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ABSTRACT

Quantum state preparation forms an essential cornerstone of quantum informa-
tion science and quantum algorithms. Designing efficient and scalable methods
for approximate state preparation on near-term quantum devices remains a signif-
icant challenge, with worst-case hardness results compounding this difficulty. In
this work, we propose a deep reinforcement learning framework for quantum state
preparation, capable of immediate inference of arbitrary stabilizer states at a fixed
system size post a training phase. Our approach scales substantially beyond previ-
ous works by leveraging a novel reward function. In our experiments on stabilizer
states up to nine qubits, our trained agent successfully prepares nearly all previ-
ously unseen states, despite being trained on less than 10−3% of the state space
– demonstrating significant generalization to novel states. Benchmarking shows
our model produces stabilizer circuits with size 60% that of existing algorithms,
setting a new state of the art in circuit efficiency. Furthermore, we show that
this performance advantage is consistent across states with varying entanglement
content. We also analyze the rate of increase of entanglement entropy across the
prepared circuit, obtaining insight into the quantum entanglement dynamics gen-
erated by our trained agent. Finally, we prove our agent generalizes to (almost)
the entire space of stabilizer states.

1 INTRODUCTION

At the heart of quantum information processing are quantum bits or qubits that can exist in arbitrary
superpositions owing to the coherence properties of a quantum device. An increase in the number of
qubits leads to an exponential increase in the complexity of the many-body state: preparing a gen-
eral state of n qubits efficiently on a quantum processor (called quantum state preparation, or QSP)
remains a daunting task. The precise problem is as follows: given access to a target state |ψ⟩, a set
of allowed gate operations, and restrictions on qubit connectivity, can we come up with an (efficient)
algorithm for a circuit-level construction of the state? The problem is of fundamental importance,
being an essential primitive in the majority of modern quantum algorithms. QSP plays a major role
in the Harrow–Hassidim–Lloyd (HHL) algorithm (Harrow et al., 2009) for solving linear systems,
where a state preparation procedure is used to prepare quantum state

∑
bi |i⟩ from classical unit

vector b. HHL in turn underpins many quantum machine learning (QML) algorithms (Biamonte
et al., 2017; Liu et al., 2021). Quantum error correction (QEC), an essential ingredient in the real-
ization of large-scale fault-tolerant quantum computers (Preskill, 2018), requires the efficient state
preparation of logical code states (Gottesman, 2009). Apart from these, QSP also finds application
in studying phase transitions and the ground state physics of many-body Hamiltonians (Lin & Tong,
2020; Dong et al., 2022).

A key challenge in the current landscape of quantum technology is the development of efficient
state preparation methods suitable for noisy intermediate-scale quantum (NISQ) devices (Preskill,
2018). Many quantum algorithms that claim speedups in terms of oracle complexity rely heavily on
state preparation through oracle calls (Aaronson, 2015). To achieve a practical quantum advantage,
particularly in the NISQ era, efficient implementation of these oracles is crucial. Furthermore, due
to limited coherence times and gate inaccuracies, current quantum hardware can only support a
few thousand quantum gates (Preskill, 2018). As such, despite the theoretical worst-case hardness
results, it remains critical to identify and develop practical state preparation protocols.
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In recent years, deep reinforcement learning (DRL) has emerged as a powerful tool for solving
search problems in complex state spaces. It has shown promise in solving general design problems,
e.g. for combinatorial optimization (Dai et al., 2018), chip design (Mirhoseini et al., 2021) and even
theorem proving (Wu et al., 2021). It is straightforward to model state preparation as a sequential
prediction problem. An agent incrementally pieces together a circuit, adding an allowed quantum
gate at each step, until the output of the circuit is (close to) the state of interest. The quantum system
typically starts from a fiducial state |ψ0⟩. This brings us to our central line of inquiry.

Can deep reinforcement learning offer a scalable and efficient solution to QSP?

