

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING PRIVILEGED DEGRADATION PRIORS FOR ALL-IN-ONE IMAGE RESTORATION

Anonymous authors

Paper under double-blind review

ABSTRACT

The central challenge in all-in-one image restoration lies in learning degradation-specific priors to effectively modulate a restoration network. Prevailing approaches tackle this by learning representations that can distinguish between degradation types, often via proxy tasks like classification or contrastive learning. However, a representation optimized for discrimination is not necessarily optimal for restoration, leading to a fundamental objective mismatch. To address this, we introduce the Learning Using Privileged Information (LUPI) paradigm. Our method employs a teacher network granted privileged access to both degraded and clean images during training, allowing it to learn a prior directly guided by the final restoration quality. This process yields an ideal, inherently “restoration-aware” prior, which a student network—observing only the degraded input—is then trained to approximate. The learned prior dynamically modulates a restoration backbone for adaptive recovery, enabling our unified model to achieve state-of-the-art performance on benchmarks. Visualizations confirm the learned prior space is semantically structured, revealing intrinsic relationships between degradation types and effectively distinguishing their intensities. The code will be made publicly available upon acceptance of the paper.

1 INTRODUCTION

Image restoration, the process of recovering a high-quality clean image from a degraded observation, is a fundamental problem in computer vision. In recent years, deep learning has achieved remarkable success in task-specific restoration, with specialized models excelling at individual tasks such as denoising (Zhang et al., 2017), deraining (Chen et al., 2023), or deblurring (Lai et al., 2016). However, real-world degradations are often diverse and complex, making the approach of training a separate model for each specific corruption type computationally expensive and impractical for real-world deployment. This limitation has spurred significant research into all-in-one image restoration, which seeks to address a wide spectrum of degradations with a single, unified model.

A naive approach to training such a unified model—simply mixing data from all tasks—often leads to performance degradation due to task conflict, where the optimization for one task (e.g., sharpening for deblurring) can interfere with another (e.g., smoothing for denoising) (Potlapalli et al., 2023; Duan et al., 2024). To mitigate this, the dominant paradigm in recent literature has been to learn a degradation-aware prior that can dynamically modulate a shared restoration backbone. Early and influential approaches in this direction focused on learning representations at a category-level. For instance, methods based on contrastive learning (Li et al., 2022), explicit classification (Hu et al., 2025), or text instructions (Conde & Geigle, 2024) all aim to map a given corrupted image to a discrete degradation type (e.g., “denoising” vs. “deraining”). While effective at separating distinct categories, this strategy is inherently inflexible as it struggles to capture the continuous variation of degradation intensity within the same class (e.g., light versus heavy noise), often resulting in a one-size-fits-all guidance that is sub-optimal for precise restoration.

Recognizing this limitation, more recent works have shifted towards learning instance-level, adaptive priors. Methods like AdaIR (Cui et al., 2025) and MoCE-IR (Zamfir et al., 2025) implicitly learn a representation from the degraded image by optimizing the final restoration loss in an end-to-end fashion. While this instance-level adaptivity is a significant step forward, we argue these methods face a new fundamental challenge: the ambiguity of the supervision signal. Because the

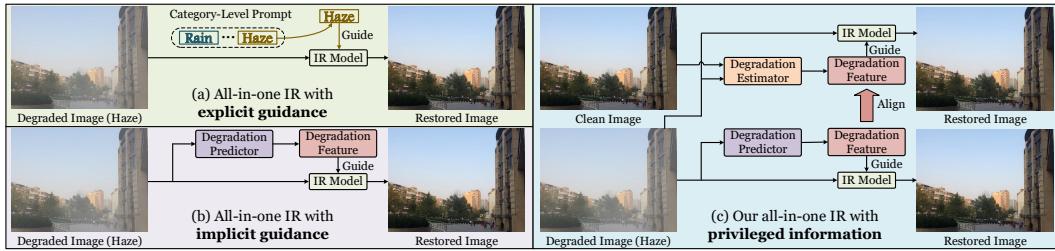


Figure 1: A conceptual comparison of different paradigms for learning degradation priors in All-in-One image restoration. (a) Explicit Guidance: Methods that rely on predefined, discrete prompts (e.g., category labels like “Haze”) to guide the restoration network. (b) Implicit Guidance: Methods that learn a degradation representation end-to-end from only the degraded image. (c) Our Method (Privileged Learning): We introduce a framework where a teacher Estimator, granted privileged access to both clean and degraded images, learns a high-quality degradation prior. A student Predictor is then trained to approximate this prior using only the degraded image, providing a restoration-aware guidance signal at inference time.

prior-generation module only ever sees the corrupted input, it must attempt to solve an extremely difficult inverse problem: to disentangle the unknown degradation from the unknown clean content using only a single, mixed signal. The guidance it receives—a scalar restoration loss propagated back through a deep network—is often insufficient to resolve this ambiguity. Essentially, the network is trapped in a “chicken-and-egg” dilemma: it needs a good prior to restore the image well, but it can only learn a good prior if the restoration network is already effective enough to provide a clear gradient.

To resolve this fundamental ambiguity and break the “hicken-and-egg” cycle, we reframe the problem from a different theoretical standpoint: Learning Using Privileged Information (LUPI) Vapnik & Vashist (2009). Instead of attempting to learn a prior from an incomplete and mixed signal, we propose a paradigm that learns this prior under the guidance of an oracle. The core idea is to provide the model with extra, “privileged” information during the training phase that is unavailable at test time. In our context, the ground-truth clean image I_c serves as this powerful privileged information. By having access to both the degraded input I_d and the clean target I_c , a “teacher” network is uniquely positioned to directly infer the true nature of the degradation transformation, thus learning a prior that is inherently “restoration-aware”.

Our framework materializes this paradigm through a teacher-student architecture. During training, a teacher estimator learns a degradation prior by observing both I_d and its clean counterpart I_c . Crucially, this teacher’s learning is supervised directly by the final restoration loss, ensuring the resulting prior is optimized for the restoration task, not a proxy. Subsequently, a student predictor, which only ever sees the degraded input, is trained to approximate this ideal, privileged prior via a distribution alignment loss. This critical step transfers the knowledge from the teacher space to the student, enabling the student to generate a high-quality, restoration-aware prior for any unseen degraded image at inference time. The learned prior is then used to dynamically modulate a restoration backbone for adaptive recovery.

- We introduce the Learning Using Privileged Information (LUPI) paradigm to the all-in-one image restoration domain as a direct solution to this problem.
- We propose a novel framework that effectively learns “restoration-aware” degradation priors by leveraging clean images as privileged information and using the final restoration quality as the direct supervision signal.
- Our proposed LUPI model achieves state-of-the-art performance across multiple benchmarks, demonstrating the practical superiority of our proposed approach.

