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Abstract

Pretrained foundation models (FMs) have exhibited extraordinary in-context learning per-
formance, allowing zero-shot (or few-shot) generalization to new environments/tasks not en-
countered during the pretraining. In the case of reinforcement learning (RL), in-context RL
(ICRL) emerges when pretraining FMs on decision-making problems in an autoregressive-
supervised manner. Nevertheless, the current state-of-the-art ICRL algorithms, such as
Algorithm Distillation, Decision Pretrained Transformer and Decision Importance Trans-
former, impose stringent requirements on the pretraining dataset concerning the behavior
(source) policies, context information, and action labels, etc. Notably, these algorithms
either demand optimal policies or require varying degrees of well-trained behavior policies
for all pretraining environments. This significantly hinders the application of ICRL to real-
world scenarios, where acquiring optimal or well-trained policies for a substantial volume of
real-world training environments can be prohibitively expensive or even intractable. To over-
come this challenge, we introduce a novel approach, termed State-Action Distillation (SAD),
that allows to generate an effective pretraining dataset guided solely by random policies. In
particular, SAD selects query states and corresponding action labels by distilling the out-
standing state-action pairs from the entire state and action spaces by using random policies
within a trust horizon, and then inherits the classical autoregressive-supervised mechanism
during the pretraining. To the best of our knowledge, this is the first work that enables ef-
fective ICRL under (e.g., uniform) random policies and random contexts. We also establish
the quantitative analysis of the trustworthiness as well as the performance guarantees of our
SAD approach. Moreover, our empirical results across multiple popular ICRL benchmark
environments demonstrate that, on average, SAD outperforms the best baseline by 236.3%
in the offline evaluation and by 135.2% in the online evaluation.

1 Introduction

Pretrained foundation models (FMs) have demonstrated promising performance across a wide variety of
domains in artificial intelligence including natural language processing (NLP) (Devlin, 2018; Radford, 2018;
Radford et al., 2019; Brown, 2020), computer vision (CV) (Yuan et al., 2021; Sammani et al., 2022; Ma et al.,
2023; Chen et al., 2024b), and sequential decision-making (Chen et al., 2021; Janner et al., 2021; Xu et al.,
2022b; Yang et al., 2023; Light et al., 2024a;b). This success is attributed to FMs’ impressive capability of
in-context learning (Dong et al., 2022; Li et al., 2023; Wei et al., 2023; Wies et al., 2024) which refers to
the ability to infer and understand the new tasks provided with the context information (or prompt) and
without model parameters updates. Recently, in-context reinforcement learning (ICRL) (Laskin et al., 2022;
Grigsby et al., 2023; Lin et al., 2023; Sinii et al., 2023; Zisman et al., 2023; Lee et al., 2024; Lu et al., 2024;
Wang et al., 2024; Dong et al., 2024) has emerged when FMs are pretrained on sequential decision-making
problems. Whereas FMs use texts as the context/prompt in NLP, ICRL treats the state-action-reward tuples
as the contextual information for decision-making.

However, the current state-of-the-art (SOTA) ICRL algorithms impose strict requirements on the pretraining
datasets. More specifically, Algorithm Distillation (AD) (Laskin et al., 2022) requires the context to contain
the complete learning history (from the initial policy to the final-trained policy) of the source (or behavior) RL
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algorithm for all pretraining environments. In addition, AD requires environments to have short episodes,
allowing the context to capture cross-episodic information. This enables AD to learn the improvement
operator of the source RL algorithm. Conversely, Decision Pretrained Transformer (DPT) (Lee et al., 2024)
partially relaxes the requirement on the context, permitting it to be gathered by random policies and without
needing to adhere to the transition dynamics. Nevertheless, DPT necessitates the optimal policy to label
an optimal action for any randomly sampled query state across all pretraining environments. To explore
the feasibility of ICRL in the absence of optimal policies, Decision Importance Transformer (DIT) (Dong
et al., 2024) proposes to leverage the observed state-action pairs in the context data as query states and
corresponding action labels. Each state-action pair within the context is assigned a weight in the training
process. This weight is proportional to the pseudo-return of the pair. Thus, DIT prioritizes the training on
high-pseudo-return pairs. Despite not demanding optimal policies, DIT still requires a substantial context
dataset to comprehensively cover all state-action pairs from the state and action spaces. Furthermore, DIT
mandates that more than 30% of the transition data in the context be well-trained, and the context should
originate from a complete episode.

Notably, acquiring either optimal policies or well-trained policies across a multitude of pretraining envi-
ronments in real-world scenarios can be prohibitively expensive or even intractable. On the other hand,
the transition data available in real-world problems like healthcare (Fatemi et al., 2022; Tang & Wiens,
2021)—collected as the context—may not originate from a complete episode. These stringent requirements
on the pretraining dataset of the SOTA ICRL algorithms severely limit their practical applications to the real
world, especially for those where the transition data exhibits high variance to train an effective policy, and
a naive random policy such as the uniform policy becomes a reasonable choice at hand. Consequently, this
paper centers on the ICRL that operates without the need for optimal (or any degree of well-trained) policies
or episodic context, placing its emphasis on the scenarios under (e.g., uniform) random policies and random
contexts only. More background knowledge can be found in the Related Work section (see Appendix A).

Figure 1: Schematic of the State-Action Distillation (SAD) approach. SAD first collects the context and
query state using a random policy, then distills the action label by exploring the action space using the
random policy and query state within a trust horizon. The collected contexts, query states, and action
labels form the pretraining dataset, which can be employed to pretrain a foundation model for in-context
reinforcement learning in a supervised pretraining mechanism.

1.1 Main Contributions

The main contributions of this work are summarized as follows.

• We propose a novel approach termed State-Action Distillation (SAD) to generate the pretraining
dataset of ICRL under random policies. Notably, SAD distills the outstanding state-action pairs
over the entire state and action spaces for the query states and corresponding action labels (refer to
Figure 1), by executing all possible actions under the random policies within a trust horizon.
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• To the best of our knowledge, SAD stands as the first method that enables effective ICRL under
(e.g., uniform) random policies and random contexts.

• We establish the quantitative analysis of the trustworthiness as well as the performance guarantees
of our SAD approach. We substantiate the efficacy of SAD by empirical results on several popular
ICRL benchmark environments. On average, SAD significantly outperforms all existing SOTA ICRL
algorithms. More concretely, SAD surpasses the best baseline by 236.3% in the offline evaluation
and by 135.2% in the online evaluation.

2 In-Context Reinforcement Learning

This section introduces the background of ICRL mechanisms and three SOTA ICRL algorithms. We start
by presenting the preliminaries of ICRL.

2.1 Preliminaries

RL problems are generally formulated as Markov Decision Processes (MDPs) (Sutton, 2018). An MDP can be
represented by a tuple τ = (S, A, R, P, ρ), where S and A denote finite state and action spaces, R : S×A → R
denotes the reward function that evaluates the quality of the decision (action), P : S ×A×S → [0, 1] denotes
the transition probability that describes the dynamics of the system, and ρ : S → [0, 1] denotes the initial
state distribution.

A policy π defines a mapping from states to probability distributions over actions, providing a strategy that
guides the agent in the decision making. The agent interacts with the environment following the policy π and
the transition dynamics of the system, and then generates an episode of the transition data (s0, a0, r0, · · · ).
The performance measure J(π) is defined by the expected discounted cumulative reward under the policy π

J(π) = Es0∼ρ,at∼π(·|st),st+1∼P (·|st,at)

[ ∞∑
t=0

γtrt

]
. (1)

The goal of RL is to find an optimal policy π∗ that maximizes J(π). It is crucial to recognize that π∗ often
varies across different MDPs (environments). Thus, the optimal policy for standard RL must be re-learned
each time a new environment is encountered. Under this circumstance, ICRL proposes to pretrain a FM
on a wide variety of pretraining environments, and then deploy it in the unseen test environments without
updating parameters in the pretrained model, i.e., zero-shot generalization (Sohn et al., 2018; Mazoure et al.,
2022; Zisselman et al., 2023; Kirk et al., 2023).

2.2 Supervised Pretraining Mechanism

In this subsection, we introduce the methodology behind ICRL–a supervised pretraining mechanism. Con-
sider two distributions over environments Ttrain and Ttest for pretraining and test (evaluation), respectively.
Each environment, along with its corresponding MDP τ , can be regarded as an instance drawn from the
environment distributions, where each environment may exhibit distinct reward functions and transition
dynamics. Given an environment τ , a context/prompt C = {si, ai, ri, s′

i}i∈[n] refers to a collection of interac-
tions between the agent and the environment τ , sampled from a pretraining context distribution Dtrain(· | τ),
i.e., C ∼ Dtrain(· | τ). Notably, Dtrain(· | τ) contains the contextual information regarding the environment
τ . We next consider a query state distribution Dτ

q and a label policy that maps the query state to the action
label, i.e., πl : S → ∆(al). Then, the joint distribution over the environment τ , context C, query state sq,
and action label al is given by

Ptrain(τ, C, sq, al) = Ttrain(τ) · Dtrain(C|τ) · Dτ
q · πl(al|sq). (2)

ICRL follows a supervised pretraining mechanism. More concretely, a FM with parameter θ (denoted by
Fθ : C × S → ∆(al)) is pretrained to predict the action label al given the context C and query state sq.
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To do so, the current literature (Laskin et al., 2022; Lee et al., 2024; Dong et al., 2024) often considers the
following objective function

θ∗ = arg min
θ

EPtrain [l (Fθ(· | C, sq), al)] , (3)

where l(·, ·) represents the loss function, for instance, negative log-likelihood (NLL) for discrete-action prob-
lems and mean square error (MSE) for continuous-action scenarios. We note that while the current SOTA
ICRL algorithms (AD, DPT, and DIT) adhere to a common objective function equation 3, they differ
significantly in constructing the context, query state, and action label.