There has been much work on using DRL for state preparation. However, scaling to many qubits
generally poses a challenge for current approaches owing to an exponentially increasing search
space of possible circuits (Schneider et al., 2023). For this reason, much previous work is limited
to states with a few qubits, or to states that are known to be realizable with a circuit of small size
(He et al., 2021; Gabor et al., 2022; Wu et al., 2023; Kolle et al., 2024). A different, but arguably
more critical problem is that many existing approaches (Schneider et al., 2023; Zen et al., 2024)
require re-training for each choice of target state, which makes them usable only for the discovery
of more efficient circuits for particular states of interest, not as a primitive that can replace an existing
heuristic for preparing arbitrary states. An agent that does not need re-training to prepare unseen
states will be called zero-shot in this work, to emphasize successful generalization to states not seen
during training.

Taking a step to address these challenges, in this work we develop a reinforcement learning-based
method to prepare arbitrary stabilizer states at a specified system size, gate-set and qubit connec-
tivity. By focusing on the rich subset of stabilizer states, we are able to scale our method to the
preparation of systems of up to 9 qubits. Our method lends itself to zero-shot agents: the training
phase only needs to happen once for a given connectivity graph and gate set. Post the training phase,
an arbitrary n-qubit state |ψ⟩ belonging to the class of interest may be prepared just by providing
the agent a classical description of the target state |ψ⟩. To achieve this scaling in a sample-efficient
manner, we motivate and analyze the novel class of moving-goalpost reward (MGR) functions.

Another important contribution of this work is the style of benchmarking state preparation agents.
Apart from measuring circuit sizes of the output circuits and preparing states used in error-correcting
codes, we examine the effect of entanglement on the produced circuits. We use brickwork circuits
(Fig. 3(a)) to generate states with varying entanglement content and test the performance of the
agent. Further, we analyze the entanglement dynamics of the agent during circuit preparation, lead-
ing to insights about the speed of preparation and redundancy in the produced circuits. The third
important contribution is that of provable generalization: we show that our agents generalize to at
least 95% of the state space, despite being trained on less than 10−13-10−3% of the state space.

The paper is organized as follows. In Sec. 2, we first provide a short introduction on relevant aspects
of quantum computation and reinforcement learning. After a discussion of previous work in Sec.
3, we move on to describe our proposal and novel reward function in detail in Sec. 4. Finally, the
various experiments in Sec. 5 provide a deeper analysis of the performance of the trained agents.

2 BACKGROUND

2.1 QUANTUM COMPUTATION AND STABILIZER CIRCUITS

The state of a single qubit is described by a unit vector |ψ⟩ in its Hilbert space H ∼= C2. We
write |ψ⟩ = a |0⟩ + b |1⟩, where a, b ∈ C and {|0⟩ , |1⟩} is a fixed orthonormal basis for H. A
general n-qubit state is a linear combination of the 2n basis states |z⟩ = ⊗ni=1 |zi⟩ ∈ H⊗n with
zi ∈ {0, 1}. The fidelity between two quantum states is F(ψ, ϕ) := |⟨ψ|ϕ⟩|2. A state is called
entangled if it cannot be written as a tensor product of single-qubit states, for instance the Bell state
(|00⟩+ |11⟩) /

√
2. We quantify the entanglement content of a pure state |ψ⟩ through the bipartite

entanglement entropy: given any bi-partition A ∪ B, we define S(|ψ⟩AB) := −tr(ρA log ρA), with
ρA := TrB(|ψ⟩AB ⟨ψ|AB) where TrB denotes the partial trace over subsystem B. In this work, we
restrict to the half-chain entanglement entropy by choosing the bipartition A = {1 ≤ i ≤ n/2}. We
point the reader to Nielsen & Chuang (2010) and App. A for more details on the theory of quantum
circuits.
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Stabilizer states are a restricted yet important class of quantum states described in a group-theoretic
fashion as the common +1-eigenspace of an Abelian sub-group of Pauli Operators, rendering them
classically simulable (Aaronson & Gottesman, 2004). They admit an equivalent representation as
states that can be reached from the all-zeros state |0⟩ using Clifford circuits, i.e. unitaries that are
a combination of H , S and CNOT gates. Stabilizer states have immense use in the exploration of
quantum information (Webb, 2016; Huang et al., 2020) and are also crucial for quantum error cor-
rection (QEC) (Gottesman, 1997; Nielsen & Chuang, 2010; Campbell et al., 2017; Ryan-Anderson
et al., 2021). They are also applied beyond to measurement-based quantum computing (Raussendorf
& Briegel, 2001; Patil & Guha, 2023), quantum-classical hybrid algorithms (Cheng et al., 2022; Ravi
et al., 2022) and many-body physics (Sun et al., 2024).

