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ABSTRACT

Deep Neural Networks are known to be brittle to even minor distribution shifts
compared to the training distribution. While one line of work has demonstrated
that Simplicity Bias (SB) of DNNs — bias towards learning only the simplest fea-
tures — is a key reason for this brittleness, another recent line of work has surpris-
ingly found that diverse/ complex features are indeed learned by the backbone,
and their brittleness is due to the linear classification head relying primarily on the
simplest features. To bridge the gap between these two lines of work, we first hy-
pothesize and verify that while SB may not altogether preclude learning complex
features, it amplifies simpler features over complex ones. Namely, simple features
are replicated several times in the learned representations while complex features
might not be replicated. This phenomenon, we term Feature Replication Hypoth-
esis, coupled with the Implicit Bias of SGD to converge to maximum margin so-
lutions in the feature space, leads the models to rely mostly on the simple features
for classification. To mitigate this bias, we propose Feature Reconstruction Reg-
ularizer (FRR) to ensure that the learned features can be reconstructed back from
the logits. The use of FRR in linear layer training (FRR-L) encourages the use
of more diverse features for classification. We further propose to finetune the full
network by freezing the weights of the linear layer trained using FRR-L, to refine
the learned features, making them more suitable for classification. Using this sim-
ple solution, we demonstrate up to 15% gains in OOD accuracy on the recently
introduced semi-synthetic datasets with extreme distribution shifts. Moreover, we
demonstrate noteworthy gains over existing SOTA methods on the standard OOD
benchmark DomainBed as well.

1 INTRODUCTION

Despite the remarkable success of Deep Neural Networks (DNNs) in various fields, they are known
to be brittle against even minor shifts in the data distribution during inference, which are not uncom-
mon in a real world setting (Quinonero-Candela et al.|[2008; Torralba & Efros||[2011). For example,
a self-driving car that works well in normal weather may perform poorly when it is snowing, leading
to disastrous outcomes. The need for improving the robustness of such systems against distribution
shifts has sparked interest in the area of Out-Of-Distribution or OOD generalization (Hendrycks &
Dietterich, 2019; Gulrajani & Lopez-Paz, 2020).

In this work, we aim to tackle the problem of OOD generalization of Neural Networks in a covariate-
shift (Shimodaira, 2000) based classification setting, by addressing the fundamental cause of their
brittleness, rather than by explicitly enforcing invariances in the network using domain labels or
data augmentations. More specifically, we aim to mitigate the issue of Simplicity Bias, which is the
tendency of Stochastic Gradient Descent (SGD) based solutions to overly rely on simple features
alone, rather than on a diverse set of features (Arpit et al.|[2017}|Valle-Perez et al.,[2018]). While this
behavior was earlier used to explain the remarkable generalization of Deep Networks, recent works
suggest that this is indeed a key reason behind their brittleness to domain shifts (Shah et al., [2020).
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The extent of Simplicity Bias seen in models is a result of two important factors - diversity of features
learned by the feature extractor | and the extent to which these diverse features are used for the task
at hand, such as classification}”| Recent works suggest that generalization to distribution shifts can
be improved by retraining the last layer alone, indicating that the features learned may already be
good enough for the same (Rosenfeld et al., [2022; |Kirichenko et al., [2022b). Does this imply that
brittleness of models can be attributed to the learning of the classification head alone? If this is
the case, why does SGD fail to utilize these diverse features despite its Implicit Bias to converge
to a maximum margin solution in a linearly separable case (Soudry et al., 2018)? To answer these
questions, we firstly hypothesize and empirically verify that Simplicity Bias leads to the learning
of simple features over and over again, as compared to other, more complex features. For example,
among the 512 penultimate layer features of a ResNet, 462 of them might capture a simple feature
such as color, while the remaining 50 might capture a more complex feature such as shape — we
refer to this as (Simple) Feature Replication Hypothesis. Assuming feature replication hypothesis,
we further show theoretically and empirically that a maximum margin classifier in the replicated
feature space would give much higher importance to the replicated feature when compared to others,
highlighting why the linear layer relies more on simpler features for classification.

To mitigate this, we propose a novel regularizer termed Feature Reconstruction Regularizer (FRR),
to enforce that the features learned by the network can be reconstructed back from the logit or pre-
softmax layer used for the classification task. As shown in Fig[2] we firstly propose to train the
linear classifier alone by freezing the weights of the feature extractor. This formulation enables the
learning of an Invertible Mapping in the output layer, specifically for the domain of features seen
during training. This further allows the logit layer to act as an information bottleneck, encouraging
all the factors of variation in the features to be utilized for the classification task, thereby improving
the diversity of features used. We theoretically show that adding this constraint while finetuning
the linear layer can learn a max-margin classifier in the original input space, disregarding feature
replication. Consequently, the learnt linear classifier also gives more importance to non replicated
complex features while making predictions. We further explore the possibility of improving the
quality of features learned by the feature extractor, by using FRR for finetuning the backbone as
well. In order to do this, we freeze the linear classification head, and further finetune the backbone
with FRR. We find that this encourages the network to indeed learn better quality features that are
more relevant for classification. We list the key contributions of this work below -

e Key Observation: We provide a crisp hypothesis of “feature replication” to explain the brittleness
of ERM trained neural networks to OOD data (Sec[3.T). Using this, we further provide theoretical
and empirical evidence to justify the existence of Simplicity Bias in maximum margin classifiers.

e Novel Algorithm based on the Observation: Based on this, we introduce a novel FRR regularizer
to safeguard against the feature replication phenomenon (Sec[3.2). We also provide theoretical
support for FRR in an intuitive data distribution setting. Furthermore, we introduce a simple FRR-
L method to only regularize the linear head with FRR, and then introduce FRR-FLFT training
regimen to train the feature extractor for improved OOD robustness (Sec ).

e Empirical validation of the hypothesis and the proposed algorithm: We demonstrate the effective-
ness of FRR-FLFT and FRR-L by conducting extensive experiments on semi-real datasets (Ta-
ble [2)) constructed to study OOD brittleness, as well as on standard OOD generalization bench-
marks, where FRR-FLFT can provide up to 3% gains over SOTA methods for OOD generaliza-
tion(Table [3).

2 RELATED WORKS

Learning diverse classifiers to counter simplicity bias: Recent works have shown that ERM
trained models learn diverse features, however, the linear layer fails at capturing and utilizing these
diverse features properly. There have been several attempts at training classifiers which can make use
of such diverse features. (Teney et al.|(2022) train a number of linear classifiers on top of a pre-trained
network with a diversity regularizer, which encourages the classifiers to rely on different features.
Xu et al.|(2022) and Bahng et al.|(2020) propose to train debiased classifiers which are statistically
independent from trained biased networks, but these need careful design and prior knowledge of the

'In this paper, we refer to the penultimate layer’s activations as features.
%i.e., by the final classification layer.
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biases in trained networks. [Kirichenko et al.|(2022a)) show that reweighting train set examples and
retraining the last layer of a pre-trained deep network can alleviate spurious correlations, provided
one can access a balanced dataset. In contrast to these methods, our method can work simply on the
training set data, and produce a single classifier which is debiased. [Huang et al.| (2020) propose to
mute the features with highest gradients, and use only the other features to make a prediction. While
this method suppresses the maximally used features, it does not encourage the learning of hard-to-
learn features, which is directly realized using our loss formulation. Kumar et al.|(2022) suggest that
finetuning the final linear layer first before finetuning the entire network can make it more robust to
OOD shifts, and we utilize this insight in the FRR-FLFT phase of our method. A complementary
approach to this problem is to learn features that are more diverse (Zhang et al.||2022; [Wang et al.,
2019). We note that applying our proposed method on top of such techniques would encourage the
classifier to use the diverse features effectively, and this can further benefit the performance.