Algorithm Distillation. Instead of learning an optimal policy for a specific environment, AD proposes
to learn a RL algorithm itself across a wide range of environments. This is, the FM in AD is pretrained to
imitate the source (or behavior) algorithm over the pretraining environment distribution Ttrain. In general,
AD demands a well-trained source algorithm with its complete learning history (from the initial policy to
the final-trained policy). Additionally, AD is restricted to the environments with short episode length by
which the context must capture cross-episode information of the source algorithm. In terms of the objective
function equation 3, AD takes the state at the time step t as the query state, at from the source algorithm
as the action label, and the episodic history data (s0, a0, r0, · · · , st−1, at−1, rt−1) to be the context.

Decision Pretrained Transformer. Instead of being stringent on the pretraining context dataset and
the environment itself, DPT handles the context and query state in a more general manner. Specifically,
DPT considers an entirely random collection of transitions as the context, a random query state sq drawn
from Dq, and an optimal action label corresponding to sq. Despite less requirements on the context, DPT
necessitates access to optimal policies for the optimal action labels in all pretraining environments, which
may not be available in real-world applications.

Decision Importance Transformer. DIT proposes to learn ICRL without optimal action labels, follow-
ing the same supervised pretraining mechanism as DPT. To that end, DIT leverages every possible state
and action in the context as the query state and corresponding action label. It is important to point out
that DIT requires a (partially) complete episode to form the context, enabling the computation of a pseudo-
return for each state-action pair. By mapping the pseudo-return to a weight that reflects the quality of each
state-action pair, DIT can pretrain the FM using the DPT structure, augmented by the weight assigned to
each query state and action label. In other words, DIT prioritizes the training on high-pseudo-return pairs.
Last but not least, DIT still mandates that more than 30% of the context data comes from well-trained
policies.

To summarize, it is worth highlighting that all these SOTA ICRL algorithms necessitate varying degrees
of well-trained, or even optimal policies during the pretraining phase. However, obtaining optimal or well-
trained policies for real-world applications is often prohibitive, as it demands extensive training across a
vast number of real-world environments. This challenge becomes even more pronounced in the domains
like healthcare (Fatemi et al., 2022), where the transition data exhibits high variance to train an effective
policy, and the random policy becomes a reasonable choice at hand. Therefore, executing ICRL under (e.g.,
uniform) random policies and random contexts is crucial for enabling the practical application of ICRL in
the real-world.

3 State-Action Distillation

In this section, we propose the State-Action Distillation (SAD), an approach for generating the pretraining
dataset for ICRL under random policies and random contexts (see Figure 1). We summarize the implemen-
tation details of SAD in Algorithms 1-6.

As indicated in equation 2, the pretraining data consists of the context, the query state and the action label.
We start by introducing the generation of the context under random policies in SAD (refer to Algorithm 1).
It is important to highlight that the context is derived through interactions with the environment under any
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given random policy (e.g., uniform random policy), and notably, the context not necessarily originates from
a complete episode. These benefits make SAD potentially well-suited for ICRL’s real-world applications with
random transition data only.

Algorithm 1 Collecting Contexts under Random Policy
1: Require: Random policy π, context horizon length T , state space S, environment τ , empty context

C = ∅
2: for t in [T ] do
3: Sample a state s ∼ S and an action a ∼ π(·|s)
4: Collect (r, s′) by executing action a in the environment τ
5: Add (s, a, r, s′) to C
6: end for
7: Return C

Having collected the random context, we are now in the stage of collecting query states and corresponding
action labels for the pretraining of FM under the random policy.

We proceed by recalling that DIT prioritizes the training on high-pseudo-return pairs from the context data
collected. To that end, DIT assigns a weight w to the loss function during the pretraining phase that is
proportional to the pseudo-return, i.e., w(st, at) ∝

∑T
t′=t γt′−trt′ . Nonetheless, we acknowledge that DIT

may not explore to train on good state-action pairs under the random policy for two reasons: (i) DIT
solely considers to train on the state-action pairs that are observed in the context, which contains limited
transition data and is derived by the random policy. (ii) Even for the state-action pairs in the collected
context, the pseudo-return does not necessarily prioritize the optimal pair but rather promotes the pair with
high immediate reward, as the discount factor applies starting from the current time step with a horizon of
(T − t + 1) only, instead of T .

Under this circumstance, our SAD approach advocates for distilling the outstanding query states and action
labels by searching across the entire state and action spaces under the random policy. Before proceeding, we
first recall the definition of the optimal action in the problems of multi-armed bandit (MAB) and MDP. For
any query state sq, the optimal action in the action space A for sq corresponds to the action that maximizes
the optimal Q-function, i.e.,

a∗
MAB(sq) ∆= arg max

a∈A
E [r(sq, a)]︸ ︷︷ ︸
Q∗

MAB(sq,a)

, (4)

a∗
MDP(sq) ∆= arg max

a∈A
Eπ∗

[ ∞∑
t=0

γtrt|s0 = sq, a0 = a

]
︸ ︷︷ ︸

Q∗
MDP(sq,a)

, (5)

where sq in equation 4 refers to the singleton state in the MAB problem, and π∗ in equation 5 denotes the
optimal policy in the MDP.

However, both a∗
MAB and a∗

MDP are intractable to obtain in our problem of interest for two reasons: (i)
computing the expectation in the Q-function demands to sample infinite episodes; (ii) one can only have
access to the random policy, instead of π∗. Therefore, we instead consider (i) stochastic approximation that
uses the average as the unbiased estimate of the expectation due to the law of large numbers; (ii) maximizing
the return under the random policy.

3.1 Trustworthiness of the Random Policy

Subsequently, the crucial question arises: when can we trust the random policy? We claim: The
random policy is probabilistically trustworthy for the MAB and MDP problems within a trust horizon. We
formalize this claim for the MAB and MDP respectively in this subsection, which relies on the following
assumption.
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Assumption 1. The absolute value of the reward r(s, a) is bounded by a positive constant B for all state-
action pairs in the MAB and MDP, i.e., |r(s, a)| ≤ B, ∀(s, a) ∈ S × A.

Note that Assumption 1 is common in the literature (Azar et al., 2017; Wei et al., 2020; Zhang et al., 2021).
In particular, in the case of finite state-action spaces, it is always possible to design the reward to avoid the
possibility of being unbounded. With Assumption 1 established, we first formalize the trustworthiness of
the random policy for the MAB problem in the following theorem.
Theorem 1 (MAB). Let Assumption 1 hold. Denote by sq and a∗ the singleton state and optimal arm in
the MAB problem. Consider a random policy π. Suppose that each arm has been selected N times (N ∈ N+,
trust horizon) under π. With probability at least 1 − δ, it holds that

1
N

N∑
i=1

r(sq, a∗ | π) ≥ max
a∈A\{a∗}

1
N

N∑
i=1

r(sq, a | π), (6)

when the trust horizon N satisfies

N ≥ 8B2(
E[r(sq, a∗)] − max

a∈A\{a∗}
E[r(sq, a)]

)2 log
(

1 +
√

1 − δ

δ

)
. (7)

Proof. See Appendix B.1.

□

Theorem 1 implies that the trust horizon N quantifies the trustworthiness of the decision making under the
random policy π for MAB problems. Indeed, a larger N implies a higher probability (smaller δ) that the
average reward of the optimal arm under π exceeds that of the next-best arm, therefore, making a more
reliable decision. We substantiate this claim by empirical evidence (depicted in Figure 5).

In the practical implementation, we simply execute the MAB under the random policy π until every action
in the action space A selected exactly N times, discarding any actions that exceed the trust horizon N .
Subsequently, we select the action with the maximal average reward as the action label for the singleton
state. The detailed procedure for collecting such action labels in MAB is outlined in Algorithm 2.

Algorithm 2 Collecting Query States and Action Labels under Random Policy (MAB)
1: Require: Random policy π, singleton query state sq, action space A, environment τ , empty average

reward list Lr, trust horizon N
2: Execute the MAB in τ under the random policy π until every action in A selected exactly N times,

discarding any actions that exceed the trust horizon N .
3: for a in [A] do
4: Record the average reward associated with the action a in the history, and add it to Lr

5: end for
6: Obtain al = A(arg max(Lr))
7: Return (sq, al)

While the trustworthiness of the random policy in the MAB problem has been established and discussed,
the scenario of the MDP presents a distinct challenge. To proceed, we rely on the following assumption.
Assumption 2. Given a random policy π, assume that

arg max
a∈A

Qπ
MDP(sq, a) = arg max

a∈A
Q∗

MDP(sq, a), ∀sq ∈ S. (8)

It is worth noting that Assumption 2 holds in MDP problems like grid world navigation (Laskin et al., 2022),
which we consider for empirical evaluation in the Experiments section of this paper. Specifically, the action
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derived from maximizing the return under the random policy becomes (nearly) equivalent to that guided by
maximizing the return under the optimal policy, as the maximal return induced by both policies corresponds
to navigating to the goal as quickly as possible. We formalize this in Proposition 1 and provide a theoretical
proof and empirical validation (refer to Appendix B.2). Besides, we also acknowledge that Assumption 2
may not hold universally for all MDP problems, and we leave its exploration for future research.

