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ABSTRACT

The central challenge in all-in-one image restoration lies in learning degradation-
specific priors to effectively modulate a restoration network. Prevailing ap-
proaches tackle this by learning representations that can distinguish between
degradation types, often via proxy tasks like classification or contrastive learn-
ing. However, a representation optimized for discrimination is not necessarily
optimal for restoration, leading to a fundamental objective mismatch. To address
this, we introduce the Learning Using Privileged Information (LUPI) paradigm.
Our method employs a teacher network granted privileged access to both degraded
and clean images during training, allowing it to learn a prior directly guided by
the final restoration quality. This process yields an ideal, inherently “restoration-
aware” prior, which a student network—observing only the degraded input—is
then trained to approximate. The learned prior dynamically modulates a restora-
tion backbone for adaptive recovery, enabling our unified model to achieve state-
of-the-art performance on benchmarks. Visualizations confirm the learned prior
space is semantically structured, revealing intrinsic relationships between degra-
dation types and effectively distinguishing their intensities. The code will be made
publicly available upon acceptance of the paper.

1 INTRODUCTION

Image restoration, the process of recovering a high-quality clean image from a degraded observa-
tion, is a fundamental problem in computer vision. In recent years, deep learning has achieved
remarkable success in task-specific restoration, with specialized models excelling at individual tasks
such as denoising (Zhang et al., 2017), deraining (Chen et al., 2023), or deblurring (Lai et al., 2016).
However, real-world degradations are often diverse and complex, making the approach of training a
separate model for each specific corruption type computationally expensive and impractical for real-
world deployment. This limitation has spurred significant research into all-in-one image restoration,
which seeks to address a wide spectrum of degradations with a single, unified model.

A naive approach to training such a unified model—simply mixing data from all tasks—often leads
to performance degradation due to task conflict, where the optimization for one task (e.g., sharpening
for deblurring) can interfere with another (e.g., smoothing for denoising) (Potlapalli et al., 2023;
Duan et al., 2024). To mitigate this, the dominant paradigm in recent literature has been to learn
a degradation-aware prior that can dynamically modulate a shared restoration backbone. Early and
influential approaches in this direction focused on learning representations at a category-level. For
instance, methods based on contrastive learning (Li et al., 2022), explicit classification (Hu et al.,
2025), or text instructions (Conde & Geigle, 2024) all aim to map a given corrupted image to a
discrete degradation type (e.g., “denoising” vs. “deraining”). While effective at separating distinct
categories, this strategy is inherently inflexible as it struggles to capture the continuous variation
of degradation intensity within the same class (e.g., light versus heavy noise), often resulting in a
one-size-fits-all guidance that is sub-optimal for precise restoration.

Recognizing this limitation, more recent works have shifted towards learning instance-level, adap-
tive priors. Methods like AdaIR (Cui et al., 2025) and MoCE-IR (Zamfir et al., 2025) implicitly
learn a representation from the degraded image by optimizing the final restoration loss in an end-
to-end fashion. While this instance-level adaptivity is a significant step forward, we argue these
methods face a new fundamental challenge: the ambiguity of the supervision signal. Because the
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Figure 1: A conceptual comparison of different paradigms for learning degradation priors in All-
in-One image restoration. (a) Explicit Guidance: Methods that rely on predefined, discrete prompts
(e.g., category labels like “Haze”) to guide the restoration network. (b) Implicit Guidance: Methods
that learn a degradation representation end-to-end from only the degraded image. (c) Our Method
(Privileged Learning): We introduce a framework where a teacher Estimator, granted privileged ac-
cess to both clean and degraded images, learns a high-quality degradation prior. A student Predictor
is then trained to approximate this prior using only the degraded image, providing a restoration-
aware guidance signal at inference time.

prior-generation module only ever sees the corrupted input, it must attempt to solve an extremely
difficult inverse problem: to disentangle the unknown degradation from the unknown clean content
using only a single, mixed signal. The guidance it receives—a scalar restoration loss propagated
back through a deep network—is often insufficient to resolve this ambiguity. Essentially, the net-
work is trapped in a “chicken-and-egg” dilemma: it needs a good prior to restore the image well,
but it can only learn a good prior if the restoration network is already effective enough to provide a
clear gradient.

