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Abstract

We address the problem of learning fixed-001
length vector representations of characters in002
novels. Recent advances in word embeddings003
have proven successful in learning entity rep-004
resentations from short texts, but fall short on005
longer documents because they do not cap-006
ture full book-level information. To overcome007
the weakness of such text-based embeddings,008
we propose two novel methods for represent-009
ing characters: (i) graph neural network-based010
embeddings from a full corpus-based charac-011
ter network; and (ii) low-dimensional embed-012
dings constructed from the occurrence pattern013
of characters in each novel. We test the qual-014
ity of these character embeddings using a new015
benchmark suite to evaluate character repre-016
sentations, encompassing 12 different tasks.017
We show that our representation techniques018
combined with text-based embeddings lead to019
the best character representations, outperform-020
ing text-based embeddings in four tasks. Our021
dataset and evaluation script will be made pub-022
licly available to stimulate additional work in023
this area.024

1 Introduction025

High-quality distributed representations of char-026

acters (henceforth, character embeddings) play an027

important role for the computational analysis of nar-028

rative texts (Iyyer et al., 2016; Xanthos et al., 2016;029

Skorinkin, 2017; Azab et al., 2019; Labatut and030

Bost, 2019; Kubis, 2021; Brahman et al., 2021).031

Ideally, characters who share similar properties032

such as job, gender and a relationship to other033

characters, should possess similar character em-034

beddings even if they are in different stories (e.g.035

Cinderella and Juliet, both young women in for-036

bidden romance situations). This paper aims for037

learning such fixed-length, distributed representa-038

tions from novels.039

The core problem of learning character embed-040

dings is how to aggregate and embed the contex-041

Figure 1: t-SNE visualization of our character embed-
dings for ten characters. Each character is sampled
from more than 24 different books. The proposed
method assigns similar representations to each charac-
ter even though they exist in different books. The pro-
posed method uses no surface form matching.

tual information of characters into distributed rep- 042

resentations. Conventionally, this has been exten- 043

sively studied in word embeddings, including static 044

word embeddings such as word2vec (Mikolov 045

et al., 2013) and GloVe (Pennington et al., 2014), 046

and in contextualized word embeddings such as 047

ELMo (Peters et al., 2018) and BERT (Devlin et al., 048

2019). All these methods follow the Distributional 049

Hypothesis: “words that occur in the same context 050

tend to have similar meanings” (Harris, 1954). 051

One limitation of these approaches is that they 052

represent word embeddings by local context: they 053

split documents into individual sentences or small 054

chunks, ignoring the document information of each 055

input. To learn character embeddings, however, 056

it is desirable for an embedding algorithm to be 057

aware of document-level information. This enables 058

us to extend the Distributional Hypothesis to more 059

global context: characters that occur in the same 060

books/authors tend to have similar or related prop- 061

erties (e.g. the Sherlock Holmes series tend to have 062

detectives, policemen, criminals, etc.). 063

To overcome the weakness of such text-based 064

embeddings, we propose two novel methods to 065
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learn character embeddings using document-level066