Having introduced Assumption 2, we are in conditions of establishing the trustworthiness of the random
policy for MDP, which we formally state in the next theorem. To proceed, let us define

Qπ,N
MDP(sq, a) = Eπ

[
N∑

t=0
γtr(st, at)|s0 = sq, a0 = a

]
, (9)

Q̂π,N
MDP(sq, a)= 1

Nep

Nep∑
i=1

N∑
t=0

(
γtr(st, at)|s0 = sq, a0 = a, π

)
. (10)

where Q̂π,N
MDP(sq, a) is an unbiased estimate of Qπ,N

MDP(sq, a) and Nep denotes the number of episodes.
Theorem 2 (MDP). Let Assumptions 1 and 2 hold. Denote by a∗ the optimal action given sq. Consider a
random policy π as well as its Q-function Qπ

MDP. Consider the trust horizon N > logγ (κ(1 − γ)/(2B)) − 1.

Define κ = min
sq∈S

(
Qπ

MDP(sq, a∗) − max
a∈A\{a∗}

Qπ
MDP(sq, a)

)
. With probability at least 1 − δ, it holds that

Q̂π,N
MDP(sq, a∗) ≥ max

a∈A\{a∗}
Q̂π,N

MDP(sq, a), ∀sq ∈ S, (11)

when the number of episodes Nep satisfies

Nep ≥
2
(
1 − γN+1)2

(κ (1 − γ) /(2B) − γN+1)2︸ ︷︷ ︸
G1

log
(

1 +
√

1 − δ

δ

)
. (12)

Proof. See Appendix B.3. □

Theorem 2 implies that the trust horizon N quantifies the trustworthiness of the decision making under the
random policy π for MDP problems. Notice that G1 in equation 12 is monotonically decreasing with respect
to the trust horizon N when N > logγ (κ(1 − γ)/(2B)) − 1 (see Lemma 2 in Appendix B.4). Thus, with a
fixed number of episodes, a larger N corresponds to a higher probability (smaller δ) that the average reward
of the optimal action under π exceeds that of the next-best action, indicating a more reliable decision. This
aligns with the intuition that a larger N corresponds to a closer approximation of the infinite-horizon MDP,
where the optimal action emerges under the random policy π (by Assumption 2).

Algorithm 3 Collecting Query States and Action Labels under Random Policy (Sparse-Reward MDP)
1: Require: Random policy π, state space S, action space A, environment τ , trust horizon N
2: Set min_step = N + 1
3: while min_step > N do
4: Sample a query state sq ∼ S
5: Empty a step list Ls

6: for a in [A] do
7: Initialize the state and action as s0 = sq, a0 = a
8: Run an episode of N steps in τ under the random policy π, and terminate the episode early upon

receiving a reward
9: Add consumed steps to Ls (add “N + 1” if no reward is received)

10: end for
11: min_step = min(Ls)
12: end while
13: Obtain al = A(arg min(Ls))
14: Return (sq, al)

7



Under review as submission to TMLR

In the practical implementation, we present two versions of pseudo-codes for the MDP with dense and sparse
rewards. In the case of dense rewards, we randomly select a query state from the state space and execute an
episode of N steps. Subsequently, we choose the action that maximizes Q̂π,N

MDP(sq, a) across the entire action
space A. The implementation details are summarized in Algorithm 5 (see Appendix C). Furthermore, the
MDP with sparse rewards are generally more challenging to solve, as the agent does not receive feedback from
the environment at each step. For any query state sq, our goal remains to select the action that maximizes
Q̂π,N

MDP(sq, a). However, this approach may prove ineffective if N is too small, as the agent may never reach
the goal, resulting in a return of 0 for all actions. To enhance the practicality in the implementation of the
sparse-reward MDP, we adopt a different strategy. Specifically, for any query state sq, we prioritize actions
that can achieve the goal within N steps, with the actions consuming fewer steps being preferred. If no
action can accomplish the goal within N steps, we sample another query state until a qualified action is
identified. This action is then designated as the action label associated with the query state sq. Details of
this implementation is outlined in Algorithm 3.

Having introduced the processes for collecting the context, query state, and action label under the random
policy, we can now generate the pretraining dataset by integrating the aforementioned procedures (refer to
Algorithm 4). Given the pretraining dataset, the model pretraining procedure as well as the offline and
online deployment for SAD are summarized in Algorithm 6 (see Appendix C).

Algorithm 4 State-Action Distillation (SAD) under Random Policy
1: Require: Empty pretraining dataset D with size |D|, pretraining environment distribution Ttrain, ran-

dom policy π, context horizon length T , state space S, action space A, trust horizon N
2: for i in [|D|] do
3: Sample an environment τ ∼ Ttrain
4: Collect the context C under the environment τ and the random policy π through Algorithm 1
5: Collect the query state sq and the action label al under the environment τ and the random policy π

through Algorithm 2 for MAB (Algorithm 3 for sparse-reward MDP, Algorithm 5 for dense-reward
MDP)

6: Add (C, sq, al) to the pretraining dataset D
7: end for
8: Return D

3.2 Performance Guarantees

In this subsection, we provide theoretical guarantees of our SAD approach. Theorems 1 and 2 imply the prob-
ability of SAD selecting the optimal action within a trust horizon. Then inspired by DPT, the trajectories
generated by SAD take the same distribution as those produced by a well-specified posterior sampling (Os-
band et al., 2013) with a high probability. We formalize this claim in the following corollary.

Corollary 1. Let hypotheses of Theorems 1 and 2 hold. Denote by l the length of the trajectory. For any
environment τ and history data H, SAD and the well-specified posterior sampling follow the same trajectory
distribution with probability (1 − δ)l

PFθ
(trajectory | τ, H) = Pps(trajectory | τ, H), ∀trajectory. (13)

Proof. See Appendix B.5.

□

Having established the corollary above, we next investigate the regret bound of SAD in the finite MDP
setting (see details in Appendix B.6). Consider the online cumulative regret of SAD over K episodes in the
environment τ as Regretτ (Fθ) =

∑K
k=0 Vτ (π∗

τ ) − Vτ (πk), where πk(· | st) = Fθ(· | Ck−1, st). Then, the regret
bound of SAD is formally stated as follows.
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Corollary 2. Let hypotheses of Theorems 1 and 2 hold. Given environment τ and a constant B′ > 0, suppose
that supτ Ttest(τ)/Ttrain(τ) ≤ B′. In the finite MDP with horizon T , it holds with probability (1 − δ)KT that

ETtest [Regretτ (Fθ)] ≤ Õ(B′|S|T 3/2
√

K|A|). (14)

Proof. See Appendix B.7.

□

4 Experiments

In this section, our empirical results on five ICRL benchmark environments (Gaussian Bandits, Bernoulli
Bandits, Darkroom, Darkroom-Large, Miniworld) substantiate the efficacy of our proposed SAD method.
The setup of these environments are deferred to Appendix D.

We compare our proposed SAD approach with three SOTA ICRL algorithms: AD, DPT, and DIT in the
aforementioned benchmark environments (see details in Appendix D.1), and consider the DPT with optimal
action labels (DPT∗) as the oracle upper bound of SAD. Since all these methods are FM-based, we employ
the same transformer architecture (causal GPT2 model (Radford et al., 2019)) and hyperparameters (number
of attention layers, number of attention heads, embedding dimensions, etc) across all experiments to ensure
a fair comparison. The main hyperparameters employed in this work are summarized in Tables 1-2 (refer to
Appendix D.2).

In all experiments, we employ a uniform random policy to collect context, query states, and action labels,
as indicated in Algorithms 1-5. Then, we pretrain and (offline/online) deploy the FM as presented in
Algorithm 6 (see Appendix C).

0 100 200 300 400 500
Context Horizon

0.05
0.10
0.15
0.20
0.25
0.30
0.35

Su
bo

pt
im

al
ity

Offline Evaluation

AD
DPT
DIT
SAD (ours)
DPT *

(a)

0 100 200 300 400 500
Context Horizon

0
20
40
60
80

100
120
140
160

Cu
m

ul
at

iv
e 

Re
gr

et

Online Evaluation
AD
DPT
DIT
SAD (ours)
DPT *

(b)

0 100 200 300 400 500
Context Horizon

0.0
0.1
0.2
0.3
0.4

Su
bo

pt
im

al
ity

Offline Evaluation

AD
DPT
DIT
SAD (ours)
DPT *

(c)

0 100 200 300 400 500
Context Horizon

0
25
50
75

100
125
150
175

Cu
m

ul
at

iv
e 

Re
gr

et

Online Evaluation
AD
DPT
DIT
SAD (ours)
DPT *

(d)

Figure 2: Offline and online evaluations of ICRL algorithms trained under a uniform random policy: AD,
DPT, DIT, DPT∗, and SAD (ours). Each algorithm contains four independent runs with mean and standard
deviation. Gaussian Bandits: (a) and (b), Bernoulli Bandits: (c) and (d).

Bandits. We adhere to offline and online evaluation metrics for Bandits established in (Lee et al., 2024).
In the offline evaluation, we utilize the suboptimality over different context horizon, defined by µa∗ − µa,
where µa∗ and µa represent the mean rewards over 200 test environments of the optimal arm and the selected
arm, respectively. In online evaluation, we employ cumulative regret, defined by

∑T
t=0(µa∗ − µat

), where at

denotes the selected arm at time t. Figures 2(a) and 2(b) demonstrate that our SAD approach significantly
outperforms three SOTA baselines under uniform random policy, by achieving much lower suboptimality and
cumulative regret. More specifically, let us define the performance improvement of SAD over baselines in the
offline evaluation by

suboptimalitybaseline − suboptimalitySAD

suboptimalitySAD
. (15)

Likewise, the performance improvement in the online evaluation is to simply replace the suboptimality by
cumulative regret. Then, SAD surpasses the best baseline, DIT, by achieving 354.0% performance improve-
ments in the offline evaluation and 273.9% in the online evaluation (refer to the first row of Tables 3 and
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4 in Appendix D.3). To evaluate the out-of-distribution performance of SAD compared to other baselines,
we test the models pretrained by all methods on the Gaussian Bandits and assess their performance on the
Bernoulli Bandits with no further fine-tuning. Figures 2(c) and 2(d) illustrate that SAD still achieves lower
suboptimality and cumulative regret than all other baselines, demonstrating a more robust performance in
handling out-of-distribution scenarios. More specifically, SAD surpasses the best baseline, DIT, by 289.5%
in the offline evaluation and 313.9% in the online evaluation (refer to the second row of Tables 3 and 4 in
Appendix D.3).