Domain Generalization and OOD robustness: The performance of neural networks is known to
drop when there is a mismatch in the train and test distributions (Hendrycks & Dietterich, [2019),
and methods to mitigate this have been gaining a lot of attention in recent years. The problem has
been studied under various assumptions on distribution shift. The commonly studied setting of do-
main generalization (Gulrajani & Lopez-Paz| |2020; L1 et al., 2018a)) assumes that the train distribu-
tion consists of a mixture of distinct distributions (called domains), with each train sample having a
domain label associated with it. The stronger setting of aggregate domain generalization (Thomas
et al.,|2021; Matsuura & Harada, |[2020) assumes training data to be drawn from a mixture of distri-
butions, but does not assume the availability of domain labels. Finally, OOD robustness (Hendrycks
& Dietterichl 20195 [Koh et al., [2021) drops all of these assumptions. Most works tackling the do-
main generalization problem attempt to train a model whose predictions are invariant to the domain
label (Li et al., 2018a} |Arjovsky et al., [2019), or try to align the features of the model for examples
from different domains (Shi et al., 2021} Shankar et al.| 2018]). However, since we aim to tackle the
stronger setting of OOD generalization, we do not use domain labels. Tackling the OOD robustness
problem, Thomas et al.| (2021)) and [Matsuura & Harada) (2020) first cluster training examples into
“pseudo-domains”, after which standard domain generalization techniques are used. Another recent
line of works propose using model averaging (Cha et al.| 2021} |Li et al.l [2022) and/or ensembling
(Arpit et al.| [2021) for better OOD generalization. These techniques are complementary to our con-
tribution, and we demonstrate how they can benefit each other in our empirical evaluation.

3 FEATURE REPLICATION HYPOTHESIS

Prior works have shown that neural networks trained with SGD exhibit simplicity bias (SB), even
when initialized with pre-trained models that can capture complex features. Our Feature Replica-
tion Hypothesis — FRH- states that: SB is observed because the simpler features of the input are
replicated multiple times in the feature space of neural networks.

When trained using SGD, the final linear layer then learns the max margin classifier on these repli-
cated features, which leads to over-reliance on simpler features in the input. Hence, the outputs of
the network are brittle to distribution shifts that change such replicated features. In this section, we
provide empirical and theoretical evidence for FRH, and propose a new regularizer — FRR— to mit-
igate this effect.

We first introduce some useful notations. Let f5(z) : R? — R™ be the feature extractor of a neural
network parameterized by weights 6, and W € R™*F be the weight matrix of the linear classifier.
For input x € RY, the output of the network is W7 fo(x) € R*.

3.1 EMPIRICAL VALIDATION OF FEATURE REPLICATION HYPOTHESIS (FRH) IN ERM

Coloured MNIST dataset. To empirically demonstrate feature replication, we use a binarized
version of the coloured MNIST dataset (Gulrajani & Lopez-Paz, [2020). We construct this dataset
by first assigning two digits of the MNIST dataset, namely “1” and “5”, to classes 0 and 1 respec-
tively. While training the network, we super-impose images of “1” onto colours of range Ry =
[(115,0,0) — (256,141, 0)] (i.e. red), and images of “5” onto colours of range R; = [(0,115,0) —
(141,256, 0)] (i.e. green). The dataset is constructed such that the simple feature, namely colour, is
weakly correlated with the labels, while the complex shape features are strongly correlated with la-
bels. See Appendix for more details about the dataset.
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Table 1: Features replication in Coloured MNIST: We observe that ERM learns more colour fea-
tures than shape features, and the prediction is less correlated with the shape features. Adding FRR
makes the network depend more on shape and less on colour, leading to better OOD performance.

Number Average correlation with input ~ Correlation with output
Algorithm Colour Shape Colour Shape Colour Shape ID Accuracy OOD Accuracy
ERM 26 4 0.76 0.26 0.81 0.61 99.9% 59.1%
ERM+FRR-L 26 4 0.76 0.26 0.71 0.65 99.6% 64.9%

Training setup: We train a model on this dataset, and test it on images which do not have any cor-
relation between the label and the colour, i.e. images where the digits “1” and “5” are superimposed
on randomly coloured backgrounds. We construct this test distribution to see how well different al-
gorithms learn simple (i.e. colour) and complex (i.e. shape) features, since an algorithm which de-
pends only on the spurious colour features would not have good performance on the test domain.
We train a four layered CNN on this data. If a feature in the penultimate layer fp(x) has more than
90% correlation with the color or shape of the input, then we call it as a color feature or a shape fea-
ture, respectively. We also compute the correlation of these features with the output of the network
WTfy (x)) over inputs from the test domain. This gives us information of the learnt features, and
their contributions to the final prediction of the network. Note that the feature dimension is m = 32,
and the output dimension is k = 1.

Observations: In Table[I] we report the number of colour features, shape features, and the average
correlation of each of these with the final prediction. We observe that the ERM trained model learns
both shape and colour features, but the number of learnt colour features (26) is much higher than
the number of shape features (4), despite their weaker correlation with labels, thus validating our
Feature Replication Hypothesis. We also visualize the inter-feature correlation of the learnt features
in Fig 5] which shows blocks of highly correlated features, further validating our hypothesis. We
note that correlation of the output with the shape features is lower, leading to OOD accuracy of 59%.

3.2 FEATURE RECONSTRUCTION REGULARIZER (FRR)

To alleviate simple feature replication issue, we propose Feature Reconstruction Regularizer (FRR)
to enforce that the learned features can be reconstructed from the output logits. We propose to retrain
the final linear layer using this regularizer to allow the model to utilize diverse features to compute
the final output. We implement this by introducing another neural network with the objective of
reconstructing the features of the network from the output logits, i.e. features fp(x) should be
recoverable from the predictions of the network through a transform 7 (.) parameterized by ¢. That
is, FRR is given by:

Lerg (2,0, W, ¢) = || fo(x) = To(WT fo(2))|l, (1)
where ||.||, denotes the £, norm. We set this norm to be /o, or ¢; in our experiments. In the simplest
case, T4(y) = ¢y, where ¢ € R™**. Note that in order to find the appropriate ¢, we jointly

optimize W and ¢ using gradient descent based optimizers. We also experiment with ¢ being a
more complex neural network.

We empirically validate FRR on Coloured MNIST, where using FRR with the linear layer leads to
lower correlation with Colour compared to standard ERM (Table[T). Consequently, OOD accuracy
improves by 5% over ERM.

3.3 FRH & FRR: THEORETICAL ANALYSIS

We now present a simple and intuitive data distribution with feature replication that highlights the
OOD brittleness of standard ERM, and also demonstrates FRR can be significantly more robust.

Data Distribution: Consider a linearly separable distribution consisting of two factors of variation
as shown in Figure That is, consider the following distribution (z,y) ~ D, where,

y = £1 with probability 0.5, =z = [y, y] + [n1, n2] € R®, n; ~ Unif[—0.5,0.5],i € [2]. (2)
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SVM, 0-Rep SVM, 5-Rep FRR (Ours), 5-Rep FRR (Ours), 5-Rep
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Figure 1: We demonstrate the brittleness of SVM (a, b) and effectiveness of FRR (c, d) based
classifiers on a toy dataset comprising of 2 factors of variation, sampled from a uniform distribution.
We consider d (= 0 or 5) feature replications (Rep) along the y-axis. FRR converges to a maximum
margin solution in the non-replicated feature space, resulting in improved OOD robustness (d)

Also consider a feature extractor fy(.) which captures feature replication in the first feature, i.e. for
every data point (z, y), the new, feature replicated data point will be (Z, y), where,

folx) =2 =[x, - ,21,229] € R, 3)

i.e., x1 is repeated d times. The joint distribution of features and labels is denoted by D. Finally,
we define the l; max margin classifier over a distribution D as wyy = arg min,, Hw||§ subject to
y-(w,x) > 1V (x,y) € Supp (D). Then we have the following results:

Claim 3.1 (Brittleness due to Feature Replication). Consider the data distribution given in Equa-
tion2} 3] Then, the following holds: (1.) The max-margin classifier wyp over D is given by wyy =
[1,1], and (2.) The max-margin classifier Wy over D is given by Wy = [d—f_l, ceey %] € R+,

The above claim implies that when there are replicated features to the input of the linear layer, the
max-margin classifier would give much more importance to the feature that is replicated. Hence,
even a minor change in this replicated feature in the input space would be amplified in the output of
the classifier. This is especially concerning in light of the observations in Table [T} which validate
the Feature Replication Hypothesis in Coloured MNIST.

Proposition 3.2 (Robustness of FRR). Denote the average feature reconstruction loss
STy L i NG a2 . Sk Tx PP
Lrrr(W, @) 1=  Joax B y~p | (0, 2)¢; — 2:)?| and consider any (w*, ¢*) satisfying:
(0*, ¢*) € argmin Lpgg (10, ) subject to y - (0, ) > 0V (,y) € Supp (15) .
(@,)
We have that: wf + - - - + W} = W . Consequently, we have (0*, &)  (wyy, x) for all x € R?.