information. First, we propose graph-based em-067

beddings, where we build a full corpus-based char-068

acter network accompanied with full book-level069

information and then use a graph neural network070

to learn character embeddings. Second, we pro-071

pose positional embeddings, where we create low-072

dimensional embeddings from the occurrence pat-073

tern of characters in each novel.074

To evaluate the quality of character embeddings,075

we construct a new character embedding bench-076

mark (CEB) consisting of 12 different tasks. At077

training time, one is allowed to learn fixed-length078

character embeddings from novels. The learned079

embeddings are then tested if the important proper-080

ties of characters such as gender can be recovered081

solely based on them, similar to recent work on082

probing pretrained language models (Hewitt and083

Manning, 2019; Voita and Titov, 2020, etc.).084

The contribution of this paper can be summa-085

rized as follows:086

• New methods for character embeddings – We087

propose two novel methods for learning char-088

acter embeddings leveraging full book-level089

information (§4).090

• Evaluation of character embeddings – We cre-091

ate a novel benchmark suite (CEB) for testing092

the quality of character embeddings, consist-093

ing of 12 different tasks (§5). The dataset094

and evaluation script are publicly available at095

https://anonymous.com.096

Our experiments show that the proposed em-097

bedding methods combined with text-based098

embeddings leads to the best character embed-099

dings, outperforming text-based embeddings100

in six CEB tasks (§6.2).101

• Corpus-level views of character embeddings102

– We show that character embeddings cluster103

across large corpora by gender, protagonist104

status, profession/role, thus demonstrating the105

versatility of the techniques we employ (§7).106

Fig. 1 shows the key result, indicating that107

similar character representations are assigned108

to each cluster of character, even though they109

exist in different books.110

2 Related work111

There is a growing interest in computational nar-112

rative analysis, ranging from analyzing the struc-113

ture of narratives (Kim et al., 2020, 2021; Pethe114

et al., 2020), identifying important events in sto- 115

ries (Wilmot and Keller, 2020, 2021; Papalampidi 116

et al., 2020; Otake et al., 2020) to analyzing the 117

relationship between characters in novels (Iyyer 118

et al., 2016; Xanthos et al., 2016; Skorinkin, 2017; 119

Azab et al., 2019; Labatut and Bost, 2019; Ku- 120

bis, 2021; Brahman et al., 2021). The most rele- 121

vant work to ours is Azab et al. (2019), who apply 122

word2vec (Mikolov et al., 2013) to learn character 123

embeddings from movie scripts. However, they do 124

not use full document-level information such as 125

the author of documents for learning character em- 126

beddings. They also experiment on a small-scale 127

dataset–18 movie scripts, while we experiment on 128

17k novels. Brahman et al. (2021) propose two 129

benchmark tasks for character-centric narrative un- 130

derstanding, namely character identification and 131

character description generation. We extend their 132

benchmark by introducing additional 12 character- 133

related tasks. 134

Character embeddings are closely related 135

to both static word embeddings such as 136

word2vec (Mikolov et al., 2013) and GloVe (Pen- 137

nington et al., 2014), and contextualized word 138

embeddings such as dynamic entity embed- 139

dings (Kobayashi et al., 2016), ELMo (Peters 140

et al., 2018) and BERT (Devlin et al., 2019). 141

As discussed in §1, these methods follow the 142

Distributional Hypothesis (Harris, 1954), encoding 143

the local context of words into distributed represen- 144

tations. We intend to complement this weakness 145

by taking book-level context into account in the 146

graph neural network-based embedding methods. 147

The task setting of CEB shares the similar spirit 148

to a recent paradigm on probing pretrained lan- 149

guage models (Hewitt and Manning, 2019; Petroni 150

et al., 2019; Voita and Titov, 2020; Shin et al., 151

2020). The LAMA dataset (Petroni et al., 2019), 152

for example, creates a sentence with blanks, e.g. 153

___ was born in, and ask language models to pre- 154

dict words in the blanks solely based on the learned 155

model parameters. Our benchmark also follows 156

this task setting, where one learns character em- 157

beddings on a particular corpus and is asked to 158

recover information solely based on the learned 159

embeddings in 12 different tasks. 160

3 Baseline text-based methods 161

3.1 Static embeddings 162

One simple way to learn character embeddings is 163

to treat each character name as one unique token 164
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at the document-level and apply standard word em-165

