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ABSTRACT

We propose an alternative rendering algorithm for neural radiance fields based
on importance sampling. In view synthesis, a neural radiance field approximates
underlying density and radiance fields based on a sparse set of scene views. To
generate a pixel of a novel view, it marches a ray through the pixel and computes a
weighted sum of radiance emitted from a dense set of ray points. This rendering
algorithm is fully differentiable and facilitates gradient-based optimization of the
fields. However, in practice, only a tiny opaque portion of the ray contributes most
of the radiance to the sum. Therefore, we can avoid computing radiance in the rest
part. In this work, we use importance sampling to pick non-transparent points on
the ray. Specifically, we generate samples according to the probability distribution
induced by the density field. Our main contribution is the reparameterization of
the sampling algorithm. It allows end-to-end learning with gradient descent as in
the original rendering algorithm. With our approach, we can optimize a neural
radiance field with just a few radiance field evaluations per ray. As a result, we
alleviate the costs associated with the color component of the neural radiance field
at the additional cost of the density sampling algorithm.

1 INTRODUCTION

We propose a volume rendering algorithm for learning 3D scenes and generating novel views.
Recently, learning-based approaches led to significant progress in this area. As an early instance, (20)
represent a scene via a density field and a radiance (color) field parameterized with an MLP. Using
a differentiable volume rendering algorithm (18) with the MLP-based fields to produce images,
they minimize the discrepancy between the output images and a set of reference images to learn a
scene representation. The algorithm we propose is a drop-in replacement for the volume rendering
algorithm used in NeRF (20) and follow-ups.

The underlying model in NeRF generates an image point in the following way. It casts a ray from
a camera through the point and defines the point color as a weighted sum along the ray. The sum
aggregates the radiance of each ray point with weights induced by the density field. Each term
involves a costly neural network query, and model has a trade-off between rendering quality and
computational load. NeRF obtained a better trade off with a two-stage sampling algorithm obtaining
ray points with higher weights. The algorithm is reminiscent of importance sampling, yet it requires
training an auxiliary model.

In this work we propose a rendering algorithm based on importance sampling. Our algorithm also
acts in two stages. In the first stage, it marches through the ray to estimate density. In the second
stage, it constructs a Monte-Carlo color approximation using the density to pick points along the
ray. Figure 1 illustrates the estimates for a varying number of samples. The resulting estimate is
fully-differentiable and does not require any auxiliary models. Besides, we only need a few samples
to construct a precise color approximation. Intuitively, we only need to compute the radiance of the
point where a ray hits a solid surface. As a result, our algorithm is especially suitable for recent
architectures (23; 36; 32) that use distinct models to parameterize radiance and density. Specifically,
the first stage only queries the density field, whereas the second stage only queries the radiance field.
Compared to the standard rendering algorithm, the second stage of our algorithm avoids redundant
radiance queries and reduces the memory required for rendering at the cost of slight estimate variance.
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Figure 1: Novel views of a ship generated with the proposed radiance estimates. For each ray we
estimate density and then compute radiance at a few ray points generated using the ray density. As the
above images indicate, render quality gradually improves with the number of ray points and saturates
at approximately 16 ray points.

Below, Section 2 give a recap of neural radiance fields. Then we proceed to the main contribution of
our work in Section 3, namely the rendering algorithm fueled by a novel sampling procedure. Finally,
in our experiments in Section 5 we evaluate the algorithm in terms of rendering quality, speed and
memory requirements.

2 NEURAL RADIANCE FIELDS

Neural radiance fields represent 3D scenes with a non-negative scalar density field σ : R3 → R+ and
a vector radiance field c : R3 × R3 → R3. Scalar field σ represents volume density at each spatial
location x, and c(x,d) returns the light emitted from spatial location x in direction d represented as
a normalized three dimensional vector.