To resolve this fundamental ambiguity and break the “hicken-and-egg” cycle, we reframe the prob-
lem from a different theoretical standpoint: Learning Using Privileged Information (LUPI) Vapnik
& Vashist (2009). Instead of attempting to learn a prior from an incomplete and mixed signal, we
propose a paradigm that learns this prior under the guidance of an oracle. The core idea is to provide
the model with extra, “privileged” information during the training phase that is unavailable at test
time. In our context, the ground-truth clean image Ic serves as this powerful privileged informa-
tion. By having access to both the degraded input Id and the clean target Ic, a “teacher” network is
uniquely positioned to directly infer the true nature of the degradation transformation, thus learning
a prior that is inherently “restoration-aware”.

Our framework materializes this paradigm through a teacher-student architecture. During training,
a teacher estimator learns a degradation prior by observing both Id and its clean counterpart Ic.
Crucially, this teacher’s learning is supervised directly by the final restoration loss, ensuring the
resulting prior is optimized for the restoration task, not a proxy. Subsequently, a student predictor,
which only ever sees the degraded input, is trained to approximate this ideal, privileged prior via a
distribution alignment loss. This critical step transfers the knowledge from the teacher space to the
student, enabling the student to generate a high-quality, restoration-aware prior for any unseen de-
graded image at inference time. The learned prior is then used to dynamically modulate a restoration
backbone for adaptive recovery.

• We introduce the Learning Using Privileged Information (LUPI) paradigm to the all-in-one
image restoration domain as a direct solution to this problem.

• We propose a novel framework that effectively learns “restoration-aware” degradation pri-
ors by leveraging clean images as privileged information and using the final restoration
quality as the direct supervision signal.

• Our proposed LUPI model achieves state-of-the-art performance across multiple bench-
marks, demonstrating the practical superiority of our proposed approach.

2 RELATED WORK

Single-Task Image Restoration. Image restoration aims to restore a clean image from its degraded
observation. Existing approaches are commonly categorized into prior-based and data-driven meth-
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ods. Prior-based methods reduce the solution space via physical or statistical assumptions—e.g.,
(He et al., 2009) employs the dark channel prior for dehazing. But it typically generalizes poorly
to complex real-world degradations. In contrast, data-driven methods learn mappings from de-
graded observations to their clean counterparts using large-scale training data and exhibit superior
generalization compared with prior-based approaches. These methods employ convolutional neural
networks (CNNs) and have achieved strong task-specific results in denoising (Zhang et al., 2017),
deraining (Chen et al., 2023), dehazing (Ren et al., 2016), and low-light enhancement Guo et al.
(2017). More recently, to model long-range dependencies and global context, Transformer archi-
tectures have been introduced for image restoration; representative methods (Song et al., 2023; Tsai
et al., 2022) report substantial gains on dehazing and deblurring. Despite these advances, most of
the methods are designed for a specific type of degradation and exhibit limited cross-degradation
generalization. More recent models, such as Restormer (Zamir et al., 2022), Uformer (Wang et al.,
2022), and SFHformer (Jiang et al., 2024), show competitive performance across multiple restora-
tion tasks, yet they typically require task-specific training and maintaining separate checkpoints per
degradation. In real-world scenarios, however, images often suffer from various or compounded
degradations, rendering single-task models less practical for deployment due to their restricted gen-
eralization and increased maintenance overhead.

All-in-One Image Restoration. All-in-one image restoration aims to handle multiple degradation
types (e.g., denoising, deraining, dehazing, and deblurring) within a unified framework, facilitat-
ing practical deployment in real-world scenarios with diverse degradations. Early designs adopt
task-specific encoders and decoders to cope with multiple degradations (Chen et al., 2021), but they
typically assume the degradation type is known, which limits practicality. Recent studies have pro-
posed various strategies to learn degradation-aware representations, enabling adaptation to varying
restoration tasks without requiring prior knowledge of the degradation type. A pioneering work, Air-
Net (Li et al., 2022), employs contrastive learning to extract degradation representations and guide
image restoration without explicit degradation labels. AdaIR (Cui et al., 2025) mines frequency-
domain cues and performs feature modulation to adaptively handle different degradations. Inspired
by prompt learning, several methods introduce learnable prompts that encode degradation context
and modulate the restoration backbone accordingly (Potlapalli et al., 2023; Luo et al., 2024; Yang
et al., 2024; Duan et al., 2024). For example, PromptIR (Potlapalli et al., 2023) integrates a vi-
sual prompt block that implicitly infers the degradation condition and dynamically guides restora-
tion across diverse types, albeit with non-trivial parameter overhead. With the emergence of vi-
sion–language models (VLMs), InstructIR (Conde & Geigle, 2024) further explores human-written
instructions to direct restoration. While instruction-driven paradigms improve adaptivity, they of-
ten rely on large-scale pre-trained language models, inflating system complexity and computational
cost. In contrast, we introduce the LUPI paradigm, in which a privileged teacher learns a restoration-
aware prior, and a student predicts this prior from the degraded input at test time—requiring neither
degradation labels nor language models.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK

The central thesis of our work is that a powerful all-in-one image restoration model requires a degra-
dation prior explicitly optimized for the restoration task itself. Existing paradigms often falter due
to an objective mismatch or supervision ambiguity. To overcome these limitations, we introduce
a novel framework grounded in the Learning Using Privileged Information (LUPI) paradigm. Our
framework is built around two key components: a Degradation Prior Estimator, which generates a
latent vector representing the degradation, and a Modulated Restoration Network, which uses this
prior to adaptively restore the corrupted image. The core of our contribution lies in how this prior
is learned. We propose a two-stage, teacher-student training strategy that leverages the ground-truth
clean image as privileged information, as depicted in Figure 2. First, in Stage 1, we train a privileged
teacher system where an expert estimator (DT ) sees both the clean (Ic) and degraded (Id) images
to produce an ideal, “restoration-aware” prior dT . This prior is learned by directly optimizing the
final output of a teacher restoration network (RT ). Subsequently, in Stage 2, we train a practical
student system. Here, a student predictor (DS) learns to generate a similar high-quality prior dS

by observing only the degraded image, which is achieved by forcing its output to align with that of
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Figure 2: An overview of our proposed framework based on the Learning Using Privileged
Information (LUPI) paradigm. Our method consists of two training stages. In Stage 1 (top), a
privileged estimator (DT ) utilizes both the degraded (Id) and clean (Ic, referred to as Truth) images
to generate an ideal, restoration-aware prior (dT ). This prior is learned by optimizing the end-to-
end restoration quality of the teacher network. In Stage 2 (bottom), a degradation predictor (DS)
is trained to generate a degradation prior (dS) from only the degraded input, by aligning it with the
frozen privileged prior dT . At inference time, the process is identical to Stage 2’s forward pass:
the predicted prior dS dynamically modulates the restoration network’s Degradation-aware Blocks
(DBs) to produce the final restored output.

the frozen teacher estimator. This strategy allows us to first define what an optimal prior is under
ideal conditions, and then teach a practical model to produce it.

3.2 ARCHITECTURAL COMPONENTS

Our architectural designs are detailed in Figure 3. We build upon established modules to emphasize
that our performance gains stem from the training paradigm.

Modulated Restoration Network (R). The overall architecture of our restoration network (RT

and RS) follows the successful paradigm of recent state-of-the-art methods such as PromptIR (Pot-
lapalli et al., 2023) and AdaIR (Cui et al., 2025), which consists of a powerful restoration backbone
and a feature modulation mechanism. As illustrated in Figure 2, our backbone is a U-Net whose core
component is the Transformer Block (TB) from Restormer (Zamir et al., 2022); the detailed structure
of the TB can be found in the appendix A.1. The feature modulation is achieved by our proposed
Degradation-aware Block (DB), which injects the degradation prior generated by our Degrada-
tion Estimator (DT ) or Predictor (DS). Following the effective design choices of PromptIR and
AdaIR, we strategically place these DBs in the deeper stages of the U-Net decoder. This allows the
prior to modulate features at a higher semantic level for more effective guidance. We will now detail
the three core components of our degradation-aware design: the Privileged Degradation Estimator
DT , the Degradation Predictor DS , and the Degradation-aware Block (DB).