Despite classical simulability, preparing stabilizer states optimally remains a challenge. It is known
(Aaronson & Gottesman, 2004) that any stabilizer state can be prepared using O

(
n2
/logn

)
gates,

and that this bound is asymptotically tight. Quadratic circuit size coupled with the fact that the
number of Clifford states grows as 2O(n2) makes the search for optimal circuits difficult. Known
optimal circuits have been limited to 6 qubits (Bravyi et al., 2022). Further, the (anti-)commutation
and self-inverse properties of Clifford gates make it harder to reason about locally greedy search
steps.

2.2 REINFORCEMENT LEARNING

In the Reinforcement Learning (RL) setting, an agent learns through interactions with an environ-
ment to maximize its cumulative reward across the interactions (Sutton & Barto, 2018). For a more
complete introduction to RL, we refer the reader to App. A.3 and Sutton & Barto (2018). The envi-
ronment is typically modeled as a Markov decision process, and the policy of the agent is modeled
as a function π : S × A → [0, 1] with π(a|s) being the probability that the agent will take action
a when in state s. A policy π along with a distribution µ over possible start states s0 induces a
distribution over traces τ = (s0, a0, s1, · · · , aT−1, sT ) via s0 ∼ µ, ai ∼ π(·|si), si+1 ∼ p(·|si, ai)
for each i. A reward function r : S × A × S → R defines the metric we want to optimize. Taking
action a while in state s and landing up in state s′ yields a reward r(s, a, s′). The goal in RL is to
find a policy π∗ that maximizes the expected cumulative reward or return

J(π) := Eτ∼(µ,π) [G(τ)] = Eτ∼(µ,π)

[
T−1∑
i=0

γir(si, ai, si+1)

]
. (1)

Here, γ ∈ [0, 1] is the discount factor, describing the value of future actions in the present.

In the typical state preparation setting (and in our work), the state space is the set of states that
we wish to prepare. The action space consists of allowed quantum gates. Taking an action U
corresponds to applying U to the current state |ψ⟩, with the new state after the action being U |ψ⟩.
The terminal state is usually the state we desire to prepare. However, in our work, we invert the
preparation process and thus set the default state |0⟩ to be the lone terminal state instead. Throughout
our experiments, we use the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017),
from the family of actor-critic methods, to train our agent. A detailed overview of the algorithm is
provided in App. A.3.

3 RELATED WORK

There is a rich body of literature devoted to preparing quantum states. Classic methods include
the Solovay-Kitaev construction (Dawson & Nielsen, 2005), the quantum Shannon decomposition
(Shende et al., 2004), and more recently an inverse-free Solovay-Kitaev style construction (Bouland
& Giurgica-Tiron, 2021). In recent times, many machine learning and deep reinforcement learning
approaches have been examined (Kolle et al., 2024; Gabor et al., 2022; He et al., 2021; Zhang et al.,
2019). Some DRL approaches tackle the related problem of quantum compiling, where one needs
to prepare a (short) circuit describing a unitary (Fösel et al., 2021; Patel et al., 2024; Chen et al.,
2022).

Owing to their diverse applicability, it is of great interest to find efficient circuits preparing stabilizer
states. Algorithmic heuristics for the preparation of stabilizer states have been studied in great detail
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Figure 1: The proposed reinforcement learning framework. (a) The state to prepare is set as the start
state, and the goal is to reach the all-zeroes state |0⟩. At each step, the agent interacts with |ψt⟩ and
proposes the next gate to apply. (b) After reaching |0⟩, we invert the circuit to prepare the target |ψ⟩.