bedding algorithms. Given a corpus, we convert all166

character mentions including pronouns to special167

tokens consisting of its document ID and character168

name (e.g. When 113_Mary was sent to...). To iden-169

tify character mentions and coreference relations170

between them, we use Stanford CoreNLP (Man-171

ning et al., 2014). See §5.1 for further details.172

We then apply word2vec (Mikolov et al., 2013).173

Because a corpus of novels alone may not pro-174

vide enough data to learn non-character word vec-175

tors, we initialize non-character word vectors with176

GloVe pretrained embeddings (Pennington et al.,177

2014).1 Henceforth, we call this method w2v.178

We also apply doc2vec (Le and Mikolov, 2014)179

to the preprocessed corpus, where we treat each180

character as one document and sentences that men-181

tion this character as the content of this document.182

Henceforth, we call this method d2v.183

3.2 Context-aggregated embeddings184

Another simple way to learn character embeddings185

is to aggregate contextual information of charac-186

ters (Ethayarajh, 2019; Bommasani et al., 2020).187

Given a character c, we extract set S(c) of sen-188

tences that mention c and generate a sentence repre-189

sentation si for each si ∈ S(c). We then aggregate190

them via averaging: c = 1
|S(c)|

∑
si∈S(c) si.191

To generate si, we explore two methods. The192

first method is w_ag, which simply averages193

word embeddings learned in Sec. 3.1: si =194
1
|si|

∑
wj∈si wj . We also make gl_ag, a varia-195

tion of this model using vanilla GloVe pretrained196

embeddings (Pennington et al., 2014).197

Another method is rb_ag, which uses contex-198

tualized word embeddings of characters generated199

by RoBERTa (Liu et al., 2019). Given si ∈ S(c),200

we first replace character mentions of c with mask201

tokens. For example, suppose c = Mary and si =202

Mary was most attracted by the mother and Dickon.203

The sentence is then converted to [MASK] was204

most attracted by the mother and Dickon. To gener-205

ate si, we extract contextualized word embeddings206

of [MASK] tokens at the final layer.207

3.3 Name embeddings (nam)208

Ye et al. (2017) represent common first/last names209

using a vector representation that encodes gender,210

ethnicity, and nationality which is readily applica-211

ble to building classifiers and other systems. Name212

1CommonCrawl-840B-300d at https://nlp.
stanford.edu/projects/glove/.

Figure 2: Example of character network. Characters
(green) are connected through book-level information,
i.e. books (orange) and authors (red). Context informa-
tion (green) captures the attributes of characters.

embeddings exploit the phenomenon of homophily 213

in communication, specifically that people tend 214

to associate with similar people or popularly that 215

“birds of a feather flock together.” These embed- 216

dings are constructed from email contact lists of 217

email, rosters of friends on social media, or follow- 218

ers on Twitter. The homophily-induced coherence 219

of these contact lists enables us to derive meaning- 220

ful features using word embedding methods. We 221

used 100 dimensional embeddings from (Ye and 222

Skiena, 2019). 223

4 Proposed methods 224

While text-based embeddings introduced in §3 can 225

be expected to capture the local context of charac- 226

ters such as gender, they do not take into account 227

full book-level information, such as the author. In- 228

tuitively, characters from the same book should 229

have more relatively similar embeddings than those 230

from different books, but the text-based embedding 231

methods cannot use this kind of information. To 232

address this weakness, we propose two methods for 233

character embeddings: (i) gr: we build character 234

network across books and then learn character em- 235

beddings using Graph Neural Networks (§4.1); and 236

(ii) pos: we encode the occurrence pattern of char- 237

acters into low-dimensional embeddings (§4.2). 238

4.1 Graph-based embeddings 239

4.1.1 Character network 240

Our character network is an undirected graph con- 241

sisting of four types of nodes and four types of 242

unlabeled edges as shown in Fig. 2. 243

Nodes. First, we introduce (i) book nodes (e.g. 244

The Adventures of Tom Sawyer), (ii) author nodes 245

(e.g. Mark Twain), and (iii) character nodes (e.g. 246
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Node type # nodes Edge type # edges

Book 17,275 Bk-Au 17,514
Character 718,324 Bk-Chr 712,332
Author 4,422 Chr-Con 30,934,451
Context 147,000 Chr-Chr 446,917

Table 1: Statistics of character network.

