
Size Matters: Large Graph Generation with HIGGS

Alex O. Davies †, Nirav S. Ajmeri †, and Telmo M. Silva Filho ‡
† School of Computer Science

‡ School of Engineering Mathematics and Technology
University of Bristol, UK

{alexander.davies,nirav.ajmeri,telmo.silvafilho}@bristol.ac.uk

Abstract

Large graphs are present in a variety of domains, including social networks, civil
infrastructure, and the physical sciences to name a few. Graph generation is
similarly widespread, with applications in drug discovery, network analysis and
synthetic datasets among others. While GNN (Graph Neural Network) models
have been applied in these domains their high in-memory costs restrict them to
small graphs. Conversely less costly rule-based methods struggle to reproduce
complex structures. We propose HIGGS (Hierarchical Generation of Graphs)
as a model-agnostic framework of producing large graphs with realistic local
structures. HIGGS uses GNN models with conditional generation capabilities to
sample graphs in hierarchies of resolution. As a result HIGGS has the capacity
to extend the scale of generated graphs from a given GNN model by quadratic
order. As a demonstration we implement HIGGS using DiGress, a recent graph-
diffusion model, including a novel edge-predictive-diffusion variant edge-DiGress.
We use this implementation to generate categorically attributed graphs with tens
of thousands of nodes. These HIGGS generated graphs are far larger than any
previously produced using GNNs. Despite this jump in scale we demonstrate that
the graphs produced by HIGGS are, on the local scale, more realistic than those
from the rule-based model BTER.

1 Introduction

Graphs have long been an area of interest for generative models. Applications for generated graphs
include novel drug synthesis [8], synthetic social networks [5], neural network wirings [24] and in
network science [23]. Current GNN graph generation methods have not been applied to graphs of
more than a few thousand nodes, and the generation of graphs of this size with attribution is well
beyond the current state-of-the-art.

We propose Hierarchial Generation of Graphs (HIGGS) as a method of producing much larger graphs
than can be generated using a single model. Making use of the modular structure inherent to many
graph types, and relying on the ability of newer models such as DiGress [21] to conditionally generate
attributed graphs, we break the generation process into hierarchies. Each hierarchy takes a progres-
sively lower-resolution view of the sampled graph. The upper hierarchy conditions the generation of
graphs in the lower, as well as the necessary edge-prediction between such lower-hierarchy graphs.
We demonstrate that our implementation using DiGress can produce categorical features for nodes,
edges and whole graphs with tens of thousands of nodes. This implementation includes a novel model
edge-DiGress, which employs edge-predictive diffusion. The core contributions of HIGGS are: (i)
HIGGS is flexible in which models can be used in implementation, assuming some model capabilities
such as conditional generation; (ii) HIGGS has the capacity to extend the scale of graphs that can be
generated by its component models by quadratic order, e.g. we extend the size of graphs produced
using DiGress from around 200 nodes to more than 20,000 nodes; (iii) the HIGGS framework allows
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the production of graphs with both node and edge attributes of a scale far larger than is possible with
standalone GNN models; and (iv) HIGGS can produce graphs of a scale comparable to rule-based
methods while retaining realistic graph structures on the few-hundred-node scale. We demonstrate
the efficacy of HIGGS on three datasets of increasing size. To our knowledge no other deep-learning
method can produce graphs close to this scale.

We evaluate the ability of our implementation of HIGGS in producing graphs, and through varying
graph domains and feature augmentation, investigate its limitations in reproducing distinct graph
characteristics at both whole-graph and local scales. We implement HIGGS using DiGress for higher
and lower hierarchies and a novel edge-predictive implementation edge-DiGress. We set the threshold
for a graph to be “large” at 2,000 nodes, but produce graphs an order of magnitude larger than this.

