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Abstract

Many tasks require learned models to strategically gather relevant information over
multiple rounds of interaction before actually acting on a task. Strategic information
gathering requires models to know not only how to effectively acquire information,
but also when to stop gathering information and make a decision, in order to avoid
overthinking or getting derailed when acting. In this paper, we formalize this
problem and introduce Counterfactuals and Reasoning for Termination (CaRT), an
approach for teaching LLMs when to stop seeking information. To appropriately
learn when to terminate, CaRT fine-tunes LLMs using counterfactual pairs of
trajectories, one where termination is appropriate and a minimally modified version
of the same trajectory where it is not. It trains the LLM to explain the rationale
for the termination decision in either case via verbal reasoning, and imbues this
capability into the base LLM via fine-tuning. We instantiate CaRT in two domains:
interactive medical diagnosis and math problem solving. In both domains, we find
that CaRT improves the efficiency of information gathering and task success rate
compared to other fine-tuning methods.

a b

Figure 1: A schematic illustration of the termination behavior of models with and without our proposed
approach. While LLMs typically fail to recognize the best points to stop thinking or questioning often either
overshooting or undershooting the amount of information needed (a - top, b - left), our approach CaRT imbues
them with the ability to correctly identify this point.

1 Introduction
Strategic information gathering is core to problem solving and decision making with AI [53]. For
example, when attempting to design and prescribe a course of treatment to a user, it is important to
gather complete information about their symptoms. In many scenarios, information gathering relies
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not only on deciding how to acquire more information, but also on deciding when the model has
gathered enough information to solve the task. A model that stops too late wastes resources, while
one that stops too early risks failure. Moreover, additional information can be detrimental for many
of the transformer architecture based models used commonly right now, where extra information
in the input context may lead the model to latch onto spurious information [34, 55]. The ability to
recognize when “I know enough” is therefore essential to efficient and reliable problem solving.

Deciding when to stop thinking, interacting, or seeking information is challenging because it requires
predicting the expected future utility of continuing under the model’s current policy. Classical
statistical approaches to this problem rely on accurately estimating a value function [40, 52] with
limited data and typically operate in domains with well-defined environment dynamics, such as airline
ticket purchasing [21, 18]. We study this problem of termination when large language models (LLMs)
are utilized as decision makers: LLMs possess natural language capabilities and rich priors about
the world, providing the potential for greater versatility, domain applicability, and generalization
compared to classical statistical approaches on this problem. However, off-the-shelf LLMs even
struggle to accurately predict their probability of success [47, 41, 51, 20] and are unable to conduct
principled exploration [3]. These limitations put into question whether current recipes for training
LLMs imbue them with the ability to quantify the value of what they don’t know, a key skill for
effective termination.

In this paper, we build an approach to imbue LLMs with the ability to stop or “terminate” their internal
thinking processes and/or environment interaction at the right point for maximal performance, without
wasting computation or interaction. Our key insight is that textual reasoning itself can be used to
learn accurate and generalizable termination behavior, as long as this reasoning is done comparatively
(and contrasts the benefits of terminating and continuing). Our approach, Counterfactuals and
Reasoning for Termination (CaRT), fine-tunes models with counterfactual pairs: trajectories where
termination is appropriate and minimally modified trajectories where it is not, combined with explicit
natural language reasoning traces that justify why termination is the right decision. This comparative
reasoning signal enables models to implicitly implement a “verbalized” value function, allowing the
LLM to foresee the benefits of termination or continuation, compare them, and choose the better of
the two decisions. We instantiate CaRT in two multi-step domains: a) interactive medical diagnosis,
which requires interaction with an external environment, and b) mathematical reasoning, which
requires spending test-time compute to think longer for harder problems. Across both of these
domains, we find that CaRT demonstrates superior termination behavior compared to the base model
and SFT approaches.

Our contributions are: (1) We develop an approach for studying and formalizing the problem of
optimal information seeking in long chain-of-thought and multi-turn settings. (2) We demonstrate
that training with CaRT improves termination behavior for both medical diagnosis and math problem
solving tasks. (3) We show that off-the-shelf LLMs fail to terminate efficiently. We analyze
the advantages provided by training with reasoning and counterfactuals through ablations and
representation analysis.

2 Problem Statement and Notation

Doctor Model: Hi! 
What symptoms are 
you facing today? Patient Model: Chest 

pain, trouble 
breathing, nausea, 
tingling in my arms.

Doctor Model:  What 
is your age and sex?

Patient Model: I am a 
25-year-old woman.

Doctor Model: Have 
you recently been 
under stress or 
experienced anxiety? Patient Model: Yes, 

I've had episodes 
where my heart races 
and I feel like I'm 
losing control

Termination Model: 
<think> … </think> 
Decision: Continue

Termination Model: 
<think> … </think> 
Decision: Continue

Diagnostic Model: Panic Attack   

Termination Model: 
<think> … </think> 
Decision: Terminate

Figure 2: An example of terminating information
gathering in the medical diagnosis domain.The model
should terminate when there is sufficient information.

The process of attempting to gain information,
even if those actions may be unrewarding in
the short-term, is typically referred to as explo-
ration [31]. We use the terms explicit vs. implicit
information seeking to refer to whether informa-
tion gained during exploration comes from an
external agent (e.g. a human providing an an-
swer to a question) or whether the information
gained comes from the model’s internal dialogue
(e.g. internal thinking of the model generated by
spending more test-time compute [49]). For im-
plicit information seeking, we segment seeking
behavior into steps of reasoning, where the end
of a step of reasoning provides a checkpoint for
termination.
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We are given a dataset Dtrain = {(xi, y
∗
i )}Ni=1 of problems xi and corresponding oracle answers y∗i .