2 RELATED WORK

Single-Task Image Restoration. Image restoration aims to restore a clean image from its degraded observation. Existing approaches are commonly categorized into prior-based and data-driven meth-

ods. Prior-based methods reduce the solution space via physical or statistical assumptions—e.g., (He et al., 2009) employs the dark channel prior for dehazing. But it typically generalizes poorly to complex real-world degradations. In contrast, data-driven methods learn mappings from degraded observations to their clean counterparts using large-scale training data and exhibit superior generalization compared with prior-based approaches. These methods employ convolutional neural networks (CNNs) and have achieved strong task-specific results in denoising (Zhang et al., 2017), deraining (Chen et al., 2023), dehazing (Ren et al., 2016), and low-light enhancement Guo et al. (2017). More recently, to model long-range dependencies and global context, Transformer architectures have been introduced for image restoration; representative methods (Song et al., 2023; Tsai et al., 2022) report substantial gains on dehazing and deblurring. Despite these advances, most of the methods are designed for a specific type of degradation and exhibit limited cross-degradation generalization. More recent models, such as Restormer (Zamir et al., 2022), Uformer (Wang et al., 2022), and SFHformer (Jiang et al., 2024), show competitive performance across multiple restoration tasks, yet they typically require task-specific training and maintaining separate checkpoints per degradation. In real-world scenarios, however, images often suffer from various or compounded degradations, rendering single-task models less practical for deployment due to their restricted generalization and increased maintenance overhead.

All-in-One Image Restoration. All-in-one image restoration aims to handle multiple degradation types (e.g., denoising, deraining, dehazing, and deblurring) within a unified framework, facilitating practical deployment in real-world scenarios with diverse degradations. Early designs adopt task-specific encoders and decoders to cope with multiple degradations (Chen et al., 2021), but they typically assume the degradation type is known, which limits practicality. Recent studies have proposed various strategies to learn degradation-aware representations, enabling adaptation to varying restoration tasks without requiring prior knowledge of the degradation type. A pioneering work, AirNet (Li et al., 2022), employs contrastive learning to extract degradation representations and guide image restoration without explicit degradation labels. AdaIR (Cui et al., 2025) mines frequency-domain cues and performs feature modulation to adaptively handle different degradations. Inspired by prompt learning, several methods introduce learnable prompts that encode degradation context and modulate the restoration backbone accordingly (Potlapalli et al., 2023; Luo et al., 2024; Yang et al., 2024; Duan et al., 2024). For example, PromptIR (Potlapalli et al., 2023) integrates a visual prompt block that implicitly infers the degradation condition and dynamically guides restoration across diverse types, albeit with non-trivial parameter overhead. With the emergence of vision-language models (VLMs), InstructIR (Conde & Geigle, 2024) further explores human-written instructions to direct restoration. While instruction-driven paradigms improve adaptivity, they often rely on large-scale pre-trained language models, inflating system complexity and computational cost. In contrast, we introduce the LUPI paradigm, in which a privileged teacher learns a restoration-aware prior, and a student predicts this prior from the degraded input at test time—requiring neither degradation labels nor language models.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK

The central thesis of our work is that a powerful all-in-one image restoration model requires a degradation prior explicitly optimized for the restoration task itself. Existing paradigms often falter due to an *objective mismatch* or *supervision ambiguity*. To overcome these limitations, we introduce a novel framework grounded in the Learning Using Privileged Information (LUPI) paradigm. Our framework is built around two key components: a **Degradation Prior Estimator**, which generates a latent vector representing the degradation, and a **Modulated Restoration Network**, which uses this prior to adaptively restore the corrupted image. The core of our contribution lies in how this prior is learned. We propose a two-stage, teacher-student training strategy that leverages the ground-truth clean image as privileged information, as depicted in Figure 2. First, in **Stage 1**, we train a privileged **teacher system** where an expert estimator (D_T) sees both the clean (I_c) and degraded (I_d) images to produce an ideal, “restoration-aware” prior d_T . This prior is learned by directly optimizing the final output of a teacher restoration network (R_T). Subsequently, in **Stage 2**, we train a practical **student system**. Here, a student predictor (D_S) learns to generate a similar high-quality prior d_S by observing only the degraded image, which is achieved by forcing its output to align with that of