2 Background and Related Work

Our work is closely related to graph generation, which is used in domains with greatly varied graph
characteristics, and broadly splits into rule-based and GNN methods. Guo and Zhao [9] give an
overview of graph generation in general. Two approaches of Graph Neural Network (GNN) models
have been developed for graph generation. The first is one-shot methods, which output a whole graph
at once. These can use the whole graph structure, but often suffer higher complexities in both time
and in-memory, as many such models scale O(N>2) [2, 20, 22]. The second school, auto-regressive
models, add new nodes or motifs progressively to construct graphs [2, 13]. These have the opposite
compromise to one-shot methods, in that they have lower complexities, but must go to greater lengths
to include structural information. Recent models such as GRAN [13] and TG-GAN [26] are able to
generate graphs of reasonable size (up to 2,700 nodes). These efficient models generally deal only
with un-attributed topologies, and models that can produce attributes still retain high complexity.

The recent development of diffusion models [10] and MPNN models [8] has allowed development of,
in the last year, several denoising diffusion models for graph structures. These are in their early stages
and retain high memory and time complexities but have promising capacity for conditional generation.
In the supplemental material we give details of a subset of GNN graph generation models. Zhu et al.
[28] and Zhang et al. [27] provide detailed reviews using GNNs for graph generation, including
example applications. Rule-based methods are often meant as an exploration of a mathematical
model rather than as a method for generating graphs [3, 7]. As such they often take some given
parameter, for example, a connection probability matrix or a degree distribution [3, 7, 19], and attempt
to reconstruct the original graph as well as possible using that parameter. This differentiates them
from deep-learning methods, which might instead take a target characteristic, instead of an entire
distribution. Rule-based methods are, as a function of this simplicity, generally far more efficient
than GNN methods, but can struggle to reproduce more complex graph features. HIGGS aims to
combine the realism of GNN-generated graphs with the scale possible through rule-based methods.

3 Schematics

HIGGS produces graphs through hierarchical sampling. First a low-resolution version of the final
graph is sampled. Next, conditioned on that low-resolution graph, a set of high-resolution component
graphs are sampled and joined. This is analogous to patch-based image super resolution [17], but
with the necessary additional step of inter-high-resolution edge-sampling. Previous motif-based [12]
or block-generative models [13] add nodes or motifs sequentially, and use only one model, whereas
HIGGS uses a separate model for each stage shown in the supplemental material.

Definition 1 (Hierarchy-1; h1) The most granular, or highest-resolution, partition of the graph.
Nodes are the original entities (users in social graphs).

Definition 2 (Hierarchy-2; h2) Graph consisting of community-community links, or in this termi-
nology, h1 ↔ h1 graphs. Node and edge attributes in h2 indicate some characteristic of h1 graphs
and how they inter-connect.

In Stage One the template h2 graph is sampled. h2 graphs are a low-resolution representation of
larger graphs. Each node in h2 represents a subgraph, with attributes describing that subgraph’s
characteristics. As an example the category might represent the majority class of the h1 graph that
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the node represents. Edges in the h2 graph e = {h1,i, h1,j} describe whether the two h1 graphs
present are connected. Edges in h2 can be attributed, in which case the category of that edge is used
as conditioning for the edge-prediction in Stage Three.

In Stage Two an h1 graph is sampled for each node in the preceeding h2 graph, with sampling
conditioned on the attributes of that node. Conditioning attributes here might be as simple as the
majority class of the sub-graph. However, as future models develop the ability to produce more
complex node attributes, conditioning could encode topological features. In Stage Three, for each
edge in the initial h2 graph e = {h1,i, h1,j}, the edges between the h1,i and h1,j are sampled,
h1,i ↔ h1,j . Crucially, and unlike block-generative or motif-based models, stages two and three
consist of many independent jobs, making them trivially paralellisable.

3.1 Implementation

The HIGGS framework requires several component models and algorithms. For training dataset
construction a segmentation algorithm is required. This should produce subgraph partitions that
represent samples from the same distributions (i.e. communities in a social network). If the original
data is one or few large graphs, then it should have a random element ensuring that on successive
applications the same partitions are not produced. Individual partitions are then nodes in h2 training
samples, each partition itself an h1 training sample, and each pair of connected partitions a training
sample for edge-sampling.

