Under review as a conference paper at ICLR 2022

SuccCINCT COMPRESSION: NEAR-OPTIMAL AND
LOSSLESS COMPRESSION OF DEEP NEURAL NET-
WORKS DURING INFERENCE RUNTIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Deep Neural Networks (DNN) compression (e.g. pruning,
quantization and etc.) significantly reduces the amount of space consumption for
storage, making them easier to deploy in low-cost devices. However, those tech-
niques do not keep the compressed representation during inference runtime, which
incurs significant overheads in terms of both performance and space consump-
tion. We introduce “Succinct Compression”, a three-stage framework to enable
DNN inference with near-optimal compression and much better performance dur-
ing inference runtime. The key insight of our method leverages the concept of
Succinct Data Structures, which supports fast queries directly on compressed rep-
resentation without decompression. Our method first transforms DNN models as
our proposed formulations in either Element-wise or Block-wise manner, so that
Succinct Data Structures can take advantage of. Then, our method compresses
transformed DNN models using Succinct Data Structures. Finally, our method
exploits our specialized execution pipelines for different model formulations, to
retrieve relevant data for DNN inference. Our experimental results show that,
our method keeps near-optimal compression, and achieves at least 8.7X/11.5X
speedup on AlexNet/VGG-16 inference, compared with Huffman Coding. We
also experimentally show that our method is quite synergistic with Pruning and
Quantization.

1 INTRODUCTION

Deep neural networks (DNNs) demand an increasing number of parameters as the required complex-
ity of tasks, which substantially make DNN models become larger Bengio et al. (2021). Therefore,
DNNss incurs a significant amount of memory footprints during inference runtime, and thus affects
both the overall performance and the space consumption. Recent efforts compress DNN models
in both loss (e.g. pruning, quantization and etc.) and lossless manners (e.g. Huffman Coding).
However, the emphasis of the prior works focus on compressing DNN models for efficient storage,
rather than providing space-efficient representations during the inference runtime. Thus, prior ap-
proaches require to decompress compressed model first and perform the inference, which consumes
a huge amount of memory space. An alternative is to query the compressed models, decode the
query results and perform the inference. However, this method suffers from significant performance
overheads during the inference runtime.

Our goal is to improve the inference performance, while keeping the model compressed near-
optimally. We introduce “Succinct Compression”, a three-stage framework to enable much faster
DNN inference with near-optimal and lossless compression simultaneously. The unique charac-
teristic of our method is the fast-queryable yet near-optimally-compressed data structures called
Succinct Data Structures. By engineering the inner operators, Succinct Data Structures allow fast
lookup within the compressed representations directly, without decompressing them first. To exploit
this unique set of data structures, we introduce two additional stages to make them and DNN models
more synergistic: (1) before compressing DNN models into Succinct Data Structures, we propose
two semi-structured formulations to represent DNN models in element-wise or block-wise manners;
and (2) after maintaining DNN models in Succinct Data Structures, we specialize two pipelines for
different formulations, by carefully engineering the inner operators of Succinct Data Structures.

Under review as a conference paper at ICLR 2022

The contributions of this paper are as follows.

(i) To improve the inference performance while keeping DNN model compressed, we introduce
“Succinct Compression”: a three-stage framework to exploit Succinct Data Structures to enable
faster DNN inference with near-optimal compression at the same time.

(ii) We suggest two semi-structured formulations to store DNN models, which Succinct Data Struc-
tures can exploit them more efficiently. One formulates the DNN models in Element-wise manner,
while the other one formulates the models in Block-wise manner.

(iii) We provide two approaches for the inference of compressed DNN models, maintained in Suc-
cinct Data Structures, using its inner operators. One serves for the inference pipeline in Element-
wise manner, while the other serves for the inference pipeline in Block-wise manner.

(iv) We experimentally demonstrate that our method achieve significant speedup with near-optimal
compression, compared with the state-of-the-art approach (i.e. Huffman Coding). In addition, our
experiments also justify that our method is well-synergistic with other compression schemes (i.e.
Pruning and Quantization).

2 RELATED WORKS

The architectures of DNN models grow much larger due to its incredible effects for resolving non-
linear tasks. However, the rapidly growing size of DNN models incurs significant overheads in
terms of storage. We first classify and elaborate modern compression mechanisms for DNN models
into three parts: Pruning, Quantization and Model Encoding. Then we identify the novelty of our
method, by comparing it with the above state-of-the-art approaches.

Pruning refers to those techniques enabling the removal of irrelevant units (weights, neurons or
convolutional filters) (LeCun et al.| (1989)). Relevance of weights is often determined by the ab-
solute value (“magnitude based pruning” (Han et al.| (2016; 2017); |Guo et al.| (2016)), but more
sophisticated methods have been known for decades, e.g., based on second-order derivatives (Opti-
mal Brain Damage (LeCun et al.|(1989)) and Optimal Brain Surgeon (Hassibi & Stork| (1992)) or
ARD (automatic relevance determination, a Bayesian framework for determining the relevance of
weights, (Neal| (1996)); Mackay & David| (1995)); Karaletsos & Ratsch| (2015))).