For explicit information seeking, we also assume access to an environment E that, given a query,
returns an observation o (e.g., feedback, retrieved information) from the environment, and a reward
function r(x, y) that measures the quality of a final answer y relative to the ground truth.

The LLM acts as a policy π choosing an action at ∈ {continue, terminate} that determines
whether the model continues to seek information (explore) or reports its final answer (exploit). Each
time the model chooses the continue action, it receives a stream of intermediate thinking tokens in the
implicit setting1 or environmental feedback in the explicit setting z = (o0, a0, o1, ...). At each step,
the model chooses whether to continue seeking information or to terminate and produce a final answer
y. The state includes prompt x, the tokens so far z0:t, and observations o0:t. The goal is to train
a policy π(at | x, z0:t,o0:t) that adaptively decides when to terminate its reasoning or interaction
process once sufficient information has been gathered to solve a task, balancing task accuracy with
computation or interaction cost.

Problem Statement
Given a problem x ∼ D, an information-seeking process producing a sequence of obser-
vations o0:t and intermediate reasoning tokens z0:t, and a policy π(at | x, z0:t,o0:t) that
chooses whether to continue or terminate at each step, we define the objective of adaptive
termination as:

max
π

Ex∼D

[
T∑

t=1

E(ot,at)∼E×π

[
γt 1{at = terminate} · r(x, yt)

] ]
, (1)

where γ ∈ (0, 1] penalizes excessive computation or queries and T is the maximum number
of reasoning or interaction steps.

Figure 2 provides a simplified example to illustrate our setup in the medical question-answering
setting. The problem x is a medical diagnosis task with the ground truth diagnosis of panic attack.
At each timestep t, the termination LLM receives as input the ongoing conversation and chooses
at ∈ {continue, terminate}. If the action is “continue”, then the LLM will receive an additional
question-answer pair ot at the next timestep. If the action is “terminate”, an external diagnostic
model provides a diagnosis yt given the conversation up to that timestep. The reward r(x, yt) is then
determined given the task ground truth answer and predicted diagnosis.

3 CaRT: Counterfactuals & Reasoning for Termination
Learning to terminate at the right point requires models to reason about both external and internal
factors: the model must assess whether it has sufficient information to succeed and whether continued
exploration is likely to be beneficial. Therefore, the model would have to accurately assess the
value of currently available information and estimate the value of missing information. In order
to accurately estimate the value of future information, the model must learn what information is
likely to be gained through future interactions. However, because the number of potential futures
is exponential (and infinite), the key challenge lies in learning effective termination behavior from
limited data. Our approach, CaRT, addresses this challenge by constructing training data to include
hard negative counterfactual examples and explicit reasoning traces, explaining the termination
decision. Hard negative counterfactual examples are especially informative because they isolate the
specific piece of information (e.g. question-answer pair) necessary to solve the task. Training models
to utilize reasoning to verbalize the utility of both available and missing information before making
a termination decision serves as an implicit value function and helps internalize the decision. Our
approach utilizes these two components as we discuss next.
3.1 Component 1: Generating Hard Negative Counterfactuals
A naı̈ve approach to teaching a model when to terminate would be to perform supervised fine-tuning
(SFT) on termination labels extracted from successful information-seeking trajectories. However,
this strategy is fundamentally flawed: termination decisions in real interactions are often confounded
by spurious correlations. For example, a model might learn to terminate merely when the dialogue is

1Note that these tokens correspond to the model’s own context so far, though formalizing this process as
“receiving” a stream of tokens allows us to unify terminology in all settings. Moreover, as Setlur et al. [48]
argues, even spending more test-time compute provides information gain, making this formulation natural even
in the absence of external interaction.
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long, or when the preceding utterance sounds confident, rather than when the necessary information
has actually been gathered. How do we prevent the model from learning these shortcuts?

Our approach draws inspiration from recent work on counterfactual data augmentation in classi-
fication [22, 9, 27, 5, 15], which shows that providing explicitly contrasted positive and negative
examples is highly effective for breaking spurious correlations. We adapt this idea to the termination
problem by asking: What minimal change to the context causes a good termination decision to
become a bad one (or vice versa)? Concretely, for every trajectory where terminating is correct
(i.e., leads to high answer success), we construct a hard negative counterfactual where termination
would be suboptimal, ensuring that the only difference between the pair is the presence or absence of
genuinely necessary information. This isolates the true causal signal the model should attend to. Our
procedure consists of:

1. Trajectory selection: We first identify examples of optimal termination in our dataset. Our
key idea is to locate a breakpoint in the middle of a trace (e.g., a specific question-answer pair
in an interactive setting or an intermediate reasoning step in a non-interactive setting) where
choosing to terminate versus continue results in a sharp change in task success. As discussed in
our experiments, in the medical diagnosis setting we select prefixes where a question-answer
pair yields a ≥ 50% increase in success rate, while in the math reasoning setting we select
prefixes where terminating yields higher success than continuing to think further.

2. Counterfactual generation: Our objective is to construct contrasting trajectories that contain
nearly identical information but lead to opposite outcomes. To achieve this, we generate
a negative (non-terminating or unsuccessful) counterpart for every termination decision by
minimally altering the trace so that it no longer leads to success. Concretely, in the interactive
information-seeking setting (e.g., medical diagnosis), we perturb only the final question-answer
pair and find an alternate question such that the resulting success rate drops below 30%. This
yields counterfactual pairs that differ by a single interaction yet produce maximally divergent
outcomes. In the non-interactive setting (i.e., math reasoning), modifying just one single
reasoning step is often not enough to reliably change success. Therefore, we find a larger
sequence of reasoning steps such that removing them and terminating early reliably reduces the
success rate at the task. In both cases, continuing is the best decision at the newly-generated
counterfactual, while termination is the best decision originally.