Three graph-generative models are then required for stages one, two and three, one of which is edge
predictive. The remaining two models are trained to produce h1 and h2 graphs. We implement, as a
baseline demonstration, HIGGS using an adaption of the Discrete Denoising Diffusion (DiGress)
model from Vignac et al. [21]. This model handles discrete graph, node and edge classes, and
applies discrete noise during the forward diffusion process. For this implementation we use repeat
applications of Louvain partitioning [6] to construct training sets of h1, h2 and h1 ↔ h1 graphs.
Louvain segmentation is a modularity-optimising algorithm for dividing graphs into ‘communities’,
beginning with individual nodes and iteratively merging them until a set of optimised partitions is
reached. As in Vignac et al. [21], we compute extra features at each diffusion timestep. We implement
calculation of clustering and an approximation for diameter, detailed in the supplemental material,
but only use clustering as an extra feature in our experiments.1

We implement edge predictive diffusion as an extension of DiGress. At each stage of the DiGress
noise application and sampling process, we pass a mask of whether each node-node pair are in
the same h1 graph, and apply noise only on edges where they are not. This means that during
training edge-DiGress learns to remove noise from edges between, but not within, two h1 graphs.
The advantage of edge-DiGress over other edge prediction models is that it can be conditioned, and
samples all required edges simultaneously. Further details, including complexities, can be found in
the supplemental material.

4 Experiments

We employ three graph datasets in our experimentation, two of which are well beyond the scale
limitations of current models. As in Vignac et al. [21], we first evaluate the performance of HIGGS in
reproducing the Stochastic Block Model (SBM) benchmark graphs from Martinkus et al. [14]. This
dataset allows comparison of HIGGS against simply using one of its component models at these low
graph sizes. As a smaller large graph we use the popular Cora citation network [18]. As an example
of a large social graph we use the Facebook Page-Page graph published by Rozemberczki et al. [16].
This is an undirected graph of |V | = 22,470 nodes. The most critical parameter for HIGGS is the
resolution r used by Louvain partitioning. If r is too high then the number of edges in h2, and the
level of information that must be encoded in h2, increases rapidly. Conversely, if r is too low, then
the size of h1 graphs can be too large for pairs to fit in-memory during edge-sampling.

For the two node-labelled datasets, Cora and Facebook, we categorise h1 graphs by their majority
node category. To ensure that pairs of h1 graphs can fit in-memory for edge-prediction (Stage Three)
we use a high resolution r = 10 in Louvain segmentation for the Facebook dataset. We are able to
use a more conservative r = 2 for the SBM and Cora datasets. For conditional sampling we simply

1All code and data available here: https://github.com/higgs-neurips-23/HiGGs
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fix the category of the graph during diffusion. This work only provides a baseline demonstration of
the HIGGS framework and we leave improved conditioning methods as an area for future study. The
original DiGress work provides an ablation study [21].

4.1 Benchmarking

As a benchmark we compare the performance of this HIGGS implementation against DiGress to
establish how much performance is lost by using HIGGS at graph scales within current model
limitations. In contrast to the Facebook and Cora datasets, where we construct training data by
repeated application of Louvain partitioning, for the SBM dataset we apply Louvain detection once
on each separate graph to construct training sets.

Selecting a good benchmark model against which to compare the performance of this HIGGS
implementation is challenging on large graphs, as to our knowledge there are no existing GNN
models that extend to this scale, and few recent rule-based models with the capacity to produce
even categorical node attributes. To this end we forgo using a model that produces attributes and
use the Block Two-Level Erdos-Renyi (BTER) model from Seshadhri et al. [19]. BTER, like
HIGGS, assembles graphs as connected communities, and was specifically proposed to target the
high clustering coefficients expected in real-world graphs like social networks.

4.2 Results

(a) Original (b) DiGress (c) HiGGs (d) BTER

Figure 1: Graphs from the SBM dataset with sampled counterparts from DiGress, HIGGS and BTER.
Layouts are through SFDP and GraphViz.