(Aaronson & Gottesman, 2004; Bravyi et al., 2021; 2022). The application of deep reinforcement
learning to stabilizer QSP has been limited to the preparation of specific stabilizer states, typically
centered around quantum error-correcting codes (Su et al., 2023; Zen et al., 2024). Approaches
based on representing preparation as an optimization problem and using a SAT solver have also
been studied (Peham et al., 2023; Schneider et al., 2023). Some recent works manage to address
zero-shot inference using a reverse-preparation trick Wu et al. (2023); Zhang et al. (2020); Kremer
et al. (2024); Wang & Wang (2024). Particularly, Huang et al. (2024a) uses a method using local
circuit inversions to learn shallow unitaries.

4 ZERO-SHOT QUANTUM STATE PREPARATION WITH RL

Problem 1 ((Approximate) Quantum State Preparation). Given n ∈ N, collection of n-qubit states
S ⊆ C2n , starting state |ψ0⟩, a set of gates A induced by a collection G of allowed gates and qubit
connectivity graph N , and ϵ > 0, find an (efficient) algorithm that upon input any state |ψ⟩ ∈ S
returns a (short) circuit C such that F(|ψ⟩ , C |ψ0⟩) ≥ 1− ϵ.

Here, the qubit connectivity graph (also called coupling map) N = (V,E) with V = {qi}ni=1 being
the set of qubits and edge e = {qi, qj} representing the fact that two-qubit gates may be applied to
the joint system of qi and qj . A set of allowed single and two-qubit gates G induces a collection of
allowed n-qubit gates A with each single-qubit gate g ∈ C2×2 contributing |V | = n gates – apply g
to the ith qubit, leave the rest as is – and each two-qubit gate g ∈ C4×4 contributing |E| gates – apply
g to the joint system of qi and qj for each edge {qi, qj} – to A. For example, at n = 3 with gate-set
{H,S,CNOT} and connectivity graph {{1, 2}, {1, 3}}, the induced collection of gates comprises
H ⊗ I ⊗ I , I ⊗H ⊗ I , I ⊗ I ⊗H , S⊗ I ⊗ I , I ⊗S⊗ I , I ⊗ I ⊗S, CNOT1,2 ⊗ I3, CNOT2,1 ⊗ I3,
CNOT1,3 ⊗ I2 and CNOT3,1 ⊗ I2. Here CNOTi,j is the CNOT gate applied to qubits qi and qj with
qi the control and qj the target. Ik is the identity gate applied to qubit qk.

4.1 ENABLING ZERO-SHOT INFERENCE

A typical formulation of QSP in the RL paradigm is to let the environment start in |ψ0⟩ with the
agent changing the state of the environment by applying a gate a ∈ A at each step till the state of
the environment is ϵ-close to the target |ψ⟩. The trajectory of the agent would then yield the desired
circuit C. An intrinsic drawback of this formulation is that the algorithm would need to be trained
for each |ψ⟩ ∈ S as the terminal states of the environment in an RL setting are fixed.

The main observation is that we can exploit the fact that the environment’s start state can vary across
the training according to a distribution µ. In view of this, consider |ψ⟩ being the start state of
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the environment, drawn uniformly from S, with the target being (all states which are ϵ-close to)
the fiducial |ψ0⟩. The agent picks actions from the inverted action space A† = {a−1 : a ∈ A}
and attempts to prepare |ψ0⟩. A successful trajectory leads to a circuit C̃ with F(|ψ0⟩ , C̃ |ψ⟩) =

⟨|ψ0⟩ |C̃|ψ⟩
2 ≥ 1− ϵ. Further notice that

F(C̃−1 |ψ0⟩ , |ψ⟩) = ⟨ψ0|C̃|ψ⟩
2
= F(|ψ0⟩ , C̃ |ψ⟩) ≥ 1− ϵ,

implying that the circuit C = C̃−1 satisfies the conditions of the QSP problem, i.e. takes |ψ0⟩ to
within ϵ-fidelity of |ψ⟩. Further, C can be computed easily from C̃ = a−1

k a−1
k−1 · · · a

−1
1 as C =

a1 · · · ak−1ak, i.e., the sequence of inverted actions along the reversed trajectory of the agent. This
immediately gives us the RL formulation, see Tab. 1.