Practically, we can implement the above as {3 o, over a batch. Above result shows that the feature
reconstruction regularizer will produce a linear classifier that gives equal weights to the replicated
and non-replicated features. This is equivalent to a maximum margin classifier in the non-replicated
feature space, thereby resulting in enhanced robustness to distribution shifts. Same is reflected in
Figure[T] (c), (d) which show impact of FRR on the trained boundary in the non-replicated feature
space. We defer the proofs of the above to Appendix [A] We also provide a more general result by
assuming correlated feature representations in Appendix [A]

4 TRAINING PROCEDURE

Pretraining : In order to learn features which are relevant to the train distribution, we first pre-
train our model using standard ERM with the cross-entropy loss Ls:q(W, 0, (z,y)).

FRR-L : Since ERM training is known to learn several rich and diverse features, we freeze the
backbone parameters 6, and retrain the final layer W as the following-

(WerR, Prrr) = Ivril/lg Laa(W, 0, (x,y)) + A\Lerr (2,0, W, §) 4

where Az, is a hyperparameter weighing the two losses. We train W and ¢ jointly. We refer to this
step as FRR-L, i.e. Feature Reconstruction Regularizer - Linear, since we only train the linear layer.
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ERM Training - FRR-FLFT

Figure 2: Our training procedure: Dotted fill indicates that the parameters are trainable.

FRR-FLFT : Following the suggestions of |[Kumar et al.| (2022), we follow up the linear layer
training with the finetuning of the feature extractor # with a weighted combination of the cross-
entropy loss and FRR, weighted by a hyper-parameter A\prpr. In this step we freeze the weights
of the linear layer to improve the stability of training. We do this since naively using this constraint
during network training could amplify the Simplicity Bias in networks in degenerate cases. For
example, the backbone could learn to output a single replicated simple feature which is predictive
enough on the training data. Reconstructing such a feature from logits would also be easy, but such
a network might not generalize well. Formally, the optimization problem for this step is -

OpLrr = In(}n »cstd(WFRR; 9, (IC, y)) + )\FLFT»CFRR(x, 0, WERR, ¢FRR) )

We view this step as “sharpening” the features for more accurate predictions. Freezing the linear
head makes sure that the features do not collapse to a degenerate solution. Our training algorithm is
summarized in Algorithm{I]and the training pipeline is illustrated in Figure

5 EXPERIMENTAL RESULTS

5.1 UNDERSTANDING HOW FRR MITIGATES SIMPLICITY BIAS

To empirically illustrate the extent of Simplicity Bias in Neural Networks, Shah et al.| (2020) intro-
duced several synthetic and semi-synthetic datasets, where some features are explicitly simple, re-
quiring a simpler decision boundary for prediction; while others are complex. In this section, we
demonstrate the effectiveness of the proposed Feature Reconstruction Regularizer towards mitigat-
ing Simplicity Bias, by evaluating the same on a 10-class variant of the proposed semi-synthetic
MNIST-CIFAR dataset, as discussed in the following section.

5.1.1 MNIST-CIFAR-10 DATASET

We extend the simple binary MNIST-CIFAR dataset proposed by |Shah et al.[ (2020) to a 10-class
dataset, in order to evaluate the impact of the proposed Feature Reconstruction Regularizer in a
more complex scenario when compared to the binary Colored-MNIST dataset presented in Section-
[3] We refer to this dataset as MNIST-CIFAR-10. The higher complexity of this dataset allows for a
more reliable evaluation of various settings such as linear probing, full network finetuning and fixed-
linear finetuning, with better granularity of results.

To construct this dataset, we first define correspondences between the classes of CIFAR-10 and
MNIST. Each image from class k of MNIST is mapped with an image from class k of CIFAR-10,
with the label being set to k. Thus, every training data sample (x1, 22, y) consists of 21 and x5,
which are images from CIFAR-10 and MNIST respectively, along with their ground truth class y. It
is to be noted that for both CIFAR-10 and MNIST, labels are always correlated with the respective
images. In such a scenario, although a classifier can achieve very good performance by relying
solely on the simple (MNIST) features, the goal of Out-Of-Distribution (OOD) robustness requires
it to rely on the complex (CIFAR-10) features as well. This dataset represents the toughest setting
of OOD generalization, where there is no differentiation between important features and spurious



Published as a conference paper at ICLR 2023

Table 2: ID and OOD accuracy (%) by training on MNIST-CIFAR-10 in various training regimes.

L . . . In-Distribution (ID) Out-Of-Distribution (OOD)

Initialization Layers trained ExpID Training Loss Training Dataset MNIST-CIFAR-10  MNIST-AvgCIFAR CIFAR-AvgMNIST

El MI: ERM (CE) MNIST-CIFAR-10 99.84 = o001 97.44 +os9 51.92 +1:2

Random All layers E2 Cross-Entropy CIFAR-RandMNIST 88.53 + o5 9.77 +on 88.52 + 0.4

E3 Cross-Entropy MNIST-RandCIFAR 99.68 =002 94.84 + 113 10.02 + o013

E4 M2: ERM-L (CE) MNIST-CIFAR-10 99.86 + 001 97.06 + 005 52.73 1008

E5 Cross-Entropy CIFAR-RandMNIST 65.14 1005 10.15 s o0 65.10 + 003

MI:ERM Linear layer E6 Cross-Entropy MNIST-RandCIFAR 99.71 + o000 94.84 o004 10.33 o7

E7 CE + Full-Rank Reg MNIST-CIFAR-10 99.86 + 001 97.04 015 52.87 + 100

E8 M3: FRR-L (Ours) MNIST-CIFAR-10 99.88 + 000 96.81 +038 59.13 +o37

All layers E9 Cross-Entropy 99.84 + 002 97.67 %019 53.33 1018

R Feature extractors  E10 Cross-Entropy 99.84 =001 97.67 +o0.s 53.67 +o0.40

M2:ERM-L All layers Ell FRR-FT MNIST-CIFAR-10 99.84 + 00 97.32 +04s 54.12 + o044

Feature extractors  E12 FRR-FLFT 99.81 +004 98.44 1064 60.02 + 069

All layers EI3 Cross-Entropy 99.87 + o001 97.03 + o035 61.75 +o3

E Feature extractors El4 Cross-Entropy 99.88 +002 97.35 +o34 63.73 +o0e2

M3:FRR-L All layers El5 FRR-FT MNIST-CIFAR-10 99.85 + o001 99.30 + 005 62.13 1042

Feature extractors E16 M4: FRR-FLFT (Ours) 99.84 + 003 99.45 1003 68.12 096

R P E17 Cross-Entropy CIFAR-RandMNIST 79.92 o033 11.93 =000 77.35 + o010

M4:FRR-FLFT  Linear layer EI8 Cross-Entropy MNIST-RandCIFAR 99.71 +0m 99.46 + 000 10.27 +on2

correlations. A real-world example of such a case is the classification of swans versus bears, with
the training dataset consisting of only white swans and black bears. Here the model could either
rely on shape or color for classification. A classification network that relies solely on the simplest
feature color, fails to generalize to the test set consisting of black swans and polar bears.

5.2 TRAINING AND EVALUATION SETTINGS

We consider two separate ResNet-18 (He et al., |2016)) feature extractors for CIFAR-10 and MNIST
respectively. The outputs of the Global Average Pooling (GAP) layers in each of the feature extrac-
tors are concatenated to form a 1024 dimensional vector, which is given as input to the linear clas-
sifier. This architecture allows the computation of accuracy based on either a combination of both
CIFAR-10 and MNIST features, or based on features of only one of the datasets. For example, to
evaluate the performance of the classifier based on CIFAR-10 features alone, we replace the 512 di-
mensional MNIST feature vector of each data sample with an average feature vector computed from
all images in the MNIST dataset. We refer to this as the CIFAR-AvgMNIST dataset, while the cor-
responding one for MNIST is refered to as the MNIST-AvgCIFAR dataset. Similar to the work by
Shah et al.[(2020)), we define two additional datasets, CIFAR-RandMNIST and MNIST-RandCIFAR,
where images from one of the datasets (MNIST and CIFAR-10 respectively) are randomly shuffled
with respect to their corresponding labels. The base training (E1, E2, E3) is done for 500 epochs, and
the linear layer training / finetuning (E4 - E18) is done for 20 epochs, without any augmentations.

5.3 EXPERIMENTAL RESULTS IN VARIOUS TRAINING REGIMES

We present the results of training on the MNIST-CIFAR-10 dataset using different algorithms in
Table[2] The mean and standard deviation across five runs have been reported for each case.

ERM Training: By training a randomly initialized model on the MNIST-CIFAR-10 dataset using
the cross-entropy loss (E1), we obtain an accuracy of 99.84% on its corresponding test split. While
the accuracy of this model on the MNIST-avgCIFAR dataset is high (97.44%), its performance on
the CIFAR-avgMNIST dataset is poor (51.92%), indicating that the model chooses to rely more on
the simpler MNIST features, rather than a combination of both CIFAR and MNIST features.