For the SBM dataset we sample 40 graphs (the size of the prescribed test-set) using DiGress, BTER
and HIGGS. BTER graphs are fit on each individual test-set graph. For the Cora and Facebook
Page-Page datasets we use HIGGS and BTER to sample one large graph. Where multiple connected
components are produced we take only the largest. Aggregate results can be found in the supplemental
material. NC denotes the number of communities found under Louvain segmentation, and |C|med

the median size of those communities. Maximum Mean Discrepancy (MMD) scores can be found
in Table 1. Details of the measured quantities used for these scores is found in the supplemental
material. We exclude values where sample sizes of measured quantities are small. Quantile-Quantile
(QQ) plots and visualisations of sampling results can be found in the supplemental material for the
Facebook graph and in the supplemental material for the Cora graph and SBM dataset.

Application of measurements and MMD to graphs of this scale is unlikely to properly assess generative
performance on the small-scale. To this end we apply Louvain community detection again, with a
resolution of 1, to both the original Cora and Facebook graphs and their sampled counterparts from
HIGGS and BTER. Following this partitioning we calculate MMD scores on the resulting real and
synthetic partitions. QQ plots and visualisations of partitions are found in Figure 9 for the Facebook
graphs and in the supplemental material for the Cora graphs.

BTER fails to replicate the essential structure of the SBM graphs, as seen in Figure 1, but as expected
does achieve close matches on clustering and degree. It seems that HIGGS consistently produces
higher degree and clustering values than in the original SBM graphs. Interestingly, DiGress appears
to do the inverse, consistently producing lower degree and clustering values, albeit with more realistic
clustering values at higher ranges than HIGGS. Performance degradation from using DiGress in
HIGGS, instead of by itself, is not as significant as we might have expected.
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Table 1: MMD scores for models applied to each dataset. “Communities” denotes MMD calculated
on communities re-sampled with Louvain partitioning.

Nodes Degree Clustering Eccentricity Spectre

SBM
HIGGS 0.547 0.286 0.411 0.040,1 0.314
DiGress 0.407 0.267 0.168 0.019,3 0.195
BTER 0.088 0.189 1.07 0.051 0.311

Cora HIGGS – 0.254 0.958 0.273 –
BTER – 0.439 0.281 0.003,64 –

Cora Communities HIGGS 0.662 0.069 0.451 0.013,5 0.100
BTER 0.598 0.290 0.417 0.009,42 0.100

Facebook HIGGS – 2.00 0.904 0.229 –
BTER – 1.31 0.402 0.368 –

Facebook Communities HIGGS 0.744 0.043,6 0.091,8 0.006,38 0.045
BTER 0.620 0.104 0.481 0.013,9 0.108

4.2.1 Large Graphs

We find that BTER produces a reasonable number of connected components, with using the largest
component resulting in the lower number of nodes. On whole graph measurements we find that
BTER slightly outperforms HIGGS, but not consistently on the same metrics across datasets. The
exception, where HIGGS produces consistently more realistic distributions than BTER, is when
Louvain segmentation is applied. Here BTER produces many smaller partitions, indicating many
high-modularity groupings of nodes, instead of the larger groupings produced by the original graphs
and HIGGS. On both the Cora and Facebook graphs BTER produces more realistic clustering
coefficient distributions than HIGGS. On these large graphs HIGGS produces nodes with lower
clustering coefficients than the original graph and BTER does the opposite.

Degree distributions produced by HIGGS are much closer to the original on the Cora graph than the
Facebook graph. Indeed on the Facebook data HIGGS over-produces high-degree nodes to the extent
that the sampled graph’s overall density is nearly double that of the original. MMD scores on Louvain
communities from the Facebook and Cora graphs show stronger performance on a small scale from
HIGGS than BTER. This is particularly true on the Facebook dataset, where HIGGS communities
out-perform BTER communities on all except the distribution of community sizes Visualisation of
the communities shows clearly the prioritisation by BTER of clustering coefficients over overall
structure. The Spectre MMD score in Table 1 confirms these conclusions.

5 Discussion

We find that performance does drop on the SBM dataset compared to DiGress, with HIGGS producing
nodes with higher degrees and lower clustering coefficients, but this drop in quality is not massive.
At this scale of graph HIGGS is on-par with BTER but visualisation (see supplemental material)
indicates that the essential nature of these graphs has not been captured by BTER.