Quantization refers to those techniques aimming for the reduction of the bit-precision of weights,
activations or even gradients, which is highly demanded for hardware accelerator designs (Sze et al.
(2017)). Methods range from fixed bit-width computation (e.g., 12-bit fixed point) to aggressive
quantization such as binarization of weights and activations (Courbariaux et al.| (2016); |[Rastegari
et al.| (2016); |Zhou et al.| (2016); Hubara et al.[| (2017)). Few-bit quantization (2 to 6 bits) is of-
ten performed by k-means clustering of trained weights with subsequent fine-tuning of the cluster
centers (Han et al.| (2016))). Pruning and quantization methods have been shown to work well in
conjunction (Han et al.| (2016)). In so-called “ternary” networks, weights can have one out of three
possible values (negative, zero or positive) which also allows for simultaneous pruning and few-bit
quantization (L1 & Liu/(2016)); Zhu et al.|(2017)).

Model Encoding refers to exploiting existing compression techniques to improve the space effi-
ciency of model storage. These techniques are usually lossless, and compress DNN models via
extra encoding. Han et al| (2015) leverages Huffman Encoding to reduce the storage of pruned
and quantized DNN models by tens of magnitude. It uses variable-length codewords to encode
source symbols. The table is derived from the occurrence probability for each symbol. More com-
mon symbols are represented with fewer bits. Huffman Coding is the optimal scheme for lossless
compression, and [Han et al.| (2015) shows that it’s synergistic with pruning and quantization. Our
method aims to provide a more efficient mechanism over Huffman Coding, to optimize the inference
performance while keeping DNN models compressed.

Novelty of our method comes from the following three aspects, compared with the above three
methods. First, prior works from Model Encoding focuses on offline storage of DNN models, but our
method targets to keep the compression and accelerate the inference during runtime; second, prior
works, such as Pruning and Quantization, may cause loss of information, but our method is lossless
and near-optimal; and third, prior works from Pruning and Quantization are not contradictory with
our method, instead we show and demonstrate that they are synergistic with our method.

Under review as a conference paper at ICLR 2022

3 FORMULATING DNN MODELS

The first stage of our method is to form DNN models appropriately, so that Succinct Data Structures
can take advantage of. Succinct Data Structures exploits the delimiters within a long string, to per-
form fast queries directly on the compressed string. Hence, our method first formulates DNN mod-
els as Runtime-Accessible Sequence (RAS), which refers to semi-structured format using a minimal
amount of delimiters to construct hierarchical information (e.g. layers). To exploit Succinct Data
Structures effectively, we propose two semi-structured formulations to store model details. First, we
introduce Element-wise RAS by using delimiters to separate different elementary operands within
DNN models; and second, we introduce Block-wise RAS by applying delimiters to separate differ-
ent sets of data operands within DNN models, based on the related computation kernels. Based on
the above Element-wise and Block-wise RAS, we provide specializations to make them synergistic
with Pruning and Quantization, which can further improves both the performance and compression
rate during inference runtime.

Further
Compress : : :
s Standard Pruning-Quantization
Outer delimiter Basic 2D array’s size
Element g <+
& | #..1101, 211,209,277, 1.03,3.04, ., 433,077, .., 301, . 055 | -»Bl | 25 @ .. | (3, 1.0), (3, 2.77), (14, 0.11) | (3, 0.21), (20, 1.55) | .. @ |
wise Inner delimiter Al C Distance between it and its left neighbor
Block One black B.| D. One block
Ay e
wise | # .. | [101, 211, 209, 277, 1.03], [3.01, .., 4.33,0.77), ., [3.01, ., 055] | .. # 5@ ... | [(3, 2.02), (3, 2.77)], [(24,0.22)] | [(3, 0.12), (20, 1.55)] | .. @
Delimiter for blocks

Figure 1: A comparison of different kinds of Runtime-Accessible Sequence (RAS).

3.1 ELEMENT-WISE RUNTIME-ACCESSIBLE SEQUENCE

One type of formulation, suggested by our method, is Element-wise Runtime Accessible Sequence
(denoted as Element-wise RAS). Element-wise RAS utilizes delimiters to separate elementary data
operands. In the context of DNN models, the pre-defined delimiters (e.g. vertical bar and number
sign) are used at the boundaries of different elementary data operands from DNN models, and these
delimiters are used to query for elementary data operands accordingly.

Figure [TH(A) shows an example of Element-wise RAS; there are two vertical bars encompass several
elementary operands. This methodology forms the Element-wise RAS, and the number sign is used
to represent the border of this union. To properly formulate the whole network into Element-wise
RAS, concatenate such unions by using a separate delimiter (e.g. "#’).