In the environments of Darkroom and Miniworld, we use return as the evaluation metric. Moreover, we
define the performance improvement of our SAD approach over the baseline methods in both offline and
online evaluations by

ReturnSAD − Returnbaseline

Returnbaseline
. (16)
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Figure 3: Offline and online evaluations of ICRL algorithms trained under a uniform random policy: AD,
DPT, DIT, DPT∗, and SAD (ours). Each algorithm contains four independent runs with mean and standard
deviation. DarkRoom: (a) and (b). DarkRoom-Large: (c) and (d).

Darkrooms. Figure 3 demonstrates that our SAD approach significantly outperforms three SOTA base-
lines in the Darkroom and Darkroom-Large under uniform random policy, by achieving much higher return.
In the Darkroom, SAD surpasses the best baseline, DIT, by 149.3% in the offline evaluation and 41.7% in
the online evaluation (refer to the third row of Tables 3 and 4 in Appendix D.3). Likewise, in the Darkroom-
Large, SAD outperforms the best baseline, DIT, by 266.8% in the offline evaluation and 24.7% in the online
evaluation (refer to the fourth row of Tables 3 and 4 in Appendix D.3).

AD DPT DIT SAD DPT *

 
0
5

10
15
20
25
30

Re
tu

rn

Offline Evaluation

(a)

0 5 10 15 20 25 30 35 40
Episode

0
5

10
15
20
25
30
35

Re
tu

rn

Online Evaluation

AD
DPT
DIT
SAD (ours)
DPT *

(b)

Figure 4: Offline and online evaluations of ICRL algorithms trained under a uniform random policy: AD,
DPT, DIT, DPT∗, and SAD (ours). Each algorithm contains four independent runs with mean and standard
deviation. Environment: Miniworld.

Miniworld. Figure 4 demonstrates that our SAD approach outperforms the three SOTA baselines in the
Miniworld under uniform random policy, by achieving a higher return. More specifically, SAD surpasses the
best baseline, DIT, by 122.1% in the offline evaluation and 21.7% in the online evaluation (refer to the fifth
row of Tables 3 and 4 in Appendix D.3).
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Tables 3 and 4 also imply that SAD significantly outperforms all baselines on average across the five ICRL
benchmark environments. In the offline evaluation, SAD exceeds the best baseline DIT by 236.3% on
average, the second-best DPT by 2015.9%, and the third-best AD by 2075.2%. In the online evaluation,
SAD surpasses DIT by 135.2%, DPT by 3093.8%, and AD by 3208.8% on average. In addition to comparing
SAD with the three SOTA ICRL algorithms under the uniform random policy, we also include the empirical
performance of the DPT with optimal action labels (DPT∗) as the oracle upper bound of SAD. We observe
that SAD demonstrates performance comparable to DPT∗ in tasks such as Gaussian Bandits, Bernoulli
Bandits, DarkRoom, and DarkRoom-Large. Although Miniworld introduces challenges due to its pixel-
based inputs and complex environments, SAD under the random policy still achieves approximately 50%
of the performance of DPT∗. Overall, SAD is within 18.6% of the performance of DPT∗ in the offline
evaluation across the five ICRL tasks, and within 12.3% in the online evaluation (see details in Tables 3 and
4; Appendix D.3).

4.1 Ablation Studies

Trust Horizon. Theorems 1 implies that the uniform random policy is probabilistically trustworthy within
a horizon N , with monotonically increasing probability of selecting the optimal action with N in the MAB
problem. We substantiate this observation from the theorem by empirical evidence, as presented in Fig-
ure 5(a). Furthermore, we conduct empirical investigations into the influence of the trust horizon N on the
performance of the MAB problem, which considers the environments of Gaussian Bandits. As expected, a
larger N in the MAB problem leads to a better performance (see Figures 6(a) and 6(b)).
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Figure 5: The accuracy (probability) of selecting the optimal action in the MAB and MDP problems with
varying trust horizon N .
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Figure 6: Offline and online evaluation of SAD with varying trust horizon N for MAB: (a) and (b), and for
MDP: (c) and (d). Each N contains four independent runs with mean and standard deviation.

We then shift to the MDP problem with the environment of Darkroom. Notice that in our practical algorithm
for the sparse-reward MDP like Darkroom (Algorithm 3), we only utilize the state-action pairs that can reach
the goal within a trust horizon. Therefore, we solely record the probability/accuracy of selecting the optimal
actions on those states, as presented in Figure 5(b). It shows that the accuracy monotonically decreases
with respect to the trust horizon N , which ideally should lead to monotonically decreasing performance as
well. Nonetheless, we acknowledge that this is not the case. In particular, a large trust horizon N in the
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MDP leads to the low accuracy of selecting the optimal action, whereas a small N may induce the partially
short-sighted training of FM, as Algorithm 3 solely trains on the states at most N steps from the goal,
instead of all states (refer to Figure 7). Our numerical results in Figures 6(c) and 6(d) validate this with
the fact N = 7 performing best, and provide the empirical evidence that either an excessively large or small
trust horizon can lead to suboptimality.

6 5 4 3 2 1

7 6 5 4 3 2 1

8 7 6 5 4 3 2

9 8 7 6 5 4 3

10 9 8 7 6 5 4

11 10 9 8 7 6 5

12 11 10 9 8 7 6

(a)

6 5 4 3 4 5 6

5 4 3 2 3 4 5

4 3 2 1 2 3 4

3 2 1 1 2 3

4 3 2 1 2 3 4

5 4 3 2 3 4 5

6 5 4 3 4 5 6

(b)

Figure 7: The minimal number of steps required for a query state to reach the goal (the golden star). (a):
goal in the upper-right corner. (b): goal in the middle.

Transformer Hyperparameters. We aim to validate the robustness of our proposed SAD approach with
respect to the hyperparameters in the transformer block. Concretely, we focus on the number of attention
heads and attention layers, as they have large impacts on the model size of the transformer. As depicted in
Figure 8, our empirical results in Darkroom demonstrate a robust performance across varying numbers of
attention heads and attention layers.
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Figure 8: Offline and online evaluations of SAD with different transformer hyperparameters: the number of
attention heads ((a) and (b)), the number of attention layers ((c) and (d)). Each hyperparameter contains
four independent runs with mean and standard deviation.

5 Conclusion

In this work, we propose State-Action Distillation (SAD), a novel approach for generating the pretraining
dataset for ICRL, which is designed to overcome the limitations imposed by the existing ICRL algorithms
like AD, DPT, and DIT in terms of relying on well-trained or even optimal policies to collect the pretraining
dataset. SAD leverages solely random policies to construct the pretraining data, significantly promoting
the practical application of ICRL in real-world scenarios. We also provide the quantitative analysis of the
trustworthiness as well as the performance guarantees of SAD. Moreover, our empirical results on multiple
popular ICRL benchmark environments demonstrate significant improvements over the existing baselines in
terms of both performance and robustness. Nevertheless, we note that SAD is currently limited to the discrete
action space. Extending SAD to handle the continuous action space as well as more complex environments
presents a promising direction for the future research.
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A Related Work

A.1 Offline Reinforcement Learning

In contrast to the unlimited interactions with the environment in online RL, offline RL seeks to learn optimal
policies from a pre-collected and static dataset (Fujimoto et al., 2019; Levine et al., 2020; Kumar et al., 2020;
Kostrikov et al., 2021; Chen et al., 2024a). One of the critical challenges in offline RL is with bootstrapping
from out-of-distribution (OOD) actions (Levine et al., 2020; Kumar et al., 2020; Xu et al., 2022a; Liu et al.,
2024) due to the mismatch between the behavior policies and the learned policies. To address this issue, the
current SOTA offline RL algorithms propose to update pessimistically by either adding a regularization or
underestimating the Q-value of OOD actions.

A.2 Autoregressive-Supervised Decision Making

In addition to the traditional offline RL methods, autoregressive-supervised mechanisms based on the trans-
former architecture (Vaswani, 2017) have been successfully applied to offline decision making domains by
their powerful capability in sequential modeling. The pioneering work in the autoregressive-supervised deci-
sion making is the Decision Transformer (DT) (Chen et al., 2021). DT autoregressively models the sequence
of actions from the historical offline data conditioned on the sequence of returns in the history. During
the inference, the trained model can be queried based on pre-defined target returns, allowing it to generate
actions aligned with the target returns. The subsequent works such as Multi-Game Decision Transformer
(MGDT) (Lee et al., 2022) and Gato (Reed et al., 2022) have exhibited the success of the autoregressive-
supervised mechanisms in learning multi-task policies by fine-tuning or leveraging expert demonstrations in
the downstream tasks.