An important consideration when discussing the findings of this work is that neither benchmark
model (BTER and DiGress) is necessarily a fair comparison. Due to the in-memory costs of DiGress
(and other GNN models) graphs of the scale used in our experiments simply cannot be produced. It is
arguable that rule-based models do not have the same aim as GNN models or HIGGS. Rule-based
models generally attempt to re-construct a graph, often taking a certain distribution like degree (as in
BTER) as an input parameter, and act as an exploration of mathematical modelling more than as a
generative task. This means that on quantitative metrics like MMD they often perform very strongly,
but on characteristics more difficult to express through metrics, they tend to fail.

We find that on the small scale, through application of Louvain partitioning, HIGGS has out-performed
BTER. This includes on the clustering coefficients specifically targeted by BTER, with clustering
coefficients on the community scale produced by BTER consistently too high. Visualisation of
communities corroborates this, with BTER producing many triangles, instead of many-node patterns.
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Figure 2: Communities sampled from the Facebook Page-Page graph with equivalents from HIGGS
and BTER, alongside node-level QQ plots. Layouts are through SFDP and GraphViz.

Conversely our HIGGS implementation performs much better in this regard. Given that MMD scores
and aggregate metrics both rely on simple node-level measurements on graphs of this scale they may
not be sufficiently expressive. Issues with MMD, even on the few-hundred-node scale, are discussed
more specifically in O’Bray et al. [15]. We further discuss our assumptions and threats to validity in
the supplemental material.

6 Conclusion

In this work, we propose HIGGS as a framework for generating large graphs. We implement HIGGS
using DiGress [21], a recent graph diffusion model with the capacity to consider node attribution
and conditional generation, and for inter-h1 edge sampling we implement the first edge-predictive-
diffusion model as a variant of DiGress. This is, to our knowledge, the first deep-learning based
method to produce graphs of tens of thousands of nodes. Further, HIGGS is able to do so with
categorical node and edge attributes, with our generated graphs up to 200 times larger than those in the
original DiGress paper. Using this HIGGS implementation, we demonstrate that on the benchmark
SBM dataset performance is not significantly degraded from using DiGress by itself. Comparison
to BTER, a rule-based method, shows that our HIGGS implementation out-performs BTER on
small-scale measurement of large sampled graphs. However, due to BTER’s use of a prescribed
degree distribution, BTER out-performs our HIGGS implementation when considering whole-graph
node metric distributions.

While the implementation of HIGGS presented here is viable for social networks, and possibly other
applications, future work could focus on a few key areas. Firstly, whether HIGGS is improved
compared to our implementation here by using different partitioning algorithms and generative
models, in particular a more efficient edge sampling model. Secondly, an improved edge-sampling
stage, that considers previous edge-samplings, might significantly improve results and allow extension
to geometric or quasi-geometric graphs like molecules. We hope that domain experts in fields such as
chemistry develop their own task-specific implementations.
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A Appendix

A.1 Code Availability

All code is available at https://github.com/higgs-neurips-23/HiGGs. This repository also
contains scripts to download the trained models for each dataset. Model training and sampling was
conducted on a single workstation computer equipped with an NVIDIA A6000 48gb GPU.

A.2 HIGGS schematic

Figure 3: A basic schematic of the HIGGS method.

A.3 Current Models

Table 2: Existing GNN graph generation methods. Order is listed as the worst case stated in the
respective work and the maximum size of graphs lim(|V |) is the highest stated in the respective
work, although maximum graph size was not necessarily their primary aim. † indicates an order not
explicitly stated in the respective work.