3.2 BLOCK-WISE RUNTIME-ACCESSIBLE SEQUENCE

One limitation of Element-wise RAS is that frequent queries are required for every single data
operand, before the computation for model inference. Therefore, to improve the efficiency of
operand query, we suggest the other formulation of DNN models: Block-wise Runtime-Accessible
Sequence (denoted as Block-wise RAS). Different from Element-wise RAS, Block-wise RAS forms
basic building blocks for query and access based on the computation kernels, namely denoted as a
block. Such a block stores a consecutive number of elementary data operands, which are used for a
computation kernel. Between different blocks, Block-wise RAS exploits delimiters for separation,
so that they can be efficiently queried.

Figure [I}(B) shows an example of Block-wise RAS: the Block-wise RAS aggregates five operands
with two square brackets, as one individual block. This transformation of elementary operands,
by synthesizing multiple operands and using a distinct delimiters, can provide faster queries by
extracting them at one time, compared with Element-wise RAS.

Under review as a conference paper at ICLR 2022

3.3 PRUNING-QUANTIZATION RAS

The designs of Element/Block-wise RAS are still without the consideration of Pruning and Quan-
tization. As revealed by prior works, the impacts of these compression schemes can substantially
incur a huge amount of sparsity within the model storage. Therefore, the designs of RAS need to
account for this feature when the models are pruned and/or quantized. We provide generic optimiza-
tion to make RAS synergistic with Pruning and Quantization, regardless of Element- or Block-wise.
The key insight is to form elementary data operand in a similar manner as inverted indexes, by
forming a tuple consisting of the exact values and the relative positions. Figure (C)/(D) shows
examples of the optimized Element-/Block-wise RAS for Pruning and Quantization.

Figure [T}H(C) and (D) shows examples of Pruning-Quantization RAS for Element-wise and Block-
wise. The difference hereby is that, we refine the elementary operands as tuples. In such a tuple, the
first element refers to the relative distance between this and its left neighbor (a number or a delim-
iter); and the second element stores the value of the corresponding data operand. This approach is
synergistic with Pruning and Quantization because: (1) for Pruning, the relative distance, contained
in the reshaped tuple, can effectively exploit the pruned model structures; and (2) for Quantization,
the values, contained in the reshaped tuple, can enhance the space benefits from quantization.

4 Succinct Data Structures

After formulating DNN models into RAS, the second stage of our method stores them in Succinct
Data Structures during runtime. Succinct Data Structures were first pioneered by Jacobson| (1988)),
which refers to a set of data structures using the near-information-theoretic bound space to store
the compressed representation, and still provide fast query and access operations directly on these
compressed representations. In general, Succinct Data Structures have the following representative
inner operators.

Given a string S whose length and alphabet are L and o, there are three operations directly on the
compression (shown below).

o Ranky(x) returns the number of symbol ¢ appearing in Sy, where ¢ € o and x < L.
o Selecty(x) returns the position of z-th occurrence of symbol ¢ in S.
e Access(x) returns the symbol at the position x of S.

Though there are a number of Succinct Data Structures available for real-world applications, we
choose Wavelet Tree (Grossi et al.| (2003) as the core of our method. We choose Wavelet Tree
(WT) because there are already a number of evident successes in applying WT for large-scale,
data-intensive applications, such as Data Store (Agarwal et al.|(2015); [Khandelwal et al.| (2016)),
Graph Processing (Khandelwal et al.[(2017)) and etc. Therefore, our method deploys WT as the
compression technique during the inference runtime.

4.1 WAVELET TREE

Wavelet Tree, a kind of Succinct Data Structures introduced by |Grossi et al.| (2003), was originally
used in compressed suffix arrays. Since its initial use, a myriad of applications has been found. For
instance, the wavelet tree could be used as representations of a sequence, a reordering of elements
and grid of points (Navarro| (2014)). We elaborate the details of WT as follows. Figure [2] gives an
example of WT, where the alphabets/subsets are partitioned into pairs of subsets recursively, until
the bit-vector can be distinguished by “0” and “1”.

As a lossless compression method, WT is near-optimal. Assume a string S (length = n) is composed
of o different symbols: if we use wavelet tree to represent this string, the space consumption is
n log(o) + O(n) bits, which is near-optimal to the information-theoretic lower bound. Moreover,
WT yields significant potentials for runtime performance. WT allows Rank, Select and Access
operators to only take logarithmic time complexity. Following the above assumption: these oper-
ations are supported in O(log o) time, where o is the size of the alphabet for the sequence. Note
that the time complexity of these operators are independent to the string length, which can bring
significant benefits to the computation without full decompression.

Under review as a conference paper at ICLR 2022

original string — _abcddcbaabeddcba [s
Bit-vector —& 0011110000111100 A0S

Subset ﬁ [
a,b c,d
abbaabba cddccddc
0110|0110 01100110

i

aaaa bbbb ccee dddd |

Figure 2: An example of Wavelet Tree (WT): This is an illustration of WT for the string “abcd-
dcbaabcddcba”. The bitvector for its first layer (i.e. 0011110000111100) is derived based on the
alphabet partition: characters “a” and “b”, located in the left subset of the alphabet, are encoded with
the bit “0”, and the other two characters “c” and “d” are encoded with the bit “1”. For two subsets
in the next layer, they are recursively divides into smaller subsets, which are “a” , “b”, “c” and “d”.
Then the encoding is continued correspondingly. As a result, all characters can be distinguished by
an unique sequence of bits.