Privileged Degradation Estimator (DT ). The degradation estimator DT in Figure 3 (a) extracts
the privileged prior dT from the (Id, Ic) pair. It employs a Siamese-like architecture where both
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Figure 3: Detailed architectures of our key network components. (a) The Privileged Estimator
(DT ) employs a Siamese-like design with a shared-weight CNN encoder. It takes both the degraded
(LQ) and clean (Truth) images as input, concatenates their features, and passes them through a
fusion module and an MLP head to produce the privileged prior dT . (b) The Student Predictor
(DS) mirrors a single branch of the teacher’s architecture, learning to predict a similar prior dS from
only the degraded input. (c) The Degradation-aware Block (DB) is the mechanism for injecting the
learned prior. The prior vector is transformed by an MLP into a channel-wise scaling vector, which
then element-wise multiplies the feature map that has been processed by a convolutional block.

inputs pass through four shared-weight CNN layers, mapping them to feature spaces of size H/8×
W/8. These features are then concatenated, passed through a 3× 3 convolutional fusion layer, and
finally projected by an average pooling layer and an MLP into the final prior vector dT ∈ R8C .

Degradation Predictor (DS). The student predictor DS in Figure 3 (b) mirrors a single branch
of the teacher. It takes only the degraded image Id as input, passes it through the same four CNN
layers to extract features, and then uses an average pooling layer and an MLP to predict the student
prior dS ∈ R8C . This architectural consistency simplifies the knowledge alignment in Stage 2.

Degradation-aware Block (DB). The Degradation-aware Block (DB) is responsible for inject-
ing the learned degradation-aware prior into the network to modulate its features. For the sake of
efficiency, we adopt a simple and lightweight approach based on the Feature-wise Linear Modula-
tion (FiLM) mechanism (Perez et al., 2018). As illustrated in Figure 3c, the block’s operation is
direct and straightforward. Given the output feature map F ∈ RH′×W ′×C′

from a corresponding
decoder stage and the degradation prior d ∈ R8C , the prior is first transformed by a lightweight
MLP into a scaling vector γ ∈ RC′

and a shifting vector β ∈ RC′
:

[γ, β] = MLP(d). (1)

These parameters then directly modulate the input feature map F before it is passed through the
block’s main path. A final residual connection (He et al., 2016) ensures information flow. The entire
operation can be summarized as:

F ′ = F + Conv3×3(GELU(γ ⊙ F + β)), (2)

where F ′ ∈ RH′×W ′×C′
is the output of DB.

3.3 LEARNING WITH PRIVILEGED INFORMATION: A TWO-STAGE APPROACH

With all components defined, we now detail our two-stage training procedure.
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Stage 1: Learning the Restoration-Aware Prior. In this stage, the teacher estimator DT and
restoration network RT are trained jointly. The system is optimized using an L1 loss between the
restored image Ir and the ground truth Ic:

Lteacher = ∥RT (Id, DT (Id, Ic))− Ic∥1. (3)

The gradients from this loss shape the prior dT to be explicitly optimized for the restoration task.

Stage 2: Distilling Privileged Knowledge. In this stage, the weights of DT are frozen. We then
jointly train the student predictor DS and a new student restorer RS . The training objective is a
composite loss:

Lstudent = Lrecon + λalignLalign, (4)
where λalign is a balancing hyperparameter. The reconstruction loss Lrecon is the L1 loss on the final
student output. The alignment loss Lalign encourages dS to match dT via a Kullback-Leibler (KL)
divergence loss.

3.4 INFERENCE

At inference time, the teacher system is discarded. The final model consists only of the student
predictor DS and restorer RS . Given a degraded input Id, the model computes dS = DS(Id) and
then produces the restored image Io = RS(Id,dS).

4 EXPERIMENTS

To validate the efficacy of our proposed LUPI, we conduct extensive experiments on the challenging
task of all-in-one image restoration. We first detail the experimental setup, including the standard
benchmarks and our implementation specifics. We then present a comprehensive comparison of our
method against state-of-the-art competitors under both 3-task and 5-task settings. For all quantitative
evaluations, we employ the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index
(SSIM) as our primary metrics, where higher values indicate better restoration quality.

4.1 EXPERIMENTAL SETUP

Datasets. To ensure a fair and direct comparison with recent state-of-the-art methods (Potlapalli
et al., 2023; Cui et al., 2025), we evaluate our model on two widely adopted multi-task benchmarks.
The first is a 3-task benchmark comprising Denoising, Deraining, and Dehazing. For denoising,
we synthesize training data by adding Gaussian noise (σ ∈ {15, 25, 50}) to the BSD400 (Arbelaez
et al., 2010) and WED (Ma et al., 2016) datasets, and evaluate on the BSD68 benchmark (Martin
et al., 2001). For deraining and dehazing, we use the Rain100L (Wenhan Yang & Yan, 2017) and
SOTS (Li et al., 2018) datasets, respectively. The second, more challenging 5-task benchmark
extends this setup with two additional tasks: Deblurring on the GoPro dataset (Nah et al., 2017)
and Low-Light Enhancement on the LOL-v1 dataset (Wei et al., 2018).

