset. When imaged sufficiently early, hyperacute
ischemic stroke lesions appear hyperintense in a DWI
sequence and isointense in a FLAIR sequence [21].
Notably, the MRIs in our training set underrepresent
hyperacute ischemic strokes, as shown in Table 1.
This yields a bias in ischemic stroke signal intensities
between the DWI and FLAIR sequences.

In addition, we include two publicly available
datasets for training. These include the Multimodal
Brain Tumor Segmentation (BraTS) [22–24] Chal-
lenge 2019 and Ischemic Stroke Lesion Segmentation
(ISLES) Challenge 2022 datasets [25, 26].

Pathology Type Count

Ischemic Stroke
Acute/Subacute 342

Hyperacute 15
Hemorrhagic 63

Hemorrhage
Intra-Axial 137
Extra-Axial 97

Tumor
Intra-Axial 95
Extra-Axial 170

Infection
Intra-Axial 27
Extra-Axial 2

Table 1. Representation of tissue pathologies in training
data. Of note is the relative under-representation of
hyperacute infarcts.

All sequences were acquired in different resolutions
and acquisition planes. Accordingly, as part of the
pre-processing step, DWI sequences were resampled
to isotropic resolution, while FLAIR and SWI/T2*
GRE sequences were resampled and co-registered to
DWI space.

4.2 Test Data

Our methods were evaluated on three independent
private datasets, yielding a train-test split that gen-
erally arises in a real-world scenario, with a mixture
of public and private data for the training set and
private data entirely sourced from external sites
for testing. The test data consist of DWI (b0 and
b1000), FLAIR, and ADC sequences for each pa-
tient. At training time, the test data consisted of
image-level labels only, rather than the pointwise
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Figure 2. Gamma transformations of a diffusion weighted image from the ISLES-2022 dataset. The center
column shows the original image. The top row contains globally gamma compressed images to the left and globally
gamma expanded images to the right. The bottom row consists of the same gamma transformations restricted to
the location of an acute ischemic stroke.

MVS RH WUS
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

U-Net 0.781 0.928 0.757 0.899 0.566 N/A
U-Net+LG 0.844 0.910 0.814 0.895 0.736 N/A

Table 2. Image-level sensitivity and specificity for ischemic stroke detection across three MRI datasets for
a baseline U-Net versus a U-Net trained with local gamma augmentation. Specificity for the WUS dataset is
non-applicable since all samples in the dataset contain ischemic strokes.

annotations that are customarily supplied to a seg-
mentation model. The three private datasets are
elaborated below:

MVS. A multi-site dataset consisting of 387 stud-
ies obtained with Siemens scanners, comprising of
139 ischemic strokes, 93 tumors, 76 hemorrhages, as
well as 98 studies with no abnormalities, which were
annotated on image level by two neuroradiologists.

RH. A consecutively sampled dataset of 262 ac-
quired brain MRI scans in a routine setting from
Rigshospitalet (RH) in Copenhagen, Denmark. The
dataset has further been consecutively enriched with
positive findings of ischemic strokes (hyperacute,
acute, and subacute), brain hemorrhage (intra-axial
and extra-axial) and brain tumors (intra-axial and
extra-axial) from three other hospital sites in the
Capital Region of Denmark. This resulted in a
multi-site cohort consisting of 487 scans including
96 ischemic strokes, 80 tumors, 76 hemorrhages, as
well as 162 completely normal scans. Furthermore,
73 scans have significant findings that are not at-
tributed to ischemic stroke, hemorrhage, or tumors,
e.g., inflammatory disease, pineal cysts, aneurysms,
and cavernous malformations. The pathology type
of the scans in the dataset was classified by a medi-
cal doctor with 3 years’ experience in brain imaging
using original radiological report impressions as ref-
erence.

WUS. A collection of brain MRI scans featuring

51 patients who awoke with symptoms of ischemic
stroke which were not present before falling asleep.
This wake-up stroke dataset contains two distinct
consecutively sampled cohorts, assembled using dis-
tinct stroke protocols, The first cohort contains 27
adult patients, and the second cohort consists of 24
adult patients. Both cohorts feature visible stroke
lesions on the DWI sequence for all patients, as pa-
tients without visible stroke lesions were excluded.
Of the 51 patients, 16 were determined to have a mis-
match in ischemic stroke signal intensities between
the DWI sequence and the FLAIR sequence. All
studies were annotated on an image level according
to patient reports.