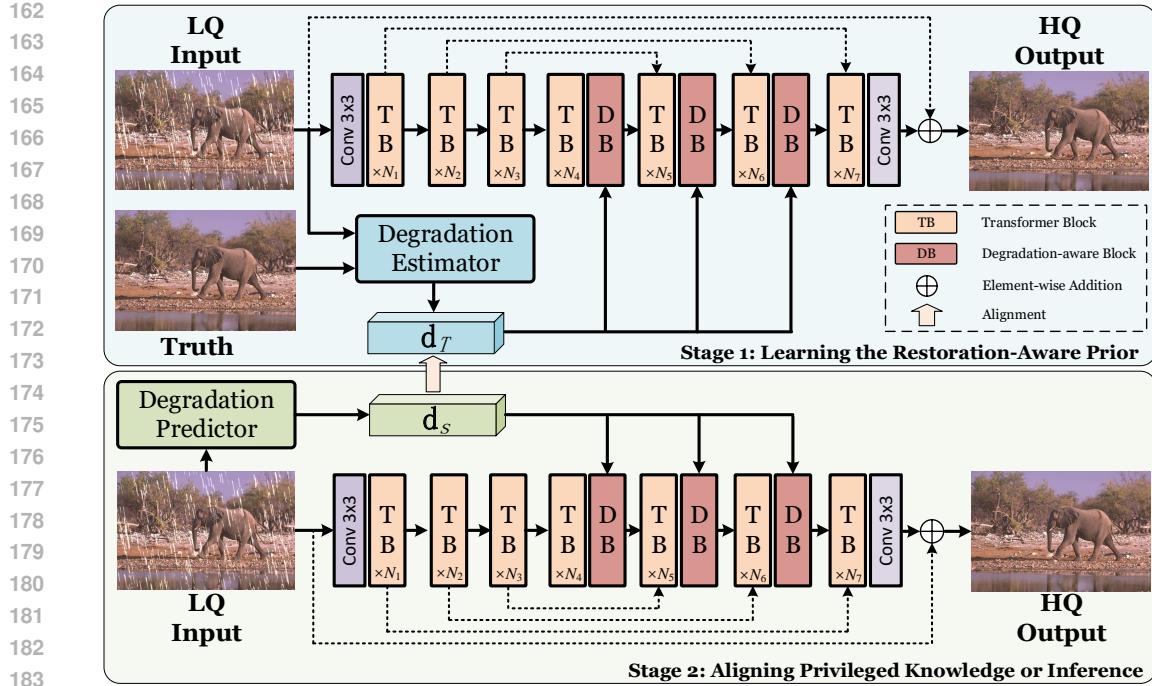


Figure 2: **An overview of our proposed framework based on the Learning Using Privileged Information (LUPI) paradigm.** Our method consists of two training stages. **In Stage 1 (top)**, a privileged estimator (D_T) utilizes both the degraded (I_d) and clean (I_c , referred to as Truth) images to generate an ideal, restoration-aware prior (d_T). This prior is learned by optimizing the end-to-end restoration quality of the teacher network. **In Stage 2 (bottom)**, a degradation predictor (D_S) is trained to generate a degradation prior (d_S) from only the degraded input, by aligning it with the frozen privileged prior d_T . At **inference time**, the process is identical to Stage 2’s forward pass: the predicted prior d_S dynamically modulates the restoration network’s Degradation-aware Blocks (DBs) to produce the final restored output.

the frozen teacher estimator. This strategy allows us to first define what an optimal prior is under ideal conditions, and then teach a practical model to produce it.

3.2 ARCHITECTURAL COMPONENTS

Our architectural designs are detailed in Figure 3. We build upon established modules to emphasize that our performance gains stem from the training paradigm.

Modulated Restoration Network (R). The overall architecture of our restoration network (R_T and R_S) follows the successful paradigm of recent state-of-the-art methods such as PromptIR (Potlapalli et al., 2023) and AdaIR (Cui et al., 2025), which consists of a powerful restoration backbone and a feature modulation mechanism. As illustrated in Figure 2, our backbone is a U-Net whose core component is the Transformer Block (TB) from Restormer (Zamir et al., 2022); the detailed structure of the TB can be found in the appendix A.1. The feature modulation is achieved by our proposed **Degradation-aware Block (DB)**, which injects the degradation prior generated by our **Degradation Estimator (D_T)** or **Predictor (D_S)**. Following the effective design choices of PromptIR and AdaIR, we strategically place these DBs in the deeper stages of the U-Net decoder. This allows the prior to modulate features at a higher semantic level for more effective guidance. We will now detail the three core components of our degradation-aware design: the Privileged Degradation Estimator D_T , the Degradation Predictor D_S , and the Degradation-aware Block (DB).

Privileged Degradation Estimator (D_T). The degradation estimator D_T in Figure 3 (a) extracts the privileged prior d_T from the (I_d, I_c) pair. It employs a Siamese-like architecture where both

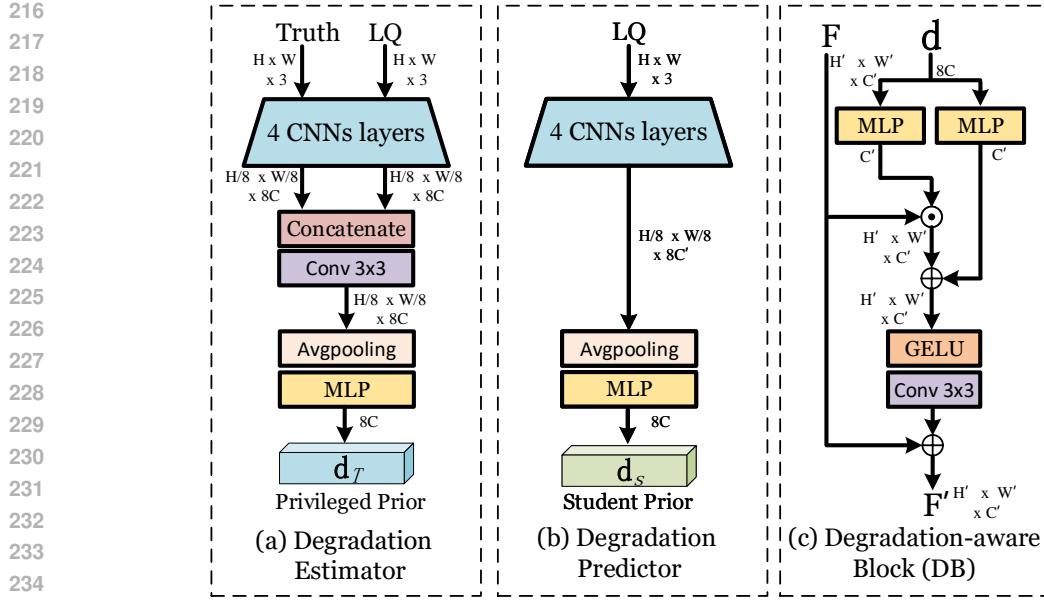


Figure 3: **Detailed architectures of our key network components.** (a) **The Privileged Estimator** (D_T) employs a Siamese-like design with a shared-weight CNN encoder. It takes both the degraded (LQ) and clean (Truth) images as input, concatenates their features, and passes them through a fusion module and an MLP head to produce the privileged prior d_T . (b) **The Student Predictor** (D_S) mirrors a single branch of the teacher’s architecture, learning to predict a similar prior d_S from only the degraded input. (c) **The Degradation-aware Block (DB)** is the mechanism for injecting the learned prior. The prior vector is transformed by an MLP into a channel-wise scaling vector, which then element-wise multiplies the feature map that has been processed by a convolutional block.

inputs pass through four shared-weight CNN layers, mapping them to feature spaces of size $H/8 \times W/8$. These features are then concatenated, passed through a 3×3 convolutional fusion layer, and finally projected by an average pooling layer and an MLP into the final prior vector $d_T \in \mathbb{R}^{8C}$.

Degradation Predictor (D_S). The student predictor D_S in Figure 3 (b) mirrors a single branch of the teacher. It takes only the degraded image I_d as input, passes it through the same four CNN layers to extract features, and then uses an average pooling layer and an MLP to predict the student prior $d_S \in \mathbb{R}^{8C}$. This architectural consistency simplifies the knowledge alignment in Stage 2.