Implementation Details. We implement our framework in PyTorch and conduct all experiments
on two NVIDIA L40 GPUs. Consistent with the architecture described in Section 3, our restoration
network is a U-Net with four encoder levels and three decoder levels, and the number of transformer
blocks across the seven stages is set to [4, 6, 6, 8, 6, 6, 8]. The dimension of the learned degradation
prior is set to 512 (i.e. 8C in Figure 3 ). We use the AdamW optimizer (Loshchilov & Hutter, 2017)
for all training. During training, we extract patches of size 128× 128 and apply random horizontal
flipping and rotation for data augmentation.

Training Strategy. Our framework is trained end-to-end following the proposed two-stage
paradigm. In Stage 1, we train the complete teacher system (DT and RT ) for 150 epochs, us-
ing the L1 reconstruction loss as the sole optimization objective, as defined in Equation 3. In Stage
2, after freezing the teacher estimator’s weights, we train the student system (DS and RS) for an-
other 150 epochs. For this stage, we use the composite loss function defined in Equation 4, which
combines the L1 reconstruction loss with the KL divergence-based alignment loss to transfer the
teacher’s knowledge. For both training stages, the initial learning rate is set to 2 × 10−4 and is
gradually decayed to zero using a cosine annealing schedule.
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Table 1: Quantitative comparison (PSNR / SSIM) for all-in-one restoration on three tasks. The best
results are in bold, and the second-best are underlined.

Method Dehazing Deraining Denoising on BSD68 Average
SOTS Rain100L σ = 15 σ = 25 σ = 50

AirNet (Li et al., 2022) 27.94 / 0.962 34.90 / 0.967 33.92 / 0.933 31.26 / 0.888 28.00 / 0.797 31.20 / 0.910
PromptIR Potlapalli et al. (2023) 30.58 / 0.974 36.37 / 0.972 33.98 / 0.933 31.31 / 0.888 28.06 / 0.799 32.06 / 0.913
Art-PromptIR (Wu et al., 2024) 30.83 / 0.979 37.94 / 0.982 34.06 / 0.934 31.42 / 0.891 28.14 / 0.801 32.49 / 0.917
InstructIR (Conde & Geigle, 2024) 30.22 / 0.959 37.98 / 0.978 34.15 / 0.933 31.52 / 0.890 28.30 / 0.804 32.43 / 0.913
PromptIR-TUR (Wu et al., 2025) 31.17 / 0.978 38.57 / 0.984 34.06 / 0.932 31.40 / 0.887 28.13 / 0.797 32.67 / 0.916
AdaIR (Cui et al., 2025) 31.06 / 0.980 38.64 / 0.983 34.12 / 0.935 31.46 / 0.892 28.19 / 0.802 32.69 / 0.918
VLU-Net (Zeng et al., 2025) 30.71 / 0.980 38.93 / 0.984 34.13 / 0.935 31.48 / 0.892 28.23 / 0.804 32.70 / 0.919
MoCE-IR (Zamfir et al., 2025) 31.34 / 0.979 38.57 / 0.984 34.11 / 0.932 31.45 / 0.888 28.18 / 0.800 32.73 / 0.917

Ours (LUPI) 31.86 / 0.983 38.92 / 0.985 34.23 / 0.937 31.58 / 0.894 28.33 / 0.807 32.98 / 0.921

Table 2: Quantitative comparison (PSNR / SSIM) for all-in-one restoration on five tasks. Best
results are in bold, second-best are underlined. Note that for denoising, we report results for σ = 25
following standard practice in this setting.