A.3 In-Context Reinforcement Learning

However, both traditional offline RL and autoregressive-supervised decision making mechanisms suffer from
the poor zero-shot generalization and in-context learning capabilities to new environments, as neither can
improve the policy, with a fixed trained model, in context by trial and error. In-context reinforcement
learning (ICRL) aims to pretrain a transformer-based FM, such as GPT2 (Radford et al., 2019), across a
wide range of pretraining environments. During the evaluation (or inference), the pretrained model can
directly infer the unseen environment and learn in-context without the need for updating model parameters.
The SOTA ICRL algorithms including AD (Laskin et al., 2022), DPT (Lee et al., 2024) and DIT (Dong et al.,
2024) have demonstrated the potential of the ICRL framework. Nevertheless, each of these methods imposes
distinct yet strict requirements on the pretraining dataset e.g., requiring well-trained (or even optimal)
behavior policies, the context to be episodic and/or substantial, which significantly restrict their practicality
in real-world applications. Accordingly, mastering and executing ICRL under (e.g., uniform) random policies
and random contexts remains a crucial direction and a critical challenge.
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B Omitted Proofs

B.1 Proof of Theorem 1

Theorem 1 (MAB). Let Assumption 1 hold. Denote by sq and a∗ the singleton state and optimal arm in
the MAB problem. Consider a random policy π. Suppose that each arm has been selected N times (N ∈ N+,
trust horizon) under π. With probability at least 1 − δ, it holds that

1
N

N∑
i=1

r(sq, a∗ | π) ≥ max
a∈A\{a∗}

1
N

N∑
i=1

r(sq, a | π), (17)

when the trust horizon N satisfies

N ≥ 8B2(
E[r(sq, a∗)] − max

a∈A\{a∗}
E[r(sq, a)]

)2 log
(

1 +
√

1 − δ

δ

)
. (18)

Proof. For any action a ∈ A \ {a∗}, consider two positive constants

ϵ1 = α (E[r(sq, a∗)] − E[r(sq, a)]) , (19)
ϵ2 = (1 − α) (E[r(sq, a∗)] − E[r(sq, a)]) , (20)

where α ∈ [0, 1].

Consider the following two inequalities

1
N

N∑
i=1

r(sq, a∗ | π) ≥ E[r(sq, a∗)] − ϵ1, (21)

1
N

N∑
i=1

r(sq, a | π) ≤ E[r(sq, a)] + ϵ2. (22)

We note that the two inequalities above are the sufficient but not necessary conditions for 1
N

∑N
i=1 r(sq, a∗ |

π) ≥ 1
N

∑N
i=1 r(sq, a | π) to hold.

Therefore, we simply obtain that

P

(
1
N

N∑
i=1

r(sq, a∗ | π) ≥ 1
N

N∑
i=1

r(sq, a | π)
)

≥ P

(
1
N

N∑
i=1

r(sq, a∗ | π) ≥ E[r(sq, a∗)] − ϵ1,
1
N

N∑
i=1

r(sq, a | π) ≤ E[r(sq, a)] + ϵ2

)
(23)

= P

(
1
N

N∑
i=1

r(sq, a∗ | π) ≥ E[r(sq, a∗)] − ϵ1

)
· P

(
1
N

N∑
i=1

r(sq, a | π) ≤ E[r(sq, a)] + ϵ2

)
, (24)

where the last equation follows from the fact that each arm is independent to other arms. We then lower
bound the two probabilities in the previous expression using Hoeffding’s inequality (Hoeffding, 1994).

Since Assumption 1 implies that r(·, ·) ∈ [−B, B], Hoeffding’s inequality yields

P

(
1
N

N∑
i=1

r(sq, a | π) − E[r(sq, a)] ≤ ϵ2

)
≥ 1 − exp

(
− 2Nϵ2

2
(B − (−B))2

)
, (25)
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i.e.,

P

(
1
N

N∑
i=1

r(sq, a | π) − E[r(sq, a)] ≤ ϵ2

)
≥ 1 − exp

(
−Nϵ2

2
2B2

)
. (26)

Likewise, we have

P

(
1
N

N∑
i=1

r(sq, a∗ | π) − E[r(sq, a∗)] ≥ −ϵ1

)
≥ 1 − exp

(
− 2Nϵ2

1
(B − (−B))2

)
, (27)

i.e.,

P

(
1
N

N∑
i=1

r(sq, a∗ | π) − E[r(sq, a∗)] ≥ −ϵ1

)
≥ 1 − exp

(
−Nϵ2

1
2B2

)
. (28)

Therefore, it holds for any α ∈ [0, 1] that

P

(
1
N

N∑
i=1

r(sq, a∗ | π) ≥ 1
N

N∑
i=1

r(sq, a | π)
)

≥
(

1 − exp
(

−Nϵ2
1

2B2

))
·
(

1 − exp
(

−Nϵ2
2

2B2

))
(29)

=
(

1 − exp
(

−Nα2 (E[r(sq, a∗)] − E[r(sq, a)])2

2B2

))
·

(
1 − exp

(
−N(1 − α)2 (E[r(sq, a∗)] − E[r(sq, a)])2

2B2

))
.

(30)

Notice that the maximal value of the previous equation with respect to α reaches at α = 0.5. Then it holds
that

P

(
1
N

N∑
i=1

r(sq, a∗ | π) ≥ 1
N

N∑
i=1

r(sq, a | π)
)

≥

(
1 − exp

(
−N (E[r(sq, a∗)] − E[r(sq, a)])2

8B2

))2

, ∀a ∈ A \ {a∗}.

(31)

Since the previous inequality holds for any a ∈ A \ {a∗}, let us define

ā = arg max
a∈A\{a∗}

1
N

N∑
i=1

r(sq, a | π). (32)

Then it also holds that

P

(
1
N

N∑
i=1

r(sq, a∗ | π) ≥ max
a∈A\{a∗}

1
N

N∑
i=1

r(sq, a | π)
)

≥

(
1 − exp

(
−N (E[r(sq, a∗)] − E[r(sq, ā)])2

8B2

))2

(33)

≥

(
1 − exp

(
−

N
(
E[r(sq, a∗)] − maxa∈A\{a∗} E[r(sq, a)]

)2

8B2

))2

. (34)

where the last inequality follows from the monotonicity.

To make the previous probability greater than 1 − δ, we require(
1 − exp

(
−

N
(
E[r(sq, a∗)] − maxa∈A\{a∗} E[r(sq, a)]

)2

8B2

))2

≥ 1 − δ. (35)
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Hence, we require the trust horizon N to satisfy

N ≥ 8B2(
E[r(sq, a∗)] − maxa∈A\{a∗} E[r(sq, a)]

)2 log
(

1 +
√

1 − δ

δ

)
. (36)

This completes the proof.

□

B.2 Validation of Assumption 2 in the grid world MDP

For the sake of simplicity and without loss of generality, we consider a single-dimensional grid world MDP
with the understanding that Assumption 2 holds for the two-dimensional grid world MDP as well, which
is considered in our numerical experiments. The environmental details of the single-dimensional grid world
MDP can be found in Figure 9. To proceed, we rely on the lemma below, and Assumption 2 is then validated
by Proposition 1 that follows.

s s s s s

a a

Figure 9: A single-dimensional grid world MDP comprising five states {s0, s1, s2, s3, s4}, where s0 represents
the goal state (golden star). The environment offers two possible actions: a0 that corresponds to moving left,
and a1 that corresponds to moving right. Crossing the boundaries is strictly prohibited. Any transitions that
would result in boundary crossing will be confined to the current position. The reward structure is sparse,
with a value of 1 received solely upon reaching the goal state s0 and a value of 0 otherwise (see Figure 10
(left)). We consider an infinite time horizon with a discounter factor γ.

Lemma 1. Consider the MDP of a single-dimensional grid world with S = {s0, s1, s2, s3, s4} and A =
{a0, a1}, as depicted in Figure 9. Consider the random policy π in Assumption 2. It holds that

V π
MDP(s0) ≥ V π

MDP(s1) ≥ V π
MDP(s2) ≥ V π

MDP(s3) ≥ V π
MDP(s4). (37)

Proof. For simplicity, we consider π to be a uniform random policy, i.e., P (a0 | s) = P (a1 | s) = 0.5, ∀s ∈ S.
Recall the Bellman expectation equation

V π
MDP(s) =

∑
a∈A

π(a | s) (r(s, a) + γEs′V π
MDP(s′)) . (38)

By combining the previous Bellman expectation equation with Figure 9 yields

V π
MDP(s0) = 1

2 (r(s0, a0) + γV π
MDP(s0) + r(s0, a1) + γV π

MDP(s1)) ,

V π
MDP(s1) = 1

2 (r(s1, a0) + γV π
MDP(s0) + r(s1, a1) + γV π

MDP(s2)) ,

V π
MDP(s2) = 1

2 (r(s2, a0) + γV π
MDP(s1) + r(s2, a1) + γV π

MDP(s3)) ,

V π
MDP(s3) = 1

2 (r(s3, a0) + γV π
MDP(s2) + r(s3, a1) + γV π

MDP(s4)) ,

V π
MDP(s4) = 1

2 (r(s4, a0) + γV π
MDP(s3) + r(s4, a1) + γV π

MDP(s4)) .

(39)

Substituting all rewards from Figure 10 (left) into the previous equations yields

V π
MDP(s0) = 1

2 (1 + γV π
MDP(s0) + γV π

MDP(s1)) ,

V π
MDP(s1) = 1

2 (1 + γV π
MDP(s0) + γV π

MDP(s2)) ,

V π
MDP(s2) = 1

2 (γV π
MDP(s1) + γV π

MDP(s3)) ,

V π
MDP(s3) = 1

2 (γV π
MDP(s2) + γV π

MDP(s4)) ,

V π
MDP(s4) = 1

2 (γV π
MDP(s3) + γV π

MDP(s4)) .