For novel view synthesis, NeRF adapts a volume rendering algorithm that computes pixel color C(r)
(denoted with a capital letter) as expected radiance for a ray r = o + td passing through a pixel
from origin o ∈ R3 in direction d ∈ R3. To ease the notation, we will denote density and radiance
restricted to ray r as

σr(t) := σ(o + td) (1)
cr(t) := c(o + td,d). (2)

With that in mind, the expected radiance along ray r is given as

C(r) =

∫ tf

tn

pr(t)cr(t)dt, where pr(t) := σr(t) exp

(
−
∫ t

tn

σr(s)ds

)
. (3)

Here, tn and tf are near and far ray boundaries and pr(t) is an unnormalized probability density
function of a random variable t on a ray r. Intuitively, t is the location on the ray where a portion of
light coming into the point o was emitted.

To approximate the nested integrals in Equation 3, Max (18) proposed to replace fields σr and cr
with a piecewise approximation on a grid tn = t0 < t1 < · · · < tm = tf and compute the formula 3
analytically for the approximation. In particular, a piecewise constant approximation, which is
predominant in NeRF literature, yields formula

Ĉ(r) =

m∑
i=1

(1− exp(−σr(ti)δi)) exp

− i−1∑
j=1

σr(tj)δj

 c(ti), where δi := ti+1 − ti. (4)

Importantly, Equation 4 is fully differentiable and can be used as a part of gradient-based learning
pipeline.

Given the ground truth expected color Cgt(r) along r, the optimization objective in NeRF

L(Ĉ(r), Cgt(r)) = ‖Ĉ(r)− Cgt(r)‖22 (5)
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captures the difference between Cgt(r) and estimated color Ĉ(r). To reconstruct a scene NeRF runs
a gradient based optimizer to minimize the objective 5 averaged across multiple rays and multiple
viewpoints.

While the above approximation works in practice, it involves multiple evaluations of c and σ along a
dense grid. Besides that, a common situation is when a ray intersects a solid surface at some point
t ∈ [tn, tf ]. In this case, probability density pr(t) will concentrate its mass near t and will be close
to zero in other parts of the ray. As a result, most of the terms in Equation 4 will make negligible
contribution to the sum. In Section 4, we discuss various solutions to picking the grid points that are
most likely to contribute to the sum. As an alternative, in the next section we propose to estimate the
expected radiance with stochastic estimates that require only few radiance evaluations.

3 STOCHASTIC ESTIMATES FOR THE EXPECTED COLOR

Monte Carlo method gives a natural way to approximate the expected color. For example, given k
i.i.d. samples t1, . . . , tk ∼ pr(t) and the normalization constant yf :=

∫ tf
tn
pr(t)dt, the following

sum

ĈMC(r) =
yf
k

k∑
i=1

cr(ti) (6)

is an unbiased estimate of the expected radiance in Equation 3. Moreover, samples t1, . . . , tk come
from high-density regions of pr by design, thus for a degenerate density pr even a few samples would
provide an estimate with low variance. Each term in Equation 6 contributes equally to the sum.

Importantly, unlike the approximation in Equation 4, the Monte-Carlo estimate depends on scene
density σ implicitly through sampling algorithm and requires a custom gradient estimate for the
parameters of σ. As an illustration, the full NeRF samples points on a ray from the distribution induced
by an auxiliary "coarse" density model. These points are then used as grid knots in approximation 4.
However, as their sampling algorithm is non-differentiable and cannot be trained end-to-end, they
introduce auxiliary "coarse" radiance field and train "coarse" components separately.

Below, we propose propose a principled end-to-end differentiable algorithm to generate samples from
pr(t). We then apply the algorithm to estimate radiance as in Equation 6 and optimize the estimates
to reconstruct the density and the radiance field of a scene.

3.1 REPARAMETERIZED EXPECTED RADIANCE ESTIMATES

The solution we propose is primarily inspired by the reparameterization trick (12; 31). We first
change the variable in Equation 3. For Fr(t) := 1− exp

(
−
∫ t
tn
σr(s)ds

)
and y := Fr(t) we write

C(r) =

∫ tf

tn

cr(t)pr(t)dt =

∫ yf

yn

cr(F−1r (y))dy. (7)

The integral boundaries are yn := Fr(tn) = 0 and yf := Fr(t). Function Fr(t) acts as the
cumulative distribution function of the variable t with a single exception that, in general, yf :=
Fr(tf ) 6= 1. In volume rendering, Fr(t) is called opacity function with yf being equal to overall
pixel opaqueness.