Degradation-aware Block (DB). The **Degradation-aware Block (DB)** is responsible for injecting the learned degradation-aware prior into the network to modulate its features. For the sake of efficiency, we adopt a simple and lightweight approach based on the Feature-wise Linear Modulation (FiLM) mechanism (Perez et al., 2018). As illustrated in Figure 3c, the block’s operation is direct and straightforward. Given the output feature map $F \in \mathbb{R}^{H' \times W' \times C'}$ from a corresponding decoder stage and the degradation prior $d \in \mathbb{R}^{8C}$, the prior is first transformed by a lightweight MLP into a scaling vector $\gamma \in \mathbb{R}^{C'}$ and a shifting vector $\beta \in \mathbb{R}^{C'}:$

$$[\gamma, \beta] = \text{MLP}(d). \quad (1)$$

These parameters then directly modulate the input feature map F before it is passed through the block’s main path. A final residual connection (He et al., 2016) ensures information flow. The entire operation can be summarized as:

$$F' = F + \text{Conv}_{3 \times 3}(\text{GELU}(\gamma \odot F + \beta)), \quad (2)$$

where $F' \in \mathbb{R}^{H' \times W' \times C'}$ is the output of DB.

3.3 LEARNING WITH PRIVILEGED INFORMATION: A TWO-STAGE APPROACH

With all components defined, we now detail our two-stage training procedure.

270 **Stage 1: Learning the Restoration-Aware Prior.** In this stage, the teacher estimator D_T and
 271 restoration network R_T are trained jointly. The system is optimized using an L1 loss between the
 272 restored image I_r and the ground truth I_c :

$$\mathcal{L}_{\text{teacher}} = \|R_T(I_d, D_T(I_d, I_c)) - I_c\|_1. \quad (3)$$

273 The gradients from this loss shape the prior \mathbf{d}_T to be explicitly optimized for the restoration task.
 275

276 **Stage 2: Distilling Privileged Knowledge.** In this stage, the weights of D_T are frozen. We then
 277 jointly train the student predictor D_S and a new student restorer R_S . The training objective is a
 278 composite loss:

$$\mathcal{L}_{\text{student}} = \mathcal{L}_{\text{recon}} + \lambda_{\text{align}} \mathcal{L}_{\text{align}}, \quad (4)$$

279 where λ_{align} is a balancing hyperparameter. The reconstruction loss $\mathcal{L}_{\text{recon}}$ is the L1 loss on the final
 280 student output. The alignment loss $\mathcal{L}_{\text{align}}$ encourages \mathbf{d}_S to match \mathbf{d}_T via a Kullback-Leibler (KL)
 281 divergence loss.
 282

284 3.4 INFERENCE

285 At inference time, the teacher system is discarded. The final model consists only of the student
 286 predictor D_S and restorer R_S . Given a degraded input I_d , the model computes $\mathbf{d}_S = D_S(I_d)$ and
 287 then produces the restored image $I_o = R_S(I_d, \mathbf{d}_S)$.
 288

290 4 EXPERIMENTS

291 To validate the efficacy of our proposed LUPI, we conduct extensive experiments on the challenging
 292 task of all-in-one image restoration. We first detail the experimental setup, including the standard
 293 benchmarks and our implementation specifics. We then present a comprehensive comparison of our
 294 method against state-of-the-art competitors under both 3-task and 5-task settings. For all quantitative
 295 evaluations, we employ the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index
 296 (SSIM) as our primary metrics, where higher values indicate better restoration quality.
 297

298 4.1 EXPERIMENTAL SETUP

300 **Datasets.** To ensure a fair and direct comparison with recent state-of-the-art methods (Potlapalli
 301 et al., 2023; Cui et al., 2025), we evaluate our model on two widely adopted multi-task benchmarks.
 302 The first is a **3-task benchmark** comprising **Denoising**, **Deraining**, and **Dehazing**. For denoising,
 303 we synthesize training data by adding Gaussian noise ($\sigma \in \{15, 25, 50\}$) to the BSD400 (Arbelaez
 304 et al., 2010) and WED (Ma et al., 2016) datasets, and evaluate on the BSD68 benchmark (Martin
 305 et al., 2001). For deraining and dehazing, we use the Rain100L (Wenhan Yang & Yan, 2017) and
 306 SOTS (Li et al., 2018) datasets, respectively. The second, more challenging **5-task benchmark**
 307 extends this setup with two additional tasks: **Deblurring** on the GoPro dataset (Nah et al., 2017)
 308 and **Low-Light Enhancement** on the LOL-v1 dataset (Wei et al., 2018).
 309

310 **Implementation Details.** We implement our framework in PyTorch and conduct all experiments
 311 on two NVIDIA L40 GPUs. Consistent with the architecture described in Section 3, our restoration
 312 network is a U-Net with four encoder levels and three decoder levels, and the number of transformer
 313 blocks across the seven stages is set to $[4, 6, 6, 8, 6, 6, 8]$. The dimension of the learned degradation
 314 prior is set to 512 (i.e. $8C$ in Figure 3). We use the AdamW optimizer (Loshchilov & Hutter, 2017)
 315 for all training. During training, we extract patches of size 128×128 and apply random horizontal
 316 flipping and rotation for data augmentation.

317 **Training Strategy.** Our framework is trained end-to-end following the proposed two-stage
 318 paradigm. **In Stage 1**, we train the complete teacher system (D_T and R_T) for 150 epochs, us-
 319 ing the L1 reconstruction loss as the sole optimization objective, as defined in Equation 3. **In Stage**
 320 **2**, after freezing the teacher estimator’s weights, we train the student system (D_S and R_S) for an-
 321 other 150 epochs. For this stage, we use the composite loss function defined in Equation 4, which
 322 combines the L1 reconstruction loss with the KL divergence-based alignment loss to transfer the
 323 teacher’s knowledge. For both training stages, the initial learning rate is set to 2×10^{-4} and is
 324 gradually decayed to zero using a cosine annealing schedule.

324 Table 1: Quantitative comparison (PSNR / SSIM) for all-in-one restoration on three tasks. The best
 325 results are in **bold**, and the second-best are underlined.
 326