3. Contrastive labeling: The original successful examples are labeled with a “terminate” decision,
while the negative counterfactual examples are labeled with a “continue” decision.

3.2 Component 2: Verbal Reasoning for Sample-Efficient Learning From Counterfactual
Data

We then augment the training examples found above with explicit reasoning traces that explain
the termination decision. This approach is motivated by prior work showing that chain-of-thought
reasoning [56] improves generalization in a variety of settings [48, 46, 28], but we show that it can
also help improve the accuracy and generalization of implicitly learning a utility of continuing in the
future.

Given the trajectory history and the termination decision for each training example, we prompt an
off-the-shelf LLM (GPT-4o in our case) to generate a reasoning trace explaining why the current state
warrants the termination decision. These reasoning traces serve a similar role as a value function,
in that they help the model predict the best action (terminate / continue) by reasoning about
potential implications of each before actually executing the action. Mechanistically, reasoning before
predicting the decision makes it easier to classify the state into terminate or continue. Additionally,
reasoning traces make the model’s termination decisions more transparent, improving explainability
which might be critical in certain domains. The combination of counterfactual data generation
and reasoning generates data that teaches models to recognize and justify indicators of information
sufficiency, leading to more reliable termination behavior in multi-turn information-seeking tasks.

Training details. We perform supervised fine-tuning (SFT) on the counterfactual examples described
above. This approach performs behavioral cloning on trajectories that terminate at high-reward points
and continue at low-reward points, effectively optimizing for the policy objective in Equation 1.
Because our counterfactual pairs isolate the most critical information determining success, we can
learn this policy efficiently with limited data. For a variant of our method in the medical setting, we
also perform additional RL, using GRPO [50] on top of the fine-tuned model. The RL training uses

4



the same dataset with a binary reward function: +1 when the model correctly terminates (success
rate ≥ 0.5) or continues (success rate < 0.5), and −1 otherwise.

4 Experiments
We evaluate the performance of CaRT in the supervised medical diagnosis task and the self-supervised
math reasoning task. Details on how the datasets were constructed, training hyperparameters, and
prompts can be found in Appendix sections C, D, and E, respectively.
4.1 Evaluation Metrics
Medical diagnosis setting. At each timestep, the model receives the conversation history between a
simulated question-asking “doctor” and answering “patient” agent (Fig. 2). Each question–answer
pair has an associated ground-truth label indicating the task success rate of an external diagnostic
model given all information up to that point. We provide more details regarding the structure of the
conversation and label construction in Appendix C.

Mathematical reasoning setting. The model is given a math question and solves it by generating a
chain of thinking interleaved with concise answers. Following prior work [46], we segment the base
model’s output into episodes, where each episode begins with a logic/strategy change sentence and
is followed by a block of problem-solving steps. After each episode, CaRT decides to terminate or
continue. If it terminates, the base model is forced to produce a final answer from the current prefix;
otherwise generation resumes from the stopping point until a solution is produced or the budget is
reached. For both settings, termination is evaluated with:

• Free-response Question Success Rate (FRQ SR): The external reward model’s diagnosis
accuracy when given the conversation prefix at the point CaRT terminates.

• FRQ SR Difference from Mean: Difference between CaRT’s FRQ SR and that of a fixed-
budget heuristic baseline which terminates at the mean termination index of the evaluated model.
Since medical Q/A pairs and math episodes are discrete, the baseline stochastically rounds to
the nearest indices while preserving the mean termination step.

• Optimal Termination Rate: For the medical setting, this is the fraction of conversations where
CaRT stops at the “optimal termination point”, defined as the first step where the base model’s
success rate increases by at least 50%. This condition corresponds to the point at which the
model is more likely to provide a correct answer than an incorrect answer. Conversations without
such a steep increase are excluded. For math, this is the fraction of cases where CaRT terminates
at the first episode whose prefix yields a strictly better final success rate than continuing.

4.2 Interactive Medical Diagnosis: Learning When to Stop Asking Questions
Training data. Due to the lack of standardized benchmarks, we construct training data out of
GPT-4o-simulated doctor-patient conversations, covering 1,233 diagnosis problems from the MedQA-
USMLE subset of the craft-MD benchmark [26] and the MedMCQA dataset [42]. GPT-4o is used
for conversation generation as it outperforms similarly priced models on craft-MD. [26]. Each
conversation prefix is labeled with diagnostic accuracy using Llama3.1-8B-Instruct, chosen for its
efficacy on craft-MD. Using these labeled conversations, we employ CaRT to construct a dataset
for termination and perform SFT on this dataset. For evaluation data, we use 100 in-distribution
problems and 200 out-of-distribution dermatology questions from craft-MD as two test sets for our
approach.

Evaluation protocol. We fine-tuned a Qwen2.5-3B-Instruct model on the questions from our training
dataset of conversations to serve as a medical question-asking model that does not automatically
terminate. Note that this model is only used to generate questions and is separate from our primary
termination model trained with CaRT. Using this information-seeking model, we generated conver-
sations with 20 question-answer turns for both evaluation sets and labeled each conversation prefix
with diagnosis accuracy, following the same labeling procedure as for the training data.

Since prior work has not formally studied termination for multi-turn medical diagnosis, the most
common methods involve using separate confidence prediction modules to inform termination [24, 6].
To evaluate termination, we compare our model trained with CaRT against two approaches: 1) the
base Qwen2.5-3B-Instruct model and 2) a supervised fine-tuning (SFT) approach trained on an
equal-sized dataset of uniformly sampled training examples. In our ablation analysis, we additionally
compare to methods that utilize confidence prediction. We also evaluate a version of our method
after additional RL post-training. To evaluate each approach, for each diagnosis task, we sequentially
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Figure 3: CaRT outperforms other termination methods for medical diagnosis. (a) Performance on holdout
data showing CaRT outperforms the base model and SFT baseline. Confidence intervals for all models are
computed over 30 evaluation runs. Confidence intervals for CaRT and SFT are computed over 3 training runs.
(b) CaRT also shows superior performance on out-of-distribution dermatology diagnosis tasks.

input conversation prefixes, adding one question-answer pair at a time, until the termination model
decided to terminate. The model was then scored based on the externally labeled FRQ success rate at
the point ofs termination.