In the right-hand side of Equation 7, the integral boundaries depend on opacityFr and, as consequence,
on ray density σr. We further simplify the integral by changing the integration boundaries to [0, 1]
and substituting yn = 0: ∫ yf

yn

cr(F−1r (y))dy =

∫ 1

0

yfcr(F−1r (yfu))du. (8)

Given the above derivation, we construct the reparameterized Monte Carlo (R/MC) estimate for
the right-hand side integral in Equation 8 with k i.i.d. U [0, 1] samples u1, . . . , uk:

ĈRMC(r) :=
yf
k

k∑
i=1

cr(F−1r (yfui)). (9)
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In the above estimate, random samples u1, . . . , uk do not depend on volume density σr or color cr.
Essentially, the reparameterized Monte-Carlo estimate generates samples from pr(t) using inverse
cumulative distribution function F−1r (yfu).

We further improve the estimate using stratified sampling. We replace uniform samples u1, . . . , uk
with uniform independent samples within regular grid bins vi ∼ U [ i−1k+1 ,

i
k+1 ], i = 1, . . . , k and

derive the reparameterized stratified Monte Carlo (R/SMC) estimate

ĈRSMC(r) :=
yf
k

k∑
i=1

cr(F−1r (yfvi)). (10)

It is easy to show that both 9 and 10 are unbiased estimates of 3. Additionally, the gradient of
estimates 9 and 10 is an unbiased estimate of the gradient of the expected color C(r). However, in
practice we can only query σr at certain ray points and cannot compute Fr analytically. Thus, in the
following section, we introduce approximations of Fr and its inverse.

3.2 OPACITY APPROXIMATIONS

Expected radiance estimate 9 relies on opacity Fr(t) = 1 − exp
(
−
∫ t
tn
σr(s)ds

)
and its inverse

F−1r (y). We propose to approximate the opacity using a piecewise density field approximation.
Figure 2 illustrates the approximations and ray samples obtained through opacity inversion.
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Figure 2: Illustration of opacity inversion. On the left, we approximate density field σr with a
piecewise constant (PWC) and a piecewise linear (PWL) approximation. On the right, we approximate
opacity Fr(t) and compute F−1r (yfu) for u ∼ U [0, 1].

To construct the approximation, we take a grid tn = t0 < t1 < · · · < tm = tf and construct
piecewise constant and piecewise linear approximations. In the piecewise linear case, we compute σr
in the grid points and interpolate the values between the grid point. In the piecewise constant case, we
pick a random point within each bin ti ≤ t̂i ≤t i+ 1 and approximate density with σr(t̂i) inside the
corresponding bin. Importantly, for a non-negative field these approximations are also non-negative.

Then we compute the integral
∫ t
tn
σr(s)ds used in Fr(t) for t ∈ [ti, ti+1) analytically as a sum of

rectangular areas

I0(t) =

i∑
j=1

σr(t̂j)(tj − tj−1) + σr(t̂i)(t− ti) (11)

for the the piecewise constant approximation and as a sum of trapezoidal areas for the piecewise
linear approximation

I1(t) =

i∑
j=1

σr(tj) + σr(tj−1)

2
(tj − tj−1) +

(σr(ti) + σ̄r(t))

2
(t− ti), (12)

where σ̄r(t) = σr(ti)
ti+1−t
ti+1−ti + σr(ti+1) t−ti

ti+1−ti is the interpolated density at t. Given these approxi-
mations, we are now able to approximate Fr and yf in Equation 9.

We generate samples on a ray based on inverse opacity F−1r (y) by solving the equation

yfu = Fr(t) = 1− exp

(
−
∫ t

tn

σr(s)ds

)
(13)
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for t, where u ∈ [0, 1] is a random sample. We rewrite the equation as

− log(1− yfu) =

∫ t

tn

σr(s)ds. (14)

and note that integral approximations I0(t) and I1(t) are monotonic piecewise linear and piecewise
quadratic functions. We obtain the solution of Equation 14 by first finding a bin that contains a
solution and then solving a linear or a quadratic equation. Crucially, solution t can be seen as a
differentiable function of the density field σr and we can back-propagate the gradients w.r.t. σr
through t.