Tom Sawyer), each of which represents individual247

book, author, and character in the corpus. Note that248

we keep characters with the same name as separate249

nodes in the network (e.g. Tom Sawyer) because250

it is not obvious if these characters are indeed the251

same character or not at this point. As described252

later, if characters are inferred to be the same from253

book-level information, these embeddings become254

similar given the network configuration.255

Second, we introduce (iv) context nodes which256

represent the local context information of charac-257

ters (e.g. traded). Following Bamman et al. (2014),258

we extract words that are connected with a charac-259

ter name in agent, patient, possessive, or predica-260

tive dependency relations as context.261

Edges. We introduce (i) book-author edges con-262

necting book node nb with author node na if263

na is the author of nb (e.g. The Adventures of264

Tom Sawyer–Mark Twain), and (ii) book-character265

edges connecting book node nb with character node266

nc if nc appears in nb (e.g. The Adventures of Tom267

Sawyer–Tom Sawyer). To associate context with268

characters, we have (iii) character-context edges269

connecting context nodes with character nodes if270

they have a dependency relation described above271

(e.g. Tom Sawyer–traded). To capture the interac-272

tion between characters, we introduce (iv) charac-273

ter edges connecting two character nodes nc1 , nc2274

if c1 and c2 occur within 10 tokens of each other at275

least 10 times (e.g. Tom Sawyer–Huck Finn).276

Table 1 shows the statistics of our character net-277

work constructed from 17,275 books from Project278

Gutenberg (see §5.1 for the details of dataset).279

4.1.2 Learning embeddings280

We use DeepWalk (Perozzi et al., 2014), which281

is a representation learning algorithm for graph-282

structured data. It samples graph paths by283

random walk and then applies word2vec algo-284

rithm (Mikolov et al., 2013) to the sampled paths,285

treating each node as one word.286

The main advantage over the text-based meth-287

ods is as follows. In the text-based methods, two288

characters from different novels never appear in289

Figure 3: Positional embeddings for characters from
The Secret Garden. Mary and Colin, the main char-
acters, indicate continuous appearance throughout the
book, while Susan, one of the minor characters, indi-
cates discontiguous appearance.

the same sentence. In contrast, in the graph-based 290

method, two characters may appear in the same 291

sentence (or path) if they are connected via book 292

nodes or author nodes, which makes two charac- 293

ter embeddings closer (e.g. two Tom Sawyer via 294

Mark Twain in Fig. 2). In other cases, two charac- 295

ters from different novels may appear in the same 296

sentence (or path) if they share context nodes (e.g. 297

Tom Sawyer and Mary Lennox via found in Fig. 2), 298

which makes two characters with similar properties 299

closer. This means that we inject document-level 300

information into character embeddings. 301

4.2 Positional embeddings 302

The main character in novels is likely to always ap- 303

pear throughout the story, while a minor character 304

may appear a few times in one chapter and disap- 305

pear. Such document-level occurrence patterns are 306

not captured by text-based methods, but they may 307

encode useful information about characters. 308

We thus propose pos embeddings purely based 309

on the pattern of mention positions of characters. 310

We divide a novel into 10 segments and count the 311

occurrences of each character i in each segment 312

j (denoted ci,j). As exemplified in Fig. 3, we 313

then create two 10-dimensional embeddings by 314

(i) normalizing ci,j across characters, i.e. cci = 315

ci/
∑

i ci,j , denoting how important the charac- 316

ter is for the segment; (ii) normalizing ci,j across 317

segments, i.e. csi = ci/
∑

j ci,j , denoting how 318

important the segment is for the character. Fi- 319

nally, we concatenate these, i.e. [cci ; c
s
i ], to form 320

20-dimensional embeddings. We repeat the same 321

procedure with pronoun mentions, and concatenate 322

these vectors to obtain final 40-dimensional posi- 323

tional embeddings for each character. 324
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Task Input Output Source Size

Gender One char Male/Female Heurstics (§5.2) 5,000
Role One char, Four choices of roles Role of a character (e.g. school-

master)
Reference books 484

Protagonist One char Protagonist/Other Frequency 5,000
Identity Two chars from different books Yes/No (if two chars are same) Metadata 5,000

Cloze Sentence w/ blank (e.g. ___ is born
in India), Four choices of chars

A character in the blank Book content 5,000

Speaker Quote, Four choices of chars Speaker of the quote Book content 2,879
Summary Cloze Sentence w/ blank from chapter

summary, Four choices of chars
A character in the blank Literature websites 1,361

Desc Description (e.g. A simple , but hon-
est and loyal black worker...), Four
choices of chars

A character that is best de-
scribed by the given description

Literature websites 551

QA Question (e.g. Who does Mary
Lennox accept an invitation from?),
Four choices of chars

Answer Kočiský et al. (2017);
Angelidis et al. (2019)

587

Author Two chars Yes/No (if two chars are from
the same author’s books)

Metadata 5,000

Book Two chars Yes/No (if two chars are from
the same books)

Metadata 5,000

Genre One char, Genre Yes/No (if the character belongs
to a book with the given genre)

Metadata 44,152

Table 2: Overview of CEB, a benchmark suite for character embeddings.

