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ABSTRACT

Recent advances in Deep Neural Networks (DNN) compression (e.g. pruning,
quantization and etc.) significantly reduces the amount of space consumption for
storage, making them easier to deploy in low-cost devices. However, those tech-
niques do not keep the compressed representation during inference runtime, which
incurs significant overheads in terms of both performance and space consump-
tion. We introduce “Succinct Compression”, a three-stage framework to enable
DNN inference with near-optimal compression and much better performance dur-
ing inference runtime. The key insight of our method leverages the concept of
Succinct Data Structures, which supports fast queries directly on compressed rep-
resentation without decompression. Our method first transforms DNN models as
our proposed formulations in either Element-wise or Block-wise manner, so that
Succinct Data Structures can take advantage of. Then, our method compresses
transformed DNN models using Succinct Data Structures. Finally, our method
exploits our specialized execution pipelines for different model formulations, to
retrieve relevant data for DNN inference. Our experimental results show that,
our method keeps near-optimal compression, and achieves at least 8.7X/11.5X
speedup on AlexNet/VGG-16 inference, compared with Huffman Coding. We
also experimentally show that our method is quite synergistic with Pruning and
Quantization.

1 INTRODUCTION

Deep neural networks (DNNs) demand an increasing number of parameters as the required complex-
ity of tasks, which substantially make DNN models become larger Bengio et al. (2021). Therefore,
DNNs incurs a significant amount of memory footprints during inference runtime, and thus affects
both the overall performance and the space consumption. Recent efforts compress DNN models
in both loss (e.g. pruning, quantization and etc.) and lossless manners (e.g. Huffman Coding).
However, the emphasis of the prior works focus on compressing DNN models for efficient storage,
rather than providing space-efficient representations during the inference runtime. Thus, prior ap-
proaches require to decompress compressed model first and perform the inference, which consumes
a huge amount of memory space. An alternative is to query the compressed models, decode the
query results and perform the inference. However, this method suffers from significant performance
overheads during the inference runtime.

Our goal is to improve the inference performance, while keeping the model compressed near-
optimally. We introduce “Succinct Compression”, a three-stage framework to enable much faster
DNN inference with near-optimal and lossless compression simultaneously. The unique charac-
teristic of our method is the fast-queryable yet near-optimally-compressed data structures called
Succinct Data Structures. By engineering the inner operators, Succinct Data Structures allow fast
lookup within the compressed representations directly, without decompressing them first. To exploit
this unique set of data structures, we introduce two additional stages to make them and DNN models
more synergistic: (1) before compressing DNN models into Succinct Data Structures, we propose
two semi-structured formulations to represent DNN models in element-wise or block-wise manners;
and (2) after maintaining DNN models in Succinct Data Structures, we specialize two pipelines for
different formulations, by carefully engineering the inner operators of Succinct Data Structures.
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The contributions of this paper are as follows.

(i) To improve the inference performance while keeping DNN model compressed, we introduce
“Succinct Compression”: a three-stage framework to exploit Succinct Data Structures to enable
faster DNN inference with near-optimal compression at the same time.

(ii) We suggest two semi-structured formulations to store DNN models, which Succinct Data Struc-
tures can exploit them more efficiently. One formulates the DNN models in Element-wise manner,
while the other one formulates the models in Block-wise manner.

(iii) We provide two approaches for the inference of compressed DNN models, maintained in Suc-
cinct Data Structures, using its inner operators. One serves for the inference pipeline in Element-
wise manner, while the other serves for the inference pipeline in Block-wise manner.

(iv) We experimentally demonstrate that our method achieve significant speedup with near-optimal
compression, compared with the state-of-the-art approach (i.e. Huffman Coding). In addition, our
experiments also justify that our method is well-synergistic with other compression schemes (i.e.
Pruning and Quantization).

2 RELATED WORKS

The architectures of DNN models grow much larger due to its incredible effects for resolving non-
linear tasks. However, the rapidly growing size of DNN models incurs significant overheads in
terms of storage. We first classify and elaborate modern compression mechanisms for DNN models
into three parts: Pruning, Quantization and Model Encoding. Then we identify the novelty of our
method, by comparing it with the above state-of-the-art approaches.