In the supplementary materials, we provide explicit formulae for t for both approximations and
discuss the solutions crucial for the numerical stability. Additionally, we provide an alternative
inversion algorithm in the case when

∫ t
tn
σr(s)ds can be computed without approximations. In

our experiments we report the results only for piecewise linear approximation. In our prelimenary
experiments, the piecewise constant approximation was faster but delivered worse rendering quality.

4 RELATED WORK

There are multiple ways to represent the shape for a scene for novel view synthesis. Earlier learning-
based approaches rely on such implicit representations as signed distance fields (27; 34; 35) and
occupancy fields (19; 25) to represent non-transparent objects. We concentrate on implicit represen-
tations based on density fields pioneered in NeRF (20). Each representation relies on a designated
rendering algorithm. In particular, NeRF relies on an emission-absorption optical model developed
in (11) with a numerical scheme specified in (18).

Monte-Carlo estimates for integral approximations. In this work, we revisit the algorithm in-
troduced to approximate the expected color in (18). Currently, the algorithm is a default solution
in multiple of works on neural radiance fields. The authors of (18) approximate density and radi-
ance fields with a piecewise constant functions along a ray and compute 3 as an approximation.
Instead, we reparameterize Equation 3 and construct Monte-Carlo estimates for the integral. To
compute the estimates in practice we use piecewise approximations only for the density field. The
cumulative density function (CDF) used in our estimates involves integrating density field along
a ray. In (15), the authors construct field anti-derivatives to accelerate inference. While they use
the anti-derivatives to compute 3 on a grid with fewer knots, the anti-derivatives can apply in our
framework to construct Monte-Carlo approximations based on the inverse CDF without resorting to
piecewise approximations.

In the past decade, integral reparameterizations became a common practice in generative modeling (13;
31) and approximate Bayesian inference (3; 7; 22). Similar to Equation 3, objectives in these areas
require optimizing expected values with respect to distribution parameters. We refer readers to (21)
for a systematic overview. Notably, in computer graphics, (17) apply reparameterization to estimate
gradients of path traced images with respect to scene parameters.

Algorithms for picking ray points. Opposed to numerical scheme in Equation 4, our algorithm
only requires to evaluate radiance at a sparse set of points sampled from the density field. In (20),
the authors use a similar hierarchical scheme to generate ray points using an auxiliary coarse density
field. Crucially, unlike our reparameterized importance sampling, the importance sampling algorithm
in their work does not allow differentiating with respect to the coarse model parameters. The ad-hoc
solution introduced in (20) is to train the coarse model separately using the same rendering objective 5.
Subsequent works propose variations of the scheme: Mip-NeRF (2) merges coarse and fine models
using a scale-aware neural field, and Mip-NeRF 360 (2) distills the coarse density field from a fine
field instead of training an auxiliary coarse radiance field. For non-transparent scenes Unisurf (26)
treats the density field as an occupancy field and gradually incorporates root-finding algorithms
into volume sampling. Simultaneously, a number of works propose training an auxiliary model to
return coarse samples for a given ray. For instance, DoNeRF (24) uses a designated depth oracle
network supervised with ground truth depth maps, TermiNeRF (28) foregoes the depth supervision
by distilling the sampling network from a pre-trained NeRF model. Finally, the authors of (1) train
a proposal network to generate points on a ray end-to-end starting with a pre-trained NeRF. The
aforementioned works speed up rendering, but the reliance on auxiliary networks hinders using faster
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grid-based architectures and makes the overall scene representation less interpretable. In contrast to
the above works, our algorithm learns sampling points on a ray from scratch in an end-to-end fashion,
works with an arbitrary density field, and does not requires any auxiliary models.