Model Order lim(|V |) Attribution Conditioning
Node Edge Graph

GraphVAE [20] N4 38 ✓ ✓ ✓ ✓
DiGress [21] N2 100 ✓ ✓ ✓ ✓
GraphGDP [11] – † 399 ✗ ✗ ✗ ✓
NVDiff [4] N 400 ✓ ✓ ✗ ✗
GraphRNN [25] N2 500 ✗ ✗ ✗ ✗
NetGAN [2] – † 2,810 ✗ ✗ ✗ ✗
GRAN [13] N log(N) 3,530 ✗ ✗ ✗ ✗
HIGGS See paper 22,000 ✓ ✓ ✓ ✓

A.4 HIGGS Complexity

The size of the final sampled graph is denoted NG = |V |. We denote the size of the h2 graph
N2 = |h2|. N1 is the mean size of an h1 graph, N1 = mean(|h1|) = NG/N2. The order of DiGress
is O(N2), which is costly. Fortunately HIGGS does not need to scale beyond a few hundred nodes in
any given sampling process. Similarly our edge-predictive variant of DiGress scales O(N2). This
means that the complexities of HIGGS, in our implementation using Louvain [6] Segmentation,
DiGress, and edge-DiGress, are O(N2

G) in the segmentation stage, for both time (full sampling)
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and memory (per item), O(N2
2 ) in Stage One (h2), O(N2

GN2) (time) and O((NG/N2)
2) (memory)

for Stage Two (h1), and O(N2
G) and O((NG/N2)

2) for Stage Three (h1,i ↔ h1,j). The maximum
memory requirement of edge-sampling is likely the limiting factor, because the largest graphs passed
to this model are double that of the largest from h1.

The order of HIGGS varies by stage (see above). The size of the final sampled graph is denoted
NG = |V |. We denote the size of the h2 graph N2 = |h2|, ie the cardinality of its node-set. Similarly
N1 is the mean size of an h1 graph, N1 = mean(|h1|). The number of edges in h2 is E2 = |Eh2 |. The
order of each stage is necessarily very dependent on the order of the generative model being used. We
denote the order of an arbitrary model as O(Nx,y,z) with x, y, z an unknown (assumed polynomial)
complexity for the models in Stage One, Two and Three respectively. Training complexities for each
stage simply inherit from the model, ie each stage has order O(N i

stage).

The order of h2 sampling simply inherits the order of the generative model, ie O(h2) = O(Nx
2 ).

An h1 graph is sampled for each node in the proceeding h2 graph, so Stage 2 has sampling time
complexity O(h1) = O(N2N

y
1 ). We can expect an average community size dependent on the size of

the final sampled graph, so N1 = NG/N2, and O(h1) = O(Ny
GN

y−1
2 ).

The upper limit on size of graphs during the edge-sampling stage is double those from h1. The
number of samples is determined by the number of edges in h2, E2 = ρ(N2

2 /2−N), where ρ is the
density of edges in h2.

This leads to an order of O(h1,i ↔ h1,j) = O(N2
2N

z
1 ). Note here however that memory capacity of

the GPU used is the likely limit, as we might expect Nx
1 << (2N1)

z . Using the above N1 = NG/N2,
this becomes O(h1,i ↔ h1,j) = O(Nz

GN
2−z
2 ), with the actual number of edge-prediction operations

scaled linearly by h2 edge density ρ2. Crucially, and unlike block-generative or motif-based models,
stages two and three consist of many independent jobs, making them trivially paralellisable.

A.5 Extra Features

A.5.1 Diameter

As we are extending the number of nodes from |V | ∼ 100 to |V | ∼ 600 in some cases, the
planarity/diameter of the graph becomes less easily expressed by DiGress. With the aim of alleviating
some of these issues we implement a simple approximation for graph diameter, with the same
principles as MultiBFS from Boitmanis et al. [1].

In brief summary, for a given message passing kernel size n, a simple convolution without weights is
given by Equation 1.

Pn =

n∑
i=0

Ai (1) xi,j =

{
1 if j = i

0 otherwise
(2)

x′
n = Pnx (3)

Selecting a random node u in a graph, we construct a bit-vector x with zeroes everywhere except
the index of that node, as in Equation 2 for initial node index i. Applying the convolution gives an
updated per-node feature vector given by Equation 3. Crucially this vector is zero for nodes v where
a message has not reached - which means that the shortest path between the u and v is longer than n,
i.e., SP (u, v) > n.