While the performance on the CIFAR-avgMNIST and MNIST-avgCIFAR datasets is sufficient to
understand the extent of CIFAR/ MNIST features used by the classification head, it does not give a
clear picture on the features learned by the two feature extractors. To understand this, we reinitialize
the linear classification head randomly, and train the same using CIFAR-RandMNIST (ES) and
MNIST-RandCIFAR datasets (E6) respectively. We obtain an accuracy of 65.2% on the CIFAR-
avgMNIST dataset in the former case, indicating that although the CIFAR features learned can
possibly achieve 13% higher accuracy (w.r.t. E1), the bias in the classification head prevents them
from participating in the classification task. The MNIST-avgCIFAR accuracy of the latter case is
high as expected. An upper bound on CIFAR-10 and MNIST accuracy that can be achieved with
the selected architecture and training strategy (without using any augmentations) can be seen in E2
(88.53%) and E3 (99.68%) respectively.
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Training the Linear Classification Head: As discussed, while ERM training (E1) learns features
that can be used for better OOD performance (ES), it does not effectively leverage these features for
the classification task. We firstly explore the possibility of bridging the difference in the CIFAR-
avgMNIST accuracy between E1 and E5 by merely retraining the linear layer. By reinitializing
and naively retraining the linear layer with Cross-entropy loss, the accuracy on CIFAR-avgMNIST
improves by less than 1% (E4). Using the proposed Feature Reconstruction Regularizer (FRR)
for training the linear layer alone, the CIFAR-avgMNIST accuracy improves by 7.21% as shown
in E8, demonstrating the effectiveness of the proposed regularizer in mitigating Simplicity Bias.
We penalize the ¢, norm of difference in original features and their reconstruction in addition to
the minimization of cross-entropy loss. The reconstruction based regularizer enforces the network
to utilize both CIFAR and MNIST features for classification. Since this regularizer resembles an
orthonormality constraint on the linear classification head, we additionally check the effectiveness of
explicitly enforcing a full-rank constraint on the linear layer by minimizing the following: ||[W W7 —
I||F (E7). We find that this is not effective in improving the overall accuracy, possibly because it
enforces a very stringent constraint on the final classification layer. Contrary to this, the proposed
Feature Reconstruction Regularizer allows more flexibility by imposing this constraint only on the
domain of features seen during training. This accounts for the simple feature replication as well,
enabling to view the logit layer as an information bottleneck in the reconstruction.

Finetuning (FT) and Fixed Linear Finetuning (FLFT): We explore the finetuning of a given base
model in two settings - firstly by finetuning all layers in the network (denoted as FT or FineTuning),
and secondly, by freezing the parameters of the linear classification head and finetuning only the
feature extractors, which we refer to as FLFT or Fixed Linear FineTuning. By finetuning an ERM
trained base model using either of the two strategies (E9 and E10), we observe gains of less than
1%. We observe similar gains even by finetuning the full network with FRR (E11). Contrary to this,
by using FRR-FLFT even on the ERM trained network (E12), we obtain 7.29% improvement over
the base model. This shows that, by allowing the full network to change while imposing the FRR
constraint, the network can continue to rely on simple features, possibly by reducing the number of
complex features learned by the feature extractor. However, by freezing the weights of the linear
layer and further imposing this constraint, the network is forced to refine the CIFAR features that
are already being used for prediction.

Combining FRR-L and FRR-FLFT: While we obtain similar order of gains ( ~ 7%) using both
FRR-L and FRR-FLFT individually, the former improves the diversity of features being considered
by the classification head, while the latter improves the quality of the features themselves. We
therefore propose a training strategy that combines both FRR-L and FRR-FLFT. Using this, we
obtain gains of 16.2% over the ERM baseline as shown in E16, indicating that the combination of
FRR-L and FRR-FLFT has a compounding effect by firstly selecting diverse features, and further
refining these features to be more useful for classification. Although FRR-L followed by FRR-FT
(E15) is also effective, it has about 6% lesser gains when compared to the proposed approach of
FRR-L + FRR-FLFT. We note that following up FRR-L with ERM-FT (E13) or ERM-FLFT (E14)
also refines the learned features, making them more suitable for the classification task, yielding 2.6%
and 4.6% gains respectively over FRR-L.

We verify the quality of features learned by the feature extractors after the proposed training strat-
egy FRR-L + FRR-FLFT by reinitializing and retraining the linear classifier on CIFAR-RandMNIST
(E17) and MNIST-RandCIFAR (E18) datasets respectively. We observe considerable gains of
around 15% on MNIST-CIFAR-10 accuracy using CIFAR-RandMNIST training when compared to
ERM (ES), demonstrating that the proposed approach not only results in more CIFAR features be-
ing used for classification, but also leads to the learning of better CIFAR features.

5.4 OOD GENERALIZATION IN A REAL WORLD SETTING

We show the efficacy of FRR towards improving OOD generalization on the DomainBed (Gulrajani
& Lopez-Paz, |2020) benchmark. We use the performance of the model on in-domain validation data
(i.e. the in-domain strategy by |Gulrajani & Lopez-Paz|(2020)) to select the best hyper-parameters,
and report the average performance and standard deviation across 5 random seeds.

Baselines : We compare our method against standard ERM training, which has proven to be a
frustratingly difficult baseline (Gulrajani & Lopez-Paz| [2020), and also against several state of the
art methods on this benchmark - SWAD (Cha et al.,|2021), MIRO (Cha et al., 2022) and SMA (Arpit
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Table 3: Results on DomainBed: The bottom partition shows results of methods that perform model
weight averaging. In both cases, with (top) and without (bottom) model weight averaging, the
proposed approach outperforms existing methods.

Algorithm PACS VLCS OfficeHome Terralncognita DomainNet \ Avg.
ERM 85.5 +01 77.5 +o4 66.5 o2 46.1 +os 40.9 tou1 63.3
IRM 83.5+08 78.5 +os 64.3 £22 47.6 +os 33.9 123 61.6
CORAL 86.2+03  78.8+06 68.7+03 47.6+10 41.5 +o1 64.5
MIRO 85.4 +04  79.0 o0 70.5 04 50.4 +1.1 44.3 +o2 65.9
ERM+FRR-L  85.7 +01  76.6 02 68.4 +o2 53.7 + 06 44.2 101 65.7
ERM+FRR 87.5 +01 77.6 o3 69.4 £o.1 54.1 o6 45.1 o1 66.8
SMA 87.5 +02 782 +o2 70.6 +o0.1 50.3 o5 46.0 +o.1 66.5
SWAD 88.1 o1 79.1 o1 70.6 £o2 50.0 o3 46.5 o1 66.9
SWAD+FRR  89.2 £04 80.0 £o02 70.3 +o. 53.2 +03 46.2 +00 67.9

et al.,|2021). Finally, we show that our approach can be effectively integrated with stochastic weight
averaging to obtain further gains. See Appendix [G]for further experimental details.

Main Results: The main results of our algorithm are reported in Table[3] We find that our pipeline
of training and finetuning with FRR, when combined with ERM achieves improved performance
with respect to the state of the art methods that do not use model weight-averaging, and in fact
achieves comparable performance to methods that use model weight averaging as well. Further,
our method obtains substantial gains of more than 3% over ERM across datasets. The gains are
especially pronounced for the larger datasets including DomainNet and Terralncognita (8% and 5%
resp.), indicating the efficacy and scalability of our method. Further, it is clear from Table [3] that
finetuning the feature extractor once the linear layer is fixed provides a boost of over 1% on average
over FRR-L. This empirically validates our finetuning paradigm which we denote as ERM+FRR.
Finally, using our method in tandem with SWAD helps us achieve a new state-of-the-art on the
DomainBed benchmark, outperforming other methods on three datasets while achieving comparable
performance on two, and being better than existing SOTA by close to 1% on average. We report
detailed results and further ablations in Appendices [H|and [J|

6 CONCLUSION AND DISCUSSION

In this work, we consider the problem of OOD generalization through the lens of mitigating Sim-
plicity Bias in Neural Network training. To unravel the paradox pertaining to the existence of Sim-
plicity Bias in learning only the simplest features, and the observation that the features learned by
large practical models may already be sufficiently diverse, we put forth the Feature Replication Hy-
pothesis that conjectures the learning of replicated simple features and sparse complex ones. Com-
bining this with the Implicit Bias of SGD to converge to maximum margin solutions, we provide a
theoretical justification to the high OOD sensitivity of Neural Networks.