(40)
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Given γ ∈ (0, 1), the last equation of equation 40 implies that

V π
MDP(s3) = 2 − γ

γ
V π

MDP(s4) ≥ V π
MDP(s4). (41)

Then, the fourth equation of equation 40 yields

V π
MDP(s2) = 2

γ
V π

MDP(s3) − V π
MDP(s4) (42)

≥ 2
γ

V π
MDP(s3) − V π

MDP(s3) (43)

≥ V π
MDP(s3). (44)

Likewise, the third equation of equation 40 can be rewritten as

V π
MDP(s1) = 2

γ
V π

MDP(s2) − V π
MDP(s3) (45)

≥ 2
γ

V π
MDP(s2) − V π

MDP(s2) (46)

≥ V π
MDP(s2). (47)

Combining the previous inequality with the first two equations of equation 40 directly yields

V π
MDP(s0) ≥ V π

MDP(s1). (48)

This completes the proof.

□

Proposition 1. Consider the MDP of a single-dimensional grid world with S = {s0, s1, s2, s3, s4} and
A = {a0, a1}, as depicted in Figure 9. Consider the random policy π in Assumption 2. It holds that

arg max
a∈A

Qπ
MDP(s, a) = arg max

a∈A
Q∗

MDP(s, a), ∀s ∈ S. (49)

Proof. By the definition of Q∗
MDP and π∗ we obtain

Q∗
MDP(s, a) = Qπ∗

MDP(s, a), ∀(s, a) ∈ S × A. (50)

Since the objective of the agent in Figure 9 is to reach the goal state as quickly as possible, and stay still,
π∗(s) is given by

π∗(s) = a0, ∀s ∈ S. (51)

Moreover, we have

arg max
a∈A

Q∗
MDP(s, a) = arg max

a∈A
Qπ∗

MDP(s, a) = π∗(s) = a0, ∀s ∈ S. (52)

We then turn to consider the learning of Q-function under the random policy π. For simplicity, we consider
π to be a uniform random policy, i.e., P (a0 | s) = P (a1 | s) = 0.5, ∀s ∈ S.

We next prove that Qπ
MDP(s, a0) ≥ Qπ

MDP(s, a1), ∀s ∈ S. We start with the state s0. Notice that

Qπ
MDP(s0, a0) = r(s0, a0) + γV π

MDP(s0) = 1 + γV π
MDP(s0), (53)

Qπ
MDP(s0, a1) = r(s0, a1) + γV π

MDP(s1) = γV π
MDP(s1). (54)

Lemma 1 implies that V π
MDP(s0) ≥ V π

MDP(s1). The previous equations then directly indicate

Qπ
MDP(s0, a0) ≥ Qπ

MDP(s0, a1). (55)

20



Under review as submission to TMLR

For the state s1, we have

Qπ
MDP(s1, a0) = r(s1, a0) + γV π

MDP(s0) = 1 + γV π
MDP(s0), (56)

Qπ
MDP(s1, a1) = r(s1, a1) + γV π

MDP(s2) = γV π
MDP(s2). (57)

Lemma 1 implies that V π
MDP(s0) ≥ V π

MDP(s1) ≥ V π
MDP(s2). Then it holds that

Qπ
MDP(s1, a0) ≥ Qπ

MDP(s1, a1). (58)

For the state s2, we have

Qπ
MDP(s2, a0) = r(s2, a0) + γV π

MDP(s1) = γV π
MDP(s1), (59)

Qπ
MDP(s2, a1) = r(s2, a1) + γV π

MDP(s3) = γV π
MDP(s3). (60)

Employing Lemma 1 directly yields

Qπ
MDP(s2, a0) ≥ Qπ

MDP(s2, a1). (61)

For the state s3, we have

Qπ
MDP(s3, a0) = r(s3, a0) + γV π

MDP(s2) = γV π
MDP(s2), (62)

Qπ
MDP(s3, a1) = r(s3, a1) + γV π

MDP(s4) = γV π
MDP(s4). (63)

Employing Lemma 1 directly yields

Qπ
MDP(s3, a0) ≥ Qπ

MDP(s3, a1). (64)

Last but not least, for the state s4, we have

Qπ
MDP(s4, a0) = r(s4, a0) + γV π

MDP(s3) = γV π
MDP(s3), (65)

Qπ
MDP(s4, a1) = r(s4, a1) + γV π

MDP(s4) = γV π
MDP(s4). (66)

Employing Lemma 1 directly yields

Qπ
MDP(s4, a0) ≥ Qπ

MDP(s4, a1). (67)

Hence we obtain

arg max
a∈A

Qπ
MDP(s, a) = a0, ∀s ∈ S. (68)

and then

arg max
a∈A

Qπ
MDP(s, a) = a0 = arg max

a∈A
Q∗

MDP(s, a), ∀s ∈ S. (69)

This completes the proof.

□

Empirical validation of Assumption 2 in the grid world MDP. In addition to the theoretical proof
above, we also provide an empirical validation of Assumption 2 in the grid world MDP in Figure 9.

We start by considering the Bellman expectation equation

Qπ
MDP(s, a) = r(s, a) + γEa′ [Qπ

MDP(s′, a′)] , ∀(s, a) ∈ S × A. (70)
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Let us define the temporal-difference (TD) error as follows

E(s, a) = |r(s, a) + γEa′ [Qπ
MDP(s′, a′)] − Qπ

MDP(s, a)| , ∀(s, a) ∈ S × A. (71)

With the understanding that the TD error E(s, a) of Qπ
MDP(s, a) is zero, we iteratively learn and update

Qπ
MDP(s, a) by minimizing the TD error. To that end, we consider γ = 0.99 and a convergence threshold

ϵQ = 10−6 (can be arbitrarily small). We initialize Qπ
MDP(s, a) to be full of zeros as in Figure 10 (middle).

Subsequently, we consistently update Qπ
MDP(s, a) under the uniform policy π, until convergence as follows

E(s, a) ≤ ϵQ, ∀(s, a) ∈ S × A. (72)

Empirically, we observe that the Q-table Qπ
MDP(s, a) converges after the 1216th iteration; demonstrated in

Figure 11. As depicted in Figure 10 (right), the convergent Qπ
MDP(s, a) implies that the optimal action for

any state under the uniform policy π is a0 (see the golden stars), i.e.,

arg max
a∈A

Qπ
MDP(s, a) = a0, ∀s ∈ S. (73)

Hence we obtain

arg max
a∈A

Qπ
MDP(s, a) = a0 = arg max

a∈A
Q∗

MDP(s, a), ∀s ∈ S. (74)

This validates Assumption 2 empirically.

Figure 10: Left: reward table. Middle: initial Q-table. Right: convergent Q-table under uniform policy π.
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Figure 11: The learning curve of the maximal TD error of Qπ
MDP(s, a) over the entire state-action spaces:

max(s,a)∈S×A |r(s, a) + γEa′ [Qπ
MDP(s′, a′)] − Qπ

MDP(s, a)|.
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B.3 Proof of Theorem 2

Theorem 2 (MDP). Let Assumptions 1 and 2 hold. Denote by a∗ the optimal action given sq. Consider a
random policy π as well as its Q-function Qπ

MDP. Consider the trust horizon N > logγ (κ(1 − γ)/(2B)) − 1.

Define κ = min
sq∈S

(
Qπ

MDP(sq, a∗) − max
a∈A\{a∗}

Qπ
MDP(sq, a)

)
. With probability at least 1 − δ, it holds that

Q̂π,N
MDP(sq, a∗) ≥ max

a∈A\{a∗}
Q̂π,N

MDP(sq, a), ∀sq ∈ S, (75)

when the number of episodes Nep satisfies

Nep ≥
2
(
1 − γN+1)2

(κ (1 − γ) /(2B) − γN+1)2 log
(

1 +
√

1 − δ

δ

)
. (76)

Proof. For any action a ∈ A \ {a∗}, let us define

Qπ
MDP(sq, a) = E

[
N∑

t=0
γtr(st, at) | s0 = sq, a0 = a

]
︸ ︷︷ ︸

Qπ,N
MDP(sq,a)

+E

[ ∞∑
t=N+1

γtr(st, at) | s0 = sq, a0 = a

]
︸ ︷︷ ︸

ξa

, (77)

Qπ
MDP(sq, a∗) = E

[
N∑

t=0
γtr(st, at) | s0 = sq, a0 = a∗

]
︸ ︷︷ ︸

Qπ,N
MDP(sq,a∗)

+E

[ ∞∑
t=N+1

γtr(st, at) | s0 = sq, a0 = a∗

]
︸ ︷︷ ︸

ξa∗

. (78)

Then ∀sq ∈ S,

Qπ,N
MDP(sq, a∗) − Qπ,N

MDP(sq, a) (79)
= Qπ

MDP(sq, a∗) − ξa∗ − (Qπ
MDP(sq, a) − ξa) (80)

= Qπ
MDP(sq, a∗) − Qπ

MDP(sq, a) + ξa − ξa∗ (81)

= Qπ
MDP(sq, a∗) − Qπ

MDP(sq, a) +
∞∑

t=N+1
γt (E [r(st, at) | s0 = sq, a0 = a] − E [r(st, at) | s0 = sq, a0 = a∗])

(82)
(a)
≥ Qπ

MDP(sq, a∗) − Qπ
MDP(sq, a) − γN+1 2B

1 − γ
(83)

≥ Qπ
MDP(sq, a∗) − max

a∈A\{a∗}
Qπ

MDP(sq, a) − γN+1 2B

1 − γ
(84)

≥ min
sq∈S

(
Qπ

MDP(sq, a∗) − max
a∈A\{a∗}

Qπ
MDP(sq, a)

)
− γN+1 2B

1 − γ
(85)

(b)= κ − γN+1 2B

1 − γ
, (86)

(c)
> 0. (87)

where (a) follows from Assumption 1 and the properties of geometry series, (b) follows from the definition
of κ, (c) is due to N > logγ (κ(1 − γ)/(2B)) − 1. Therefore, let us consider two positive constants as follows

ϵ1 = α
(

Qπ,N
MDP(sq, a∗) − Qπ,N

MDP(sq, a)
)

, (88)

ϵ2 = (1 − α)
(

Qπ,N
MDP(sq, a∗) − Qπ,N

MDP(sq, a)
)

, (89)
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where α ∈ [0, 1]. Consider the following two inequalities

Q̂π,N
MDP(sq, a∗) ≥ Qπ,N

MDP(sq, a∗) − ϵ1, (90)
Q̂π,N

MDP(sq, a) ≤ Qπ,N
MDP(sq, a) + ϵ2. (91)

We acknowledge that equation 90 and equation 91 are the sufficient but not necessary conditions for
Q̂π,N

MDP(sq, a∗) ≥ Q̂π,N
MDP(sq, a) to hold. Thus,

P
(

Q̂π,N
MDP(sq, a∗) ≥ Q̂π,N

MDP(sq, a)
)

(92)

≥ P
(

Q̂π,N
MDP(sq, a∗) ≥ Qπ,N

MDP(sq, a∗) − ϵ1, Q̂π,N
MDP(sq, a) ≤ Qπ,N

MDP(sq, a) + ϵ2

)
(93)

= P
(

Q̂π,N
MDP(sq, a∗) ≥ Qπ,N

MDP(sq, a∗) − ϵ1

)
· P
(

Q̂π,N
MDP(sq, a) ≤ Qπ,N

MDP(sq, a) + ϵ2

)
(94)

where the last equation follows from the fact that each action is independent to other actions.