327 328 Method	329 Dehazing		330 Deraining			331 Denoising on BSD68			332 Average
	SOTS	Rain100L	$\sigma = 15$	$\sigma = 25$	$\sigma = 50$				
AirNet (Li et al., 2022)	27.94 / 0.962	34.90 / 0.967	33.92 / 0.933	31.26 / 0.888	28.00 / 0.797	31.20 / 0.910			
PromptIR Potlapalli et al. (2023)	30.58 / 0.974	36.37 / 0.972	33.98 / 0.933	31.31 / 0.888	28.06 / 0.799	32.06 / 0.913			
Art-PromptIR (Wu et al., 2024)	30.83 / 0.979	37.94 / 0.982	34.06 / 0.934	31.42 / 0.891	28.14 / 0.801	32.49 / 0.917			
InstructIR (Conde & Geigle, 2024)	30.22 / 0.959	37.98 / 0.978	<u>34.15</u> / 0.933	<u>31.52</u> / 0.890	<u>28.30</u> / 0.804	32.43 / 0.913			
PromptIR-TUR (Wu et al., 2025)	31.17 / 0.978	38.57 / 0.984	34.06 / 0.932	31.40 / 0.887	28.13 / 0.797	32.67 / 0.916			
AdaIR (Cui et al., 2025)	31.06 / 0.980	38.64 / 0.983	34.12 / 0.935	31.46 / 0.892	28.19 / 0.802	32.69 / 0.918			
VLU-Net (Zeng et al., 2025)	30.71 / 0.980	38.93 / 0.984	34.13 / 0.935	31.48 / 0.892	28.23 / 0.804	32.70 / 0.919			
MoCE-IR (Zamfir et al., 2025)	31.34 / 0.979	38.57 / 0.984	34.11 / 0.932	31.45 / 0.888	28.18 / 0.800	32.73 / 0.917			
Ours (LUPI)	31.86 / 0.983	<u>38.92 / 0.985</u>	<u>34.23 / 0.937</u>	<u>31.58 / 0.894</u>	<u>28.33 / 0.807</u>	<u>32.98 / 0.921</u>			

336 Table 2: Quantitative comparison (PSNR / SSIM) for all-in-one restoration on five tasks. Best
 337 results are in **bold**, second-best are underlined. Note that for denoising, we report results for $\sigma = 25$
 338 following standard practice in this setting.
 339

340 341 Method	342 Dehazing		343 Deraining		344 Denoising		345 Deblurring		346 Average
	SOTS	Rain100L	$BSD68_{\sigma=25}$	GoPro	LOL				
AirNet (Li et al., 2022)	21.04 / 0.884	32.98 / 0.951	30.91 / 0.882	24.35 / 0.781	18.18 / 0.735	25.49 / 0.847			
PromptIR (Potlapalli et al., 2023)	25.20 / 0.931	35.94 / 0.964	31.17 / 0.882	27.32 / 0.842	20.94 / 0.799	28.11 / 0.883			
Gridformer (Wang et al., 2024)	26.79 / 0.951	36.61 / 0.971	<u>31.45</u> / 0.885	29.22 / 0.884	22.59 / 0.831	29.33 / 0.904			
InstructIR Conde & Geigle (2024)	27.10 / 0.956	36.84 / 0.973	31.40 / 0.873	29.40 / 0.886	23.00 / 0.836	29.55 / 0.908			
Transweather-TUR Wu et al. (2025)	29.68 / 0.966	33.09 / 0.952	30.40 / 0.869	26.63 / 0.815	<u>23.02</u> / 0.838	28.56 / 0.888			
AdaIR (Cui et al., 2025)	30.53 / 0.978	38.02 / 0.981	31.35 / 0.889	28.12 / 0.858	23.00 / 0.845	30.20 / 0.910			
VLU-Net (Zeng et al., 2025)	30.84 / 0.980	<u>38.54</u> / 0.982	31.43 / 0.891	27.46 / 0.840	22.29 / 0.833	30.11 / 0.905			
MoCE-IR (Zamfir et al., 2025)	30.48 / 0.974	38.04 / 0.982	31.34 / 0.887	30.05 / 0.899	23.00 / <u>0.852</u>	<u>30.58</u> / <u>0.919</u>			
Ours (LUPI)	31.00 / 0.981	39.20 / 0.986	31.55 / 0.894	<u>29.46</u> / <u>0.886</u>	<u>23.66</u> / <u>0.865</u>	<u>30.97</u> / <u>0.922</u>			

350 4.2 QUANTITATIVE AND QUALITATIVE COMPARISONS

352 To comprehensively evaluate our framework, we benchmark our LUPI-based model against state-
 353 of-the-art (SOTA) methods on both a 3-task and a more challenging 5-task all-in-one restoration
 354 benchmark. The quantitative results, presented in Table 1 and Table 2, demonstrate the clear su-
 355 periority of our approach, which achieves the best overall performance in both settings. On the 5-task
 356 benchmark, for instance, our method surpasses the strong MoCE-IR baseline by a significant **0.39**
 357 **dB** in average PSNR. These quantitative improvements are visually substantiated by our qualitative
 358 results in Figure 4. The visual comparisons reveal our model’s enhanced ability to restore fine-
 359 grained textures while faithfully removing degradations. For example, in the deraining result, our
 360 method recovers the subtle skin textures of the subject more effectively than competing methods,
 361 while in the dehazing example, it restores the vibrant colors of the street signs with higher fidelity.
 362 Collectively, these strong quantitative and qualitative results validate the effectiveness of learning
 363 a restoration-aware prior through our proposed LUPI paradigm. More qualitative comparisons can
 364 be found in the appendix A.3, and a comparison of model runtime efficiency can be found in the
 365 appendix A.2

366 4.3 ABLATION STUDY

368 To thoroughly validate the effectiveness of our proposed framework and analyze the contribution of
 369 its key components, we conduct a series of ablation studies on the 3-task benchmark. We investigate
 370 three primary aspects: the impact of our LUPI-based training paradigm, the architectural design of
 371 the privileged teacher estimator, and the characteristics of the learned prior space.

373 **Impact of the LUPI Framework.** This core ablation evaluates the fundamental contribution of
 374 our privileged learning strategy. We compare our full model against two degraded variants. The
 375 first, termed **w/o Privileged information**, removes the Stage 1 training entirely. In this setting, the
 376 student system is trained end-to-end from scratch using only the L1 reconstruction loss, representing
 377 a standard instance-adaptive model. The second variant, **w/o Degradation Predictor**, is further sim-
 plified by removing the adaptive module altogether, degenerating into a single restoration network.

Figure 4: Qualitative comparison on the 3-task benchmark (denoising, deraining, and dehazing). Zoom in for the best view.

The results in Table 3 show that our full LUPI significantly outperforms both variants. The substantial performance drop in the **w/o Privileged Teacher** setting validates our central hypothesis that the guidance from a privileged, restoration-aware teacher is crucial for overcoming the limitations of learning from ambiguous signals. Furthermore, the poor performance of the **w/o Degradation Predictor** variant confirms the necessity of a dynamic mechanism for handling diverse degradations.

Table 3: Impact of the LUPI framework. Average performance is reported.

