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ABSTRACT

Out-Of-Distribution (OOD) detection, a fundamental machine learning task aimed
at identifying abnormal samples, traditionally requires model retraining for differ-
ent inlier distributions. While recent research demonstrates the applicability of
diffusion models to OOD detection, existing approaches are limited to Euclidean
or latent image spaces. Our work extends OOD detection to trajectories in Spe-
cial Euclidean Group in 3D (SE(3)), addressing a critical need in computer vi-
sion, robotics and engineering applications that process pose sequences of objects
in SE(3). We present Diffusion-based Out-of-distribution detection on SE(3)
(DOSE3), a novel OOD framework that extends diffusion to a unified sample
space of SE(3) pose sequences. We demonstrate DOSE3’s superior performance
compared to state-of-the-art OOD detection frameworks through extensive valida-
tion on multiple benchmark datasets.

1 INTRODUCTION

OOD detection represents a fundamental machine learning challenge focused on identifying data
samples that deviate from expected inlier distributions. This capability is particularly crucial in
safety-critical applications like robotics and autonomous driving, where accurate identification of
anomalous motion trajectory (Zhi et al., 2024b) samples can prevent system failures. Recent ad-
vances in OOD detection have explored various unsupervised approaches to learn inlier data rep-
resentations. These include likelihood-based methods that employ different likelihood measures
for OOD determination (Tack et al., 2020; Ren et al., 2019; Choi & Jang, 2019; Ran et al., 2022),
and reconstruction-based approaches that utilize pretrained generative models to assess sample sim-
ilarity (Denouden et al., 2018; Wyatt et al., 2022; Graham et al., 2023). However, these methods
typically require dataset-specific training, necessitating retraining for different in-distribution (ID)
and OOD datasets (Heng et al., 2024). Recent research (Xiao et al., 2021) has addressed this lim-
itation by exploring single discriminative models for OOD detection. Our work similarly aims to
develop unified OOD approaches that eliminate retraining requirements.

Current trajectory OOD detection research primarily focuses on Latent Euclidean spaces, often over-
looking explicit manifold space structures. Our work targets OOD detection for rigid body pose
data, encompassing both position and orientation information. This type of data is fundamental
to numerous applications in physics, engineering, and robotics that analyze object pose evolution
over time (Zhi et al., 2024a; Zhang et al., 2024). We present theoretical insights and practical al-
gorithms for detecting OOD data in rigid body pose sequences. Our framework, Diffusion-based
Out-of-distribution detection on SE(3) (DOSE3), introduces a novel unified generative approach
for trajectory space OOD detection. We define a manifold-specific diffusion process for rigid trans-
formations on SE(3) and develop a high-dimensional OOD statistic for out-of-distribution sample
identification. We validate our approach using established robotics and automation datasets, creat-
ing benchmarks from Oxford RobotCar (Maddern et al., 2017), KITTI (Geiger et al., 2012), and
IROS20 (Wen et al., 2020). These datasets enable comprehensive evaluation across varying OOD
similarity levels. Our key contributions include: (1) The DOSE3 framework that diffuses over
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Figure 1: Sequences of rigid poses are abundant in displines that pertain to objects moving in the real world.
We propose DOSE3, a unified diffusion model over the SE(3) manifold to detect out-of-distribution pose
sequences accurately.

SE(3) sequences, incorporating manifold structures into OOD detection; (2) A novel OOD statistic
derived from our SE(3) manifold diffusion estimator for sample degree measurement; (3) Com-
prehensive empirical validation demonstrating DOSE3’s effectiveness in distinguishing between
in-distribution and OOD samples across diverse real-world trajectory datasets.

By connecting diffusion models with trajectory OOD detection, DOSE3 advances the development
of robust and scalable methods for autonomous systems and 3D trajectory analysis applications.