With this inverse preparation procedure, the start state |ψ⟩ changes each episode, while the target
state |ψ0⟩ is constant. In particular, the agent is being forced to prepare |ψ0⟩ from any starting |ψ⟩ –
and hence any |ψ⟩ from |ψ0⟩ – avoiding the need to re-train the agent to prepare different |ψ⟩ ∈ S.

We demonstrate the performance and scaling behavior of our algorithm by preparing stabilizer states,
i.e. S = Sn, the set of n-qubit stabilizer states. We set ϵ = 0, i.e. we target exact stabilizer state
preparation. A good policy can potentially obtain high rewards (corresponding to effective and
efficient circuits) on unseen states, which is empirically observed in our experiments (Tab. 3) and
proven using generalization bounds in Sec. 5. A good reward function is the main bottleneck to
guiding the agent towards a good policy; we describe our novel reward function in the following
section.

Table 1: The proposed RL framework for state preparation
Component Description
State Space S The set of n-qubit quantum states to be prepared.
Action Space A The inverse of all gates in the induced collection of n-qubit gates.
Transition Function p(s, u, s′) Deterministic: s′ = u · s if action u ∈ A is applied to state s ∈ S.
Starting Distribution µ Uniform over S.
Terminal state |ψ0⟩ ≡ |0⟩.

4.2 MOVING-GOALPOST REWARD (MGR) FUNCTIONS

In this section, we first discuss issues with typical reward functions used for state preparation, and
use an experimental insight to derive a novel reward function. We finish the section with details of
the precise reward function used in our experiments.

In quantum state preparation, a typical choice of reward function is the fidelity to the target
Φ(s) := F(s, |ψ⟩), that is, r(si, ai, si+1) = Φ(si+1). In our reverse-preparation, the last term
is F(si+1, |0⟩). However, we find that this reward does not learn – the cumulative reward obtained
from this reward function does not reflect maximum final fidelity, which is our true goal. The agent
might, for example, learn to stay close to the target without actually terminating the episode, e.g.
an agent in state (|00⟩ + |11⟩)/

√
2 can apply a CNOT gate repeatedly, always staying at a fidelity

of 1/2 to target state |00⟩; this is optimal for the agent. Indeed, we observe precisely this style of
behavior in Fig. 2.

Another choice of reward is the incremental fidelity r(si, ai, si+1) = γΦ(si+1) − Φ(si) (here γ is
the discount parameter). It has been shown to work well for preparing a particular state, but we find
that it does not learn to prepare arbitrary states in our framework (see Fig. 2).

We attribute the failure of this reward to learn to two reasons. Firstly, a gate (H,S,HSH or CNOT)
applied to a state |ψi⟩ is very likely not to increase the fidelity to |0⟩. We experimented with 1000
uniformly random 6-qubit states, applying every one of 48 gates induced from our gateset to each
state. We found that 83.4% of the actions yielded no change in fidelity, 10.0% reduced fidelity and
only 6.6% improved it. The fidelity to the target across the optimal preparation of many states is
not monotonic and involves sections where the fidelity decreases; the incremental reward penalizes
these steps, possibly discouraging the agent from re-trying the same actions. We try to address these
shortcomings by rewarding an agent suitably for an increase in fidelity, but not penalizing the agent
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as much for an equal/smaller fidelity. Notice that it is unwise to reward the agent at every step with
an increase in fidelity – an optimal policy would simply be to drop fidelity, increase it, and repeat till
the episode is truncated. Such policies are allowed by the self-inverse nature of the quantum gates
used. Thus, we choose to reward the agent only when fidelity surpasses all previous fidelities seen
so far. The MGR reward function follows naturally.

We now introduce a class of rewards that we call Moving-Goalpost Reward (MGR) functions. These
reward functions repeatedly set a performance baseline, reward an agent for beating it, and update
the baseline. The formal definition follows.