By iteratively applying a Pn message passing convolution to the bit-vector x, and tracking at what n
all nodes have received at least one message, we can derive the eccentricity of an individual node.
We sample the eccentricities of five nodes per graph per batch then take the maximum of these as an
estimate of diameter.

The advantage of this approach, as opposed to a direct diameter calculation using BFS or similar,
is that it can be computed entirely through matrix operations, and on a whole batch simultaneously.
This means that no movement from or to the GPU is required when it is computed during training.
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A.5.2 Clustering

For a graph with adjacency matrix A, which is a bit-matrix showing the existence of any edges, we
can count the number of N -node cycles for each node i, denoted |θn,i|, using the trace of the matrix’s
product with itself, i.e., for all nodes in a graph |θn| ∈ Z|V | is Equation 4.

|θn| = Tr(An) (4) C =
|θ3|
|θ2|

=
Tr(A3)

Tr(A2)(Tr(A2)− 1)
(5)

The local clustering efficient of a node is the probability that two of its neighbours are also each others
neighbours. This can be formulated as the number of possible (3-cycles) that are complete given the
node’s 2-cycles. 2-cycles are in effect the degree of the node in question. This allows gpu-based
calculation of local per-node clustering C ∈ R|V |, from the adjacency matrix, using Equation 5.
Note here that for clustering we do not include 2-cycles in which the root note appears twice (eg
v1 → v2 → v1 is excluded). We include as extra features both node-level local clustering as a node
feature and the mean clustering coefficient as a graph-level feature.

A.6 edge-DiGress

This is constructed from an array K = [True, True, ..., False, False] with True representing nodes in
one community and False the other2. From this array K we construct a matrix K̂ with each row or
column a repeat of K, ie K̂[:,i] = K with K̂ ∈ BN×N 3. From here a node-node h1 match matrix M̂
is:

M̂i,j =

{
True if K̂i,j = K̂⊤

i,j

False otherwise
(6)

which can simply be applied as a mask to exclude intra-h1 edges from noise. During sampling the
noise limit is sampled and applied to any possible inter-h1 edges. Node classes are kept constant at
each stage of noise application and sampling, so noise is applied only on edges, and sampling after
input of two h1 graphs returns those same graphs with new inter-h1 edges.

A.7 Metrics

MMD requires the measurement of the distribution of a given quantity, with MMD then calculated
between these distributions, with MMD = 0 for identical distributions. The quantities we measure
and use for MMD in this work are detailed below.

Nodes The number of nodes in each graph, |V |.
Degree The degree of each node, denoted d(v) for a node v.

Clustering The fraction of possible triangles through a node that exist i.e. the extent to which a node
and its neighbours are a complete graph. Clustering cv for a node v is calculated as

cv =
2T (v)

d(v)(d(v)− 1)
(7)

where T (v) is the number of triangles through v, and d(v) is the degree of v. Dense clusters
in graphs have high clustering coefficients, due to their high inter-connectedness, whereas more
sparse regions have low clustering coefficients.

Eccentricities All node-node shortest path lengths in a graph. The shortest path between two nodes
is the path that which contains the fewest nodes.

2This requires that nodes are not re-ordered between dataset construction and passing to eDiGress
3B signifying boolean data and N the size of the adjacency matrix
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Spectre For an un-directed graph G, we can construct a diagonal matrix of node degrees D. From
this we can calculate the Laplacian of the graph, L = D −A, where A is the graph’s adjacency
matrix. The normalised Laplacian is then:

N = D−1/2LD−1/2 (8)

Taking the eigenvalues of this normalised Laplacian allows us to treat the graph as defined by a
spectrum. Spectral analysis takes a view of global graph properties, unlike degree or clustering,
which are local statistics.

A.8 Results

Table 3: Details of aggregate results for our experiments. For the SBM dataset results are the mean
value across all graphs generated and in the test-set.

Nodes Edges Diameter NC |C|med Clust. Density Trans.