To specifically overcome the effect of simple feature replication in linear layer training, we propose
the Feature Reconstruction Regularizer, that penalizes the £, norm distance between the features and
their reconstruction from the output logits, thus improving the diversity of features used for classifi-
cation. We further propose to freeze the weights of the linear layer thus trained, and use the FRR reg-
ularizer for finetuning the full network, to refine the features to be more useful for the downstream
task. We justify the proposed regularizer both theoretically and empirically on synthetic and semi-
synthetic datasets, and demonstrate its effectiveness in a real world OOD generalization setting.

We believe and hope that this work can pave the way towards obtaining a better understanding
on the underlying causes for OOD brittleness of neural networks, and inspire the development of
better algorithms for addressing the same. We believe the proposed regularizer can potentially work
effectively in several other settings that involve the use of linear layer training/finetuning, such as
domain adaptation and transfer learning. While the regularizer works effectively in a scenario where
the network is first trained using an algorithm such as ERM to learn features that are relevant to
the task at hand, the robustness of the proposed algorithm in the presence of severely non-relevant
features is yet to be explored.
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A PROOFS OF THEORETICAL RESULTS

In this section, we present a generalization of Claim [3.1]and Proposition [3.2] under weaker assump-
tions on the featurizer, and use them to prove the claims made in Sec

A more general setting Consider the dataset distribution D as defined in eq equation 2} Now, let
fo(x) = Oz, where © €?*2, Further, Vi 0; 1+0; 2 = 1. In simple words, the feature extractor maps
the input to a d-dimensional feature representation, where each feature is a convex combination of

10
10
the input feature variations. Also note that# = | : | corresponds to feature replication.
10
0 1

We now rephrase the results from Sec[3.3]in this setting and provide proofs for the same.

Claim A.1. (Restating Claim - The max margin classifier w minimizing Hsz and satisfying
y(w, Oxz) > Lis givenbyw = [2,--- , 2].

Proof. Consider the point & = (0.5,0.5). Then, due to the constraint on the max-margin classifier,
we have y(w, Ox) > 1i.e.

d
1
5 D w1 +6;0) > 1
j=1

d

j=1
The minimizer of £ norm under this constraint would be when all w; = % for all j.

O

Note that the “effective classifier” @ in the input space in this case is (w, ©), i.e. the slope of

d
W2 _ Zj:l 0.2

the classifier in the input space =2 7— - In particular, for the case of feature replication,
j=1Y3,1
ijl jo=d—1and ijl 6.1 = 1, leading to a skewed classifier.

Now we restate and show the robustness of FRR in this setting.
Proposition A.2. (Restating Prop[3.2)) - Denote the feature reconstruction regularizer for this setting
as -

FRR(w) = mUin @?&EKW’ Oz)u; — (0x);)?]

Let wrgrg be the minimizer of F RR(w) satisfying y{(wrrr, Ox) > 0 (i.e. it is a perfect classifier).
Then, wrRrR satisfies

(WrRrR,©.2) 1 —(0p1 —042)

(WrrR,©.1) 1+ (Bh1 — ba2)

where a = arg max; 0; o, b = argmax; 6; 1.

Proof. Consider the FRR for this dataset -

FRR(w) = mUin 1121ia§XdIE[(<w, Ox)u; — (0x);)%

13
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For each i, by computing the minimum over u; by considering the quadratic in u;, we obtain

E[{(w, Oz)(0x);]?
E[{w, Ox)?]

FRR(w); = E[(0)?] -

We now consider each term in this expression
E[(©2)7] = E[(0; 121 + 0 22)°]
13
= 5(91'2,1 +675) +26;16; 2

This is because E[x1x5] = 1 and E[z?] = E[23] = 1 + ﬁ

EKU}, @iL‘>(@iL‘)l]2 = E[(.’El (w, @.,1> + X2 (w, @.’2>>(61,i$1 + 92)1‘1‘2)}2
= (E[(w?(w, @.’1>9¢,1 + x%(w, @-}2>9i,2 + ($1$2)(<w, 9-,1>9i,2 + (w, 9-,2>9i,1)])2

13
(12(<w @ > 0,1 + <w7 9-,2>9i,2) + (<w7 @~,1>9i,2 + <w, 9-,2>9i,1))2
132
= 55 (0,0.1)%67, + (w,0.2)°67, + 2(w, 0.2 (w, 0.1)6: 26:.1)
<w 9.’1> 01 5+ <w, 6',2>20i2,1 + 2(w, @.,2><w, 9-,1>9i,10i,2
13
+ty ((w,0.1)” + (w,0.2)*)0;10; 2 + (w, 0. 1)(w, ©.2)) (67, + 67,))

Finally,

E[(w, 0z)?] = E[(z1(w, 0. 1) + z2(w, 6. 2))?]
13

12(('w 0.1)2 + (w,0.2)%) +2(w,0. 1) {(w,0.5)
Putting it together,
13 ,0.1)0;.5 — (w,0.5)6;1)?
FRA(w); = oz = J 01 = (9.0.210.)
5 (w,0.1)? + (w,0.2)?) + 2(w, 0. 1)(w, 0. 2)
_ 7~ D({w,0.1) = ((w,0.1) + (w,0.2))8;1)°
1 (w,0.1)? (w ©.2)?) +2(w, 0.1 )(w, O. 2)
(35 - 1)(w,0.2) = (w,0.1) + (,0.2))6;.2)°
B (w,©. 1) (w,@‘72>2) +2(w, 0. 1)(w, 0. )
Let % = «. Further, Let a,b be such that a« = argmax;(a — 6;1)? and b =

argmax; (1 — a — 0; 2)%. Then,

max{(a — 0,1)%, (1 — a—0y2)?}
| 4 oy

FRR(a)
To minimize the above expression w.r.t. a, we compute the derivative of the above expression for
each component of the max function

9 ((¥—29a,1)2)2
1+% ~ (a — Ha’l)(a(%a,l — 1) — 9(1,1 + 13)

O (200 — 20,1 + 13)?
and
8(1—04—91),2)2)
1+% o~ — (1 — o+ 91,72)(04(2017’2 — 1) - 91,’1 — 12)
O (2 — 20,1 + 13)?

14
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For o > M, the second term is greater and the derivative is positive. Similarly, for @ <
M, the first term is greater and the derivative is positive. Hence, the minima is obtained at
1+o

a = a0z Agsuming 0.5 < 0,.1,60p0 < 10r0.0 < 61,052 < 0.5.
Now, in order to compute a, b, we can look at the maximization problem again -

a = argmax(1l — (6;1 + Ob,2))
b= argmax(1l — (fa,1 + 0:2))°

Since 6; 1, 0; o are bounded between [0, 1] the function to maximize is monotonically decreasing
in 0. 1,0.,. Hence, a = argmin; 6, ; and b = argmin, 6; . Conversely, a = argmax; 0; ,

1+(6p,1—0
2

b=argmax;0,; and o« = a:2) Hence,

(w, 0. 2) _ 1= (Op1 —04.2)
(w,0.1) 14 (0p1 —042)

Assuming that the maximum correlation of both the features is close, FRR will lead to a solution
which gives roughly equal weights to both the features. O

Note that for the case of feature replication, 6, ; = 1 and §,» = 1. Hence, Ezgfi =1

B JUSTIFICATION OF FEATURE REPLICATION HYPOTHESIS (FRH)

In a practical scenario where features are not disentangled, our hypothesis translates to the following:

Conjecture: Simpler features of the input are represented more in the feature space of neural net-
works, while complex (hard-to-learn) features are sparse.

Assumptions:

e We consider simple features such as background to be spurious, and complex features such
as shape to be robust.

e We consider an overparameterized network that has the capacity to learn more features than
what exist, resulting in feature repetition.

Justification: We justify the conjecture by showing that all other possibilities discussed below
cannot be true.

1. Assumption: DNNs learn only Simple Features
Contradiction: Prior works (Rosenfeld et al.| 2022 |Kirichenko et al., [2022b) show that
features learned by ERM are diverse, and last layer training on target domain is good
enough to obtain robustness to spurious features. This cannot be possible if the network
has learned only spurious features.

2. Assumption: DNNs learn only Complex Features
Contradiction: The dominance of Simple features in the learning of DNNs is shown by
Shah et al.| (2020). Moreover, the existence of texture-bias (Geirhos et al., [2018)) and
background-bias (Xiao et al., 2020) have been demonstrated in prior works, which show
the dominance of Simple features.