5 CEB: Character Embedding325

Benchmark326

To test the quality of character embeddings, we con-327

struct a new benchmark suite of character embed-328

dings, as summarized in Table 2. The benchmark329

probes what kind of character-related information,330

ranging from gender to authors, is embedded in331

character embeddings. It consists of 12 different332

tasks categorized into three levels: (i) character-333

level tasks: identifying character attributes (§5.2),334

(ii) context-level tasks: identifying the correct char-335

acter that best describes a given context (§5.3), and336

(iii) book-level tasks: identifying the attributes of337

books where characters come from (§5.4).338

5.1 Dataset339

We extract 17,275 books from Project Gutenberg2,340

a publicly available library of free eBooks. We use341

Stanford CoreNLP (Manning et al., 2014) for NER342

(Named Entity Recognition). We use the named343

entities of type PERSON as potential character men-344

tions, and follow a rule-based approach similar to345

Vala et al. (2015) for clustering variants of the same346

name, and obtaining a final list of characters for347

each book. To ensure that tested character embed-348

dings have sufficient information, we discarded349

characters with less than 100 mentions.350

2http://www.gutenberg.org/

5.2 Character-level tasks 351

Gender Identify the gender of a given character 352

c (female or male). To identify the gold-standard 353

gender of a character, we count the number of male 354

and female pronouns referring to each character (as 355

annotated by CoreNLP), and take a majority vote. 356

If the male pronoun count outnumbers the female 357

pronoun count by at least 10%, we consider the 358

character to be male, and vice versa for female. 359

Role Identify the role of a given character c. We 360

extract gold-standard character roles from two ref- 361

erence books of English literature (Magill, 1968, 362

1952), where character roles are represented by 363

simple natural language phrases such as a French 364

aristocrat. We extract only head nouns by the de- 365

pendency parse given by Spacy.3 366

Protagonist Identify whether a given character 367

c is a protagonist or not. As approximation, we 368

identify the most frequent characters as the gold- 369

standard protagonist. 370

Identity Given two characters c1, c2 from differ- 371

ent books, identify whether c1 is the same character 372

as c2 or not. We use characters with the same full 373

name and the same author as a positive instance. 374

3https://spacy.io/usage
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5.3 Context-level tasks375

Cloze Given a sentence S with a blank (e.g. ___376

stood up and tried to keep her eyes open while377

Mrs. Medlock collected her parcels.) from book b378

and four candidate characters from b, choose the379

character that best fits into the blank.380

Speaker Given a quote Q (e.g. “Well, it was this381

way. I was leaning on the stile...”) from book b382

(≥ 50 words) and four candidate characters from b,383

choose the character that spoke this quote.384

Summary Cloze Similar to Cloze, given a sen-385

tence S with a blank from a chapter summary of386

book b and four candidate characters from b, choose387

the character that best fits into the blank. We ex-388

tract chapter summaries from LitCharts, an online389

guide for English literature.390

Desc Given a character description snippet D391

(e.g. A simple , but honest...) and four candidate392

characters from the same book, choose the charac-393

ter that is best described by D. We extract character394

descriptions from five reliable web sources.4395

QA Given a question about characters (e.g. Who396

brings Mary Lennox the garden tools?) and four397

candidate characters from the same book b, choose398

the character that best fits as the answer. We extract399

character-related questions (Angelidis et al., 2019)400

from NarrativeQA (Kočiský et al., 2017).401

5.4 Book-level tasks402

Author Given two characters from two different403

books b1, b2, identify whether the authors of b1 and404

b2 are the same or not.405

Book Given two characters from two books406

b1, b2, identify whether b1 and b2 are the same.407

Genre Identify the book genre of a given charac-408

ter c. Because one book can belong to more than409

one genre, we manually selected 11 frequent sub-410

jects from Project Gutenberg’s metadata and turn411

them into 11 binary classification tasks5 and report412

an average accuracy.413

4GradeSaver, LitCharts, CliffsNotes, Schmoop, Spar-
kNotes.

5Selected subjects are: 19th century, adventure stories,
detective and mystery stories, fiction, historical fiction, humor-
ous stories, juvenile fiction, love stories, science fiction, short
stories, western stories.