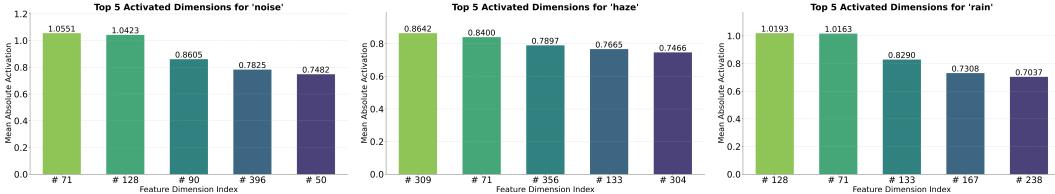
Table 4: Design of the estimator (D_T). Average performance is reported.

Estimator (D_T)	Predictor (D_S)	PSNR \uparrow	SSIM \uparrow
X	X	31.94	0.907
X	✓	32.07	0.909
✓	✓	32.98	0.921

Method	PSNR \uparrow	SSIM \uparrow
Input Addition	32.75	0.918
Input Concat	32.80	0.920
Siamese (Ours)	32.98	0.921

Design of the Privileged Teacher Estimator. We investigate how different strategies for processing the privileged information (I_d and I_c) in the degradation estimator affect final performance. We compare our proposed **Siamese** design against two simpler alternatives: **Input Concatenation**, where the images are concatenated along the channel dimension before being fed to the estimator, and **Input Addition**, where the two images are element-wise added. As shown in Table 4, our Siamese architecture yields the best performance. This design allows the network to extract comparable features before fusion, which is more effective for identifying degradation characteristics. Concatenating the inputs performs reasonably well but is slightly inferior, while simple addition leads to a more performance drop, validating our choice of the Siamese architecture.

Visualization of the Prior Space. To intuitively understand the properties of the restoration-aware prior, we analyze the latent space of the degradation predictor (D_S) in Figure 5. The analysis



(a) Top 5 activated prior dimensions for different degradation types (noise, haze, rain).

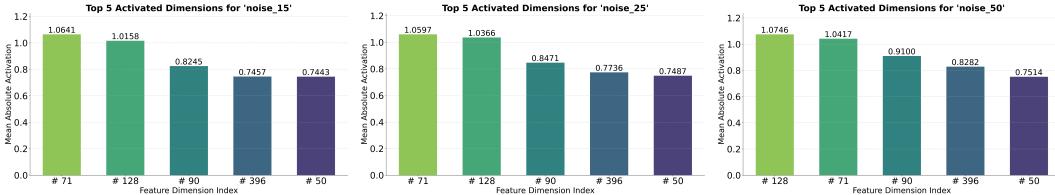
(b) Top 5 activated prior dimensions for different noise intensities ($\sigma = 15, 25, 50$).

Figure 5: **Visualization of the learned degradation prior space.** (a) For different degradation types, the model learns physically-grounded representations. Note the significant overlap between “noise” and “rain”, which share properties with additive corruptions. The commonly activated dimension #71 suggests an encoding for general attributes like *local occlusion*, while “haze” activates a distinct pattern. (b) For different noise intensities, the prior demonstrates a disentangled encoding of degradation *type* and *intensity*. The set of activated dimensions remains stable (identifying the degradation as ‘noise’), while their relative magnitudes shift to encode the severity, enabling precise, intensity-aware restoration.

reveals that our framework learns a highly structured and interpretable prior space that captures the underlying physical nature of degradations, rather than just their surface-level appearance.

First, the model learns to group tasks based on their physical similarities. As shown in Figure 5 (a), the priors for deraining and denoising exhibit a strong overlap in their most activated dimensions (e.g., #71 and #128), reflecting their shared properties with additive corruptions. Conversely, dehazing, a spatially-varying degradation, activates a distinct set of dimensions. This demonstrates that the model learns physically-grounded representations.

This structured representation extends to a finer granularity. A deeper analysis within the denoising task (Figure 5b) reveals that the model has learned a partially disentangled representation of degradation *type* and *intensity*. We observe that a remarkably stable set of dimensions is used to represent noise regardless of its severity, forming a canonical representation for the ‘noise’ category. Critically, within this stable set, the model encodes the continuous intensity by modulating the relative activation magnitudes. For instance, the activation of dimension #128 increases with the noise level (from 1.016 at $\sigma = 15$ to 1.075 at $\sigma = 50$). The emergence of such an interpretable prior is a direct benefit of our LUPI framework, whose unambiguous supervision signal guides the model to learn the true underlying factors of degradation, leading to its robust and precise restoration capabilities.

5 CONCLUSION

In this work, we addressed the challenge of learning effective degradation priors for all-in-one image restoration by introducing the Learning Using Privileged Information (LUPI) paradigm to resolve the objective mismatch and supervision ambiguity in existing methods. Our LUPI framework allows a privileged teacher to learn an optimal, “restoration-aware” prior from both clean and degraded images, which a student network then learns to predict. Our method achieves state-of-the-art performance on extensive multi-task benchmarks. Furthermore, we demonstrate that the learned prior space is not a black box but is highly structured and interpretable, capable of capturing the physical similarities between degradation types and even disentangling their categorical type from their continuous intensity.

486 REPRODUCIBILITY STATEMENT
487488 To ensure the reproducibility of our results, we have included our source code in the an anonymous
489 repository <https://anonymous.4open.science/r/lupi-C4BC/>.
490491 REFERENCES
492493 Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and hi-
494 erarchical image segmentation. *IEEE transactions on pattern analysis and machine intelligence*,
495 33(5):898–916, 2010.496 Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chun-
497 jing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In *IEEE Conference
498 on Computer Vision and Pattern Recognition, virtual, June 19-25, 2021*, pp. 12299–12310, 2021.499 500 Xiang Chen, Hao Li, Mingiang Li, and Jinshan Pan. Learning a sparse transformer network for
501 effective image deraining. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
502 Pattern Recognition (CVPR)*, pp. 5896–5905, June 2023.503 504 Marcos V Conde and Gregor Geigle. Instructir: High-quality image restoration following human
505 instructions. In *European Conference on Computer Vision*, pp. 1–21. Springer, 2024.506 507 Yuning Cui, Syed Waqas Zamir, Salman Khan, Alois Knoll, Mubarak Shah, and Fahad Shahbaz
508 Khan. AdaIR: Adaptive all-in-one image restoration via frequency mining and modulation. In
509 *The Thirteenth International Conference on Learning Representations*, 2025.510 511 Huiyu Duan, Xiongkuo Min, Sijing Wu, Wei Shen, and Guangtao Zhai. Uniprocessor: A text-
512 induced unified low-level image processor. In *Computer Vision - ECCV 2024 - 18th European
513 Conference, Milan, Italy, September 29-October 4,*, volume 15125 of *Lecture Notes in Computer
Science*, pp. 180–199. Springer, 2024.514 515 Xiaojie Guo, Yu Li, and Haibin Ling. LIME: low-light image enhancement via illumination map
516 estimation. *IEEE Trans. Image Process.*, 26(2):982–993, 2017.517 518 Kaiming He, Jian Sun, and Xiaou Tang. Single image haze removal using dark channel prior.
519 In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami,
Florida, USA*, pp. 1956–1963, 2009.520 521 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
522 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
523 770–778, 2016.524 525 JiaKui Hu, Lujia Jin, Zhengjian Yao, and Yanye Lu. Universal image restoration pre-training via
526 degradation classification. In *The Thirteenth International Conference on Learning Representa-
527 tions*, 2025.528 529 Xingyu Jiang, Xiuhui Zhang, Ning Gao, and Yue Deng. When fast fourier transform meets trans-
530 former for image restoration. In *Proceedings of European Conference on Computer Vision*, pp.
531 381–402, 2024.531 532 Wei-Sheng Lai, Jia-Bin Huang, Zhe Hu, Narendra Ahuja, and Ming-Hsuan Yang. A comparative
533 study for single image blind deblurring. In *Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (CVPR)*, pp. 1701–1709, 2016.534 535 Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang.
536 Benchmarking single-image dehazing and beyond. *IEEE Transactions on Image Processing*, 28
537 (1):492–505, 2018.538 539 Boyun Li, Xiao Liu, Peng Hu, Zhongqin Wu, Jiancheng Lv, and Xi Peng. All-in-one image restora-
540 tion for unknown corruption. In *Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition (CVPR)*, pp. 17452–17462, 2022.