3. Assumption: DNNs learn a uniform distribution of both Simple and Complex Features.
Contradiction: SGD converges to an SVM solution due to its implicit bias (Soudry et al.,
2018). From Claim-3.1 (1), in the presence of balanced features that are correlated with the
label, SVM solution gives equal weight to all features to maximize margin. This contradicts
the existence of Simplicity Bias (Shah et al., [2020).

4. Assumption: DNNs learn more Complex Features and less Simple Features.

Contradiction: Since Complex features are indeed more robust and are better correlated
with the labels, the classifier would rely more on these features. This contradicts the exis-
tence of Simplicity Bias (Shah et al., [2020).
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Therefore, the only feasible option which supports the empirical observations in the prior works
discussed above is that DNNs learn more Simple Features and Complex features are sparse, which
justifies our conjecture.

C EMPIRICAL EVIDENCE FOR FEATURE REPLICATION HYPOTHESIS (FRH)

C.1 SYNTHETIC DATASETS

We present empirical validation to support the Feature Replication Hypothesis (FRH) on several
semi-real datasets and describe them in detail below:

1. Coloured-MNIST-2 - In this dataset, we use images of digits superimposed on either of
the two colours- red or green. The difference from Coloured-MNIST is that we consider
only two colours for the background, rather than a range. We notice extreme simplicity
bias in this case, with the network learning 32 colour features and 0 shape features.

2. Coloured-MNIST-MultiDigit - This is similar to the Coloured-MNIST dataset described
in Section-3.1, with the exception that each of the classes is now composed of two digits.
More specifically, the digits ‘1’ and ‘7’ and mapped to Class 0 and digits ‘5’ and ‘8’ are
mapped to Class 1. We note that ‘1’ and ‘5’ are chosen from the original Coloured-MNIST
dataset, while the second digit (e.g.“7’) in each class is selected to be one that is similar to
the first digit (‘1°) in the same class. This dataset is constructed specifically to show that
the issue of Simplicity Bias and FRH exists even when there is higher variation in the shape
feature, and is reported as ColouredMNIST-MultiDigit below. We see that while more
shape features are learnt as compared to Coloured-MNIST, the network still relies more on
colour to make its decisions.

3. Digit-Coloured-MNIST: This is similar to the Coloured-MNIST dataset described in
Section-3.1, with the exception that the digit is coloured rather than the background. This
dataset is constructed specifically to show that the issue of SB and FRH exist even when
the region that is coloured, which is the extent to which simple features exist in the im-
age is much lesser, and is reported as DigitColouredMNIST below. Although this dataset
also demonstrates the presence of SB, we note that the average correlation of features with
shape is higher when compared to the above datasets.

Table 4: Features learnt by an ERM trained model on synthetic datasets.

Number Average correlation with input  Correlation with output
Algorithm Colour Shape Colour Shape Colour  Shape ID Accuracy OOD Accuracy
ColouredMNIST 26 4 0.76 0.26 0.81 0.61 99.9 59.1
TwoColouredMNIST 32 0 0.90 - 0.82 - 99.9 49.5
ColouredMNIST-MultDigit 17 7 0.59 0.32 0.76 0.64 99.3 64.2
DigitColouredMNIST 26 3 0.76 0.36 0.79 0.45 99.9 62.1

C.2 REAL WORLD EXAMPLE

We attempt to demonstrate feature replication in a model trained with ERM on the Real domain of
OfficeHome. We train a ResNet-50 on this domain, and perform PCA on the features learnt by this
network. The network learns 2048 features per example, and we compute the 2048 x 2048 sized
covariance matrix of the features over samples from a test domain (Clipart). We then compute the
eigenvalues of this matrix, and find that 500 principal components can explain about 97.5% of the
variance, i.e. the matrix is extremely low rank, as shown in Fig[3] This points to the fact that a lot of
the learnt features are linearly dependent and highly correlated with each other. This trend is similar
to what we observed on ColouredMNIST, where a large number of features were highly correlated
with the colour, and in turn with each other (Fig. [5]of the appendix).

We note that in all the additional datasets considered, simpler features are represented more in the
network while complex (hard-to-learn) features are sparse. This empirically justifies our hypothesis
in Section-3.

16



Published as a conference paper at ICLR 2023

Cumulative Fraction of Explained Variance

Ei 51;0 10‘00 1560 20'00
Index of eigenvalue
Figure 3: Distribution of eigen values of covariance of learnt features: A small fraction of prin-
cipal components can explain most of the variance in features, indicating that features are highly
correlated with each other.

D SYNTHETIC DATASETS

D.1 COLOURED MNIST

In order to empirically demonstrate feature replication, we use a binarized version of the coloured
MNIST dataset (Gulrajani & Lopez-Pazl [2020). To construct this dataset, we firstly assign two
digits of the MNIST dataset, namely “1” and “5”, to classes 0 and 1 respectively. For the in-domain
training distribution, we associate colours in the range Ry = [(115,0,0) — (256, 141, 0))] (i.e. red)
to label O (i.e. the digit “1”") and the range Ry = [(0, 115,0) — (141, 256, 0)] (i.e. green) to the label
1 (i.e. the digit “5”), where colors are represented in the RGB space. To summarize, while training
the network, we super-impose images of “1” onto colours of range Ry, and images of “5” onto
colours of range ;. It is to be noted that the choice of colour ranges as defined above introduces an
overlapping range between [(115,115,0) — (141, 141, 0))] where images are associated with labels
0 and 1 with equal probability. This overlap reduces the correlation of colour features with labels,
while shape features have a correlation of 1 with the labels. In Figure 4} we show examples of
images from the train and test distributions of this dataset. In Figure [5] we pictorially depict the

E3AN
SIS TS

Figure 4: Random images from the coloured MNIST dataset: The top row shows examples from
the train distribution, while the bottom row has images from the test distribution. Here, colour red
corresponds to the digit 1 and green corresponds to the digit 5 in the train data, while this correlation
is destroyed in the test data.

correlations between the 32 features learnt by the network. We can see a block structure emerging,
indicating that there is a high amount of feature replication.

D.2 TOY DATASET

In line with the theoretical formulation described in Section{3.3] we further empirically validate the
brittleness of SVM models and the highlight the effectiveness of the proposed Feature Reconstruc-
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Figure 5: Correlation of the features learnt on coloured MNIST

tion Regularizer in the presence of replicated features. We consider a linearly separable toy distri-
bution consisting of two factors of variation as shown in Figure[I] We define the means of the two
classes at (1,1) and (-1,-1) and construct 500 data points in each class by adding noise sampled from
Unif[-0.5,0.5] independently along each dimension to the respective means. We sample an Out-of-
Distribution (OOD) test set from a Uniform distribution with means centered at (1,0) and (-1,0) re-
spectively, and similar noise along each dimension as the train set. Therefore, while the train dis-
tribution can be classified by considering either the features aligned with the X-coordinate or the
Y-coordinate, the test set performance crucially depends on the variation along X-coordinate alone.
We consider feature replication along the y-axis, and hence construct this OOD dataset to verify the
extent to which the other feature is considered for classification. To select the best hyperparameter
for both SVM and FRR, we consider the presence of a validation set whose distribution is similar
to the test distribution. As shown in Figure[I} we observe that the SVM model starts relying more
on the replicated features alone in case of feature replication, compromising its performance on the
OOD data. The proposed regularizer on the other hand, gives equal importance to both features even
in the presence of feature replication, resulting in improved OOD generalization.

E ALGORITHM

Our training procedure is detailed in Alg[T]

F DETAILS ON THE OOD GENERALIZATION SETTING CONSIDERED

The problem of improving robustness to distribution shifts has been studied in several settings,
where, in addition to labeled source domain data, varying levels of access to the target domain data
is assumed. Some of the well-researched settings include - Unsupervised Domain Adaptation, with
access to only unlabeled target domain data (Pan & Yang, 2009; [Ganin et al, [2016)), and Domain
Generalization, where typically data from several source distributions is assumed to be available,
and the target domain in unseen during training (Blanchard et al.} 2011} [Li et al., 2018a; [Gulrajani
[& Lopez-Paz} [2020)). In the latter case, it is assumed that all training data samples are annotated
with domain labels as well, so that training algorithms can explicitly impose invariance to attributes
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Algorithm 1: Our training algorithm

Data: Training data Dg = {(x;,y;) : ¢ € [n]}, model (0, W), feature reconstruction model ¢,

AFRR AFT
Ostd, Wia < Adam (m1n9,W Zz Lstd(ea W, (.231‘, yz)))
/* Standard training of model parameters 6 and W. «/

Freeze 6 to be 04
/* Initializing model for training with FRR. x/
WrRrRr, 9rrr < Adam (minw,¢ >, Lad(Osta, W, (24, ¥:)) + ALLrrR(Ti, Osta, W, 9)).
/* FRR-L: Training W,¢ with FRR defined in eqn. */
OrLrr < Adam (ming ), Lua(0, Werr, (24, Yi)) + ArLrrLrrr(Ti 0, WERR, OFRR))-
/* FRR-FLFT: Finetuning # with FRR according to eqn. */
Result: Trained model (OgLpr, WERR).

that cause a distribution shift in input data without change in their label distribution (Muandet et al.,
2013;|Ganin et al., 2016; L1 et al.,[2018b; |Arjovsky et al.,|2019;|Shi et al., [2021)).