2 RELATED WORK

OOD detection: OOD detection plays a crucial role in safety-critical applications such as au-
tonomous driving. Existing methods can generally be categorized into likelihood-based and
reconstruction-based approaches. Likelihood-based OOD detection methods involve training a
model on ID data and deriving a likelihood statistic from test samples to serve as an OOD metric.
Early work focused on learning discriminative representations to detect OOD samples and identify
distributional shifts (Denouden et al., 2018; Tack et al., 2020). More recent research has explored
generative models due to their ability to model high-dimensional data and facilitate likelihood esti-
mation (Xiao et al., 2020). However, studies have shown that generative models may assign higher
likelihoods to OOD samples than to ID ones (Nalisnick et al., 2019; Hendrycks et al., 2019). To
address this issue, various refinements have been proposed, including likelihood ratios (Ren et al.,
2019), Watanabe-Akaike Information Criterion (WAIC) (Choi & Jang, 2019), improved noise con-
trastive priors (Ran et al., 2022), and Energy-based Model (EBM)s (Liu et al., 2020). However, these
enhancements remain ineffective in high-dimensional scenarios (Graham et al., 2023). Another ap-
proach considers measuring how typical a test input is (Nalisnick et al., 2020), but this method
suffers from poor performance at the sample level. Normalizing flows (Kingma & Dhariwal, 2018)
have also been investigated for OOD detection as they provide direct likelihood estimation, yet they
still suffer from overconfidence issues (Kirichenko et al., 2020). Reconstruction-based OOD de-
tection methods, on the other hand, aim to reconstruct input samples and compare them to their
reconstructions to measure similarity. Early work used the reconstruction probability of VAEs (An
& Cho, 2015; Kingma & Welling, 2014) for anomaly detection. However, later studies found that
OOD samples can exhibit similar or even lower reconstruction errors compared to ID samples, re-
ducing the effectiveness of this approach (Denouden et al., 2018).

Diffusion-based OOD Detection: Diffusion models (DMs) have achieved remarkable performance
in generative tasks across various modalities, including images (Ho et al., 2020; Song et al., 2021),
videos (Ho et al., 2022), and audio (Chen et al., 2021). More recently, research has emphasized the
robustness of DMs in sampling and their potential use in OOD detection. Utilizing the reconstruc-
tion mean squared error (MSE) of DDPMs as an OOD score has been shown to enhance image-space
OOD detection (Wyatt et al., 2022; Graham et al., 2023). However, these models require retraining
for different in-distribution datasets. A growing trend in machine learning research is the devel-
opment of unified learning frameworks that generalize across various tasks (Xiao et al., 2021). In
an effort to construct a unified DM for OOD detection, DiffPath (Heng et al., 2024) demonstrated
that the rate of change and curvature of the forward diffusion trajectory can serve as effective OOD
metrics, eliminating the need for retraining on different datasets.
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The aforementioned OOD detection methods—whether likelihood-based or reconstruction-
based—are primarily focused on images or Euclidean space data. In contrast, some research from
the robotics community implicitly incorporates OOD detection under the framework of trajectory
planning or optimization in 2D spaces (Lai et al., 2022; Ziegler & Stiller, 2009; Werling et al.,
2010). However, these models struggle to generalize to complex real-world scenarios that involve
three-dimensional interactions (Wang et al., 2023; Bharilya & Kumar, 2024). While there is a grow-
ing interest in extending diffusion models to non-Euclidean spaces (Huang et al., 2022; Leach
et al., 2022), these methods are limited to generating individual samples on manifolds rather than
modeling entire trajectories. To the best of our knowledge, DOSE3 is the first approach to leverage
manifold-based diffusion over entire trajectories, enabling a unified OOD detection framework.

3 PRELIMINARIES

In this section, we first provide background on the architecture of diffusion models. We then discuss
the recent advancements in constructing Unified OOD detection models using diffusion models.
Finally, we introduce the Special Euclidean Group in 3D, SE(3), and elaborate on its geometric
structure and related statistical foundations.