Method Dehazing Deraining Denoising Deblurring Low-Light Average
SOTS Rain100L BSD68σ=25 GoPro LOL

AirNet (Li et al., 2022) 21.04 / 0.884 32.98 / 0.951 30.91 / 0.882 24.35 / 0.781 18.18 / 0.735 25.49 / 0.847
PromptIR (Potlapalli et al., 2023) 25.20 / 0.931 35.94 / 0.964 31.17 / 0.882 27.32 / 0.842 20.94 / 0.799 28.11 / 0.883
Gridformer (Wang et al., 2024) 26.79 / 0.951 36.61 / 0.971 31.45 / 0.885 29.22 / 0.884 22.59 / 0.831 29.33 / 0.904
InstructIR Conde & Geigle (2024) 27.10 / 0.956 36.84 / 0.973 31.40 / 0.873 29.40 / 0.886 23.00 / 0.836 29.55 / 0.908
Transweather-TUR Wu et al. (2025) 29.68 / 0.966 33.09 / 0.952 30.40 / 0.869 26.63 / 0.815 23.02 / 0.838 28.56 / 0.888
AdaIR (Cui et al., 2025) 30.53 / 0.978 38.02 / 0.981 31.35 / 0.889 28.12 / 0.858 23.00 / 0.845 30.20 / 0.910
VLU-Net (Zeng et al., 2025) 30.84 / 0.980 38.54 / 0.982 31.43 / 0.891 27.46 / 0.840 22.29 / 0.833 30.11 / 0.905
MoCE-IR (Zamfir et al., 2025) 30.48 / 0.974 38.04 / 0.982 31.34 / 0.887 30.05 / 0.899 23.00 / 0.852 30.58 / 0.919

Ours (LUPI) 31.00 / 0.981 39.20 / 0.986 31.55 / 0.894 29.46 / 0.886 23.66 / 0.865 30.97 / 0.922

4.2 QUANTITATIVE AND QUALITATIVE COMPARISONS

To comprehensively evaluate our framework, we benchmark our LUPI-based model against state-
of-the-art (SOTA) methods on both a 3-task and a more challenging 5-task all-in-one restoration
benchmark. The quantitative results, presented in Table 1 and Table 2, demonstrate the clear supe-
riority of our approach, which achieves the best overall performance in both settings. On the 5-task
benchmark, for instance, our method surpasses the strong MoCE-IR baseline by a significant 0.39
dB in average PSNR. These quantitative improvements are visually substantiated by our qualitative
results in Figure 4. The visual comparisons reveal our model’s enhanced ability to restore fine-
grained textures while faithfully removing degradations. For example, in the deraining result, our
method recovers the subtle skin textures of the subject more effectively than competing methods,
while in the dehazing example, it restores the vibrant colors of the street signs with higher fidelity.
Collectively, these strong quantitative and qualitative results validate the effectiveness of learning
a restoration-aware prior through our proposed LUPI paradigm. More qualitative comparisons can
be found in the appendix A.3, and a comparison of model runtime efficiency can be found in the
appendix A.2

4.3 ABLATION STUDY

To thoroughly validate the effectiveness of our proposed framework and analyze the contribution of
its key components, we conduct a series of ablation studies on the 3-task benchmark. We investigate
three primary aspects: the impact of our LUPI-based training paradigm, the architectural design of
the privileged teacher estimator, and the characteristics of the learned prior space.

Impact of the LUPI Framework. This core ablation evaluates the fundamental contribution of
our privileged learning strategy. We compare our full model against two degraded variants. The
first, termed w/o Privileged information, removes the Stage 1 training entirely. In this setting, the
student system is trained end-to-end from scratch using only the L1 reconstruction loss, representing
a standard instance-adaptive model. The second variant, w/o Degradation Predictor, is further sim-
plified by removing the adaptive module altogether, degenerating into a single restoration network.
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Figure 4: Qualitative comparison on the 3-task benchmark (denoising, deraining, and dehazing).
Zoom in for the best view.

The results in Table 3 show that our full LUPI significantly outperforms both variants. The substan-
tial performance drop in the w/o Privileged Teacher setting validates our central hypothesis that
the guidance from a privileged, restoration-aware teacher is crucial for overcoming the limitations
of learning from ambiguous signals. Furthermore, the poor performance of the w/o Degradation
Predictor variant confirms the necessity of a dynamic mechanism for handling diverse degradations.

Table 3: Impact of the LUPI framework. Average per-
formance is reported.

Estimator (DT ) Predictor (DS) PSNR ↑ SSIM ↑
X X 31.94 0.907
X ✓ 32.07 0.909
✓ ✓ 32.98 0.921

Table 4: Design of the estimator (DT ).
Average performance is reported.