A more challenging case is when the training data belongs to several distributions that may not even
be sufficiently discernable to have explicit domain annotations, or may contain multidimensional
distribution shifts, such as weather, time of the day and geographical location, that cannot be easily
annotated or clustered. We investigate this crucial setting which has been relatively less researched,
and refer to it as Aggregated Domain Generalization, as introduced by [Thomas et al.| (2021). We
note that this setting is different from the case of training on data from a single domain such as Im-
ageNet, and evaluating on distribution shifts (Hendrycks & Dietterich, [2019), due to the availability
of an aggregate of source domains during training, which can enable the effective use of in-domain
validation set for hyperparameter selection.

While there have been several approaches to improve the performance of models in the setting of Do-
main Generalization, |Gulrajani & Lopez-Paz| (2020) show that when evaluated fairly, that is, with-
out assuming access to the test domain data even for selecting the best set of hyperparameters, none
of the approaches perform consistently better than standard training using Empirical Risk Minimiza-
tion (ERM). Furthermore, we consider the setting of Aggregated Domain Generalization, which is
more challenging due to the absence of domain labels during both training and validation.

G EXPERIMENTAL DETAILS ON DOMAINBED

We test our approach on the DomainBed benchmark (Gulrajani & Lopez-Paz, 2020) comprising of
five different datasets, each of which have & domains. For each dataset, we train a model on k — 1
domains, and test it on the left out domain. The average out-of-domain performance across the k
held-out domains is then reported. In this section we describe the hyper-parameter selection strategy
and the ranges considered for our approach. In line with the DomainBed testbench, we use ImageNet
pretrained ResNet-50 models for all algorithms. We use random search to select hyperparameters
for our algorithm, and use the suggested hyperparameters for the other baselines. We train for 3000
(5000 for DomainNet) steps in the FRR-L phase, and 5000 (10000 for DomainNet) steps in the FRR-
FLFT phase. The batch size is fixed to 32, and SWAD hyper-parameters are the same as those used
by [Cha et al.| (2021). We use the in-domain accuracy protocol from |Gulrajani & Lopez-Paz (2020)
to select hyper-parameters for each domain of each dataset, and search over 8 random combinations
of hyper-parameters for each. The range of the hyperparameters is shown in Table[5] Note that we
experiment with two implementations of /., norm: ¢; ,, where we first compute the ¢, of feature
reconstruction for each example in a batch and then average it across the batch, and ¢, ; where we
compute the average ¢ reconstruction norm of each feature across the batch, and then apply £/,
norm on this m dimensional vector. All our experiments were done on single V100 GPUs.
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Table 5: Ranges of hyperparameters considered for DomainBed

Hparam Range
Learning Rate  loguniform(10=5,1071)
AFRR loguniform(10~¢,10°)
AFT loguniform(10~%,10°)
Norm {0,000, lsc 1}

H ABLATIONS ON DOMAINBED

Comparing the choices for ¢ : In Table [6] we experiment with various architectures for the
decoder ¢ when computing FRR according to equation [I| We consider using a two layer neural
network as the decoder ¢ (FRR-LDeeper), and also consider setting ¢ = WT (FRR-LShared), i.e.
explicitly tying the weights of the decoder and the classifier layer. Overall, both these variants are
worse than the default single layer, free parameterization of ¢. We believe that this happens because
the latter approach enforces a much stricter constraint on W, leading to poorer in-domain accuracy,
while the former approach enforces a weaker constraint, potentially enabling reconstruction of more
complex features from a smaller amount of information about them in the logits. Both these have a
detrimental effect on the overall performance of the model.

Table 6: Effect of different design choices on OOD accuracy:the rows shows different architecture
choices for ¢

Algorithm PACS OfficeHome Terralncognita | Avg.
ERM 85.5 +o01 66.5 02 46.1 +o0s6 ‘ 65.3
ERM+FRR-LShared 85.2 +os 68.2 +o1 494 +os 67.6
ERM+FRR-LDeeper 84.6 + 07 65.6 +02 52.5 +os 67.6

Sensitivity Analysis : We vary A\pgp and plot out the OOD performance in Fig[6] We find that
the performance is stable for a wide range of the hyper-parameter on most domains.

I PSEUDO-CODE FOR FRR

Below we provide the python code for FRR-L in the DomainBed framework.

class ERMWithFRR_L( Algorithm ):

def __init__(self, input_shape, num_classes, num_domains, hparams):
super (ERMWithFRR L, self). __init__(
input_shape , num_classes , num_domains, hparams
)

self.featurizer = networks.Featurizer (input_shape, self.hparams)
self.classifier = networks. Classifier (
self.featurizer.n_outputs,
num_classes ,
self .hparams[’ nonlinear_classifier’],
)
for params in self.featurizer.parameters ():
params.requires_grad = False
self.classifier_inv = networks. Classifier(
num_classes ,
self.featurizer.n_outputs,
self.hparams[’nonlinear_classifier’],
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Figure 6: Variation of OOD accuracy with varying Aprr

bias=False
if “exact_reconstruction’ in self.hparams
and self.hparams[’exact_reconstruction’ ]
else True,

)
self .network = nn.Sequential (self.featurizer , self.classifier)
self.optimizer = torch.optim.Adam(

(

list (self.network. parameters ())

+ list(self.classifier_inv.parameters())
)
Ir=self.hparams[’1r ],
weight_decay=self.hparams[’ weight_decay’],

)
self .reconstruction_wt = self.hparams[’reconstruction_wt’ ]
self .norm = float(self.hparams[ ’norm’])

def update(self , minibatches, unlabeled=None):

all_x = torch.cat([x for x, y in minibatches])

all_y = torch.cat([y for x, y in minibatches])

pred, rec, feat = self.get_feats_and_rec(all_x)

loss = F.cross_entropy (pred, all_y)

reconstruction_loss = (
torch .sum(torch .max(torch.abs(feat — rec), dim=1)[0])
/ all_x .shape[0]

)

loss = loss + self.reconstruction_wt % reconstruction_loss

self.optimizer.zero_grad ()
loss .backward ()
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self.optimizer.step ()

return {
loss’: loss.item (),
reconstruction_loss’: reconstruction_loss .item (),

def predict(self, x):
return self.network(x)

def get_feats_and_rec(self, x):
feats = self.network[0](Xx)
pred = self.network[1](feats)
rec = self.classifier_inv (pred)
return pred, rec, feats

J DOMAIN WISE ACCURACIES

In this section, we show detailed results of Table [3]in the main text. The numbers for the baselines
are taken from Gulrajani & Lopez-Paz| (2020), |Cha et al.| (2021)) and |Arpit et al.| (2021]), while the
results for MIRO (Cha et al., [2022)) were reproduced using their code-base.

Table 7: Out-of-domain accuracies (%) on PACS.