Results. CaRT outperforms both the base model and the supervised fine-tuning (SFT) approach
across various termination metrics (Fig. 3a). Our approach leads to the greatest boost in the FRQ
success rate when compared to a naı̈ve approach that terminates after asking a fixed number of
questions shown on the x-axis (denoted by the “Mean Success Rate”). In contrast, the base model
and SFT-trained model lie on or close to the Pareto frontier. Additionally, CaRT attains the highest
optimal termination rate (as defined in section 4.1), indicating that the model learns to recognize
precisely when it has acquired sufficient information to solve the task reliably. CaRT with additional
RL post-training showed strong performance, but we found RL tends towards longer conversations.

4.3 Mathematical Reasoning: Learning When to Stop Thinking

Training data. We also study the performance of our approach on math reasoning where for 2,000
problems from the DeepScaleR-preview [36] dataset. For each problem, we generated a full
thinking trajectory using a Qwen3-1.7B base model. Each trajectory consisted of intermediate
thinking segments followed by a solution. We sampled 10 episode prefixes per trajectory and labeled
each prefix as “terminate” if stopping early yielded higher success than continuing; otherwise it was
labeled “continue.” We created counterfactual examples by retrieving earlier prefixes of optimal
termination trajectories and annotated each trace with explanations for the termination decision.

Evaluation protocol. We follow the same evaluation procedure and metrics as for medical diagnosis:
at each prefix, the termination model decides whether to terminate or continue. We evaluate the
termination model trained with CaRT along with the base model and SFT baseline on AIME 2025.

Results. CaRT substantially outperforms the base model and SFT baseline across all metrics, achieve
higher performance while using fewer test-time tokens (Fig. 4). It achieves the highest FRQ SR
and strongest alignment with oracle termination, demonstrating the ability to identify when enough
reasoning has been accumulated. RL post-training in this setting, again, leads to slightly longer
reasoning traces, but does not provide performance gains.
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Figure 4: Termination performance on Math. Performance on AIME2025 showing CaRT outperforms the
base model and no reasoning approach. Confidence intervals for all models are computed over 3 training seeds
and 16 evaluations.

4.4 Ablation Studies

1) Termination performance generalizes to out-of-distribution data. Perhaps more compelling
evidence supporting the efficacy of CaRT stems from it robustness on out-of-distribution (OOD)
diagnosis tasks. Concretely, we evaluated CaRT on an OOD dataset consisting of dermatology
diagnosis tasks (Figure 3b). Our approach maintains superior performance, achieving high discounted
FRQ success rates relative to the fixed termination baseline. However, perhaps as expected, due to
domain shift, the performance advantage is smaller on an absolute scale. That said, both the base
model and SFT baseline performed worse than even the naı̈ve fixed termination strategy on this
out-of-distribution data, highlighting the efficacy of CaRT in learning generalizable strategies.

2) Both counterfactual data and reasoning traces are important for CaRT. We conducted
ablations to understand the importance of each of the primary components of our method (Fig. 5).
Training with counterfactual data produced the greatest improvement in termination performance,
suggesting that exposing the model to alternative conversation paths where different termination
decisions lead to different outcomes is crucial for learning effective termination. Adding reasoning
traces to the training data also yielded consistent improvements. These ablation results remain
consistent in the math domain: Ablating reasoning and/or CFs leads to lower success rate with more
tokens outputted (Appendix B). For the math domain, we also find that CaRT’s efficacy generalizes
to other model variants, namely the newer Qwen3-1.7B-Instruct model.

Additionally, we evaluated approaches that have an auxiliary task of predicting the external diagnosis
accuracy after each observation, following previous works in LLM medical decision-making [24,
6]. For these confidence score models, we augmented the training data suffix completions with
the external FRQ success rate label re-framed as a confidence score. For example, if the FRQ
success rate label was 0.3 for a particular conversation prefix prompt, then we inserted the phrase
“Confidence in providing a diagnosis: 30%” between the reasoning block and termination decision of
the corresponding suffix. For the SFT + confidence ablation (CaRT - CF - reason + conf in Fig. 5),
we threshold termination when the model’s outputted confidence score reached ≥ 0.8. For other
ablations, the confidence score served as additional context before the termination decision. Adding
this auxiliary confidence task led to slight performance increases when combined with SFT or SFT
+ counterfactual (CF) models. However, when added to our full method (SFT + CF + reasoning),
there was no significant improvement, suggesting that our approach already captures the benefits that
explicit confidence modeling provides.

3) The impact of training with counterfactual data and reasoning augmentation. To investigate
the impact of counterfactuals and reasoning on our model, we evaluate the termination rate of the key
design choice ablations using the the external FRQ success rate across three example conversations
(Fig. 6). We observe that the base model maintains consistently low tendencies to pick a termination
action across all conversations, regardless of the extent of information gathered. This pattern suggests
that the model fails to recognize when sufficient information has been obtained to make a termi-
nation decision. The baseline SFT approach (which is equivalent to CaRT - CF - reason) exhibits
increasing termination rates as conversations progress, but this pattern appears to be independent of
the specific task context. This implies that SFT teaches the model to latch on to a simple heuristic
that terminates as the conversation length increases rather than using the content of the conversa-
tion to guide termination decisions. In contrast, the SFT + CF approach (CaRT - reason) attains
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Figure 5: Ablation study: termination performance on holdout data. We ablate counterfactual training data
and reasoning augmentation. We also ablate over the ratio of terminate to continue labels in the SFT baseline
training dataset, denoted by the gray model markers. We include baselines with a auxilliary confidence prediction
task as well as off-the-shelf GPT models.