540 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 541 *arXiv:1711.05101*, 2017.

542

543 Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Controlling
 544 vision-language models for multi-task image restoration. In *The Twelfth International Conference*
 545 *on Learning Representations*, 2024.

546 Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang, Hongwei Yong, Hongliang Li, and Lei
 547 Zhang. Waterloo exploration database: New challenges for image quality assessment models.
 548 *IEEE Transactions on Image Processing*, 26(2):1004–1016, 2016.

549

550 David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
 551 natural images and its application to evaluating segmentation algorithms and measuring ecological
 552 statistics. In *Proceedings of the IEEE international conference on computer vision*, 2001.

553 Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network
 554 for dynamic scene deblurring. In *IEEE Conference on Computer Vision and Pattern Recognition*,
 555 2017.

556

557 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 558 reasoning with a general conditioning layer. In *Proceedings of the AAAI conference on artificial*
 559 *intelligence*, volume 32, 2018.

560 Vaishnav Potlapalli, Syed Waqas Zamir, Salman H Khan, and Fahad Shahbaz Khan. Promptir:
 561 Prompting for all-in-one image restoration. *Advances in Neural Information Processing Systems*,
 562 36:71275–71293, 2023.

563

564 Wenqi Ren, Si Liu, Hua Zhang, Jin-shan Pan, Xiaochun Cao, and Ming-Hsuan Yang. Single image
 565 dehazing via multi-scale convolutional neural networks. In *Proceedings of Computer Vision -*
 566 *ECCV 2016, Amsterdam, The Netherlands, October 11-14*, volume 9906, pp. 154–169, 2016.

567

568 Yuda Song, Zhuqing He, Hui Qian, and Xin Du. Vision transformers for single image dehazing.
 569 *IEEE Transactions on Image Processing*, 32:1927–1941, 2023.

570

571 Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai, and Chia-Wen Lin. Stripformer: Strip
 572 transformer for fast image deblurring. In *Proceedings of European conference on computer vision*,
 573 pp. 146–162, 2022.

574

575 Vladimir Vapnik and Akshay Vashist. A new learning paradigm: Learning using privileged infor-
 576 mation. *Neural networks*, 22(5-6):544–557, 2009.

577

578 Tao Wang, Kaihao Zhang, Ziqian Shao, Wenhan Luo, Bjorn Stenger, Tong Lu, Tae-Kyun Kim, Wei
 579 Liu, and Hongdong Li. Gridformer: Residual dense transformer with grid structure for image
 580 restoration in adverse weather conditions, 2024.

581

582 Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li.
 583 Uformer: A general u-shaped transformer for image restoration. In *Proceedings of the IEEE/CVF*
 584 *conference on computer vision and pattern recognition*, pp. 17683–17693, 2022.

585

586 Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light
 587 enhancement. *arXiv preprint arXiv:1808.04560*, 2018.

588

589 Jiashi Feng, Jiaying Liu, Zongming Guo, Wenhan Yang, Robby T. Tan, and Shuicheng Yan. Joint rain
 590 detection and removal from a single image. In *IEEE Conference on Computer Vision and Pattern*
 591 *Recognition*, 2017.

592

593 Gang Wu, Junjun Jiang, Kui Jiang, and Xianming Liu. Harmony in diversity: Improving all-in-one
 594 image restoration via multi-task collaboration. In *Proceedings of the 32nd ACM International*
 595 *Conference on Multimedia*, pp. 6015–6023, 2024.

596

597 Gang Wu, Junjun Jiang, Yijun Wang, Kui Jiang, and Xianming Liu. Debiased all-in-one image
 598 restoration with task uncertainty regularization. In *Proceedings of the AAAI Conference on Arti-
 599 *ficial Intelligence*, volume 39, pp. 8386–8394, 2025.*

594 Hao Yang, Liyuan Pan, Yan Yang, and Wei Liang. Language-driven all-in-one adverse weather
 595 removal. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 596 pp. 24902–24912, 2024.

597 Eduard Zamfir, Zongwei Wu, Nancy Mehta, Yuedong Tan, Danda Pani Paudel, Yulun Zhang, and
 598 Radu Timofte. Complexity experts are task-discriminative learners for any image restoration.
 599 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 12753–12763,
 600 2025.

601 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and
 602 Ming-Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In
 603 *IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA*,
 604 June 18-24, 2022, pp. 5718–5729, 2022.