5 MODEL INFERENCE IN Succinct Data Structures

The third stage of our method is to perform model inference via Succinct Data Structures. This stage
is trivial to first retrieve all relevant operands via queries, then decode these operands, and finally
perform the computation for model inference. Our methods can yield significant performance ben-
efits because the queries on compressed models don’t require any decompression. This is because
carefully engineering Rank, Select and Access operators allow the queries directly on compres-
sion. We restrict each set of decompressed data for one convolution filter at a time. To extract these
operands from Succinct Data Structures, we use two Select operators to locate the corresponding
values within the compressed representation; and then we use one Access operator to retrieve the
values from the range, restricted by the Select operators. In practice, the inference process for
Element-wise method slightly differs from that of Block-wise method: Element-wise method can
perform the inference by extracting elementary operands individually from WT, and Block-wise
method can only perform the inference by extracting aggregated sets of operands. This is because a
block is the smallest unit for indexes in Block-wise method.

6 EXPERIMENTAL STUDY

We compare Succinct Compression with Huffman Coding(?), as suggested by Deep Compression
(Han et al.| (2016))), for four networks: AlexNet (Krizhevsky et al| (2012))), Pruned-Quantized
AlexNet, VGG-16 Simonyan & Zisserman| (2015) and Pruned-Quantized VGG-16 on ImageNet
dataset (Deng et al.|(2009)). For Pruning and Quantization, we perform the same method suggested
by Deep Compression (Han et al.[(2016))). Since Succinct Compression is lossless, we find that all
models achieve the same level of accuracy, compared with model inference without Succinct Com-
pression. We form an extension of Succinct Compression, by replacing Succinct Data Structures
with Huffman Encoding as our baseline. All experiments were performed using PyTorch (Paszke
et al.|(2019)) on the Intel Core i7 5930K.

6.1 NEAR-OPTIMAL COMPRESSION DURING INFERENCE RUNTIME

We first examine the impacts of Succinct Compression with AlexNet and VGG-16 (w/out pruning
and quantization). Table[I]and Table 2] show the comparison regarding the statistics of the original
model and different compression schemes. We make two observations. First, our method achieves
near-optimal compression rate among all models. Our methods has the best compression rate of
19.80% for AlexNet and 18.72% for VGG-16. This is credited to the proper applications of our
method using Succinct Data Structures. Second, our method achieves significant reduction of layers

Under review as a conference paper at ICLR 2022

in terms of runtime space. Our method reduces AlexNet from 232.56 MB to 46.04 MB, and VGG-16
from 527.8 MB to 98.82 MB.

Table 1: Compression statistics for AlexNet (No PQ). CR: Compression Rate, HF: Huffman Coding,
WT-E: Wavelet Tree via Element-Wise, WT-B: Wavelet Tree via Block-wise.

Layer Size Size Size Size CR CR CR

(Origin) (HF) (WT-E) (WT-B) (HF) (WT-E) (WT-B)
convl 0.1333 0.0359 0.0417 0.1239 26.89% 31.32% 92.92%
conv2 1.1729 0.2424 0.3310 0.4118 20.67% 28.22% 35.11%
conv3 33765 0.6443 09112 0.8559 19.08% 26.99% 25.35%
conv4 25327 04950 0.6827 0.6629 19.54% 26.96% 26.17%
convS 1.6885 0.3339 04673 04741 19.77% 27.68% 28.08%

fc6 144.02 19.99 35.97 2787 13.88% 24.98% 19.35%
fc7 64.02 9.649 17.99 1247 15.07% 28.10% 19.48%
fc8 15.63 2.682 4.300 3177 17.16% 27.51% 20.33%

conv_total | 8.904 1.751 2.434 2529 19.67% 27.34% 28.40%
fc_total 22377 32327 58.26 4352 14.45% 26.05% 19.46%
all_total 232.56 34.07 60.69 46.04 14.65% 26.10% 19.80%

Table 2: Compression statistics for VGG-16 (No PQ). CR: Compression Rate, HF: Huffman Coding,
WT-E: Wavelet Tree via Element-Wise, WT-B: Wavelet Tree via Block-wise.