Table 1: Reasoning improves counterfactual classification accuracy. We evaluate models on their ability to
classify counterfactual conversations by whether there is sufficient information to terminate. Adding reasoning
leads to improved classification accuracy on the holdout test set, implying more generalizable representations.

Direct Acc. LR Train Acc. LR Test Acc.

Qwen2.5-3B-Instruct 0.567 (0.523–0.609) 1.000 (0.949–1.000) 0.581 (0.408–0.736)
CaRT (- reason) 0.849 (0.815–0.877) 1.000 (0.949–1.000) 0.645 (0.469–0.789)
CaRT 0.663 (0.621–0.702) 0.986 (0.924–0.998) 0.774 (0.602–0.886)

termination rates that spike precisely at those steps in the conversation that align with steep increases
in success rate. These spikes demonstrate that counterfactual training helps the model recognize
key moments when it has acquired sufficient information and terminate appropriately. Finally, our
complete approach (SFT + CF + reason) terminates similarly to the counterfactual-only model but
with smoother termination patterns. Thus, utilizing the reasoning component of CaRT stabilizes ter-
mination decisions, reducing abrupt changes while maintaining sensitivity to information acquisition.
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Figure 6: Reasoning smoothens termination rate curves. We plot the the
termination rate over the course of three example medical conversations.
The first row shows the termination rate of the base model and SFT baseline,
the second row shows the termination rate with CF training data, and the
third row shows the termination rate of SFT + CF + reasoning (CaRT).
The plots indicate that counterfactuals teach the model to recognize when
sufficient information has been acquired and verbalized reasoning smooths
the termination rate curves.

4) Reasoning leads to more
generalizable represen-
tations. To further study
the role of reasoning in
CaRT, we run a probe to
understand how reasoning
about termination modifies
the internal representations of
trained models. We evaluate
three model variants: the base
model, CaRT - reason, and
the full CaRT approach, on
the termination classification
task. Using conversations
from our holdout medical
evaluation set that have an
optimal termination point (a
point for a question-answer
pair results in an increase in
success rate by at least 50%),
we generate hard negative
counterfactual examples,
yielding 102 total conversa-
tions. For direct classification, we measure the rate at which models correctly terminate on original
examples and correctly choose to continue on negative counterfactual examples (Direct Acc.). We
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also extract model representations prior to the final layer to train and evaluate a logistic regression
classifier (LR Train Acc. and LR Test Acc.) on the same 102 conversations using a 70/30 train-test
split.

We find that the SFT + CF model (CaRT - reason) attains the highest accuracy on the direct classifica-
tion task, but the model with additional reasoning performs better when the final layer is replaced
with a simple logistic classifier (Table 1). These findings suggest that the final layer of the SFT + CF
model may be overfitting to these particular in-distribution examples. Incorporating reasoning could
serve as a form of regularization that decreases overfitting in the final layer. Although the test set is
small, the high LR test accuracy of the reasoning model further indicates that including reasoning
produces representations that are both more easily classifiable and generalize better.

5 Discussion and Perspectives on Future Work
The problem of deciding when to stop gathering information is challenging because it involves
maintaining accurate estimates of both acquired and missing information, and requires anticipating
what information might be available if the model spends more compute or interaction steps. We
designed CaRT, a method for teaching LLMs to terminate effectively, when information is enough. By
training on counterfactual examples of termination, LLMs learn to recognize when they have acquired
sufficient information to solve the task. CaRT prescribes training model termination explicitly via
reasoning and, in doing so, improves the separability of output representations, leading to improved
downstream performance. While CaRT provides a promising foundation for teaching LLMs when to
terminate reasoning or interaction, several directions remain open for future exploration. We discuss
a few below.

• Unified exploration and termination. CaRT currently assumes a fixed information-seeking
policy and focuses on deciding when to stop gathering information as existing information
is enough. However, the effectiveness of termination is inherently coupled with the “quality”
of exploration performed in the reasoning trace or information-seeking trace thus far. Future
work could jointly optimize what to ask and when to stop, treating information seeking and
termination as two interdependent components of a unified process. This can be done by
chaining the skill of reasoning for termination with the skill of reasoning, perhaps using ideas
of curriculum training [49] or dense rewards [46].

• Explicit value estimation and uncertainty modeling. Our current framework uses counterfac-
tual comparisons to approximate the implicit value of continuing versus stopping. Extending
CaRT with explicit value estimation or uncertainty modeling could make termination more
robust to distribution shifts. Learning to train LLM value-functions is therefore an important
directions as well.
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Appendices
A Related Work
Learning when to act. The challenge of deciding when to act versus when to continue gathering
information is central to dynamic decision-making problems [37, 40]. In this setting, a decision maker
can provide a solution only once but can decide when to provide that solution as more information
becomes available. This problem setting appears across diverse domains, including timing of medical
treatment [11, 45, 19, 1], social interventions [14], and natural resource harvesting [8, 44].