SBM 107 522 5.46 – – 0.276 0.099 0.276
DiGress 101 425 5.90 – – 0.231 0.098,2 0.236
HIGGS 122 679 6.08 – – 0.349 0.095,4 0.344
BTER 107 462 5.90 – – 0.140 0.087,3 0.121

Cora 2,810 7,981 17 17 110 0.277 0.002,02 0.114
HIGGS 2,951 7,981 18 29 94 0.163 0.001,83 0.130
BTER 2,019 5,143 16 51 30 0.307 0.002,52 0.271

Facebook 22,470 171,002 15 60 167 0.360 0.000,677 0.232
HIGGS 21,643 283,552 20 54 213 0.243 0.001,21 0.130
BTER 19,070 131,065 17 221 78 0.397 0.000,721 0.274

100 101 102 103
100

101

102

103

Original

Sa
m

pl
ed

Degree

HIGGS
BTER

0 0.5 1

0

0.5

1

Original

Clustering

8 10 12 14

10

15

Original

Eccentricity

(a) Whole-graph QQ plots

(b) Original (c) HiGGs Sampled (d) BTER Sampled

Figure 4: The Facebook Page-Page graph with sampled counterparts from HIGGS and BTER, with
node-level QQ plots. Layouts are through SFDP and GraphViz.
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A.9 Assumptions and Threats to Validity

A limitation in this work is that we produce only a baseline implementation HIGGS using one set
of models. We do it for simplicity, and to keep the scope of the work reasonable, but does mean
that we cannot draw comparisons between possible implementations. We also consider an ablation
study, with permutations of different candidate models for each stage, beyond the scope of this work.
A different partitioning algorithm during training data creation could also have beneficial results,
particularly one that aims to produce partitions of a near-uniform size, which would allow for smaller
models as the maximum size of training sample graphs decreases.

Further, with different component generative models the upper limit on the size of generated graphs
could be far higher, as with HIGGS the possible size of generated graphs scales |Vmax|2 with |Vmax|
the lowest upper limit on graph size for the models used. If one were to implement HIGGS using GRAN from
Liao et al. [13] with a suitably efficient edge-sampling model, the feasible number of nodes in generated graphs
could extend above a million nodes.

One core assumption of our HIGGS implementation here is that the edges between h1 graph pairs can be
reasonably sampled without representation of where other h1 graphs have been connected. This makes our
implementation trivially paralellisable, as a large set of separate graph or edge sampling tasks, but does make it
somewhat greedy. Feasibly passing of information from prior edge samplings, perhaps through node embeddings
or similar, may improve performance — a possible future direction. Additionally in this work, we do not
apply HIGGS to any geometric or quasi-geometric graphs such as molecules or road networks. The motivation
behind this was again to limit the scope of this work, as these graphs have fragile topological features such as
near-planarity or strict connection rules as in chemistry. Such graphs would then need a different edge sampling
process, which considers prior connections. We leave this for future work.

14



(a) Original (b) HIGGS

(c) BTER (d) DiGress

Figure 5: SBM graphs, with counterparts produced by BTER, DiGress and HIGGS.
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(a) Whole-graph QQ plots

(b) Original (c) HiGGs Sampled

(d) BTER Sampled

Figure 6: The CORA graph with sampled counterparts from HIGGS and BTER, with node-level QQ
plots. Layouts are through SFDP and GraphViz.
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(a) Resampled community QQ plots

(b) Original (c) HiGGs Sampled

(d) BTER Sampled

Figure 7: Communities sampled with Louvain detection from CORA graph with the same from
HIGGS and BTER generated counterparts, with node-level QQ plots. Layouts are through SFDP and
GraphViz.
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(a) Whole-graph QQ plots

(b) Original (c) HiGGs Sampled

(d) BTER Sampled

Figure 8: The Facebook Page-Page graph with sampled counterparts from HIGGS and BTER, with
node-level QQ plots. Layouts are through SFDP and GraphViz.
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(a) Resampled community QQ plots

(b) Original (c) HiGGs Sampled

(d) BTER Sampled

Figure 9: Communities sampled with Louvain detection from Facebook Page-Page graph with the
same from HIGGS and BTER generated counterparts, with node-level QQ plots. Layouts are through
SFDP and GraphViz.
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