Definition 1. A function Φ : S → [0, 1] function on the state space satisfying Φ(sT ) ≥ Φ(s) for all
terminal states sT ∈ S and arbitrary states s ∈ S is called a potential function on S.

A potential function is a heuristic whose value indicates the closeness of a state to being terminal.
Note that we do not place any restriction on the convexity of Φ. We now define the general class of
MGR functions.

Definition 2 (MGR function). Let Φ be a potential function on S. Reward function r :
S × A × S → R is a Φ-MGR reward function if for every k ≥ 0 and k-step trajectory
τ = (s0, a0, s1, · · · , sk, ak, sk+1), we have

r(sk, ak, sk+1) =

{
f(Φ(sk+1),Mk) Φ(sk+1) > Mk

g(Φ(sk+1),Mk) otherwise
,

where f, g : [0, 1]2 → R satisfy f(x, y) ≥ g(x, y)∀x, y and Mk := max0≤i≤k Φ(si).

Consider the specific instantiation f(Φ(sk+1),Mk) = γΦ(sk+1) − Mk and g(Φ(sk+1),Mk) =
−(1 − γ)Mk and call the associated MGR function MGR-VANILLA. For this reward, it can be
proved that maximizing return, i.e. discounted cumulative reward over a T -length episode is equiv-
alent to maximizing MT = max0≤i≤T Φ(si), i.e. reaching a terminal state during (and hence at
the end of) the episode. In particular, we show in App. B.1 using a telescoping argument that the
discounted cumulative reward over trace τ = (s0, a0, · · · , sT−1, aT−1, sT ) is

G(τ) =

T−1∑
i=0

γir(si, ai, si+1) = γTMT − Φ(s0),

so maximizing G(τ) corresponds to reaching a terminal state. A side effect is that reducing T
also increases G(τ), so short circuits are preferred. However, since γ ≈ 1 in our experiments, we
instead used a small negative constant at each step to indicate a preference for shorter circuits. In our
experiments, we slightly modify the above MGR reward function to penalize non-increasing fidelity
as little as possible; we call the reward MGR-OURS:

r(sk, ak, sk+1) :=

{
γΦ(sk+1)−Mk − α Φ(sk+1) > Mk

−α otherwise
.

We use the reward MGR-OURS in all our implementations as it was seen to reduce training time,
see Fig. 2. To ensure the environment stays Markovian, we augment the state sk with Mk.

We take a moment here to contrast our approach to existing methods that use a similar reverse-
preparation idea, in various ways. Our method achieves zero-shot inference using a reverse-
preparation trick. However, the main driver is actually our novel reward function, which yields
scalable and sample-efficient agents, while staying zero-shot. We are able to scale far beyond Wu
et al. (2023); Zhang et al. (2020), which address the general state preparation problem on 1-2 qubits.
In fact, we have already used the same framework and reward function to prepare agents that suc-
cessfully solve the zero-shot general state preparation problem for up to three qubits with ε = 0.95.
However, our focus here is on stabilizer states and the general setting requires more comprehensive
investigation with suitable adaptations, which is beyond the current scope.

The parallel work (Kremer et al., 2024) scales stabilizer state preparation to 11 qubits on various
architectures. Our approach, though scaling only up to 9 qubits, substantially improves upon this
work in terms of sample efficiency: we use at most 10M-20M training steps, while Kremer et al.
(2024) use over 1B steps.
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Figure 2: Analysis of different reward functions to the training of the 6-qubit fully connected agent.
INCR refers to the incremental fidelity γΦ(si+1)−Φ(si). INCR-PENALTY has an extra −α term. α
is chosen to be 1/T ∗, with T ∗ being the maximum length of an episode. The POTENTIAL reward
sets r(si, ai, si+1) = Φ(si+1). MGR-OURS converges faster than MGR-VANILLA.