Denoising Diffusion Probabilistic Model (DDPM): Diffusion models have gained widespread at-
tention in generative modeling due to their strong ability to synthesize high-fidelity data. These mod-
els employ a forward diffusion process, where data x0 is gradually corrupted by adding Gaussian
noise over T timesteps, ultimately producing a noisy distribution xT that approximates a standard
normal distribution. The goal is to learn the reverse diffusion process, which systematically de-
noises xT to recover the original data distribution. At the core of this reverse process is the ϵ-model,
typically implemented as a neural network trained to predict the noise ϵ added at each timestep t.
The forward diffusion process, expressed in equation 1, illustrates how standard Gaussian noise is
introduced to perturb the original sample x0. The backward process, given in equation 2, employs
the estimator model ϵθ, which estimates the true Gaussian noise ϵ and enables data recovery by
removing the noise.

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (1)

xt−1 =
1
√
αt

(
xt−

βt√
1− ᾱt

ϵθ(xt, t)

)
+σtz z ∼ N (0, I) (2)

where αt, βt, and ᾱt are predefined noise schedule parameters, and z ∼ N (0, I). The theoretical
foundation of diffusion models is grounded in variational inference, where the evidence lower bound
(ELBO) in equation 3 is maximized to ensure that the learned reverse process closely approximates
the true data distribution.

LELBO=Eq[DKL(q(xT|x0)∥p(xT ))+
T∑
t=2

DKL(q(xt−1|xt,x0) ∥pθ(xt−1|xt))−log pθ(x0|x1)] (3)

By leveraging the ϵ-model within this framework, diffusion models effectively capture complex data
manifolds, achieving state-of-the-art generative performance.

Unified Out-of-Distribution Detection: Traditional OOD detection methods, such as likelihood-
based and reconstruction-based approaches, require retraining a new model for each specific inlier
data distribution. This results in significant computational costs when switching between different
OOD tasks and distributions. Recently, Heng et al. (2024) introduced a new concept of Unified OOD
detection, where a single unconditional diffusion model is trained, and distributional information can
be obtained from inlier distributions that were unseen during training.

The theoretical foundation of this approach builds on the variance-preserving formulation used in
DDPM. The difference between each denoising timestep is given in equation 4, rewritten as:

dxt = −
1

2
βtxt dt+

√
βt dwt, x0 ∼ p0(x) (4)

dxt
dt

= f(xt, t) +
g(t)2

2σ2
t

ϵp(xt, t) (5)

In equation 6, we denote ϕT and ψT as the marginals obtained by evolving two distinct distributions,
ϕ0 and ψ0, using their respective probability flow ordinary differential equations (ODEs) from equa-

3



Figure 2: System Diagram of DOSE3 processing flow. Sequences of pose data are diffused, where diffusion
over rotational components is constrained to the SO(3) manifold. The resulting diffusion estimators are used
to construct an OOD statistic.

tion 5.

DKL(ϕ0 ∥ ψ0) =
1

2

∫ T

0

Ext∼ϕt

[
g(t)2

σ2
t

∥ϵϕ(xt, t)− ϵψ(xt, t)∥2
]
dt+DKL(ϕT ∥ ψT ) (6)

However, the KL divergence remains dependent on the specific model estimators ϵϕ and ϵψ in equa-
tion 6. The key observation is that even when executing DDPM forward diffusion using an estimator
ϵθ trained on a third distribution θ, the sample can still be successfully transformed into a standard
Gaussian distribution. This insight motivates the use of ϵθ—metrics extracted from an arbitrary
diffusion estimator—to perform OOD detection on an inlier distribution ϕ.

The Special Euclidean Group in 3D: The Special Euclidean Group in 3D, denoted as SE(3),
represents the space of rigid body transformations, which consist of both rotations and translations.
The transformation can be written as:

T =

[
R t
0 1

]
where R ∈ SO(3) is a rotation matrix, and t ∈ R3 is a translation vector. The group SO(3) consists
of all 3× 3 real orthogonal matrices with determinant equal to one:

SO(3) = {R ∈ R3×3 | R⊤R = I, det(R) = 1} (7)
where I is the 3 × 3 identity matrix. The group SO(3) represents all possible rotations about the
origin in three-dimensional space. The Lie algebra associated with SO(3) is denoted as so(3) and
consists of all 3× 3 skew-symmetric matrices. A general element Ω ∈ so(3) can be written as:

Ω =

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
where ω = [ω1, ω2, ω3]

⊤ is a vector in R3. The Lie algebra so(3) serves as the tangent space to
the manifold SO(3), providing a locally Euclidean structure that facilitates computations on SO(3).
The exponential map, exp : so(3)→ SO(3), maps an element from the Lie algebra to the Lie group,
enabling the representation of rotations in matrix form. Given Ω ∈ so(3), the exponential map is:

exp(Ω) = I +
sin θ

θ
Ω+

1− cos θ

θ2
Ω2 (8)

where θ = ∥ω∥ is the rotation angle, and ω is the vector corresponding to Ω. Conversely, the
logarithmic map, log : SO(3)→ so(3), converts a rotation matrix into its corresponding Lie algebra
representation. For any R ∈ SO(3) that is not the identity matrix, the logarithmic map is given by:

log(R) =
θ

2 sin θ
(R−R⊤), θ = cos−1

(
trace(R)− 1

2

)
(9)

Here, so(3), the tangent space of SO(3), lies within Euclidean space, allowing standard algebraic
operations to be applied. This property is particularly useful for designing diffusion models over
SO(3), as it enables efficient computations and parameterizations of rotations.
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Figure 3: SE(3) diffusion UNet layer. Trajectories are processed by the 1D convolution modules.

4 METHOD

4.1 OVERVIEW

Here, we present Diffusion-based Out-of-distribution detection on SE(3), DOSE3. DOSE3 in-
troduces a unified diffusion model for rigid pose trajectories, specifically designed to accommodate
the SE(3) manifold structure. We first detail DOSE3’s model architecture for handling ordered
sequences. We then introduce SE(3) Denoising Diffusion Probabilistic Models (SE(3) - DDPM),
outlining their training and inference algorithms that incorporate rigid pose structure into the diffu-
sion model. Finally, we explain how to utilize the diffusion estimator, a function naturally emerging
from SE(3) - DDPM, to develop an OOD detection statistic for evaluating test samples.

4.2 ARCHITECTURAL DETAILS OF DOSE3

The UNet architecture, widely adopted in diffusion models for its effective encoder-decoder struc-
ture, enables high-fidelity data generation. Originally developed for biomedical image segmentation,
UNet’s symmetric design with skip connections preserves spatial information through its network
layers. While the original UNet employs 2D convolution layers with max pooling and up convolu-
tion for dimensional adjustment, we modify this architecture for sequential data diffusion through
the following enhancements: (1) Replace all convolution layers with 1D convolutions to process
temporal structures in motion trajectories; (2) Introduce attention layers before each up- or down-
sampling operation to better capture long-range dependencies in trajectory data, extending beyond
the local computations of convolution layers; (3) Implement Residual connections (He et al., 2016)
around attention layers, similar to Transformer architecture, to enhance learning capabilities for our
complex data format and task. The resulting architecture for each up/down UNet layer in our model
is illustrated in fig. 3.

4.3 TRAINING AND INFERENCE OF DOSE3

The incorporation of rotation matrices from SE(3) format introduces manifold space considera-
tions that preclude direct application of classical diffusion algorithms. We address three primary
challenges: (1) The undefined nature of addition and scalar multiplication operations for rotation
matrices; (2) The inability to guarantee valid rotation matrices when sampling 3 × 3 matrices from
N (0, I); (3) The inadequacy of simple L2 norm differences for measuring distances/losses between
rotation matrices. To overcome these challenges, we introduce the new SE(3) DDPM algorithm.
While we apply standard Euclidean space diffusion to the translational components of SE(3), we
develop specialized techniques for handling manifold diffusion over the SO(3) rotation space.

We redefine the operators ∈ SO(3) as follows. Essentially, we perform all operations after trans-
forming the SO(3) data from manifold space into Euclidean tangent space by exponential and loga-
rithmic map given by eq. (8) and eq. (9).