Pruning refers to those techniques enabling the removal of irrelevant units (weights, neurons or
convolutional filters) (LeCun et al. (1989)). Relevance of weights is often determined by the ab-
solute value (“magnitude based pruning” (Han et al. (2016; 2017); Guo et al. (2016)), but more
sophisticated methods have been known for decades, e.g., based on second-order derivatives (Opti-
mal Brain Damage (LeCun et al. (1989)) and Optimal Brain Surgeon (Hassibi & Stork (1992)) or
ARD (automatic relevance determination, a Bayesian framework for determining the relevance of
weights, (Neal (1996); Mackay & David (1995); Karaletsos & Rätsch (2015))).

Quantization refers to those techniques aimming for the reduction of the bit-precision of weights,
activations or even gradients, which is highly demanded for hardware accelerator designs (Sze et al.
(2017)). Methods range from fixed bit-width computation (e.g., 12-bit fixed point) to aggressive
quantization such as binarization of weights and activations (Courbariaux et al. (2016); Rastegari
et al. (2016); Zhou et al. (2016); Hubara et al. (2017)). Few-bit quantization (2 to 6 bits) is of-
ten performed by k-means clustering of trained weights with subsequent fine-tuning of the cluster
centers (Han et al. (2016)). Pruning and quantization methods have been shown to work well in
conjunction (Han et al. (2016)). In so-called “ternary” networks, weights can have one out of three
possible values (negative, zero or positive) which also allows for simultaneous pruning and few-bit
quantization (Li & Liu (2016); Zhu et al. (2017)).

Model Encoding refers to exploiting existing compression techniques to improve the space effi-
ciency of model storage. These techniques are usually lossless, and compress DNN models via
extra encoding. Han et al. (2015) leverages Huffman Encoding to reduce the storage of pruned
and quantized DNN models by tens of magnitude. It uses variable-length codewords to encode
source symbols. The table is derived from the occurrence probability for each symbol. More com-
mon symbols are represented with fewer bits. Huffman Coding is the optimal scheme for lossless
compression, and Han et al. (2015) shows that it’s synergistic with pruning and quantization. Our
method aims to provide a more efficient mechanism over Huffman Coding, to optimize the inference
performance while keeping DNN models compressed.

Novelty of our method comes from the following three aspects, compared with the above three
methods. First, prior works from Model Encoding focuses on offline storage of DNN models, but our
method targets to keep the compression and accelerate the inference during runtime; second, prior
works, such as Pruning and Quantization, may cause loss of information, but our method is lossless
and near-optimal; and third, prior works from Pruning and Quantization are not contradictory with
our method, instead we show and demonstrate that they are synergistic with our method.
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3 FORMULATING DNN MODELS

The first stage of our method is to form DNN models appropriately, so that Succinct Data Structures
can take advantage of. Succinct Data Structures exploits the delimiters within a long string, to per-
form fast queries directly on the compressed string. Hence, our method first formulates DNN mod-
els as Runtime-Accessible Sequence (RAS), which refers to semi-structured format using a minimal
amount of delimiters to construct hierarchical information (e.g. layers). To exploit Succinct Data
Structures effectively, we propose two semi-structured formulations to store model details. First, we
introduce Element-wise RAS by using delimiters to separate different elementary operands within
DNN models; and second, we introduce Block-wise RAS by applying delimiters to separate differ-
ent sets of data operands within DNN models, based on the related computation kernels. Based on
the above Element-wise and Block-wise RAS, we provide specializations to make them synergistic
with Pruning and Quantization, which can further improves both the performance and compression
rate during inference runtime.

Figure 1: A comparison of different kinds of Runtime-Accessible Sequence (RAS).

3.1 ELEMENT-WISE RUNTIME-ACCESSIBLE SEQUENCE

One type of formulation, suggested by our method, is Element-wise Runtime Accessible Sequence
(denoted as Element-wise RAS). Element-wise RAS utilizes delimiters to separate elementary data
operands. In the context of DNN models, the pre-defined delimiters (e.g. vertical bar and number
sign) are used at the boundaries of different elementary data operands from DNN models, and these
delimiters are used to query for elementary data operands accordingly.