Statistical approaches to optimal termination have focused on learning stopping rules and developing
sample-efficient estimators [40, 35, 18, 52], while empirical methods have applied deep learning
to improve value estimation in high-dimensional environments [7, 16]. However, these methods
typically operate in settings with well-defined environmental dynamics or features crafted with
domain knowledge [23], limiting their open-ended applicability. For more open-ended problem
settings, LLMs provide the versatility of operating with natural language. Additionally, LLMs
possess rich priors about the world and flexible thinking capabilities: they can simulate possible
futures through chain-of-thought [57] and adapt policies to new tasks without explicit environment
models [4] Despite these advantages, LLMs face limitations for learning effective termination.
Prior work shows that optimal termination depends on accurate value estimation [40, 35, 18, 52].
However, off-the-shelf LLMs struggle to accurately predict their probability of success, even in
fairly simple, single-turn settings [47, 41, 51, 20] and exhibit inefficient exploration in sequential
bandit environments [39, 29, 3]. Our approach builds on the versatility of LLMs but addresses their
shortcomings at estimating the future by training LLMs with counterfactual examples and explicit
reasoning for termination in multi-step tasks.

Information seeking with LLMs. When answering user queries, standard LLMs typically provide
an answer without seeking additional information. Even systems such as OpenAI Deep-Research
ask only one clarifying question. These fairly static approaches are suboptimal because LLMs
often produce answers even when a query is underspecified or missing critical details [17, 61]. To
improve information seeking, prior work has developed methods for LLMs to detect ambiguity
and ask clarifying questions before answering [13, 12, 59, 32, 43]. More recent work has extended
this to multi-turn settings, such as medical diagnosis [24], where agents may gather several pieces
of information before providing a recommendation. These systems often improve the quality of
questions through SFT or reinforcement learning [33, 63, 62, 10]. Some systems maintain a separate
confidence module to inform the decision maker [24, 6] but do not explicitly optimize for termination,
which our approach aims to do directly.

Teaching LLMs to terminate optimally. Beyond deciding which question to ask, an information
seeker must decide when to stop asking questions and terminate. Methods for addressing termination
in single-shot or few-shot settings include prompting or using rollout diversity to measure user
ambiguity [59, 43, 12, 30] and preference fine-tuning [60, 54]. Preference fine-tuning approaches
can improve termination capability in single-step settings, but these approaches are limited because
question ambiguity is often subjective and high-quality human annotations are expensive to collect.
Recent work in the domain of math reasoning with LLMs explores training LLMs with length
penalties or constraining them to reason with only short traces [58, 38, 2]. While such approaches
can reduce over-reliance on unnecessarily long reasoning, they suffer from poor adaptivity: models
trained under strict length constraints struggle to generalize to out-of-distribution tasks, limiting
flexibility across diverse problem structures is essential.

Our approach differs from prior work by directly optimizing for termination behavior in long-form,
multi-step reasoning tasks rather than one-shot or few-shot ambiguity detection [59, 60]. Instead of
relying on subjective labels for when clarification is needed [54], we use the model’s downstream task
success rate at each timestep as a dense, scalable reward signal to learn to decide when to terminate,
by learning a sort of an “implicit value function” that balances exploration and termination.

B Math Ablation Study

Parallel to our ablation study in the medical setting, we conducted ablations on the counterfactual
and reasoning components of our method in the math domain (Fig. 7). We also reproduce our results
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with a newer model variant, Qwen3-1.7B-Instruct. For both model variants, we find that CaRT
attained the best performance; ablating either counterfactuals or reasoning degraded success rate
relative to the fixed budget baseline (denoted by Mean Success Rate). Although all SFT variants
of Qwen2.5-3B-Instruct led to reasonable termination performance, ablating counterfactuals from
training the Qwen3-1.7B-Instruct model led to poor performance, even relative to the fixed budget
baseline. This difference could be because the Qwen3-1.7B-Instruct base model tends to exhibit
even longer reasoning traces than Qwen2.5-3B-Instruct, making it more difficult to learn a better
termination distribution without counterfactuals.
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Figure 7: Ablation study: termination performance on math with Qwen2.5 and Qwen3 models. We ablate
counterfactual training data and reasoning augmentation, showing that CaRT demonstrates superior performance
for training both Qwen3-1.7B-Instruct (a) and Qwen2.5-3B-Instruct (b).

C Medical Data Processing

C.1 Dataset Curation

Interactive Medical Diagnosis Dataset To construct a dataset of medical diagnosis problems, we
used a combination of problems from the MedQA-USMLE [25] and the MedMCQA dataset [42].
For the MedQA-USMLE split, we used the 1.8k problems from the Craft-MD benchmark [26]
sourced from this dataset. For the MedMCQA split, we filtered the original MedMCQA train set of
183k problems to retain only diagnostic problems that had more than one sentence and contained
the keyphrases “most likely diagnosis”, “most likely the diagnosis”, and “most likely causative”.
After filtering, there were 1,352 problems from the MedMCQA split and 3,152 problems total. As
an out-of-distribution evaluation set, we used the 200 dermatology diagnostic problems from the
derm-public and derm-private datasets of the Craft-MD benchmark.

We then filtered the data to retain problems of intermediate difficulty—keeping problems for which
an external diagnostic model achieves ≥ 20% Free-Response Question (FRQ) success rate with
full information (ensuring the problem is solvable) and achieves < 40% FRQ success rate with
only preliminary symptom information in a single turn (ensuring the problem is not trivial). For the
MedQA split and the dermatology evaluation set, the external diagnostic model was GPT-4o (we
acquired this data from the authors of the Craft-MD benchmark [26]). For the MedMCQA split,
the external diagnostic model was Qwen2.5-14B-Instruct. After filtering, the final dataset size was
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1,133 problems for the train set, 121 for the in-distribution holdout set, and 93 problems for the
out-of-distribution evaluation set.

For the MedQA split of the dataset, we used simulated doctor-patient conversations provided by the
authors of the Craft-MD benchmark. These conversations used GPT-4o as the information seeker
(“doctor”) agent and GPT-4 as the information provider (“patient”) agent, with 5 conversations per
problem. Following [26], we simulated 20 doctor-patient conversations for each problem in the
MedMCQA split using GPT-4o (gpt-4o-2024-11-20) as both the seeker and provider agent.