Layer Size Size Size Size CR CR CR

(Origin) (HF) (WT-E) (WT-B) (HF) (WT-E) (WT-B)
convl_1 | 0.006834 0.00582 0.00499 0.007865 85.08% 72.92% 115.05%
convl_ 2 0.1409 0.0345 0.04046 0.1159 2448% 28.72% 82.25%
conv2_1 0.2817 0.0631 0.08107 0.1592 22.38% 28.78% 56.49%
conv2.2 0.5630 0.1160 0.1539 0.2271 20.61% 27.33% 40.34%
conv3_1 1.126 0.2153 0.3019 03335 19.12% 26.81% 29.62%
conv3_2 2.251 0.3991 0.5959 0.5380 17.72% 26.47% 23.90%
conv3_3 2.251 0.4001 0.5887 0.5404 17.77% 26.15% 24.01%
conv4_1 4.502 0.7578 1.155 09893 16.83% 25.65% 21.97%
conv4_2 9.002 1.411 2.202 1.843 15.68% 24.46% 20.47%
conv4_3 9.002 1.423 2.290 1.860 15.80% 25.44% 20.66%
conv5_1 9.002 1.466 2.437 1.877 16.29% 27.08% 20.85%
conv5_2 9.002 1.476 2.489 1.851 16.40% 27.65% 20.56%
conv5_3 9.002 1.458 2.501 1.841 16.19% 27.78% 20.45%

fc6 392.0 42.63 121.5 71.75 10.87% 30.98% 18.30%
fc7 64.02 8.642 19.41 11.89 13.50% 30.33% 18.58%
fc8 15.63 2.517 4.526 2.995 16.10% 28.96% 19.16%

conv_total 56.13 9.226 14.84 12.18 16.44% 26.44% 21.70%
fc_total 471.7 53.78 145.4 86.64 11.40% 30.83% 18.37%
all _total 527.8 63.01 160.2 98.82 11.94% 30.36% 18.72%

Interestingly, we also notice that Block-wise method outperforms Element-wise method in most
cases. We find that, Block-wise method saves more space than Element-wise method for FC layers
of AlexNet and all layers of VGG-16 in total. This is because Block-wise method can effectively
reduce the overall size of the compressed representation, which refers to the required length for
bit-encoding to distinguish different values, by using individual bits to represent more operands.
However, we also observe that Element-wise method saves more space than Block-wise method
requires for CONV layers of AlexNet. This is because CONV layers of AlexNet are relatively
small, where the redundancy of Block-wise Method plays a significant role in space consumption.

We then examine the impacts of Pruning and Quantization on Succinct Compression. Table [3] and
Table [show the comparison regarding the statistics of the pruned and quantized model and dif-
ferent compression schemes. We make two observations. First, we find that our method is very
synergistic with Pruning and Quantization. For Pruned-Quantized AlexNet/VGG-16, our method
achieves the compression rate with only 1% difference, compared with the optimal solution. Sec-
ond, we find that Element-wise method achieves better space savings for both CONV and FC layers.

Under review as a conference paper at ICLR 2022

For CONV/FC layers, Element-wise method reduces runtime space consumption by 8%/0.5% on
average, compared with Block-wise method.

Table 3: Compression statistics for AlexNet (w/ PQ). CR: Compression Rate, HF: Huffman Coding,
WT-E: Wavelet Tree via Element-Wise, WT-B: Wavelet Tree via Block-wise.

Layer Size Size Size Size CR CR CR

(Originy (HF) (WT-E) (WT-B) (HF) (WT-E) (WT-B)
convl 0.05589 0.0333 0.0371 0.04352 25.08% 27.94% 32.74%
conv2 0.2231 0.1576 0.1856 0.2116 13.44% 15.84% 18.06%
conv3 0.5912 0.4081 0.5473 0.8420 12.09% 16.22% 24.95%
conv4 0.4681 03230 0.4304 0.6408 12.76% 17.00% 25.31%
conv5 0.3119 0.2180 0.2888 0.4268 12.92% 17.11% 25.29%

fc6 8.325 4.002 4.685 5494 2779% 3.253% 3.815%
fc7 3.697 1.778 2.083 2448 2777% 3.255% 3.825%
fc8 1.972 1.011 1.113 1.121 6.473% 7.122% 7.176%

conv_total | 1.650 1.140 1.489 2.165 12.80% 16.73% 24.31%
fc_total 13.99 6.791 7.881 9.063 3.04% 3.52% 4.05%
all_total 15.64 7.931 9.370 11.23 341% 4.03% 4.83%

Table 4: Compression statistics for VGG-16 (w/ PQ). CR: Compression Rate, HF: Huffman Coding,
WT-E: Wavelet Tree via Element-Wise, WT-B: Wavelet Tree via Block-wise.