Figure 1-(A) shows an example of Element-wise RAS; there are two vertical bars encompass several
elementary operands. This methodology forms the Element-wise RAS, and the number sign is used
to represent the border of this union. To properly formulate the whole network into Element-wise
RAS, concatenate such unions by using a separate delimiter (e.g. ’#’).

3.2 BLOCK-WISE RUNTIME-ACCESSIBLE SEQUENCE

One limitation of Element-wise RAS is that frequent queries are required for every single data
operand, before the computation for model inference. Therefore, to improve the efficiency of
operand query, we suggest the other formulation of DNN models: Block-wise Runtime-Accessible
Sequence (denoted as Block-wise RAS). Different from Element-wise RAS, Block-wise RAS forms
basic building blocks for query and access based on the computation kernels, namely denoted as a
block. Such a block stores a consecutive number of elementary data operands, which are used for a
computation kernel. Between different blocks, Block-wise RAS exploits delimiters for separation,
so that they can be efficiently queried.

Figure 1-(B) shows an example of Block-wise RAS: the Block-wise RAS aggregates five operands
with two square brackets, as one individual block. This transformation of elementary operands,
by synthesizing multiple operands and using a distinct delimiters, can provide faster queries by
extracting them at one time, compared with Element-wise RAS.
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3.3 PRUNING-QUANTIZATION RAS

The designs of Element/Block-wise RAS are still without the consideration of Pruning and Quan-
tization. As revealed by prior works, the impacts of these compression schemes can substantially
incur a huge amount of sparsity within the model storage. Therefore, the designs of RAS need to
account for this feature when the models are pruned and/or quantized. We provide generic optimiza-
tion to make RAS synergistic with Pruning and Quantization, regardless of Element- or Block-wise.
The key insight is to form elementary data operand in a similar manner as inverted indexes, by
forming a tuple consisting of the exact values and the relative positions. Figure 1-(C)/(D) shows
examples of the optimized Element-/Block-wise RAS for Pruning and Quantization.

Figure 1-(C) and (D) shows examples of Pruning-Quantization RAS for Element-wise and Block-
wise. The difference hereby is that, we refine the elementary operands as tuples. In such a tuple, the
first element refers to the relative distance between this and its left neighbor (a number or a delim-
iter); and the second element stores the value of the corresponding data operand. This approach is
synergistic with Pruning and Quantization because: (1) for Pruning, the relative distance, contained
in the reshaped tuple, can effectively exploit the pruned model structures; and (2) for Quantization,
the values, contained in the reshaped tuple, can enhance the space benefits from quantization.

4 Succinct Data Structures

After formulating DNN models into RAS, the second stage of our method stores them in Succinct
Data Structures during runtime. Succinct Data Structures were first pioneered by Jacobson (1988),
which refers to a set of data structures using the near-information-theoretic bound space to store
the compressed representation, and still provide fast query and access operations directly on these
compressed representations. In general, Succinct Data Structures have the following representative
inner operators.

Given a string S whose length and alphabet are L and σ, there are three operations directly on the
compression (shown below).

• Rankq(x) returns the number of symbol q appearing in S0:x where q ∈ σ and x < L.

• Selectq(x) returns the position of x-th occurrence of symbol q in S.

• Access(x) returns the symbol at the position x of S.

Though there are a number of Succinct Data Structures available for real-world applications, we
choose Wavelet Tree (Grossi et al. (2003) as the core of our method. We choose Wavelet Tree
(WT) because there are already a number of evident successes in applying WT for large-scale,
data-intensive applications, such as Data Store (Agarwal et al. (2015); Khandelwal et al. (2016)),
Graph Processing (Khandelwal et al. (2017)) and etc. Therefore, our method deploys WT as the
compression technique during the inference runtime.