6 Evaluation 414

6.1 Setup 415

We follow recent work on probing word embed- 416

dings, which report that one should employ less ex- 417

pressive classifiers in order to prevent the classifier 418

itself from learning to solve the probe tasks (Voita 419

and Titov, 2020). At training time, one has ac- 420

cess to all books and learns fixed-length character 421

embeddings of each character. At test time, we 422

freeze the learned character embeddings and train 423

task-specific linear classifiers using the learned em- 424

beddings as a feature vector. 425

To solve classification tasks, we train a linear 426

classifier that uses learned character embeddings 427

as a feature vector. For pairwise classification, we 428

merge two character embeddings by element-wise 429

multiplication and absolute element-wise differ- 430

ence, i.e. [c1 � c2; |c1 − c2|]. In our experiments, 431

we employ Support Vector Machines (Cortes and 432

Vapnik, 1995). To solve multiple-choice tasks with 433

context x and characters {ci}4i=1, we train a scorer 434

f(x, ci) = (Wx + b) · ci with a cross entropy 435

loss, where W,b is a learned projection from the 436

embedding space of context to characters. We use 437

Sentence Transformers (Reimers and Gurevych, 438

2019) to encode x into x.6 439

We use an accuracy as evaluation measure. To 440

see overall picture, for each task category we calcu- 441

late a final score by an average of task accuracies. 442

We use 5-fold cross validation for evaluation and 443

report an average accuracy. For the task with less 444

than 2,000 instances (i.e. Role, Summary Cloze, 445

Desc, QA), we use 10-fold cross validation to se- 446

cure more training data. See §A in Appendix for 447

training details. 448

6.2 Results and discussion 449

The results are shown in Table 3. It shows that text- 450

based methods perform better on character-level 451

tasks and context-level tasks, while the graph-based 452

method performs better on book-level tasks. This 453

suggests that text-based methods can capture the 454

local context of characters such as gender better, 455

but it does not take into account document-level 456

context discussed in §4.1. Name embeddings 457

prove effective only at capturing gender. 458

Despite its simplicity, positional embeddings 459

show surprisingly good performance on the 460

character-level tasks (protagonist, identity) and 461

6For the role task, x is a character embedding, and ci is a
Sentence Transformer embedding of a role.
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Character-level Context-level Book-level Final score

Model gen role prot id clz spk sclz desc QA auth book genre Ch Co Bk

rand 50.0 25.0 50.0 50.0 25.0 25.0 25.0 25.0 25.0 50.0 50.0 50.0 43.8 25.0 50.0

w2v 88.6 41.9 75.4 92.7 32.9 38.8 37.7 40.7 39.7 70.8 92.1 76.4 74.7 38.0 79.8
d2v 87.2 40.1 71.1 95.3 32.5 32.0 29.3 43.6 33.7 79.1 92.3 78.9 73.4 34.2 83.4
nam 85.9 28.5 54.9 99.9 27.5 27.7 32.6 31.8 30.2 52.7 56.6 57.4 67.3 30.0 55.6

gl_ag 91.3 29.7 69.5 95.9 37.0 32.4 40.6 36.5 37.1 79.9 90.0 80.5 71.6 36.7 83.5
w_ag 91.8 31.8 73.1 96.3 37.3 35.3 40.8 45.9 39.4 79.5 89.2 81.6 73.3 39.7 83.4
rb_ag 96.6 40.5 86.7 96.7 38.5 43.5 48.0 51.2 41.6 75.3 84.8 79.9 80.1 44.6 80.0

gr 98.6 36.1 75.0 96.7 32.5 49.5 40.2 38.1 34.4 85.6 95.5 80.2 76.6 38.9 87.1
pos 52.2 30.8 86.2 74.9 26.0 45.5 40.1 27.6 37.1 54.9 60.5 55.7 61.0 35.3 57.0

rb_ag+
gr+pos

98.1 43.2 92.4 97.8 36.6 48.5 46.5 50.6 42.7 83.9 95.6 81.2 82.9 45.0 86.9

Table 3: Results on CEB. Text-based embeddings capture character-level information better, while graph-based
methods capture book-level information better. Combining these two methods leads to the best embeddings.