R1 ⊕R2 = R1 ·R2, k ⊗R1 = exp(k · log(R1)), k ∈ R, R1, R2 ∈ SO(3) (10)
We then change the noise sampling method from standard Gaussian distribution to the Isotropic
Gaussian distribution on SO(3) ( IGSO(3) ) distribution. Shown in equation 11, we first sample v
from standard Gaussiance distribution, representing the tangent vector, and then use the exponential
map operation to transform it to the SO(3) space.

IGSO(3)(µ, σ
2) = µ⊗ v, v ∈ R3 ∼ N (0, σ2I) (11)
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Algorithm 1 OOD Detection

Require: DDPM Model, Inlier SE(3) Dataset I, Query SE(3) Trajectory q
1: stats← []
2: for traj0 in I do
3: sum← [0, 0, 0, 0, 0, 0]
4: for t in [0, T-1] do
5: trajt ← DDPMforward(traj0, t)
6: sum← sum+ 6D metrics over ϵθ(trajt, t)
7: end for
8: stats.append(sum)
9: end for

10: distribution← GMM.fit(stats)
11: qt ← DDPMforward(q, t)
12: metricq ← 6D metrics over ϵθ(qt, t))
13: likelihood← distribution.eval(metricq)
14: OOD ← likelihood < threshold

Combining all the metrics and operations defined above, we design the full forward and backward
SO(3) DDPM equations, incorporating the operations on the manifold, as,

q(xt | x0) =
(√
ᾱt ⊗ x0

)
⊕
(
(1− ᾱt)⊗ ϵ

)
, where ϵ∼IGSO(3)(0, I)

x̂0=
1√
ᾱt
⊗
(
xt ⊕

(
−
√
1− ᾱt⊗ϵθ(xt, t)

))
, (12)

µt =

(√
ᾱt−1βt
1− ᾱt

⊗ x̂0
)
⊕

(√
αt(1− ᾱt−1)

1− ᾱt
⊗ xt

)
, xt−1 =µt⊕

(√
βt⊗ ϵ

)
The rotational distance will be adapted as the loss for training in SO(3) . The metric will reflect the
average angle difference on each axis for two rotation matrices. The equation can be written as

Lrot(R1, R2) = arccos

(
trace(R⊤

1 R2)− 1

2

)2

The final SE(3) diffusion training takes in batches of trajectories in the format of ordered SE(3)
sequences, maintaining the ordering of the trajectories.

4.4 OOD DETECTION

While likelihood-based OOD detection algorithms traditionally rely on generative model likelihood
measures, the ELBO shown in equation 3 has proven inadequate for OOD tasks due to its tendency
to overestimate OOD sample likelihood (Serrà et al., 2020). Recent research demonstrates that the
diffusion estimator ϵθ and its derivatives effectively capture data distribution characteristics and can
be obtained from a unified diffusion model without retraining. As shown in Equation 6, the norm
of noise estimator ϵ correlates with the divergence between different data distributions (Heng et al.,
2024). Based on this insight, we define the following OOD statistics group for a diffusion model
with noise estimator ϵθ, where the operator ⟨x⟩p = 1

N

∑N
i=0 x

p
i .

MetricGroup(ϵθ) =

[∑
t

⟨ϵθ(xt, t)⟩1,
∑
t

⟨ϵθ(xt, t)⟩2,
∑
t

⟨ϵθ(xt, t)⟩3

∑
t

⟨∂ϵθ(xt, t)⟩1,
∑
t

⟨∂ϵθ(xt, t)⟩2,
∑
t

⟨∂ϵθ(xt, t)⟩3

]
, (13)

where MetricGroup(ϵθ) ∈ R6. For each sample x0, we apply the DDPM forward process to ob-
tain the perturbed sample xt, then compute the metric group to derive final statistics. Given that
our SE(3) diffusion model comprises separate sub-diffusions for R3 and SO(3), and rotation metric
distributions can vary along x, y, and z directions (as illustrated in figure 4), we establish distinct
metric sets for each rotational dimension. This results in 4 sets of statistics per sample: three for in-
dividual rotational axes and one for translation, yielding a total of 24 metrics per sample. To process
these metrics from the inlier data distribution, we estimate the density over the 24-dimensional joint
vector of metric groups. We employ straightforward density estimators such as Gaussian Mixture
Models or Kernel Density Estimators, as each metric empirically exhibits approximately Gaussian
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(a) Oxford (b) KITTI