5 Experiments and Results

5.1 Experimental Setup

All experiments used one 40GB Nvidia A100 Tensor
Core GPU for model training. The model archi-
tecture largely follows the implementation in [27].
The architecture has a depth of five and incorpo-
rates padded convolution, instance normalization,
and ReLU activations.

Models were trained for 500 epochs with a batch
size of 2 and 4-step gradient accumulation on ran-
domly extracted 128× 128× 128 patches, with deep
supervision, combining cross-entropy and general-
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ized dice loss, and using an Adam optimizer with an
initial learning rate of 0.0001 and a polynomial-rate
schedule.

We trained two U-Net models: a baseline U-Net
trained without local gamma augmentation, and a
U-Net trained with local gamma augmentations ap-
plied to DWI sequences, which we call U-Net+LG.
Augmentations for both models include: Rician noise,
Gaussian noise, Gaussian blurring, contrast transfor-
mations, brightness transformations, global gamma
correction, bias field correction, histogram equaliza-
tion, elastic deformation, rotation, scaling, mirror-
ing, random channel shifts and ghosting.

Of note is that a local gamma augmentation
scheme as described in Section 3.2 does not account
for images without a pathology. Such images are
paired with a segmentation map M(x) which is iden-
tically zero. Such an M(x) reduces Equation 3 to
the identity map. To avoid this reduction for such
images, we set M(x) = 1, so that a global gamma
transformation can be applied to the patch.

5.2 Evaluation

We used image-level sensitivity and image-level speci-
ficity to evaluate the performance of a baseline U-Net
and a local gamma augmented U-Net+LG on an
ischemic stroke classification task. As segmentation
models, U-Nets are typically evaluated with point-
wise metrics such as the Dice-Sørensen coefficient
or the Jaccard index. Our method of model evalua-
tion, namely classification instead of segmentation,
is required due to the lack of segmentation maps
as annotations for the data set. To treat a segmen-
tation model as a classification model, we define a
U-Net prediction to be positive if at least one voxel
in the model’s output is predicted as corresponding
to ischemic stroke.

5.3 Results

Table 2 summarises our results. We observe an in-
crease in image-level sensitivity from 0.781 to 0.844
for the MVS dataset and an increase in image-level
sensitivity from 0.757 to 0.814 for the RH dataset.
These increases are accompanied with small reduc-
tions in image-level specificity on both datasets.

For the WUS dataset, the improvement is even
greater: an increase in image-level sensitivity from
0.566 to 0.736. We speculate that this larger increase
in sensitivity is due to the influence of local gamma
augmentation. In particular, the local gamma aug-
mentation scheme exposes U-Net+LG to more ex-
amples of MRIs with signal differences between the
DWI sequence and the remaining sequences. We also
mention that specificity is not reported for WUS: a
specificity score for this dataset is meaningless since
every image contains an ischemic stroke.

5.4 Discussion

The simplicity of local gamma augmentation, namely
its use of a one-parameter family of intensity trans-
formations for data augmentation, means that it
is very straightforward to implement and hence is
amenable to further exploration. One potential re-
search avenue would be to identify better choices of
the gamma augmentation parameter. Our method
uses a mixture distribution to select augmentation
parameters, but this distribution is fixed. In this
way, the chosen augmentation parameters are data-
independent. Other research avenues could pursue
the use of targeted gamma augmentations for other
applications, such as adversarial training or pseudo-
healthy synthesis.
A serious limitation of the method is its depen-

dence on pointwise labels: without segmentation
maps, only image-level gamma augmentations can
be applied. Another limitation is the dependence
on pathological tissues which are characterized by
intensity differences relative to normal tissue. Not
all brain diseases are characterized by intensity dif-
ferences. Hence it is questionable that local gamma
augmentation (or local intensity augmentation of
any kind) would be effective.

6 Conclusion

We presented local gamma augmentation, an
intensity-based method of data augmentation which,
in a supervised setting, can be used to target patho-
logical tissues in human brain MRIs. We applied
this method to compensate for an intensity bias
in the training set due to an over-representation
of non-hyperacute ischemic strokes. This method
was compared against a baseline data augmenta-
tion method without local gamma augmentation on
three MRI data sets. The results suggest that re-
stricting gamma transformations to ischemic stroke
lesions during training of a segmentation model can
enhance image-level sensitivity without impairing
image-level specificity.
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