C.2 Implementation Details

Reward Labeling To provide dense reward signals along the trajectory, we split each conversation
in the training set into all possible prefixes containing a subset of questions. For each prefix, we
queried Llama-3.1-8B-Instruct as an external reward model to provide a diagnosis given only the
conversation prefix. We computed the FRQ success rate over 50 generations as the reward label for
each prefix.

Counterfactual Data Generation We identified conversations in the training set that have an
“optimal” termination point—a prefix for which the seeker agent has found all the information
necessary to solve the task. We accomplished this by filtering conversations for those that have a
prefix where the FRQ success rate label of the last question increases by at least 0.5 compared to the
preceding question.

For these optimal termination prefixes, we generated a counterfactual prefix in which the agent asked
a different question and did not receive the information necessary to solve the problem. We did this
by removing the last question of the prefix and querying GPT-4o to generate a new question. We then
queried the external reward model (Llama-3.1-8B-Instruct) for the FRQ success rate of the modified
conversation. We repeated this process for the same prefix until the success rate label was less than
0.3, indicating that the agent did not acquire the necessary information and therefore should not
terminate.

If the counterfactual generation was successful, the pair of conversations (original prefix and counter-
factual prefix) were included in the training dataset. This resulted in a dataset of 1.95k conversations,
with 50% labeled with a terminate suffix and 50% labeled with a continue suffix. Finally, we balanced
the dataset by uniformly resampling earlier prefixes and adding them to the dataset with a continue
suffix until the dataset contained 80% continue examples and 20% terminate examples. The final
dataset size was 4.78k examples.

For the SFT baseline, we sampled conversations from the training set uniformly, controlling for both
dataset size and the ratio of terminate to continue suffixes. For the models with reasoning, we queried
GPT-4o with the conversation prefix and the termination decision to generate an explanation for why
it would arrive at that decision. We inserted this reasoning trace before the termination decision
suffix.

C.3 Evaluation

To construct conversations for evaluating termination, we needed a model that would only ask
questions and never terminate. To this end, we supervised fine-tuned Qwen2.5-3B-Instruct on the
highest-performing conversations in the training set, placing loss only on the questions and not the
terminations. We verified that the SFT model only asks questions and on average achieves a higher
external success rate at every possible conversation length compared to the base model. [FILL IN
evidence (table or graph)].

We then used this question-asking model as the seeker and Llama-3.1-8B-Instruct as the provider to
generate 5 doctor-patient conversations for each of the problems in both the in-distribution holdout
set and the out-of-distribution evaluation set. We labeled each prefix in these conversations with
the external FRQ success rate using Llama-3.1-8B-Instruct. We removed conversations for which
the FRQ success rate was < 0.1 for all prefixes, indicating the seeker model never found enough
information to terminate. Our final in-distribution and out-of-distribution evaluation sets consisted
of 261 conversations and 233 conversations, respectively. For computing optimal termination rate
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specifically, we used only the 51 conversations that possess a point of optimal termination (an increase
in FRQ success rate by ≥ 0.5).

17



D Training hyperparameters

D.1 Hyperparameters for SFT

For CaRT, we utilize the TRL codebase. The base models are directly loaded from Hugging Face:
Qwen3-1.7B and Qwen2.5-3B-Instruct.

Hyperparameter Values
learning rate 1.0e-5
num train epochs 3
batch size 256
gradient checkpointing True
max seq length 16384
bf16 True
num gpus 8
warmup ratio 0.1

Table 2: Hyperparameters used for CaRT

D.2 Hyperparameters for RL

We utilize the Open R1 codebase to run GRPO. We use Qwen2.5-3B-Instruct as the base model for
training and Llama-3.1-8B-Instruct as the external reward model.

Hyperparameter Values
learning rate 1.0e-6
num train epochs 2
batch size 192
gradient checkpointing True
max seq length 1280
bf16 True
num gpus 8
warmup ratio 0.1
weight decay 0.01
temperature 1.0
attention implementation flash attention 2

Table 3: Hyperparameters used for CaRT+RL
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E Prompts

E.1 Prompts for generating medical conversations

The following prompts, adapted from [26] were used to simulate medical diagnosis conversations
based on diagnostic case study questions from the MedMCQA dataset [42].

Doctor Prompt

SYSTEM: You are an AI doctor. Arrive at a diagnosis of a patient’s
medical condition. Ask only one question at a time, and it should
not be more than 1 line. Continue asking questions until you’re 100%
confident of the diagnosis. Do not ask the same question multiple
times. Ask different questions to cover more information. The
questions should cover age and sex of the patient, current symptoms,
medical history of illness and medications, and relevant family history
if necessary. Keep your questions short and brief to not confuse the
patient. After you’re done asking questions, give the final diagnosis
as a short response. Do not explain, only give the diagnosis name.
You must state ’**Final Diagnosis:**’ at the beginning of your response,
otherwise you will be penalized. You must give only 1 diagnosis
otherwise you will be penalized.

Patient Prompt

SYSTEM: You are a patient. You do not have any medical knowledge. You
have to describe your symptoms from the given case vignette based on
the questions asked. Do not break character and reveal that you are
describing symptoms from the case vignette. Do not generate any new
symptoms or knowledge, otherwise you will be penalized. Do not reveal
more information than what the question asks. Keep your answer short,
to only 1 sentence. Simplify terminology used in the given paragraph
to layman language. Case Vignette: {case description}

E.2 Prompts for reward model

The following prompts, adapted from [26] were used to prompt a reward model to label FRQ success
rate after each question-answer pair of each simulated medical conversation.