Figure 4: Distribution of elements ϵ(xt, t) in rotation
tangent space for each dimension when running Ox-
ford Robot Car and KITTI dataset on model trained
on Oxford Robot Car

(a) Translation Metric (b) Rotation Z axis metric

Figure 5: ϵ distribution retrieved by OOD testing on a
model trained from KITTI dataset against the Oxford
RoboCar dataset. We observe that the distribution dif-
ference is evident on the Z-axis rotation.

behavior. During testing, we collect identical metrics for each test sample and infer likelihood from
the inlier density estimator, identifying lower-likelihood samples as out of distribution. We establish
the OOD sample threshold at the bottom 5 percentile of inlier distribution likelihoods. The complete
OOD model fitting and inference procedure is detailed in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

To evaluate DOSE3’s validity, performance, and comprehensiveness, we conduct OOD testing
using the following SE(3) datasets:

• Oxford RobotCar (Maddern et al., 2017): This autonomous driving dataset encompasses
over 1000 km of driving data from central Oxford, UK. It features multiple sensor modal-
ities, including high-resolution stereo and monocular cameras, 2D and 3D LiDAR scans,
and GPS/INS ground truth localization. Our experiments utilize the 3D LiDAR scans and
ground-truth poses stored in SE(3) format.

• KITTI (Geiger et al., 2012): This comprehensive odometry dataset captures autonomous
driving scenarios across urban, suburban, and rural environments. The dataset provides
stereo and monocular camera imagery, 3D point clouds from a Velodyne LiDAR, and pre-
cise GPS/INS measurements. We utilize its pose data represented in SE(3)

• iros20-6d-pose-tracking (Wen et al., 2020): This dataset advances research in 6D object
pose estimation and tracking in dynamic environments. It is specifically designed to support
the development and evaluation of algorithms for accurately determining and tracking six
degrees of freedom (6D) poses in real-world scenarios.

For our diffusion model implementation, we standardize the input length for both R3 and SE(3)
trajectory diffusion. Each trajectory in the datasets is segmented into fixed-length sub-paths of size
128 during experiments. To standardize the translation data, we first center each trajectory by setting
its starting coordinate to the origin, then normalize by dividing by the maximum translation value.
This process constrains the translation data to the range [-1, 1], ensuring the model learns trajectory
geometry independent of scale. We evaluate DOSE3 against leading OOD detection methods,
including Joint Energy-based Model (JEM)(Grathwohl et al., 2020) and Glow Model(Kingma &
Dhariwal, 2018) with Likelihood Ratio (Ren et al., 2019). These established baselines effectively
handle high-dimensional inputs and are widely used for OOD detection in image datasets.

5.2 QUANTITATIVE EVALUATION OF ϵθ DISTRIBUTION AS AN OOD METRIC

We analyze the statistical distribution of ϵθ from inlier data to assess its effectiveness as an OOD de-
tection metric. Specifically, we investigate how the ϵθ distribution of the SO(3) diffusion contributes
to OOD sample identification. In fig. 5, we present a comparative analysis of ϵ distributions between
Oxford RobotCar and KITTI datasets, using a model trained on KITTI. Our findings reveal that af-
ter translation data normalization, the translation ϵ distributions show substantial overlap across
datasets, making them unsuitable as reliable OOD indicators. However, the rotation distribution,
especially along the z-axis, demonstrates clear dataset separation. For the KITTI-trained model, we
observe that KITTI’s rotation distribution is centered at 0, aligning with standard Gaussian noise
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Table 1: AUROC ↑ of OOD Detection. Bold denotes
the best result (O: Oxford, K: KITTI, I:IROS20).