Layer Size Size Size Size CR CR CR

(Origin) (HF) (WT-E) (WT-B) (HF) (WT-E) (WT-B)
convl_1 | 0.001977 0.002652 0.003235 0.002836 40.23% 49.08% 43.02%
convl2 | 0.01528 0.01983 0.02061 0.02423 14.10% 14.66% 17.23%
conv2_1 0.04790 0.04081 0.04824 0.06328 1451% 17.15% 22.50%
conv2.2 0.1006 0.07720 0.09635 0.1342 13.73% 17.13% 23.85%
conv3_1 0.2974 0.1920 0.2510 0.3496 17.07% 2231% 31.07%
conv3_2 0.2700 0.2090 0.2810 04303 9.290% 12.49% 19.13%
conv3_3 0.4725 0.3177 0.4210 0.6171 14.12% 18.71% 27.43%
conv4_1 0.7186 0.5048 0.6829 1.0641 11.22% 15.18% 23.65%

conv4_2 1.214 0.8676 1.234 1.959 9.640% 13.72% 21.77%
conv4_3 1.528 1.046 1.454 2.266 11.62% 16.16% 25.17%
conv5_1 1.576 1.071 1.485 2.306 11.90% 16.49% 25.62%
conv5_2 1.306 0.9176 1.266 2.050 10.20% 14.06% 22.78%
conv5_3 1.622 1.095 1.485 2.350 12.17% 16.50% 26.11%
fc6 10.75 5.430 6.726 7.817 1.385% 1.716% 1.994%
fc7 1.755 0.8897 1.100 1.283 1.390% 1.719% 2.004%
fc8 1.795 0.9485 1.128 1.125 6.071% 7.219% 7.199%
conv_total 9.171 6.361 8.728 13.62 11.33% 15.55% 24.26%
fc_total 14.30 7.268 8.954 10.22 1.54% 1.90% 2.17%
all_total 23.47 13.63 17.68 23.84 258% 335% 4.52%

Note that our observation is slightly different from the results from models without PQ, where the
results suggest that Block-wise saves more space for FC layers. This is because Pruning and Quan-
tization significantly reduces the number of parameters in FC layers, which made the redundancy of
Block-wise method becomes the major limiter for compression.

6.2 SPEEDUP-COMPRESSION RATE TRADEOFF

We report the Speedup-Compression Rate Tradeoff in Figure 3] for all models. We also break down
the results as all layers, CONV layers and FC layers separately. We find that our method achieves at
least 8.65X speedup for the inference of all layers. And for CONV/FC layers, our method achieves
speedup 10.47X/1.6X at least, except for the FC layers in VGG-16 without Pruning and Quanti-
zation. The exception is because Block-wise method incurs significant redundancy, since both the
alphabet of WT and the amount of parameters are huge and grow significantly.

Under review as a conference paper at ICLR 2022

100% 100%
L L
é 60% § 60%
£65,26.10% Ei 0% 10.47,27.34% 38.17,28.40% g 40% 5.62,26.05%
24.95, 19.80% 8 A é 1,14.85% 2.91,19.46%
% | @ Lisem A 20% @ 1.29.67% 20% T A
o o o
0 5 10 15 20 25 30 o 10 20 30 40 50 0 1 2 3 4 5 6 7 8
Speedup Speedup Speedup
@ Huffmann Encoding Wavelet Tree via Element-wise A Wavelet Tree via Block-wise
(i) All Layers (ii) CONV Layers (iii) FC Layers
(A) AlexNet (w/out Pruning + Quantization)
100% 100% 100%
80%
11.5,30.36% 0% 13.72, 26.44% - 1.95,30.83%
427,1872% 52.31,21.70% E
S @ Luux A 7@ niasn A ” ﬂf:;% 111.40%
- o o
s speecip Spect
@ Huffmann Encoding Wavelet Tree via Element-wise A Wavelet Tree via Block-wise
(i) All Layers (ii) CONV Layers (iii) FC Layers
(B) VGG-16 (w/out Pruning + Quantization)
100% 100% 100%
L | o
g 3 x
i L
shas, 16705 g
57.49,4.03% 80.49,4.83% “’%. T e 2 16,4.05%
o @ L3a1% A p_~ ' o 1305 @ A 2:66,3.52%
o 10 20 30 40 50 60 70 80 90 0 20 40 60 80 100 120 140 0 1 2 3 4 5
Speedup Speedup Speedup
@ Huffmann Encoding Wavelet Tree via Element-wise A Wavelet Tree via Block-wise
(i) All Layers (i) CONV Layers (iii) FC Layers
(C) AlexNet (w/ Pruning + Quantization)
100% 100% 100%
@ 80K & 80% M 80%
% o 2 o 5 oo
g 40% & 40% ;; 40%
§ - 8 55.5,15.55% & § -
B 25.6,335% 76.3,452% ® L T 1,154% 18.7,1.90%
o @ L258% A i o @ A 26217%
0 10 20 30 L'l 50 60 70 80 90 o 20 40 60 80 100 o 5 10 15 20
Speedup Speedup Speedup
@ Huffmann Encoding Wavelet Tree via Element-wise A Wavelet Tree via Block-wise
(i) All Layers (ii) CONV Layers (iii) FC Layers

(D) VGG-16 (w/ Pruning + Quantization)

Figure 3: Speedup-Compression Rate Tradeoff of Huffman Coding, our Element-wise method, and
our Block-wise method among (A) AlexNet (w/out PQ); (B) VGG-16 (w/out PQ); (C) AlexNet (w/
PQ); and (D) VGG-16 (w/ PQ). For each sub-figure, results are for (i) all layers; (ii)) CONV layers;

(iii) FC layers. The y-axis refers to Compression Rate (lower is better), and the x-axis refers to
Speedup (higher is better).