NeRF acceleration through architecture and sparsity. The above algorithms for picking points
on a ray generally aim to reduce the number of field evaluations during rendering. An alternative
optimization approach is to reduce the time required to evaluate the field. In the past few years, a
variety of architectures combining Fourier features (33) and grid-based features was proposed (8;
32; 36; 30). Besides grids, some works exploit space partitions based on Voronoi diagrams (29),
trees (10; 37) and even hash tables (23). These architectures generally trade-off inference speed for
parameter count. TensorRF (4) stores the grid tensors in a compressed format to achieve both high
compression and fast performance. On top of that, skipping the density queries for the empty parts of
a scene additionally improves rendering time (14). For the novel view synthesis, the idea allows to
speed up rendering during training and inference (9; 6; 16). Notably, our rendering algorithm works
with arbitrary density fields and, as a result, is compatible with the improved field architectures and
sparse fields.

5 EXPERIMENTS

5.1 IMPORTANCE SAMPLING FOR A SINGLE RAY

We begin with comparison of importance sampling color estimates in a one-dimensional setting. In
this experiment, we assume that we know density in advance and show how the estimate variance
depends on number of radiance calls. Compared to importance sampling, the standard approximation
from Equation 4 has zero variance but does not allow controlling number of radiance calls.

Our experiment models light propagation on a single ray in three typical situations. The upper row of
Figure 3 defines a scalar radiance field (orange) cr(t) and opacity functions (blue) Fr(t) for

• "Foggy" density field. It models a semi-transparent volume. Similar fields occur after model
initialization during density field training;

• "Glass and wall" density field. Models light passing through nearly transparent volumes such
as glass. The light is emitted at three points: the inner and outer surface of the transparent
volume and an opaque volume near the end of the ray;

• "Wall" density field. Light is emitted from a single point on a ray. Such fields are most
common in applications.
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Figure 3: Color estimate variance compared for a varying number of samples. The upper plot
illustrates underlying opacity function on a ray; the lower graph depicts variance in logarithmic scale.
Compared to a naive importance sampling estimate (dashed red), reparameterized sampling exhibits
lower variance (dashed green). Stratified sampling improves variance in both setups (solid lines).
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For the three fields we estimated the expected radiance C(r) =
∫ tf
tn
cr(t)dFr(t). We considered

two baseline methods (both in red in Figure 3): the first was an importance sampling estimate of C
obtained with uniform distribution on a ray U [tn, tf ], and its stratified modification with a uniform
grid tn = t0 < · · · < tk = tf (note that here we use k to denote the number of samples, not the
number of grid points m in piecewise density approximation):

ĈIW(r) =

k∑
i=1

(ti − ti−1)cr(τi)
dFr

dt

∣∣∣∣
t=τi

, with independent τi ∼ U [ti−1, ti]. (15)

We compared the baseline against estimate from Equation 9 and its stratified counterpart from
Equation 10. All estimates are unbiased. Therefore, we only compared the estimates variances for a
varying number of samples m.

In all setups, our stratified estimate uniformly outperformed the baselines. For the most challenging
"foggy" field, approximately k = 32 samples we required to match the baseline performance for
k = 128. We matched the baseline with only a k = 4 samples for other fields. Importance sampling
requires only a few points for degenerate distributions. In further experiments, we take k = 32 to
obtain a precise color estimate even when a model did not converge to a degenerate distribution.

5.2 SCENE RECONSTRUCTION WITH REPARAMETERIZED VOLUME SAMPLING

Next, we apply our algorithm to 3D scene reconstruction based on a set of image projections. As
a benchmark, we use the synthetic data from NeRF (20). The primary goal of the experiment is to
demonstrate computational advantages of our algorithm compared to the basic volume rendering
algorithm.