Method O/K K/O O/I I/O K/I I/K
JEM 0.211 0.786 0.437 0.561 0.631 0.336
Glow-LR 0.461 0.556 0.470 0.539 0.529 0.454

R3-KITTI 0.362 0.770 0.417 0.585 0.793 0.409
SE3-KITTI (No split) 0.845 0.952 1.000 0.398 1.000 0.234
SE3-KITTI 1.000 0.956 1.000 0.931 1.000 0.897

Table 2: AUROC ↑ of OOD Detection over different
train dataset on sequence length of 128 and 30 diffu-
sion steps (O: Oxford, K: KITTI, I:IROS20)

Method O/K K/O O/I I/O K/I I/K

R3-Oxford 0.897 0.327 0.890 0.378 0.464 0.532
SE(3)-Oxford 0.934 0.999 1.000 0.124 1.000 0.433

R3-KITTI 0.362 0.770 0.417 0.585 0.793 0.409
SE(3)-KITTI 1.000 0.956 1.000 0.931 1.000 0.897

sampling characteristics. In contrast, the Oxford RobotCar dataset exhibits a notable rightward shift
in its distribution, suggesting that reconstructing a KITTI sample from Oxford RobotCar input re-
quires a non-Gaussian sampling distribution.

5.3 QUANTITATIVE RESULTS

Table 1 presents the OOD detection performance across datasets using the AUROC metric. All
evaluated models underwent unsupervised training exclusively on the KITTI dataset. Our SE(3)
model demonstrates exceptional performance, achieving near-perfect AUROC scores across all ID
and OOD dataset combinations. In contrast, JEM, Glow-LR, and the R3 model show degraded
performance when evaluating KITTI as an OOD dataset, or when testing on the previously unseen
Oxford Robot and IROS20 datasets. Additionally, we evaluate the impact of rotation metric split-
ting in SE(3) diffusion. The results indicate that separating the rotation metric space substantially
enhances DOSE3’s robustness and unified feature representation, particularly improving AUROC
scores in scenarios where the training dataset, KITTI, serves as the OOD data.

Trajectory Dataset used for Training: DOSE3 strives to develop a single unified model for
effective OOD detection. We evaluate both R3 and SE(3)-based diffusion models trained on dif-
ferent datasets. Table 2 presents these results, highlighting two key findings: (1) SE(3) diffu-
sion consistently demonstrates robust OOD detection capabilities across various training datasets;
(2)SE(3) diffusion successfully performs OOD detection between two previously unseen datasets
during training. We observe some performance degradation when training with the Oxford Robot
Car dataset. This limitation primarily stems from the dataset’s restricted trajectory diversity. Both
IROS and KITTI datasets exhibit broader data distributions, encompassing more varied trajectory
shapes. Consequently, when an Oxford-trained model attempts to distinguish between datasets with
different levels of variability, the task becomes particularly challenging. Nevertheless, these results
underscore the advantages of our unified diffusion approach to OOD detection. By requiring training
on only a single dataset, our method significantly reduces the overall model training time.

Necessity of Rotational Diffusion Information: We compare diffusion models trained on
translation-only data versus those trained on complete SE(3) data to demonstrate the critical role
of rotational information. Table 2 reveals that OOD detection using only R3 data yields poor results,
consistent with the overlapping statistical distributions shown in figure 5. In contrast, SE(3) diffu-
sion achieves superior performance by incorporating rotational components. This finding demon-
strates that for complex trajectory analysis, orientation and rotation data provide richer discrimi-
native features that vary significantly across different data distributions, thereby serving as robust
indicators for OOD detection.

6 CONCLUSIONS

Out-of-Distribution (OOD) detection plays a vital role in machine learning, particularly in safety-
critical domains like autonomous driving and robotics where systems must reliably interact with the
physical world. In these applications, data typically consists of rigid object pose trajectories that
capture both positional and rotational motion. While existing OOD detection approaches operate
on assumed Euclidean latent spaces, we present DOSE3, a novel unified diffusion-based OOD
detection framework specifically designed for SE(3) trajectory data. DOSE3 innovates by directly
incorporating manifold operations into the diffusion model and introduces a novel architecture that
extends DDPM to handle SE(3) manifold sequences. Through comprehensive empirical evaluation
across diverse real-world safety-critical datasets, we demonstrate DOSE3’s robust performance
and effectiveness.