4.1 WAVELET TREE

Wavelet Tree, a kind of Succinct Data Structures introduced by Grossi et al. (2003), was originally
used in compressed suffix arrays. Since its initial use, a myriad of applications has been found. For
instance, the wavelet tree could be used as representations of a sequence, a reordering of elements
and grid of points (Navarro (2014)). We elaborate the details of WT as follows. Figure 2 gives an
example of WT, where the alphabets/subsets are partitioned into pairs of subsets recursively, until
the bit-vector can be distinguished by “0” and “1”.

As a lossless compression method, WT is near-optimal. Assume a string S (length = n) is composed
of σ different symbols: if we use wavelet tree to represent this string, the space consumption is
n log(σ) + O(n) bits, which is near-optimal to the information-theoretic lower bound. Moreover,
WT yields significant potentials for runtime performance. WT allows Rank, Select and Access
operators to only take logarithmic time complexity. Following the above assumption: these oper-
ations are supported in O(log σ) time, where σ is the size of the alphabet for the sequence. Note
that the time complexity of these operators are independent to the string length, which can bring
significant benefits to the computation without full decompression.
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Figure 2: An example of Wavelet Tree (WT): This is an illustration of WT for the string “abcd-
dcbaabcddcba”. The bitvector for its first layer (i.e. 0011110000111100) is derived based on the
alphabet partition: characters “a” and “b”, located in the left subset of the alphabet, are encoded with
the bit “0”, and the other two characters “c” and “d” are encoded with the bit “1”. For two subsets
in the next layer, they are recursively divides into smaller subsets, which are “a” , “b”, “c” and “d”.
Then the encoding is continued correspondingly. As a result, all characters can be distinguished by
an unique sequence of bits.

5 MODEL INFERENCE IN Succinct Data Structures

The third stage of our method is to perform model inference via Succinct Data Structures. This stage
is trivial to first retrieve all relevant operands via queries, then decode these operands, and finally
perform the computation for model inference. Our methods can yield significant performance ben-
efits because the queries on compressed models don’t require any decompression. This is because
carefully engineering Rank, Select and Access operators allow the queries directly on compres-
sion. We restrict each set of decompressed data for one convolution filter at a time. To extract these
operands from Succinct Data Structures, we use two Select operators to locate the corresponding
values within the compressed representation; and then we use one Access operator to retrieve the
values from the range, restricted by the Select operators. In practice, the inference process for
Element-wise method slightly differs from that of Block-wise method: Element-wise method can
perform the inference by extracting elementary operands individually from WT, and Block-wise
method can only perform the inference by extracting aggregated sets of operands. This is because a
block is the smallest unit for indexes in Block-wise method.

6 EXPERIMENTAL STUDY

We compare Succinct Compression with Huffman Coding(?), as suggested by Deep Compression
(Han et al. (2016)), for four networks: AlexNet (Krizhevsky et al. (2012)), Pruned-Quantized
AlexNet, VGG-16 Simonyan & Zisserman (2015) and Pruned-Quantized VGG-16 on ImageNet
dataset (Deng et al. (2009)). For Pruning and Quantization, we perform the same method suggested
by Deep Compression (Han et al. (2016)). Since Succinct Compression is lossless, we find that all
models achieve the same level of accuracy, compared with model inference without Succinct Com-
pression. We form an extension of Succinct Compression, by replacing Succinct Data Structures
with Huffman Encoding as our baseline. All experiments were performed using PyTorch (Paszke
et al. (2019)) on the Intel Core i7 5930K.

6.1 NEAR-OPTIMAL COMPRESSION DURING INFERENCE RUNTIME

We first examine the impacts of Succinct Compression with AlexNet and VGG-16 (w/out pruning
and quantization). Table 1 and Table 2 show the comparison regarding the statistics of the original
model and different compression schemes. We make two observations. First, our method achieves
near-optimal compression rate among all models. Our methods has the best compression rate of
19.80% for AlexNet and 18.72% for VGG-16. This is credited to the proper applications of our
method using Succinct Data Structures. Second, our method achieves significant reduction of layers
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in terms of runtime space. Our method reduces AlexNet from 232.56 MB to 46.04 MB, and VGG-16
from 527.8 MB to 98.82 MB.