PSNR (↑) Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
NeRF full 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.01
NeRF w/o h. 31.32 24.55 29.25 35.24 31.42 29.22 31.74 27.73 30.06
NeRF (Ours) 31.35 22.42 28.42 34.36 30.70 28.72 31.18 26.89 29.26
DVGO 33.99 25.33 32.57 36.65 34.58 29.59 33.12 28.93 31.95
DVGO (Ours) 34.24 25.06 30.46 36.76 33.87 29.14 33.08 28.06 31.34

SSIM (↑) Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
NeRF full 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
NeRF w/o h. 0.951 0.914 0.956 0.969 0.951 0.944 0.973 0.844 0.938
NeRF (Ours) 0.956 0.875 0.949 0.965 0.946 0.940 0.971 0.824 0.928
DVGO 0.976 0.928 0.977 0.980 0.976 0.950 0.983 0.876 0.956
DVGO (Ours) 0.978 0.925 0.968 0.980 0.973 0.946 0.983 0.866 0.952

LPIPS (↓) Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
NeRF full 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
NeRF w/o h. 0.065 0.177 0.056 0.130 0.072 0.080 0.039 0.249 0.109
NeRF (Ours) 0.065 0.178 0.066 0.078 0.083 0.077 0.040 0.225 0.102
DVGO 0.027 0.083 0.026 0.033 0.027 0.059 0.018 0.163 0.054
DVGO (Ours) 0.027 0.084 0.040 0.034 0.029 0.062 0.017 0.172 0.058

Table 1: Rendering quality comparison with NeRF and DVGO (32). Metrics are calculated over
test views for synthetic scenes (20) with k = 32 points in color estimates and m = 256 knots
along each ray in our NeRF modificatio, for details please see Section 3.2. Our method is slightly
worse than NeRF without hierarchical sampling (coarse model) in terms of average PSNR and
SSIM, although it is slightly better in terms of average LPIPS. As we have only modified the
underlying integration scheme, we expected the model performance to match the non-hierarchical
NeRF. For LPIPS calculation we used official implementation (38) and VGG features. Similarly, our
modification of DVGO is slightly worse than the original DVGO.
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5.2.1 NEURAL RADIANCE FIELDS

As our first model, we took the original NeRF’s architecture (20) and hyperparameters without any
modifications, except for the output activation of field σ. In particular, we used Softplus activation
with β = 10 instead of ReLU to avoid zero gradients. To form a training batch during training
we took a random subset of 64 training images and sampled 64 rays per images. To construct a
piecewise linear density approximation, we slightly perturbed a uniform ray grid with 256 knots.
For the proposed importance-sampling reparameterization we calculated Equation 10 with k = 32
samples to estimate color. In the Table 1 below, we report the obtained results. For reference, we also
provide the NeRF metrics with and without hierarchical sampling.

With NeRF architecture we expected our algorithm to be comparable to NeRF without hierarchical
sampling: these two models use grids of the same density and do not rely on hierarchical sampling.
However, despite our expectations, the quantitative results of the baseline were slightly better. The
only difference between NeRF without hierarchical sampling and our model is the underlying
expected color approximation. We speculate that the variance of our stochastic estimate prevents
model from finding fine optimum. For reference we also provide the result for the full NeRF model,
however the model is not directly comparable to ours. Even though the full NeRF model also samples
points along a ray in a two-stage manner, it re-weights the output points using a second "fine" network,
whereas samples in our model are weighted with uniform weights (see Equation 10).

Model PSNR (↑) SSIM (↑) LPIPS (VGG) (↓) Speed (s)(↓) Mem (Gb)(↓)
NeRF w/o h. 31.42 0.951 0.072 26.59 6.742
Ours, 1 pt 25.67 0.870 0.1768 20.18 4.189
Ours, 2 pts 28.29 0.909 0.1510 20.31 4.191
Ours, 4 pts 29.94 0.934 0.1187 20.49 4.191
Ours, 8 pts 30.52 0.943 0.0930 20.82 4.191
Ours, 16 pts 30.68 0.946 0.0829 21.50 4.193
Ours, 32 pts 30.72 0.946 0.0801 22.89 4.197
Ours, 64 pts 30.72 0.947 0.0794 25.74 4.209

Table 2: Ablation study and comparison in terms of speed and quality with different number of
points in improtance-weighted color estimate. We compare inference on views of Lego scene (20).
Speed represents the average rendering time of a single 800× 800 frame on NVIDIA v100 GPU. We
measured speed and memory usage in pytorch3d’s re-implementation of NeRF as our implementation
is also written in pytorch. Our algorithm slightly improves rendering time and memory footprint.