Interestingly, for FC layers, we observe variations across compression schemes and models. We
make two observations. First, Element-wise method achieves better speedup with worse compres-
sion rate for FC layers of models w/out PQ. This is because Element-wise formulation suits better
for the structure of FC layers, but also suffers from a huge amount of parameters. Second, Element-
wise method achieves both better speedup and compression rate for FC layers of models w/ PQ.

Under review as a conference paper at ICLR 2022

This is because PQ can significantly reduces the amount of parameters, which make Element-wise
method more suitable.

6.3 SPEEDUP-LAYER SIZE TRADEOFF

We finally examine the tradeoff between the speedup and layer size among different methods. Note
that, after PQ, the permutation of layers from AlexNet remain consistent, but VGG-16 changes
slightly in CONV layers. We draw two observations. First, the benefits of Element-wise method
exhibits more robust trends in CONYV layers in most cases, with increasing speedup with the grow-
ing layer size, compared with Block-wise method. This is because, compared with Element-wise
method, Block-wise method is much more sensitive to both layer size and the layer structure. Sec-
ond, PQ significantly varies the tradeoffs between speedup and layer size. This is because PQ
exploits the structure information to reduce the layer size as well as the layer complexity. Therefore,
it’s expected that the speedup may vary significantly due to PQ.

speedup
Speedup

Layers Layers

=== Huffman Encoding Wavelet Tree via Element-Wise === Wavelet Tree via Block-Wise === Huffman Encoding Wavelet Tree via Element-Wise === Wavelet Tree via Block-Wise

(A) AlexNet (w/out Pruning + Quantization) (B) VGG16 (w/out Pruning + Quantization)

Speedup
Speedup

Layers Layers

= Huffman Encoding Wavelet Tree via Element-Wise == Wavelet Tree via Block-Wise == Huffman Encoding Wavelet Tree via Element-Wise ==fr= Wavelet Tree via Block-Wise

(C) AlexNet (w/ Pruning + Quantization) (D) VGG16 (w/ Pruning + Quantization)

Figure 4: Speedup-Layer Size tradeoffs among (A) AlexNet (w/out PQ); (B) VGG-16 (w/out PQ);
(C) AlexNet (w/ PQ); and (D) VGG-16 (w/ PQ).

7 DISCUSSIONS

Though we demonstrate the synergy between our method and Pruning-Quantization from Han et al.
(2016), different Pruning and Quantization methods are expected to be synergistic as well. This is
because our method doesn’t affect any optimization in terms of model structures and value encoding,
as Pruning and Quantization achieves. In addition, our element-wise and block-wise methods can
be combined for a single model inference, since it can be constructed in a layer-wise manner. As
suggested by our results, the layer heterogeneity breeds the needs to combine different formulations
to obtain the best tradeoffs between performance and space consumption.

8 CONCLUSIONS

We present “Succinct Compression” that improves inference performance with compressed neu-
ral networks during inference runtime. Our method operates by proper combinations of newly-
introduced formulations, Succinct Data Structures and carefully-engineered inference. We show
our method achieves near-optimal compression results, compared with Huffman Coding. In addi-
tion, we reveals that our method achieves significant speedup over Huffman Coding, by exploiting
the characteristics of queries directly on compression in Succinct Data Structures. We also show
that our method is synergistic with Pruning and Quantization, which brings significant performance
benefits and space saving at the same time.

Under review as a conference paper at ICLR 2022

REFERENCES

Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. Succinct: Enabling queries on com-
pressed data. In /2th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 15, Oakland, CA, USA, May 4-6, 2015, pp. 337-350. USENIX Association, 2015.
URL https://www.usenix.org/conference/nsdil5/technical-sessions/
presentation/agarwall

Yoshua Bengio, Yann LeCun, and Geoffrey E. Hinton. Deep learning for AI. Commun. ACM, 64
(7):58-65, 2021. doi: 10.1145/3448250. URL https://doi.org/10.1145/3448250!

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1
or -1, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pp. 248-255. IEEE
Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848. URL https://doi.org/10.
1109/CVPR.2009.5206848.

Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text in-
dexes. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’03, pp. 841-850, USA, 2003. Society for Industrial and Applied Mathematics. ISBN
0898715385.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Gar-
nett (eds.), Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp.
1379-1387, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
2823f4797102celalaec05359cclodd9—-Abstract.html.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In Yoshua Bengio and Yann LeCun
(eds.), 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings,2016. URL http://arxiv.org/abs/
1510.00149.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Va-
jda, Manohar Paluri, John Tran, Bryan Catanzaro, and William J. Dally. DSD: dense-sparse-dense
training for deep neural networks. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=HyoST_9x1.