Algorithm A C P S Avg
CDANN 84.6 +18 755+09 96.8+03 73.5+06 | 82.6
MASF 82.9 80.5 95.0 72.3 82.7
DMG 82.6 78.1 94.5 78.3 83.4
IRM 848 +13 764 +11 967 +o6 76.1 +10 | 83.5
MetaReg 87.2 79.2 97.6 70.3 83.6
DANN 86.4 +08 774 +08 973 +o4 T73.5+23 | 83.7
GroupDRO 83.5+09 79.1 £06 96.7+03 783 +20 | 844
MTL 875+08 T77.1+05 964 +o0s 7T73+18 | 84.6
I-Mixup 86.1 o5 789 +08 97.6+01 758 +18 | 84.6
MMD 86.1 14 794 +o09 96.6 £o2 76.5+05 | 84.7
VREx 86.0+16 79.1 £06 969 +o0s 77.7+17 | 849
MLDG 855+14 80.1+17 974 +03 76.6+11 | 849
ARM 86.8 06 768 +05 974 +03 793 +12 | 85.1
RSC 854 +08 79.7+18 97.6+03 T82+12 | 852
Mixstyle 86.8 +05 79.0+14 96.6+01 T85+23 | 852
ER 87.5 79.3 98.3 76.3 85.3
pAdaIN 85.8 81.1 97.2 77.4 85.4
ERM 84.7 +04 80.8+06 97.2+03 793 +10 | 855
EISNet 86.6 81.5 97.1 78.1 85.8
CORAL 883 +02 80.0+o05 975+03 788+13 | 86.2
SagNet 874 +10 80.7+06 97.1+01 80.0+04 | 86.3
DSON 87.0 80.6 96.0 82.9 86.6
SMA 89.1 £01 826 +02 97.6+00 80.5+09 | 87.5
MIRO 87.5 79.0 98.3 76.2 85.3
SWAD 893 +02 834+06 973 +03 825+o05 | 88.1
SWAD+FRR 899 +02 839 +07 982 +03 84.8+04 | 89.2
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Table 8: Out-of-domain accuracies (%) on VLCS.

Algorithm C L S \% Avg
GroupDRO 973 +03 63.4+09 695+08 76707 | 76.7
RSC 979 01 625+07 723 +12 756 =+08 | 77.1
MLDG 974 +02 652407 T71.0+14 753 +10 | 77.2
MTL 97.8 +04 643 +03 T15+07 T53+17 | 772
I-Mixup 983 +06 64.8+10 721405 7T43+o0s8 | 774
ERM 977 04 643 +09 734+05 T46+13 | 775
MMD 97.7 01 640+11 728 +o02 753 +33 | 77.5
CDANN 97.1 +03 65.1+12 70.7+08 77.1+15 | 77.5
ARM 98.7+02 63.6+07 713 +12 76.7+06 | 77.6
SagNet 979 +04 645405 Tl4+13 T7.5+05 | 77.8
Mixstyle 98.6 +03 645+11 T726+05 T57+17 | 779
VREx 984 +03 644 +14 T41+04 7T762+13 | 78.3
IRM 98.6 +01 649 +09 734 +06 773 +o9 | 78.6
DANN 99.0 +03 65.1+14 73.1+03 77.2+06 | 78.6
CORAL 983 +01 66.1 12 734 +03 T7.5+12 | 78.8
SMA 99.0 +02 63.0+02 745+03 764 +11 | 78.2
MIRO 99.3 65.2 74.9 76.0 78.9
SWAD 98.8 +01 633403 753+05 79.2+06 | 79.1
SWAD+FRR 989 +04 663 +02 759 +06 79.0+02 | 80.0

Table 9: Out-of-domain accuracies (%) on Of ficeHome.

Algorithm A C P R Avg
Mixstyle 51.1 +03 532 +04 682407 692+06 | 60.4
IRM 589 +23 522416 721 +20 740 +25 | 64.3
ARM 589 +08 51.0+05 74.1+01 752 +03 | 64.8
RSC 60.7 +14 514 +03 748 +11 751 +13 | 65.5
CDANN 61.5+14 504 +24 744109 7T76.6+08 | 65.7
DANN 599 +13 530+03 73.6+07 769 +os | 659
GroupDRO 604 +07 527 +10 750407 76.0+07 | 66.0
MMD 60.4 o2 533403 743 +o01 774 +o06 | 66.4
MTL 61.5+07 524 +06 749 +o04a 768 tosa | 66.4
VREx 60.7 09 53.0+09 753 +01 76.6+05 | 66.4
ERM 61.3+07 524403 758 +01 76.6+03 | 66.5
MLDG 61.5+09 532+06 750x12 77.5+04 | 66.8
I-Mixup 624 +08 548 +06 769 +03 783402 | 68.1
SagNet 634 +o02 548 +04 758 +04 783 +03 | 68.1
CORAL 653 +04 544 +0s5 T765+01 784 +os | 68.7
SMA 66.7 +05 57.1+01 786 =+01 80.0+0 70.6
MIRO 66.0 54.5 78.9 81.7 70.3
SWAD 66.1 04 577 +04 784 +01 80.2+o02 | 70.6
SWAD+FRR 652 +o02 57.7+05 782 +02 80.2+01 | 70.3
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Table 10: Out-of-domain accuracies (%) on Terralncognita.

Algorithm L100 L38 L43 L46 Avg

MMD 41.9 +30 348 +1.0 57.0 +19 352 +18 42.2

GroupDRO 41.2 +07 38.6 +2.1 56.7 + 09 36.4 +21 43.2

Mixstyle 543 +1.1 34.1 +1.1 559 +1.1 31.7 +21 44.0

ARM 493 o7 38.3 +24 55.8 +08 38.7 +13 45.5

MTL 493 12 39.6 +63 55.6 1.1 37.8 038 45.6

CDANN 47.0 £19 41.3 +438 54.9 + 17 39.8 +23 45.8

ERM 49.8 +44 42,1 +14 56.9 + 13 35.7 +309 46.1

VREx 48.2 +43 41.7 £13 56.8 +o0s 38.7 £3.1 46.4

RSC 50.2 +22 302 +14 56.3 +14 40.8 + 06 46.6

DANN 51.1 +35 40.6 +o06 574 +o05 377 +138 46.7

IRM 54.6 +13 39.8 +19 56.2 +18 39.6 08 47.6

CORAL 51.6 +24 422 +10 57.0 +10 39.8 +29 47.7

MLDG 54.2 +30 443 + 1.1 55.6 +03 36.9 +22 47.8

I-Mixup 59.6 +20 42.2 £ 14 55.9 +os 339 +14 479

SagNet 53.0 29 43.0 £25 57.9 +o06 40.4 +13 48.6

SMA 54.9 +04 45.5 + 06 60.1 15 40.5 + 04 50.3

MIRO 59.6 41.1 60.2 40.4 50.3

SWAD 55.4 o0 449 + 1.1 59.7 +o04 39.9 +o2 50.0

SWAD+FRR  60.13 £105 47.89 £171  60.76 £042 4234 +135 | 53.2

Table 11: Out-of-domain accuracies (%) on DomainNet.

Algorithm clip info paint quick real sketch Avg
MMD 321 +133  11.0 £46 268 £113 8.7 +21 327 +138 289 +119 | 234
GroupDRO 472 +05 17.5+04 338+05 93 +o3 51.6 +04  40.1 +o0s | 33.3
VREx 47.3 +35 16.0 +15 35.8 +46 109 +03 49.6 +49  42.0 £30 33.6
IRM 48.5 +23 150+15 383 +43 109 +05 482 4+52 423 +3.1 339
Mixstyle 519 +04 133 +02 37.0+05 123401 46.1+03 434 +04 | 340
ARM 49.7 +03 16.3 +05 409 +1.1 9.4 +o0.1 534 +04 435 +o04 355
CDANN 54.6 04 173 £01 437 09 12.1 +07  56.2 +04 459 +os 38.3
DANN 53.1 +o02 183 +01 442 +07 11.8 +01  555+04 468 tos6 38.3
RSC 55.0 +12 183 o5 444 +os6 122 +02 557 07 47.8 +09 38.9
I-Mixup 55.7 +03 185 +05 443 +o0s 125 +04 558 +03 482 +0s5 | 39.2
SagNet 577 +03 19.0+02 453 +03 127405 581+o0s5 48.8+02 | 403
MTL 57.9 +o0s 18.5 +04 46.0 0. 125 +01 59.5 +03 49.2 o1 40.6
ERM 58.1 +03 18.8 £03 46.7 +03 122 04 59.6 01 49.8 +04 40.9
MLDG 59.1 +o02 19.1 03 458 +07 134 +03  59.6 02 50.2 +04 41.2
CORAL 59.2 o1 19.7 +02  46.6 +03 134 +04 598 +02  50.1 +06 | 41.5
MetaReg 59.8 25.6 50.2 11.5 64.6 50.1 43.6
DMG 65.2 22.2 50.0 15.7 59.6 49.0 43.6
SMA 64.4 +03 224 +02 534 +o03 154 +01  64.7 02 55.5 + 0.1 46.0
MIRO 61.9 20.9 50.3 13.0 65.2 52.7 44.2
SWAD 66.0 +0.1 22403 53.5 +o0.1 16.1 +02  65.8 04 55.5 +03 46.5
SWAD+FRR 659 +o. 223 +00 52.8 +ou 14.8 +03 66.2 +0.1 55.0 +oa1 46.2
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