Character-level Context-level Book-level

Model gen role prot id clz spk su-clz desc QA auth book genre

graph 98.6 36.1 75.0 96.7 32.5 49.5 40.2 38.1 34.4 85.6 95.5 80.2
-(c,c) 98.6 44.8 74.7 95.5 32.2 46.8 37.0 35.6 40.2 81.4 89.4 79.1
-(a,b) 98.5 39.7 75.3 96.3 31.8 45.1 40.0 35.6 36.1 85.5 95.6 80.2
-(c,c)(a,b) 98.3 39.4 75.2 95.5 33.0 47.3 35.2 35.9 33.4 81.3 89.7 78.9

Table 4: Ablation study of character network embeddings.

context-level tasks (QA). This indicates that the462

occurrence patterns are deeply related to determin-463

ing the importance of characters in books and that464

if the same character appears in different books, the465

occurrence patterns are also similar to each other.466

The good performance of QA indicates that the re-467

lationship between two characters are captured to468

some extent only by the occurrence patterns.469

We then combined the best text-based embed-470

ding, rb_ag, with gr and pos (the last row).7471

The results indicate that they complement each472

other’s strength and weakness. For example,473

rb_ag’s low performance on the author and book474

tasks and gr’s low performance on the protago-475

nist and cloze tasks improved. Overall, the pro-476

posed methods using book-level information out-477

performed the text-based methods in four tasks,478

indicating the importance of book-level informa-479

tion in character representations.480

In order to investigate the effect of introducing481

global edges, we ablate author-book edges (a,b) and482

character-character edges (c,c) from the proposed483

graph embedding method. The results are shown484

in Table 4. ‘-(c,c)’ experiences more performance485

degradation in context-level tasks and book-level486

7We simply concatenated three embeddings, which yields
908-dimensional (768 + 100 + 40) embeddings.

tasks than ‘-(a,b)’, which indicates that character 487

interaction provides useful information especially 488

for these tasks. When both edges are removed, 489

we observe performance drop in nine tasks, again 490

indicating their need for character representations. 491

7 Qualitative analysis 492

To obtain further insights on the learned character 493

embeddings, we visualize rb_ag+gr+pos by us- 494

ing t-SNE (van der Maaten and Hinton, 2008) with 495

default hyperparameters. 496

7.1 Universality across books 497

In Fig. 1, we intend to check the universality of the 498

learned character embeddings across books. We 499

sampled characters with the same name and the 500

same author from different books and plotted 281 501

samples of their character embeddings. This identi- 502

fies characters that appear in a series of books, e.g. 503

Peter Rabbit in The Tale of Peter Rabbit. Interest- 504

ingly, Fig. 1 shows that even though such characters 505

appear in different books, the learned embeddings 506

are close to each other. This suggests that the pro- 507

posed method can capture the book-independent, 508

universal property of characters. We also observe 509

clusters by famous historical figures; see §B.1 in 510

Appendix for further details. 511
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Figure 4: Character embeddings colored by author.

Figure 5: Character embeddings colored by titles.

While our goal is to learn book-independent uni-512

versal character embeddings, we check to see if513

the character embeddings also preserve book-level514

information. Fig 4 shows character embeddings515

colored by the author of the book that each charac-516

ter came from. The clustering indicates that they517

also capture book-level information. We also ob-518

serve clusters by books; see Fig. 10 in Appendix.519

7.2 Character property520

When characters have similar property (e.g. pro-521

fession), it is desirable to have similar embeddings522

even though they exist in different books. This523

section studies the following three properties.524

Profession/role Fig. 5 visualizes 2,232 charac-525

ters that have manually specified titles (e.g. kings,526

aunts) across different books. We see a clear clus-527

ter for each title, and queens, kings and barons528

being close to each other (left). This indicates an-529

other book-independent, universal property of our530

embeddings from the profession/role’s perspective.531

Note that our training methods do not exploit the532

titles for learning character embeddings: they con-533

vert the whole character name including the title as534

one unique special token (see §3).535

To see if characters playing a specific role are536

separated from ordinary characters in our embed-537

ding space, we extracted 1,360 characters with the538

name aunt X and (non-aunt) X across books and539

plotted their character embeddings in Fig. 6. We540

see that aunts and non-aunts form separate clusters.541

Figure 6: Character embeddings colored by aunts (red)
and non-aunt characters (blue).

Figure 7: Character embeddings colored by gender.