Babak Hassibi and David G. Stork. Second order derivatives for network prun-
ing: Optimal brain surgeon. In Stephen Jose Hanson, Jack D. Cowan, and C. Lee
Giles (eds.), Advances in Neural Information Processing Systems 5, [NIPS Con-
ference, Denver, Colorado, USA, November 30 - December 3, 1992], pp. 164-
171. Morgan Kaufmann, 1992. URL |http://papers.nips.cc/paper/
647-second-order—-derivatives—-for-network-pruning-optimal-brain-surgeon.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. J. Mach.
Learn. Res., 18:187:1-187:30, 2017. URL http://jmlr.orqg/papers/v18/16—-456.
htmll.

Guy Joseph Jacobson. Succinct Static Data Structures. PhD thesis, USA, 1988. AAI8918056.

10

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/agarwal
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/agarwal
https://doi.org/10.1145/3448250
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://proceedings.neurips.cc/paper/2016/hash/2823f4797102ce1a1aec05359cc16dd9-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/2823f4797102ce1a1aec05359cc16dd9-Abstract.html
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
https://openreview.net/forum?id=HyoST_9xl
http://papers.nips.cc/paper/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon
http://papers.nips.cc/paper/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon
http://jmlr.org/papers/v18/16-456.html
http://jmlr.org/papers/v18/16-456.html

Under review as a conference paper at ICLR 2022

Theofanis Karaletsos and Gunnar Ritsch. Automatic relevance determination for deep generative
models, 2015.

Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. Blowfish: Dynamic storage-performance
tradeoff in data stores. In Katerina J. Argyraki and Rebecca Isaacs (eds.), 13th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA,
March 16-18, 2016, pp. 485-500. USENIX Association, 2016. URL https://www.usenix.
org/conference/nsdil6/technical-sessions/presentation/khandelwall

Anurag Khandelwal, Zongheng Yang, Evan Ye, Rachit Agarwal, and Ion Stoica. Zipg: A
memory-efficient graph store for interactive queries. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA,
May 14-19, 2017, pp. 1149-1164. ACM, 2017. doi: 10.1145/3035918.3064012. URL https:
//doi.org/10.1145/3035918.3064012,

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C.
Burges, Léon Bottou, and Kilian Q. Weinberger (eds.), Advances in Neural Information Pro-
cessing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States, pp.
1106-1114, 2012. URL https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.htmll

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S. Touretzky (ed.),
Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado,
USA, November 27-30, 1989], pp. 598-605. Morgan Kaufmann, 1989. URL http://papers.
nips.cc/paper/250-optimal-brain-damage.

Fengfu Li and Bin Liu. Ternary weight networks. CoRR, abs/1605.04711, 2016. URL http:
//arxiv.org/abs/1605.04711.

Mackay and J. C. David. Probable networks and plausible predictions — a review of practical
bayesian methods for supervised neural networks. Network Computation in Neural Systems, 6(3),
1995.

Gonzalo Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2-20, 2014.
ISSN 1570-8667. doi: https://doi.org/10.1016/j.jda.2013.07.004. URL https://www.
sciencedirect.com/science/article/pi1/S1570866713000610. 23rd Annual
Symposium on Combinatorial Pattern Matching.

R. M. Neal. Bayesian learning for neural networks. Lecture Notes in Statistics, 1996.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurlPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8024-8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee’7£92f2bfa%9f7012727740-Abstract.htmll

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In Bastian Leibe, Jiri Matas, Nicu Sebe,
and Max Welling (eds.), Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part IV, volume 9908 of Lecture Notes in
Computer Science, pp. 525-542. Springer, 2016. doi: 10.1007/978-3-319-46493-0\ _32. URL
https://doi.org/10.1007/978-3-319-46493-0_32.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning

11

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/khandelwal
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/khandelwal
https://doi.org/10.1145/3035918.3064012
https://doi.org/10.1145/3035918.3064012
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1605.04711
https://www.sciencedirect.com/science/article/pii/S1570866713000610
https://www.sciencedirect.com/science/article/pii/S1570866713000610
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1007/978-3-319-46493-0_32

Under review as a conference paper at ICLR 2022

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. URL http://arxiv.org/abs/1409.1556.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proc. IEEE, 105(12):2295-2329, 2017. doi: 10.1109/JPROC.
2017.2761740. URL |https://doi.org/10.1109/JPROC.2017.2761740.

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. CoRR, abs/1606.06160,
2016. URL http://arxiv.org/abs/1606.06160.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=S1_pAu9dxl.

12

http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/JPROC.2017.2761740
http://arxiv.org/abs/1606.06160
https://openreview.net/forum?id=S1_pAu9xl
https://openreview.net/forum?id=S1_pAu9xl

	Introduction
	Related Works
	Formulating DNN Models
	Element-wise Runtime-Accessible Sequence
	Block-wise Runtime-Accessible Sequence
	Pruning-Quantization RAS

	Succinct Data Structures
	Wavelet Tree

	Model Inference in Succinct Data Structures
	Experimental Study
	Near-Optimal Compression during Inference Runtime
	Speedup-Compression Rate Tradeoff
	Speedup-Layer Size Tradeoff

	Discussions
	Conclusions