Then, we evaluated the proposed method with a varying number of samples at the inference stage (k
in Equation 10). We took the Lego scene model from the previous experiment and varied the number
of points in our reparametrized color estimation. The quantitative results of this experiments can
be found in Table 2 and Figure 4 contain qualitative results. From the rendering quality viewpoint,
the three metrics gradually increased with the number of samples and saturated and approximately
16 points. Our algorithm produced sensible renders even for k = 1, however noise artifacts only
disappeared for k = 8.

Figure 4: NeRF rendering results with a different number of samples in the proposed stratified
estimate with re-sampling. From left to right and from top to down: 1, 2, 4, 8, 32 points estimates
and ground truth for reference.
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5.2.2 DIRECT VOXEL GRID OPTIMIZATION

We also tested our rendering algorithm on a recent voxel-based radiance field model DVGO (32).
The model takes only a few minutes to train thanks to lightning fast architecture, progressive scaling,
and custom CUDA kernels. We took the official implementation and only replaced the rendering
algorithm based on Equation 4. To achieve the rendering performance competitive with their CUDA
kernels, we optimized the performance using just-in-time compilation module in Pytorch.

We evaluated the two training stages of DVGO with a varying number of radiance samples. On
the first "coarse" stage, the model fits a low-resolution 3D density grid and a view-independent 3D
radiance grid. On the second "fine" stage, the model fits a density grid with gradually improving
resolution and view-dependent radiance field combining a grid and an MLP. Crucially, the second
stage relies on a coarse grid from the first stage to skip empty regions in space and optimize the
performance. Table 3 presents the comparison results on a synthetic Lego scene. Results for other
synthetic scenes for k = 32 samples are in Table 1.

Radiance calls ↓ Mem (Gb) ↓ Training time (s) ↓ PSNR
Coarse Fine Coarse Fine Coarse Fine

Ours 1 1 4.7 5.0 39 167 29.84
Ours 8 8 4.7 5.1 39 205 33.29
Ours 32 32 4.7 5.7 40 362 33.95
Ours 64 64 4.7 7.3 42 581 34.15
DVGO 130.7 13.4 4.7 5.5 54 238 34.60

Table 3: Comparison between the default rendering algorithm and the proposed reparameterized
estimates with a varying number of samples for DVGO model. Our algorithm improves training
speed on the coarse stage by up to 30% and can improve training speed on the fine stage at cost of
lower model quality.

On the coarse stage, we observed at least 20%−30% improvement in training time. The improvement
can be attributed to fewer radiance samples. Using the auxiliary mask for empty space regions, DVGO
significantly reduces the number of radiance calls on the second stage. As a result, our rendering
algorithm improved training time only when the number of samples is lower than the average number
of radiance calls in DVGO (13.4 in this case). At the same time, as the PSNR column indicates, the
rendering quality deteriorated with fewer radiance samples. Notably, in our experiments, the model
trained with 64 samples achieved PSNR 34.33 even with 16 during evaluation stage. We concluded
that lower PSNRs are caused by the estimate variance during training.

6 CONCLUSION

In this work, we proposed an alternative rendering algorithm for novel view synthesis models based on
radiance fields. The core of our contribution is end-to-end differentiable ray point sampling algorithm.
For two pre-existing architectures, we show that the algorithm can achieve competitive rendering
quality while reducing training and rendering time, and required GPU memory. Besides that, we
believe that such an algorithm opens up new possibilities in efficient rendering and architecture design
that are yet to be explored.
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A APPENDIX

Below we discuss caveats and implementation details of our sampling algorithm.

A.1 INVERSE FUNCTIONS FOR DENSITY INTEGRALS

In this section, we derive explicit formulae for the density integral inverse used in inverse opacity.

A.1.1 PIECEWISE CONSTANT APPROXIMATION INVERSE

We start with a formula for the integral

I0(t) =

i∑
j=1

σr(t̂j)(tj − tj−1) + σr(t̂i)(t− ti) (16)

and solve for t equation
y = I0(t). (17)

The equation above is a linear equation with solution

t = ti +
y −

∑i
j=1 σr(t̂j)(tj − tj−1)

σr(t̂i)
. (18)

In our implementation we add small ε to the denominator to improve stability when σr(t̂i) ≈ 0.