Assumption 1 implies that
∑N

t=0 (γtr(st, at) | s0 = sq, a0 = a, π) ∈ [−B 1−γN+1

1−γ , B 1−γN+1

1−γ ], ∀a ∈ A. We there-
fore lower bound the two probabilities in the previous expression using Hoeffding’s inequality (Hoeffding,
1994)

P
(

Q̂π,N
MDP(sq, a∗) − Qπ,N

MDP(sq, a∗) ≥ −ϵ1

)
≥ 1 − exp

− Nepϵ2
1

2B2
(

1−γN+1

1−γ

)2

 , (95)

P
(

Q̂π,N
MDP(sq, a) − Qπ,N

MDP(sq, a) ≤ ϵ2

)
≥ 1 − exp

− Nepϵ2
2

2B2
(

1−γN+1

1−γ

)2

 . (96)

Then, it holds for any α ∈ [0, 1] that

P
(

Q̂π,N
MDP(sq, a∗) ≥ Q̂π,N

MDP(sq, a)
)

(97)

≥

1 − exp

− Nepϵ2
1

2B2
(

1−γN+1

1−γ

)2


 ·

1 − exp

− Nepϵ2
2

2B2
(

1−γN+1

1−γ

)2


 (98)

≥

1 − exp

−
Nepα2

(
Qπ,N

MDP(sq, a∗) − Qπ,N
MDP(sq, a)

)2

2B2
(

1−γN+1

1−γ

)2


 (99)

·

1 − exp

−
Nep(1 − α)2

(
Qπ,N

MDP(sq, a∗) − Qπ,N
MDP(sq, a)

)2

2B2
(

1−γN+1

1−γ

)2


 (100)

Notice that the maximal value of the previous expression with respect to α reaches at α = 0.5. Then it holds
that

P
(

Q̂π,N
MDP(sq, a∗) ≥ Q̂π,N

MDP(sq, a)
)

≥

1 − exp

−
Nep

(
Qπ,N

MDP(sq, a∗) − Qπ,N
MDP(sq, a)

)2

8B2
(

1−γN+1

1−γ

)2




2

, ∀a ∈ A \ {a∗}.

(101)

Since the previous inequality holds for any a ∈ A \ {a∗}, let us define

â = arg max
a∈A\{a∗}

Q̂π,N
MDP(sq, a). (102)
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Then it also holds that

P

(
Q̂π,N

MDP(sq, a∗) ≥ max
a∈A\{a∗}

Q̂π,N
MDP(sq, a)

)

≥

1 − exp

−
Nep

(
Qπ,N

MDP(sq, a∗) − Qπ,N
MDP(sq, â)

)2

8B2
(

1−γN+1

1−γ

)2




2

(103)

≥

1 − exp

−
Nep

(
Qπ,N

MDP(sq, a∗) − maxa∈A\{a∗} Qπ,N
MDP(sq, a)

)2

8B2
(

1−γN+1

1−γ

)2




2

, (104)

where the last inequality follows from the monotonicity and the fact that Qπ,N
MDP(sq, a∗) − Qπ,N

MDP(sq, a) ≥
0, ∀a ∈ A \ {a∗}.

Let us define

ā = arg max
a∈A\{a∗}

Qπ,N
MDP(sq, a). (105)

Then ∀sq ∈ S we obtain

Qπ,N
MDP(sq, a∗) − max

a∈A\{a∗}
Qπ,N

MDP(sq, a) (106)

(a)= Qπ,N
MDP(sq, a∗) − Qπ,N

MDP(sq, ā) (107)
(b)= Qπ

MDP(sq, a∗) − ξa∗ − (Qπ
MDP(sq, ā) − ξā) (108)

= Qπ
MDP(sq, a∗) − Qπ

MDP(sq, ā) + ξā − ξa∗ (109)

= Qπ
MDP(sq, a∗) − Qπ

MDP(sq, ā) +
∞∑

t=N+1
γt (E [r(st, at) | s0 = sq, a0 = ā] − E [r(st, at) | s0 = sq, a0 = a∗])

(110)
(c)
≥ Qπ

MDP(sq, a∗) − Qπ
MDP(sq, ā) − γN+1 2B

1 − γ
(111)

(d)
≥ Qπ

MDP(sq, a∗) − max
a∈A\{a∗}

Qπ
MDP(sq, a) − γN+1 2B

1 − γ
(112)

≥ min
sq∈S

(
Qπ

MDP(sq, a∗) − max
a∈A\{a∗}

Qπ
MDP(sq, a)

)
− γN+1 2B

1 − γ
(113)

(e)= κ − γN+1 2B

1 − γ
(114)

(f)
> 0, (115)

where (a) follows from the definition of ā, (b) follows from the definition of Qπ
MDP, (c) follows from Assump-

tion 1 and the properties of geometry series, (d) follows from the fact that ā may not be the maximizer of
Qπ

MDP(sq, ·), (e) follows from the definition of κ, (f) is due to N > logγ (κ(1 − γ)/(2B)) − 1.

Consequently, equation 104 is monotonically increasing with Qπ,N
MDP(sq, a∗)−maxa∈A\{a∗} Qπ,N

MDP(sq, a). Sub-
stituting the previous inequality into equation 104 and by the monotonicity yields

P

(
Q̂π,N

MDP(sq, a∗) ≥ max
a∈A\{a∗}

Q̂π,N
MDP(sq, a)

)
≥

1 − exp

−
Nep

(
κ − γN+1 2B

1−γ

)2

8B2
(

1−γN+1

1−γ

)2




2

, (116)
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To make the previous probability greater than 1 − δ, we require1 − exp

−
Nep

(
κ − γN+1 2B

1−γ

)2

8B2
(

1−γN+1

1−γ

)2




2

≥ 1 − δ. (117)

Thus,

Nep ≥ log
(

1 +
√

1 − δ

δ

) 8B2
(

1−γN+1

1−γ

)2

(
κ − γN+1 2B

1−γ

)2 (118)

=
2
(
1 − γN+1)2

(κ (1 − γ) /(2B) − γN+1)2 log
(

1 +
√

1 − δ

δ

)
. (119)

This completes the proof.

□

B.4 Technical Lemma

Lemma 2. Given N > logγ (κ(1 − γ)/(2B)) − 1, G1 in equation 12 is monotonically decreasing with respect
to the trust horizon N .

Proof. We proceed by defining Y = κ(1 − γ)/(2B). Since N > logγ (κ(1 − γ)/(2B)) − 1, we can obtain

Y = κ (1 − γ)
2B

∈ (γN+1, 1]. (120)

Let Z = N + 1, and then we can rewrite G1 as

G1 =
2
(
1 − γZ

)2

(Y − γZ)2 , where Y ∈ (γZ , 1]. (121)

The chain rule implies that

∂G1

∂N
= ∂G1

∂Z
· ∂Z

∂N
(122)

= ∂G1

∂Z
(123)

= 4
(

1 − γZ

Y − γZ

)
−γZ log γ(Y − γZ) + (1 − γZ)γZ log γ

(Y − γZ)2 (124)

= 4
(

1 − γZ

Y − γZ

)
γZ log γ(1 − Y )

(Y − γZ)2 (125)

≤ 0, (126)

where the last inequality follows from γ ∈ (0, 1] and Y ∈ (γZ , 1].

This completes the proof.

□

B.5 Proof of Corollary 1

Corollary 1. Let hypotheses of Theorems 1 and 2 hold. Denote by l the length of the trajectory. For any
environment τ and history data H, SAD and the well-specified posterior sampling follow the same trajectory
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distribution with probability (1 − δ)l

PFθ
(trajectory | τ, H) = Pps(trajectory | τ, H), ∀trajectory. (127)

Proof. To proceed, we rely on the following assumption.
Assumption 3. Denote by Fθ the pretrained FM. ∀(C, sq), assume Ptrain(a | C, sq) = Fθ(a | C, sq) for all
a ∈ A.

Note that Assumption 3 is a common assumption in the in-context learning literature (Xie et al., 2021;
Lee et al., 2024), assuming that the pretrained FM fits the pretraining distribution exactly provided with
sufficient coverage and data, where the SAD fits with a sufficiently large trust horizon N .

With Assumption 3 established, Theorem 1 of (Lee et al., 2024) implies that equation 127 holds when the
optimal action is selected at each step. In addition, Theorems 1 and 2 indicate that the FM trained by SAD
selects the optimal action label with probability 1 − δ at each step. Consequently, equation 127 holds for
SAD with probability (1 − δ)l.