Method PSNR ↑ SSIM ↑
Input Addition 32.75 0.918
Input Concate 32.80 0.920
Siamese (Ours) 32.98 0.921

Design of the Privileged Teacher Estimator. We investigate how different strategies for process-
ing the privileged information (Id and Ic) in the degradation estimator affect final performance.
We compare our proposed Siamese design against two simpler alternatives: Input Concatenation,
where the images are concatenated along the channel dimension before being fed to the estimator,
and Input Addition, where the two images are element-wise added. As shown in Table 4, our
Siamese architecture yields the best performance. This design allows the network to extract com-
parable features before fusion, which is more effective for identifying degradation characteristics.
Concatenating the inputs performs reasonably well but is slightly inferior, while simple addition
leads to a more performance drop, validating our choice of the Siamese architecture.

Visualization of the Prior Space. To intuitively understand the properties of the restoration-aware
prior, we analyze the latent space of the degradation predictor (DS) in Figure 5. The analysis

8
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(a) Top 5 activated prior dimensions for different degradation types (noise, haze, rain).

(b) Top 5 activated prior dimensions for different noise intensities (σ = 15, 25, 50).

Figure 5: Visualization of the learned degradation prior space. (a) For different degradation
types, the model learns physically-grounded representations. Note the significant overlap between
“noise” and “rain”, which share properties with additive corruptions. The commonly activated di-
mension #71 suggests an encoding for general attributes like local occlusion, while “haze” activates
a distinct pattern. (b) For different noise intensities, the prior demonstrates a disentangled encoding
of degradation type and intensity. The set of activated dimensions remains stable (identifying the
degradation as ‘noise’), while their relative magnitudes shift to encode the severity, enabling precise,
intensity-aware restoration.

reveals that our framework learns a highly structured and interpretable prior space that captures the
underlying physical nature of degradations, rather than just their surface-level appearance.

First, the model learns to group tasks based on their physical similarities. As shown in Figure 5 (a),
the priors for deraining and denoising exhibit a strong overlap in their most activated dimensions
(e.g., #71 and #128), reflecting their shared properties with additive corruptions. Conversely, dehaz-
ing, a spatially-varying degradation, activates a distinct set of dimensions. This demonstrates that
the model learns physically-grounded representations.

This structured representation extends to a finer granularity. A deeper analysis within the denoising
task (Figure 5b) reveals that the model has learned a partially disentangled representation of degra-
dation type and intensity. We observe that a remarkably stable set of dimensions is used to represent
noise regardless of its severity, forming a canonical representation for the ‘noise’ category. Criti-
cally, within this stable set, the model encodes the continuous intensity by modulating the relative
activation magnitudes. For instance, the activation of dimension #128 increases with the noise level
(from 1.016 at σ = 15 to 1.075 at σ = 50). The emergence of such an interpretable prior is a direct
benefit of our LUPI framework, whose unambiguous supervision signal guides the model to learn
the true underlying factors of degradation, leading to its robust and precise restoration capabilities.

5 CONCLUSION

In this work, we addressed the challenge of learning effective degradation priors for all-in-one image
restoration by introducing the Learning Using Privileged Information (LUPI) paradigm to resolve
the objective mismatch and supervision ambiguity in existing methods. Our LUPI framework allows
a privileged teacher to learn an optimal, “restoration-aware” prior from both clean and degraded
images, which a student network then learns to predict. Our method achieves state-of-the-art per-
formance on extensive multi-task benchmarks. Furthermore, we demonstrate that the learned prior
space is not a black box but is highly structured and interpretable, capable of capturing the physi-
cal similarities between degradation types and even disentangling their categorical type from their
continuous intensity.

9
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have included our source code in the an anonymous
repository https://anonymous.4open.science/r/lupi-C4BC/.
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A APPENDIX

A.1 TRANSFORMER BLOCK ARCHITECTURE

The Transformer Block (TB) used in our restoration network is adopted directly from the design of
Restormer (Zamir et al., 2022), as illustrated in Figure 6. Each block is composed of two primary
sub-modules: a Multi-Dconv Head Transposed Attention (MDTA) module for global feature aggre-
gation, followed by a Feed-Forward Network (FFN) for feature transformation. The key innovation
of this block lies in the MDTA, which computes attention across feature channels rather than spatial
locations, making it an efficient and effective component for high-resolution image restoration tasks.

MDTA

FFN
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Figure 6: Architecture of the Transformer Block (TB). The block consists of two main com-
ponents in sequence: (a) The Multi-Dconv Head Transposed Attention (MDTA) module. (b) a
Feed-Forward Network (FFN).