Table 1: Compression statistics for AlexNet (No PQ). CR: Compression Rate, HF: Huffman Coding,
WT-E: Wavelet Tree via Element-Wise, WT-B: Wavelet Tree via Block-wise.

Layer Size Size Size Size CR CR CR
(Origin) (HF) (WT-E) (WT-B) (HF) (WT-E) (WT-B)

conv1 0.1333 0.0359 0.0417 0.1239 26.89% 31.32% 92.92%
conv2 1.1729 0.2424 0.3310 0.4118 20.67% 28.22% 35.11%
conv3 3.3765 0.6443 0.9112 0.8559 19.08% 26.99% 25.35%
conv4 2.5327 0.4950 0.6827 0.6629 19.54% 26.96% 26.17%
conv5 1.6885 0.3339 0.4673 0.4741 19.77% 27.68% 28.08%

fc6 144.02 19.99 35.97 27.87 13.88% 24.98% 19.35%
fc7 64.02 9.649 17.99 12.47 15.07% 28.10% 19.48%
fc8 15.63 2.682 4.300 3.177 17.16% 27.51% 20.33%

conv total 8.904 1.751 2.434 2.529 19.67% 27.34% 28.40%
fc total 223.7 32.327 58.26 43.52 14.45% 26.05% 19.46%
all total 232.56 34.07 60.69 46.04 14.65% 26.10% 19.80%

Table 2: Compression statistics for VGG-16 (No PQ). CR: Compression Rate, HF: Huffman Coding,
WT-E: Wavelet Tree via Element-Wise, WT-B: Wavelet Tree via Block-wise.

Layer Size Size Size Size CR CR CR
(Origin) (HF) (WT-E) (WT-B) (HF) (WT-E) (WT-B)

conv1 1 0.006834 0.00582 0.00499 0.007865 85.08% 72.92% 115.05%
conv1 2 0.1409 0.0345 0.04046 0.1159 24.48% 28.72% 82.25%
conv2 1 0.2817 0.0631 0.08107 0.1592 22.38% 28.78% 56.49%
conv2 2 0.5630 0.1160 0.1539 0.2271 20.61% 27.33% 40.34%
conv3 1 1.126 0.2153 0.3019 0.3335 19.12% 26.81% 29.62%
conv3 2 2.251 0.3991 0.5959 0.5380 17.72% 26.47% 23.90%
conv3 3 2.251 0.4001 0.5887 0.5404 17.77% 26.15% 24.01%
conv4 1 4.502 0.7578 1.155 0.9893 16.83% 25.65% 21.97%
conv4 2 9.002 1.411 2.202 1.843 15.68% 24.46% 20.47%
conv4 3 9.002 1.423 2.290 1.860 15.80% 25.44% 20.66%
conv5 1 9.002 1.466 2.437 1.877 16.29% 27.08% 20.85%
conv5 2 9.002 1.476 2.489 1.851 16.40% 27.65% 20.56%
conv5 3 9.002 1.458 2.501 1.841 16.19% 27.78% 20.45%

fc6 392.0 42.63 121.5 71.75 10.87% 30.98% 18.30%
fc7 64.02 8.642 19.41 11.89 13.50% 30.33% 18.58%
fc8 15.63 2.517 4.526 2.995 16.10% 28.96% 19.16%

conv total 56.13 9.226 14.84 12.18 16.44% 26.44% 21.70%
fc total 471.7 53.78 145.4 86.64 11.40% 30.83% 18.37%
all total 527.8 63.01 160.2 98.82 11.94% 30.36% 18.72%

Interestingly, we also notice that Block-wise method outperforms Element-wise method in most
cases. We find that, Block-wise method saves more space than Element-wise method for FC layers
of AlexNet and all layers of VGG-16 in total. This is because Block-wise method can effectively
reduce the overall size of the compressed representation, which refers to the required length for
bit-encoding to distinguish different values, by using individual bits to represent more operands.
However, we also observe that Element-wise method saves more space than Block-wise method
requires for CONV layers of AlexNet. This is because CONV layers of AlexNet are relatively
small, where the redundancy of Block-wise Method plays a significant role in space consumption.