Diagnosis Prompt

SYSTEM: Stop asking questions now. What is the most likely diagnosis?
Give the answer as a short response based on the patient’s above
symptoms. Do not explain.

Diagnosis Extraction Prompt
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SYSTEM: Identify and return the diagnosis name from the given **Query
Paragraph**. If there are more than one concurrent diagnoses present
(usually indicated by ’with’ or ’and’), return the names of the
concurrent diagnoses. If there are more than one possible but unsure
diagnosis present (usually indicated by presence of ’or’ in the
paragraph), return ’Multiple’. If there are no diagnoses present, then
return ’None’. Do not explain.
**Example 1**: ’The final diagnosis is likely tinea manuum on the
right hand and tinea pedis on both feet.’ Return ’tinea pedia, tenia
manuum’ because both diagnoses are present concurrently. **Example 2**:
’Impetigo with eczema herpeticum’. Return ’Impetigo, eczema herpeticum’
because both are present concurrently. **Example 3**: ’Possible
diagnosis of regressed nevus or halo nevus.’ Return ’Multiple’ because
the sentence contains multiple unsure diagnoses indicated by or.
**Example 4**: ’Genital herpes with concurrent lymphogranuloma venereum
(LGV) or other sexually transmitted infection (STI) involving lymphatic
swelling.’ Return ’Multiple’ due to the presence of multiple diagnoses
indicated by or. **Example 5**: ’**Final Diagnosis:** Chronic
bronchitis due to long-term smoking’. Return ’Chronic bronchitis’.
**Example 6**: ’I need more information to arrive at a diagnosis.
Consult your medical provider.’ Return ’None’ because there is no
diagnosis.
**Query Paragraph** : {diagnosis paragraph}

Diagnosis Evaluation Prompt

SYSTEM: Identify if **Query Diagnosis 1** and **Query Diagnosis 2**
are equivalent or synonymous names of the disease. Respond with a
yes/no. Do not explain. If **Query Diagnosis 2** contains more
than 1 concurrent diagnoses separated by ’,’, identify if any of the
diagnoses is equivalent or synonymous to **Query Diagnosis 1**. Also,
if **Diagnosis 1** is a subtype of **Diagnosis 2** respond with yes,
but if **Diagnosis 2** is a subtype of **Diagnosis 1** respond with no.
Example 1: **Diagnosis 1**: eczema ; **Diagnosis 2**: eczema,
onychomycosis. Eczema is same between the two, so respond Yes.
Example 2: **Diagnosis 1**: eczema ; **Diagnosis 2**: onychomycosis.
They are different, so respond No. Example 3: **Diagnosis 1**: toe
nail fungus ; **Diagnosis 2**: onychomycosis. They are synonymous,
so return Yes. Example 4: **Diagnosis 1**: wart ; **Diagnosis 2**:
verruca vulgaris. They are synonymous, so return Yes. Example 5:
**Diagnosis 1**: lymphoma ; **Diagnosis 2**: hodgkin’s lymphoma.
Diagnosis 2 is subtype of Diagnosis 1, so return No. Example 6:
**Diagnosis 1**: hodgkin’s lymphoma ; **Diagnosis 2**: lymphoma.
Diagnosis 1 is subtype of Diagnosis 2, so return Yes. Example
7: **Diagnosis 1**: melanoma ; **Diagnosis 2**: None. They are
different, so respond No. Example 8: **Diagnosis 1**: melanoma ;
**Diagnosis 2**: Multiple. They are different, so respond No.
**Query Diagnosis 1**: {ground truth answer} **Query Diagnosis 2**:
{predicted diagnosis}

E.3 Prompts for termination model

The following prompts were used to prompt a models to make a termination decision.

Standard Termination Prompt
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SYSTEM: You are a Medical Triage Assistant. Determine if there is
sufficient information to provide an accurate diagnosis. If you are
confident in providing a diagnosis, then state your decision as ’Final
Diagnosis: {diagnosis}’. Otherwise, state your decision as ’Need More
Information’.

Termination Prompt with reasoning

SYSTEM: You are a Medical Triage Assistant. Reason about the
conversation to determine if there is sufficient information to provide
an accurate diagnosis. If you are confident in providing a diagnosis,
then state your decision as ’Final Diagnosis: {diagnosis}’. Otherwise,
state your decision as ’Need More Information’. Format your response
as:\n<think>n{reason}\n</think>\n{decision}

Termination Prompt with confidence

SYSTEM: You are a Medical Triage Assistant. Determine if there is
sufficient information to provide an accurate diagnosis. Provide a
confidence score in the range of 0 to 100 on whether you can provide
an accurate diagnosis. If you are confident in providing a diagnosis,
then state your decision as ’Final Diagnosis: {diagnosis}’. Otherwise,
state your decision as ’Need More Information’. Format your response
as:\nConfidence in providing a diagnosis: {confidence}\ndecision

Termination Prompt with reasoning and confidence

SYSTEM: You are a Medical Triage Assistant. Reason about the
conversation to determine if there is sufficient information to
provide an accurate diagnosis. Then, provide a confidence score
in the range of 0 to 100 on whether you can provide an accurate
diagnosis. If you are confident in providing a diagnosis, then state
your decision as ’Final Diagnosis: {diagnosis}’. Otherwise, state
your decision as ’Need More Information’. Format your response
as:\n<think>\nreason\n</think>\nConfidence in providing a diagnosis:
{confidence}\n{decision}

Termination Prompt for confidence threshold

SYSTEM: You are a Medical Triage Assistant. Reason about the
conversation to determine if there is sufficient information to provide
an accurate diagnosis. Then, provide a confidence score in the range
of 0 to 100 on whether you can provide an accurate diagnosis. Format
your response as:\nConfidence in providing a diagnosis: {confidence}
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