A.2 EFFICIENCY AND PERFORMANCE ANALYSIS

To provide a comprehensive view of our model’s practical utility, we benchmark its performance
and efficiency against several key methods. We specifically choose the Restormer baseline (Zamir
et al., 2022), PromptIR (Potlapalli et al., 2023), and AdaIR (Cui et al., 2025) for this comparison, as
their architectures are most similar to ours: they all combine a powerful Restormer-based backbone
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Table 5: Comparison of model performance and efficiency on the 3-task benchmark (average
scores). Our method is compared against the Restormer baseline and other state-of-the-art meth-
ods. The best performance is highlighted in bold.

Method Params GFLOPS Memory Latency Throughput PSNR SSIM

Restormer (Zamir et al., 2022) 26.13M 154.88G 676.00MB 50.67ms 19.73FPS 31.94 0.907
PromptIR (Potlapalli et al., 2023) 35.59M 172.71G 720.35MB 55.03ms 18.17FPS 32.06 0.913
AdaIR (Cui et al., 2025) 28.78M 161.76G 686.15MB 62.74ms 15.94FPS 32.69 0.918

Ours (LUPI) 31.93M 163.20G 698.69MB 52.55ms 19.03FPS 32.98 0.921

with a dedicated module for degradation-aware feature modulation. All metrics were evaluated on a
single NVIDIA RTX 4090 GPU, using an input resolution of 3×256×256. The reported latency is
the average of 100 inference runs following a sufficient warmup period to ensure stable results. The
detailed comparison is presented in Table 5.

The results highlight that our LUPI-based framework achieves a superior balance between per-
formance and efficiency. While our model (31.93M params) is moderately larger than the
Restormer baseline (26.13M params), this increased complexity is a direct result of incorporating
the degradation-aware modules, which proves to be a worthwhile trade-off, yielding a significant
performance gain of over 1.0 dB in PSNR.

More importantly, when compared to other state-of-the-art adaptive methods, our model demon-
strates compelling efficiency. It is notably more lightweight and faster than PromptIR across all
metrics. The comparison with AdaIR is particularly insightful. Despite having approximately 10%
more parameters, our model’s latency of 52.55ms is about 16% lower than AdaIR’s 62.74ms. This
suggests that our Degradation-aware Block (DB) has a more hardware-friendly architectural design
that translates to better practical inference speed. In summary, our LUPI framework delivers state-
of-the-art restoration accuracy without compromising, and in some cases even improving upon, the
practical deployability of comparable methods.

Deraining

Dehazing

Deblurring

Denoising

Low-Light

Input InstructIR AdaIR  MoCE-IR  Ours GT 

Figure 7: Qualitative comparison on the 5-task benchmark: denoising, deraining, dehazing, deblur-
ring, and low-light enhancement. Zoom in for best view.

A.3 QUALITATIVE RESULTS ON THE 5-TASK BENCHMARK

To further validate the generalization capability of our model, we provide qualitative comparisons
on the more challenging 5-task benchmark in Figure 7. This benchmark tests the model’s ability
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to handle a wider and more diverse set of degradations, including denoising, deraining, dehazing,
deblurring, and low-light enhancement.

As the visual results show, our method demonstrates consistently superior performance across all
five tasks. For low-light enhancement, our model effectively brightens the scene while accurately
restoring colors and suppressing noise in dark regions, avoiding the color casts or artifacts present
in other methods. In the deblurring example, our approach successfully recovers sharp details,
particularly on the license plate of the vehicle, with high fidelity. For denoising and deraining, our
model excels at removing the respective corruptions while better preserving fine-grained textures,
such as the fur on the cat and the surface of the runway. Finally, in the dehazing task, our result is
visually more pleasing, with more natural contrast and color balance.

These strong qualitative results across a diverse set of tasks further substantiate the effectiveness of
our LUPI framework. The learned restoration-aware prior is versatile enough to guide the restora-
tion network through a wide variety of complex degradations, leading to consistently high-quality
outputs.

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this paper, we employed a Large Language Model (LLM) to assist with
improving the language and readability of the text. The primary use of the LLM was for proofread-
ing, including correcting grammatical errors and refining sentence structure to enhance clarity. We
confirm that the LLM was not used for research ideation, developing the methodology, conducting
experiments, analyzing results, or drawing conclusions. All intellectual contributions and scientific
claims are solely those of the authors.
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