We then examine the impacts of Pruning and Quantization on Succinct Compression. Table 3 and
Table 4 show the comparison regarding the statistics of the pruned and quantized model and dif-
ferent compression schemes. We make two observations. First, we find that our method is very
synergistic with Pruning and Quantization. For Pruned-Quantized AlexNet/VGG-16, our method
achieves the compression rate with only 1% difference, compared with the optimal solution. Sec-
ond, we find that Element-wise method achieves better space savings for both CONV and FC layers.
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For CONV/FC layers, Element-wise method reduces runtime space consumption by 8%/0.5% on
average, compared with Block-wise method.

Table 3: Compression statistics for AlexNet (w/ PQ). CR: Compression Rate, HF: Huffman Coding,
WT-E: Wavelet Tree via Element-Wise, WT-B: Wavelet Tree via Block-wise.

Layer Size Size Size Size CR CR CR
(Origin) (HF) (WT-E) (WT-B) (HF) (WT-E) (WT-B)

conv1 0.05589 0.0333 0.0371 0.04352 25.08% 27.94% 32.74%
conv2 0.2231 0.1576 0.1856 0.2116 13.44% 15.84% 18.06%
conv3 0.5912 0.4081 0.5473 0.8420 12.09% 16.22% 24.95%
conv4 0.4681 0.3230 0.4304 0.6408 12.76% 17.00% 25.31%
conv5 0.3119 0.2180 0.2888 0.4268 12.92% 17.11% 25.29%

fc6 8.325 4.002 4.685 5.494 2.779% 3.253% 3.815%
fc7 3.697 1.778 2.083 2.448 2.777% 3.255% 3.825%
fc8 1.972 1.011 1.113 1.121 6.473% 7.122% 7.176%

conv total 1.650 1.140 1.489 2.165 12.80% 16.73% 24.31%
fc total 13.99 6.791 7.881 9.063 3.04% 3.52% 4.05%
all total 15.64 7.931 9.370 11.23 3.41% 4.03% 4.83%

Table 4: Compression statistics for VGG-16 (w/ PQ). CR: Compression Rate, HF: Huffman Coding,
WT-E: Wavelet Tree via Element-Wise, WT-B: Wavelet Tree via Block-wise.

Layer Size Size Size Size CR CR CR
(Origin) (HF) (WT-E) (WT-B) (HF) (WT-E) (WT-B)

conv1 1 0.001977 0.002652 0.003235 0.002836 40.23% 49.08% 43.02%
conv1 2 0.01528 0.01983 0.02061 0.02423 14.10% 14.66% 17.23%
conv2 1 0.04790 0.04081 0.04824 0.06328 14.51% 17.15% 22.50%
conv2 2 0.1006 0.07720 0.09635 0.1342 13.73% 17.13% 23.85%
conv3 1 0.2974 0.1920 0.2510 0.3496 17.07% 22.31% 31.07%
conv3 2 0.2700 0.2090 0.2810 0.4303 9.290% 12.49% 19.13%
conv3 3 0.4725 0.3177 0.4210 0.6171 14.12% 18.71% 27.43%
conv4 1 0.7186 0.5048 0.6829 1.0641 11.22% 15.18% 23.65%
conv4 2 1.214 0.8676 1.234 1.959 9.640% 13.72% 21.77%
conv4 3 1.528 1.046 1.454 2.266 11.62% 16.16% 25.17%
conv5 1 1.576 1.071 1.485 2.306 11.90% 16.49% 25.62%
conv5 2 1.306 0.9176 1.266 2.050 10.20% 14.06% 22.78%
conv5 3 1.622 1.095 1.485 2.350 12.17% 16.50% 26.11%

fc6 10.75 5.430 6.726 7.817 1.385% 1.716% 1.994%
fc7 1.755 0.8897 1.100 1.283 1.390% 1.719% 2.004%
fc8 1.795 0.9485 1.128 1.125 6.071% 7.219% 7.199%

conv total 9.171 6.361 8.728 13.62 11.33% 15.55% 24.26%
fc total 14.30 7.268 8.954 10.22 1.54% 1.90% 2.17%
all total 23.47 13.63 17.68 23.84 2.58% 3.35% 4.52%

Note that our observation is slightly different from the results from models without PQ, where the
results suggest that Block-wise saves more space for FC layers. This is because Pruning and Quan-
tization significantly reduces the number of parameters in FC layers, which made the redundancy of
Block-wise method becomes the major limiter for compression.