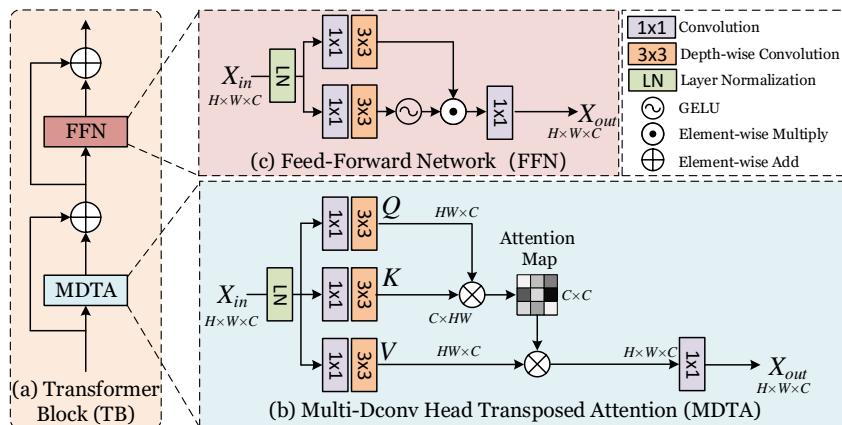
605 Haijin Zeng, Xiangming Wang, Yongyong Chen, Jingyong Su, and Jie Liu. Vision-language gradient
 606 descent-driven all-in-one deep unfolding networks. In *Proceedings of the Computer Vision and*
 607 *Pattern Recognition Conference*, pp. 7524–7533, 2025.

608 Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:
 609 Residual learning of deep cnn for image denoising. *IEEE transactions on image processing*, 26
 610 (7):3142–3155, 2017.

614 A APPENDIX

616 A.1 TRANSFORMER BLOCK ARCHITECTURE

618 The Transformer Block (TB) used in our restoration network is adopted directly from the design of
 619 Restormer (Zamir et al., 2022), as illustrated in Figure 6. Each block is composed of two primary
 620 sub-modules: a Multi-Dconv Head Transposed Attention (MDTA) module for global feature aggre-
 621 gation, followed by a Feed-Forward Network (FFN) for feature transformation. The key innovation
 622 of this block lies in the MDTA, which computes attention across feature channels rather than spatial
 623 locations, making it an efficient and effective component for high-resolution image restoration tasks.



638
 639 Figure 6: **Architecture of the Transformer Block (TB).** The block consists of two main com-
 640 ponents in sequence: (a) The Multi-Dconv Head Transposed Attention (MDTA) module. (b) a
 641 Feed-Forward Network (FFN).

643 A.2 EFFICIENCY AND PERFORMANCE ANALYSIS

645 To provide a comprehensive view of our model’s practical utility, we benchmark its performance
 646 and efficiency against several key methods. We specifically choose the Restormer baseline (Zamir
 647 et al., 2022), PromptIR (Potlapalli et al., 2023), and AdaIR (Cui et al., 2025) for this comparison, as
 their architectures are most similar to ours: they all combine a powerful Restormer-based backbone

648
 649
 650
 651
 652 Table 5: Comparison of model performance and efficiency on the 3-task benchmark (average
 653 scores). Our method is compared against the Restormer baseline and other state-of-the-art meth-
 654 ods. The best performance is highlighted in **bold**.
 655
 656

Method	Params	GFLOPS	Memory	Latency	Throughput	PSNR	SSIM
Restormer (Zamir et al., 2022)	26.13M	154.88G	676.00MB	50.67ms	19.73FPS	31.94	0.907
PromptIR (Potlapalli et al., 2023)	35.59M	172.71G	720.35MB	55.03ms	18.17FPS	32.06	0.913
AdaIR (Cui et al., 2025)	28.78M	161.76G	686.15MB	62.74ms	15.94FPS	32.69	0.918
Ours (LUPI)	31.93M	163.20G	698.69MB	52.55ms	19.03FPS	32.98	0.921

657
 658
 659 with a dedicated module for degradation-aware feature modulation. All metrics were evaluated on a
 660 single NVIDIA RTX 4090 GPU, using an input resolution of $3 \times 256 \times 256$. The reported latency is
 661 the average of 100 inference runs following a sufficient warmup period to ensure stable results. The
 662 detailed comparison is presented in Table 5.
 663

664 The results highlight that our LUPI-based framework achieves a superior balance between per-
 665 formance and efficiency. While our model (31.93M params) is moderately larger than the
 666 Restormer baseline (26.13M params), this increased complexity is a direct result of incorporating
 667 the degradation-aware modules, which proves to be a worthwhile trade-off, yielding a significant
 668 performance gain of over 1.0 dB in PSNR.
 669

670 More importantly, when compared to other state-of-the-art adaptive methods, our model demon-
 671 strates compelling efficiency. It is notably more lightweight and faster than PromptIR across all
 672 metrics. The comparison with AdaIR is particularly insightful. Despite having approximately 10%
 673 more parameters, our model’s latency of 52.55ms is about 16% lower than AdaIR’s 62.74ms. This
 674 suggests that our Degradation-aware Block (DB) has a more hardware-friendly architectural design
 675 that translates to better practical inference speed. In summary, our LUPI framework delivers state-
 676 of-the-art restoration accuracy without compromising, and in some cases even improving upon, the
 677 practical deployability of comparable methods.
 678

695 Figure 7: Qualitative comparison on the 5-task benchmark: denoising, deraining, dehazing, deblur-
 696 ring, and low-light enhancement. Zoom in for best view.
 697
 698

699 A.3 QUALITATIVE RESULTS ON THE 5-TASK BENCHMARK

700 To further validate the generalization capability of our model, we provide qualitative comparisons
 701 on the more challenging 5-task benchmark in Figure 7. This benchmark tests the model’s ability

702 to handle a wider and more diverse set of degradations, including denoising, deraining, dehazing,
703 deblurring, and low-light enhancement.

704 As the visual results show, our method demonstrates consistently superior performance across all
705 five tasks. For low-light enhancement, our model effectively brightens the scene while accurately
706 restoring colors and suppressing noise in dark regions, avoiding the color casts or artifacts present
707 in other methods. In the deblurring example, our approach successfully recovers sharp details,
708 particularly on the license plate of the vehicle, with high fidelity. For denoising and deraining, our
709 model excels at removing the respective corruptions while better preserving fine-grained textures,
710 such as the fur on the cat and the surface of the runway. Finally, in the dehazing task, our result is
711 visually more pleasing, with more natural contrast and color balance.

712 These strong qualitative results across a diverse set of tasks further substantiate the effectiveness of
713 our LUPI framework. The learned restoration-aware prior is versatile enough to guide the restora-
714 tion network through a wide variety of complex degradations, leading to consistently high-quality
715 outputs.

717 A.4 THE USE OF LARGE LANGUAGE MODELS (LLMs)

718 During the preparation of this paper, we employed a Large Language Model (LLM) to assist with
719 improving the language and readability of the text. The primary use of the LLM was for proofread-
720 ing, including correcting grammatical errors and refining sentence structure to enhance clarity. We
721 confirm that the LLM was not used for research ideation, developing the methodology, conducting
722 experiments, analyzing results, or drawing conclusions. All intellectual contributions and scientific
723 claims are solely those of the authors.

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755