8



REFERENCES

Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruc-
tion probability. Special lecture on IE, 2(1):1–18, 2015.

Vibha Bharilya and Neetesh Kumar. Machine learning for autonomous vehicle’s trajectory pre-
diction: A comprehensive survey, challenges, and future research directions. Veh. Commun.,
46(C), April 2024. ISSN 2214-2096. doi: 10.1016/j.vehcom.2024.100733. URL https:
//doi.org/10.1016/j.vehcom.2024.100733.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William Chan. Wave-
grad: Estimating gradients for waveform generation, 2021.

Hyunsun Choi and Eric Jang. Generative ensembles for robust anomaly detection, 2019. URL
https://openreview.net/forum?id=B1e8CsRctX.

Taylor Denouden, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Buu Phan, and Sachin
Vernekar. Improving reconstruction autoencoder out-of-distribution detection with mahalanobis
distance, 2018. URL https://arxiv.org/abs/1812.02765.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
vision benchmark suite. In Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

Mark S. Graham, Walter H.L. Pinaya, Petru-Daniel Tudosiu, Parashkev Nachev, Sebastien Ourselin,
and Jorge Cardoso. Denoising diffusion models for out-of-distribution detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
pp. 2947–2956, June 2023.

Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it
like one. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=Hkxzx0NtDB.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. Proceedings of the International Conference on Learning Representations, 2019.

Alvin Heng, Alexandre H Thiery, and Harold Soh. Out-of-distribution detection with a single un-
conditional diffusion model. arXiv preprint arXiv:2405.11881, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint
arxiv:2006.11239, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv:2204.03458, 2022.

Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron Courville. Rie-
mannian diffusion models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=ecevn9kPm4.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 con-
volutions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf.

9

https://doi.org/10.1016/j.vehcom.2024.100733
https://doi.org/10.1016/j.vehcom.2024.100733
https://openreview.net/forum?id=B1e8CsRctX
https://arxiv.org/abs/1812.02765
https://openreview.net/forum?id=Hkxzx0NtDB
https://openreview.net/forum?id=Hkxzx0NtDB
https://openreview.net/forum?id=ecevn9kPm4
https://openreview.net/forum?id=ecevn9kPm4
https://proceedings.neurips.cc/paper_files/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf


Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect
out-of-distribution data. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 20578–20589. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/ecb9fe2fbb99c31f567e9823e884dbec-Paper.pdf.

Tin Lai, Weiming Zhi, Tucker Hermans, and Fabio Ramos. Parallelised diffeomorphic sampling-
based motion planning. In Proceedings of the 5th Conference on Robot Learning, 2022.

Adam Leach, Sebastian M Schmon, Matteo T. Degiacomi, and Chris G. Willcocks. Denoising
diffusion probabilistic models on SO(3) for rotational alignment. In ICLR 2022 Workshop on
Geometrical and Topological Representation Learning, 2022. URL https://openreview.
net/forum?id=BY88eBbkpe5.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
tion. Advances in Neural Information Processing Systems, 2020.

Will Maddern, Geoff Pascoe, Chris Linegar, and Paul Newman. 1 Year, 1000km: The Oxford Robot-
Car Dataset. The International Journal of Robotics Research (IJRR), 36(1):3–15, 2017. doi: 10.
1177/0278364916679498. URL http://dx.doi.org/10.1177/0278364916679498.

E Nalisnick, A Matsukawa, Y Teh, D Gorur, and B Lakshminarayanan. Do deep generative models
know what they don’t know? 2019.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan. Detecting
out-of-distribution inputs to deep generative models using typicality, 2020. URL https:
//openreview.net/forum?id=r1lnxTEYPS.

Xuming Ran, Mingkun Xu, Lingrui Mei, Qi Xu, and Quanying Liu. Detecting out-of-
distribution samples via variational auto-encoder with reliable uncertainty estimation. Neu-
ral Networks, 145:199–208, 2022. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.
2021.10.020. URL https://www.sciencedirect.com/science/article/pii/
S0893608021004111.

Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dil-
lon, and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
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