6.2 SPEEDUP-COMPRESSION RATE TRADEOFF

We report the Speedup-Compression Rate Tradeoff in Figure 3 for all models. We also break down
the results as all layers, CONV layers and FC layers separately. We find that our method achieves at
least 8.65X speedup for the inference of all layers. And for CONV/FC layers, our method achieves
speedup 10.47X/1.6X at least, except for the FC layers in VGG-16 without Pruning and Quanti-
zation. The exception is because Block-wise method incurs significant redundancy, since both the
alphabet of WT and the amount of parameters are huge and grow significantly.
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Figure 3: Speedup-Compression Rate Tradeoff of Huffman Coding, our Element-wise method, and
our Block-wise method among (A) AlexNet (w/out PQ); (B) VGG-16 (w/out PQ); (C) AlexNet (w/
PQ); and (D) VGG-16 (w/ PQ). For each sub-figure, results are for (i) all layers; (ii) CONV layers;
(iii) FC layers. The y-axis refers to Compression Rate (lower is better), and the x-axis refers to
Speedup (higher is better).

Interestingly, for FC layers, we observe variations across compression schemes and models. We
make two observations. First, Element-wise method achieves better speedup with worse compres-
sion rate for FC layers of models w/out PQ. This is because Element-wise formulation suits better
for the structure of FC layers, but also suffers from a huge amount of parameters. Second, Element-
wise method achieves both better speedup and compression rate for FC layers of models w/ PQ.
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This is because PQ can significantly reduces the amount of parameters, which make Element-wise
method more suitable.

6.3 SPEEDUP-LAYER SIZE TRADEOFF

We finally examine the tradeoff between the speedup and layer size among different methods. Note
that, after PQ, the permutation of layers from AlexNet remain consistent, but VGG-16 changes
slightly in CONV layers. We draw two observations. First, the benefits of Element-wise method
exhibits more robust trends in CONV layers in most cases, with increasing speedup with the grow-
ing layer size, compared with Block-wise method. This is because, compared with Element-wise
method, Block-wise method is much more sensitive to both layer size and the layer structure. Sec-
ond, PQ significantly varies the tradeoffs between speedup and layer size. This is because PQ
exploits the structure information to reduce the layer size as well as the layer complexity. Therefore,
it’s expected that the speedup may vary significantly due to PQ.

Figure 4: Speedup-Layer Size tradeoffs among (A) AlexNet (w/out PQ); (B) VGG-16 (w/out PQ);
(C) AlexNet (w/ PQ); and (D) VGG-16 (w/ PQ).

7 DISCUSSIONS

Though we demonstrate the synergy between our method and Pruning-Quantization from Han et al.
(2016), different Pruning and Quantization methods are expected to be synergistic as well. This is
because our method doesn’t affect any optimization in terms of model structures and value encoding,
as Pruning and Quantization achieves. In addition, our element-wise and block-wise methods can
be combined for a single model inference, since it can be constructed in a layer-wise manner. As
suggested by our results, the layer heterogeneity breeds the needs to combine different formulations
to obtain the best tradeoffs between performance and space consumption.

8 CONCLUSIONS

We present “Succinct Compression” that improves inference performance with compressed neu-
ral networks during inference runtime. Our method operates by proper combinations of newly-
introduced formulations, Succinct Data Structures and carefully-engineered inference. We show
our method achieves near-optimal compression results, compared with Huffman Coding. In addi-
tion, we reveals that our method achieves significant speedup over Huffman Coding, by exploiting
the characteristics of queries directly on compression in Succinct Data Structures. We also show
that our method is synergistic with Pruning and Quantization, which brings significant performance
benefits and space saving at the same time.

9
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