This again supports that our character embeddings 542

also capture the profession/role of characters. 543

Gender Fig. 7 visualizes 4,000 random samples 544

of character embeddings across books, each of 545

which is labeled with their gender. This clearly 546

shows the clusters of female, indicating that the 547

character embeddings have learned their gender. 548

Protagonist status We observe clusters by pro- 549

tagonist status; see Fig. 9 in Appendix. 550

8 Conclusions 551

We have addressed the problem of learning fixed- 552

length, dense character representations from book- 553

length narrative texts. To overcome the weakness 554

of the text-based embeddings, we have proposed 555

graph-based embeddings and positional embed- 556

dings. To test the quality of character embed- 557

dings, we have also constructed CEB, a novel 558

benchmark suite for evaluating character embed- 559

dings, consisting of 12 different tasks. Our exper- 560

iments have demonstrated that the proposed em- 561

beddings combined with text-based embeddings 562

lead to the best character embeddings, outperform- 563

ing text-based embeddings in four tasks. We also 564

showed that character embeddings capture both 565

character-level and book-level information across 566

books, demonstrating the versatility of the tech- 567

niques we employed. The dataset and evalua- 568

tion script are made publicly available at https: 569

//anonymous.com. 570
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A Training details818

For static embeddings, we use gensim implementa-819

tion of word2vec (CBOW) and doc2vec.8 We kept820

only top one million words in the vocabulary and821

trained 300-dimensional vectors with 5 epochs, 10822

context words, and 10 negative examples.823

For graph-based embeddings, we use the orig-824

inal implementation of DeepWalk9 with 100-825

dimensional embeddings. We set the length of826

random walk path to 50 nodes and the number of827

random walks to start at each node to 20, and kept828

other hyperparameters as the default values.829

For encoding context into embeddings (i.e.830

x) in §6.1, we use all-MiniLM-L12-v2, a pub-831

licly available pretrained model of Sentence832

Transformers at https://www.sbert.net/833

docs/pretrained_models.html.834

We train the multiple-choice classifier for 10835

epochs, using AdamW with batch size of 16, learn-836

ing rate of 1e-3, and weight decay of 1e-2. We837

implement the classifier with pytorch.838

B More plots of character embeddings839

To show further insights on our best embeddings840

(rb_ag+gr+pos), we provide more plots of841

character embeddings. As with §7, we use t-842

SNE (van der Maaten and Hinton, 2008) with de-843

fault hyperparameters for these plots.844

B.1 Character-level845

To further confirm the universality of character em-846

beddings, we manually identified 662 famous, his-847

torical figures such as Jesus Christ and George848

Washington in Project Gutenberg books and plotted849

character embeddings in Fig. 8. Similar to Fig. 1,850

it shows one big cluster for Jesus Christ and small851

clusters for the rest of historical figures, again in-852

dicating the universal property of our character853

embeddings.854

Fig. 9 visualizes 4,000 protagonists and non-855

protagonists across books. This clearly indicates856

that the character embeddings have learned protag-857

onist status.858

B.2 Book-level859

Fig. 10 visualize the learned character embeddings,860

where the datapoints are labeled by books. The861

results suggest that character embeddings also en-862

code book-level information.863

8https://radimrehurek.com/gensim/
9https://github.com/phanein/deepwalk

Figure 8: Character embeddings of historical figures.

Figure 9: Character embeddings colored by protagonist
status. 4.9% of sampled characters are the protagonist.

Figure 10: Plot of character embeddings colored by
book.

To give a closer inspection, we show the list of 864

nearest neighbor characters in Table 5, where we 865

used Euclidean distance as a distance function and 866

Mary Lennox, the main female character from The 867

Secret Garden as a query. Table 5 lists characters 868

with similar attribute at a both character-level and 869

book-level as nearest neighbors. For example, Sibyl 870

Ogilvie, Betty Randall are female children of age 871

similar to Mary Lennox from juvenile books. 872
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Distance Name Gender Book title Book author Juvenile?

0.00 Mary Lennox Female The Secret Garden Burnett, Frances Hodgson Y
1.44 Sibyl Ogilvie Female Daddy’s Girl Meade, L. T. Y
1.56 Margaret Montfort Female Margaret Montfort Richards, Laura Elizabeth Howe Y
1.60 Betty Randall Female The Children on the Top Floor Rhoades, Nina Y
1.61 Carol Female Sunny Slopes Hueston, Ethel N
1.62 Matilda Laval Female Trading Warner, Susan Y

Table 5: Five nearest neighbors for Mary Lennox from The Secret Garden.
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