This completes the proof. □

B.6 Finite MDP setting from Osband et al. (2013)

Let us consider the finite MDP setting as in (Osband et al., 2013), where E[r(st, at)] ∈ [0, 1]. Denote by
S, A, T the state space, action space, and time horizon. Consider the uniform random policy π for sampling
the context C and query state sq. Denote by Ttest(τ) and Ttrain(τ) the test and pretraining distribution
over the environment τ , respectively. Consider the online cumulative regret of SAD over K episodes in the
environment τ as

Regretτ (Fθ) ∆=
K∑

k=0
Vτ (π∗

τ ) − Vτ (πk), (128)

where πk(· | st) = Fθ(· | Ck−1, st).

B.7 Proof of Corollary 2

Corollary 2. Let hypotheses of Theorems 1 and 2 hold. Given the environment τ and a constant B′ > 0,
suppose that supτ Ttest(τ)/Ttrain(τ) ≤ B′. In the finite MDP setting above, it holds with probability (1−δ)KT

that

ETtest [Regretτ (Fθ)] ≤ Õ(B′|S|T 3/2
√

K|A|). (129)

Proof. Theorems 1 and 2 imply that the FM trained by SAD selects the optimal action label with
probability 1 − δ at each step, while the finite MDP setting above comprises K · T steps. Therefore, it holds
with probability (1 − δ)KT that the trained FM Fθ is equivalent to the posterior sampling established in
Corollary 1. Then, it follows directly from Corollary 6.2 of (Lee et al., 2024) that with probability (1 − δ)KT

it holds that

ETtrain [Regretτ (Fθ)] ≤ Õ(|S|T 3/2
√

K|A|), (130)

where the notation Õ omits the polylogarithmic dependence. Subsequently, by using the bounded likelihood
ratio between the test and pretraining distributions yields

ETtest [Regretτ (Fθ)] =
∫

Ttest(τ)Regretτ (Fθ)d(τ) (131)

≤ B′
∫

Ttrain(τ)Regretτ (Fθ)d(τ) (132)

= B′ETtrain [Regretτ (Fθ)] (133)
≤ Õ(B′|S|T 3/2

√
K|A|). (134)

This completes the proof. □
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C Implementation Details

We provide below the pseudo-codes that are omitted in the main body of the paper.

Algorithm 5 Collecting Query States and Action Labels under Random Policy (Dense-Reward MDP)
1: Require: Random policy π, state space S, action space A, environment τ , trust horizon N , empty

return list Lr

2: Sample a query state sq ∼ S
3: for a in [A] do
4: Initialize the state and action as s0 = sq, a0 = a
5: Run an episode of N steps in τ under the random policy π
6: Add the discounted episodic return to Lr

7: end for
8: Obtain al = A(arg max(Lr))
9: Return (sq, al)

Algorithm 6 Pretraining and Deployment of SAD (Inspired by (Lee et al., 2024))
1: Require: Pretraining dataset D, initial model parameters θ, test environment distribution Ttest, number

of episodes NE

2: // Model pretraining
3: while not converged do
4: Sample (C, sq, al) from the pretraining dataset D and predict actions by the model Fθ(·|Ci, sq) for all

i ∈ [|C|]
5: Compute the loss in equation 3 with respect to the action label al and backpropagate to update θ.
6: end while
7: // Offline deployment
8: Sample unseen environments τ ∼ Ttest
9: Sample a context C ∼ Ttest(· | τ)

10: Deploy Fθ in τ by selecting at ∈ arg maxa∈A Fθ(a | C, st) at time step t
11: // Online deployment
12: Sample unseen environments τ ∼ Ttest and initialize empty context C = {}
13: for i in [NE ] do
14: Deploy Fθ by sampling at ∼ Fθ(· | C, st) at time step t
15: Add (s0, a0, r0, . . .) to C
16: end for

D Experimental Details

D.1 Environmental Setup

Gaussian Bandits. We investigate a five-armed bandit problem in which the state space S consists solely
of a singleton state sq. With each arm (action) pulled, the agent receives a reward feedback. The goal is
to identify the optimal arm that can maximize the cumulative reward. We consider the reward function for
each arm following a Gaussian distribution with mean µa and variance σ2, i.e., R(·|sq, a) = N (µa, σ2). Each
arm possesses means µa drawn from a uniform distribution U [0, 1] and all arms share the same variance
σ = 0.3. We consider the pretraining and test data to have distinct Gaussian distributions with different
means.

Bernoulli Bandits. We adopt the same setup as in Gaussian Bandits, with the exception that the reward
function does not follow a Gaussian distribution. Instead, we model the reward function using a Bernoulli
distribution. Specifically, the mean of each arm µa is drawn from a Beta distribution Beta(1, 1), and the
reward function follows a Bernoulli distribution with probability of success µa. To validate the capability
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of SAD tackling OOD scenarios, we consider the test data drawn from the Bernoulli distribution while the
pretraining data drawn from the Gaussian distribution as in the Gaussian bandits.

Darkroom. Darkroom (Laskin et al., 2022; Zintgraf et al., 2019) is a two-dimensional navigation task with
discrete state and action spaces. The room consists of 7×7 grids (|S| = 49), with an unknown goal randomly
placed at any of these grids. The agent can select 5 actions: go up, go down, go left, go right, or stay. The
horizon length for Darkroom is 49, meaning the agent must reach the goal within 49 moves. The challenge of
this task arises from its sparse reward structure, i.e., the agent receives a reward of 1 solely upon reaching the
goal, and 0 otherwise. Given 7 × 7 = 49 available goals, we utilize 39 of these goals (∼ 80%) for pretraining
and reserve the remaining 10 (∼ 20%) (unseen during pretraining) for test.

Darkroom-Large. We adopt the same setup as in Darkroom, yet with an expanded state space of 10 × 10
and a longer horizon T = 100. Consequently, the agent must explore the environment more extensively due
to the sparse reward setting, making this task more challenging than Darkroom. We still consider 80% of
the 100 available goals for pretraining and the remaining unseen 20% goals for test.

Miniworld. Miniworld is a three-dimensional pixel-based navigation task. The agent is situated in a
room with four differently colored boxes, one of which is the target (unknown to the agent). The agent must
navigate to the target box using 25 × 25 × 3 image observations and by selecting from 4 available actions:
turn left, turn right, move forward, or stay. Similar to Darkroom, the agent receives a reward of 1 only upon
approaching the target box, and 0 otherwise. The high-dimensional pixel inputs clearly render Miniworld a
much more challenging task than Darkroom and Darkroom-Large.

D.2 Hyperparameters

The main hyperparameters employed in this work are summarized in Tables 1-2.

Table 1: The main hyperparameters of each algorithm

Hyperparameters AD DPT DIT SAD
Causal transformer GPT2 GPT2 GPT2 GPT2

Number of attention heads 3 3 3 3
Number of attention layers 3 3 3 3

Embedding size 32 32 32 32
DIT Weight λ N/A N/A 500 N/A
Learning rate 0.001 0.001 0.001 0.001

Dropout 0.1 0.1 0.1 0.1

Table 2: The main hyperparameters of each environment

Hyperparameters Gaussian Bandits Bernoulli Bandits Darkroom Darkroom-Large Miniworld
Action dimension 5 5 5 5 4

Pixel-based ✗ ✗ ✗ ✗ ✓

Trust Horizon 320 320 7 10 3
# of epochs 100 100 100 100 200

Context horizon 500 500 49 100 50
Pretraining/test ratio 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2

# of environments 100000 100000 24010 100000 40000
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D.3 Additional Results

We provide in this subsection additional experimental results that are omitted in the main body of paper.

Figure 12 presents the dataset generation time of our SAD approach, compared with other SOTA baselines
(AD, DPT, DIT), where the MAB and MDP problems consider the environments of Gaussian Bandits and
Darkroom respectively. SAD (avg) represents the average of consumed time over different trust horizons
(consistent with those in Figure 5). On average, SAD requires the most significant amount of time in the
MDP problem. While in the MAB problem, SAD ranks as the second most time-consuming method, with
its duration surpassing all except DIT. Notice that the additional computational time of SAD aligns with
the prevailing trend of leveraging increased computation to fully harness the advanced reasoning capabilities
of FMs (Brown, 2020).

Table 3: Performance improvements of SAD compared to baseline algorithms in the offline evaluation.

Environment SAD vs AD SAD vs DPT SAD vs DIT SAD vs DPT∗

Gaussian Bandits 647.0% 508.9% 354.0% −5.2%
Bernoulli Bandits 553.4% 426.8% 289.5% −18.7%

Darkroom 2162.2% 2069.6% 149.3% −1.3%
Darkroom-Large 6325.5% 6389.9% 266.8% −14.9%

Miniworld 687.7% 684.2% 122.1% −52.9%
Average 2075.2% 2015.9% 236.3% −18.6%

Table 4: Performance improvements of SAD compared to baseline algorithms in the online evaluation.

Environment SAD vs AD SAD vs DPT SAD vs DIT SAD vs DPT∗

Gaussian Bandits 933.6% 942.5% 273.9% −0.4%
Bernoulli Bandits 846.8% 830.9% 313.9% −0.2%

Darkroom 3053.9% 2893.8% 41.7% −3.4%
Darkroom-Large 10626.9% 10221.8% 24.7% −0.1%

Miniworld 582.9% 580.1% 21.7% −57.3%
Average 3208.8% 3093.8% 135.2% −12.3%
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Figure 12: The dataset generation time consumed by SAD averaged over varying trust horizons (as in
Figure 5), compared with AD, DPT, and DIT.
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