A.1.2 PIECEWISE LINEAR APPROXIMATION INVERSE

The piecewise linear density approximation yield a piecewise quadratic function

I1(t) =

i∑
j=1

σr(tj) + σr(tj−1)

2
(tj − tj−1) +

(σr(ti) + σ̄r(t))

2
(t− ti). (19)

Again, we solve
y = I1(t) (20)

for t. We change the variable to ∆t := t− ti and note that terms a and c in quadratic equation
0 = a∆t2 + b∆t+ c (21)

will be

a =
σr(ti+1)− σr(ti)

2
(22)

c =

 i∑
j=1

σr(tj) + σr(tj−1)

2
(tj − tj−1)− y

× (ti+1 − ti) (23)

and with a few algebraic manipulations we find the linear term
b = σr(ti)× (ti+1 − ti). (24)

Since our integral monotonically increases, we can deduce that the root ∆t must be

∆t = −b+
√
b2−4ac
2a . (25)

However, this root is computationally unstable when a ≈ 0. The standard trick is to rewrite the root
as

∆t = 2c
b+
√
b2−4ac . (26)

For computational stability, we add small ε to the square root and denominators use replace the root
with ∆t =

√
a
c when b ≈ 0 and ∆t = − cb when a ≈ 0. See the supplementary notebook for details.
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A.2 NUMERICAL STABILITY IN INVERSE OPACITY

Inverse opacity input y is a combination of a uniform sample u and ray opacity yf = 1 −
exp

(
−
∫ tf
tn
σr(s)ds

)
:

y = − log(1− yfu). (27)
The expression above is a combination of a logarithm and exponent. We rewrite it to replace with
more reliable logsumexp operator:

y = − log

(
exp(log(1− u)) + exp(log u−

∫ tf

tn

σr(s)ds)

)
. (28)

In practice, for opaque rays
∫ tf
tn
σr(s)ds ≈ 0 implementation of logsumexp becomes computation-

ally unstable. In this case, we replace y with u as they are almost identical.

A.3 IMPLICIT INVERSE OPACITY GRADIENTS

To compute the estimates in Equation 9, we need to compute the inverse opacity F−1r (y) along
with its gradient. In the main paper, we invert opacity explicitly with a differentiable algorithm.
Alternatively, we could invert Fr(t) = 1− exp

(
−
∫ t
tn
σr(s)ds

)
with binary search.

Opacity Fr(t) is a monotonic function and for y ∈ (yn, yf ) = (Fr(tn), Fr(tf )) the inverse lies in
(tn, tf ). To compute F−1r (y), we start with boundaries tl = tn and tr = tf and gradually decrease
the gap between the boundaries based on the comparison of Fr( tl+tr2 ) with y. Importantly, such
procedure is easy to parallelize across multiple inputs and multiple rays.

However, we cannot back-propagate through the binary search iterations and need a workaround to
compute the gradient ∂t∂θ of t(θ) = F−1r (y, θ). To do this, we follow (5) and compute differentials of
the right and the left hand side of equation y(θ) = Fr(t, θ)

∂y

∂θ
dθ =

∂Fr

∂t

∂t

∂θ
dθ +

∂Fr

∂θ
dθ. (29)

By the definition of Fr(t, θ) we have

∂Fr

∂t = (1− Fr(t, θ))σr(t, θ), (30)

∂Fr

∂θ = (1− Fr(t, θ)) ∂∂θ

(∫ t

tn

σr(s, θ)ds

)
. (31)

We solve Equation 29 for ∂t
∂θ and substitute the partial derivatives using Equations 30 and 31 to obtain

the final expression for the gradient

∂t

∂θ
=

∂y
∂θ − (1− Fr(t, θ)) ∂∂θ

∫ t
tn
σr(s, θ)ds

(1− Fr(t, θ))σr(t, θ)
. (32)

In our implementation, we use automatic differentiation to compute ∂y/∂θ and ∂
∂θ

∫ t
tn
σ(s)ds to

combine the results as in Equation 32.
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