5 EXPERIMENTAL RESULTS

To demonstrate the performance of our framework, we train the agent to prepare stabilizer states,
both with unrestricted/full/all-to-all connectivity and linear/local connectivity, demonstrating state-
of-the-art performance in both cases. We use the number of gates in the circuit as our main evaluation
metric for circuit size; smaller is better. The agents are tested on increasingly entangled brick-work
states (see Fig. 3(a)) to understand the dependence of the prepared circuits on the input state’s en-
tanglement content. We further contrast the entanglement dynamics generated by random stabilizer
circuits with the dynamics generated by our trained agents. The probe for studying the entanglement
dynamics is the canonical half-chain entanglement entropy (as defined in Sec. 2.1). We compare the
performance of our RL model with two other methods (Aaronson & Gottesman, 2004; Bravyi et al.,
2021) for arbitrary stabilizer state preparation. We note that both these methods use the Pauli gates
X , Y , Z, H , S, controlled-NOT and SWAP gates with full connectivity for state preparation. All
circuits prepared by the agent have a fidelity of 1.0.

State and Action spaces. For each n and both connectivities, we use the set of n-qubit stabilizer
states as our state space. Each stabilizer state is represented in flattened tableau form (Aaronson &
Gottesman, 2004), only including its stabilizers, so that each state is represented by a (2n2 + n)-
dimensional bit-vector. For the action space, we use different allowed gatesets for each connectivity.
Both gate-sets are realistic, for example in trapped-ion-based quantum computers (Cirac & Zoller,
1995), a promising candidate for quantum computation. For the fully connected agents, our gateset
G consists of H (Hadamard), S (Phase), CNOT and HSH (conjugated phase) gates. The inclusion
of the conjugated phase gate HSH ensures symmetry within the gate set because it provides an
operation for the X component that mirrors the effect of S on the Z component. While S modifies
the Z component of the tableau, the HSH gate equivalently modifies the X component. This
symmetry is useful since the tableau is also symmetric in X and Z. It is not unfair to treat HSH
as a single gate; it is as easy as S to apply (Evered et al., 2023) – note that HSH is simply a π/2-
rotation about the x-axis just as S is a π/2-rotation about the z-axis. For the local case, we use the
H , S, X , Y , Z and CNOT gates. Despite using a more restrictive gate-set for our agents compared
to baselines, our methods achieve substantially shorter circuits (see Tab. 3).

Testbench details. We use two testbeds. One consisting of uniformly random stabilizer circuits
and the other comprising (roughly) uniformly sampled brickwork circuits (see Fig. 3(a)) of different
depths. The random stabilizer circuits were sampled using the Stim API (Gidney, 2021). Each brick-
work circuit of depth d was constructed by choosing each “brick” to be an independently sampled
random 2-qubit stabilizer circuit. The first test-bench serves to estimate the average performance
of the agent; the second examines the entanglement dynamics of the induced preparation algorithm
of the agent. Finally, we also additionally sampled 2, 000 independent uniformly random stabilizer
circuits for each n = 5, 6, 7, 9 to provide the empirical data to prove our generalization bounds.
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Figure 3: (a) A schematic of brickwork Clifford circuits, where each U is sampled independently
from the 2-qubit Clifford group. (b) The progression of entanglement entropy during the preparation
of volume-law entangled 2n-depth brickwork states (solid) vs the entanglement entropy of n-qubit
brickwork states of increasing depth t (dashed) (c-d) Benchmarking our model on increasingly deep
brickwork circuits for (c) n = 5 and (d) n = 9 qubits. A-G and B-M refer to the stabilizer prepa-
ration methods in Aaronson & Gottesman (2004) and Bravyi et al. (2021) respectively, and DRL
refers to our framework (full connectivity). (e) A zero-shot preparation of the logical |0⟩L states of
three popular codes with full connectivity.

Implementation details. To facilitate quick learning, especially at the start of training, we artifi-
cially terminate episodes after a fixed maximum time-step T ∗. The pairs (n, T ∗) used in our experi-
ments are (5, 50), (6, 80), (7, 80) and (9, 127). The discount factor is fixed at 0.99 for n < 9 and 0.9
for n = 9. Training hyper-parameters can be found in App. D.2. We implement a version of PPO
based on Morales (2020) in PyTorch and simulate stabilizer states using Stim (Gidney, 2021). The
environment is vectorized for parallel training on a single GPU. The agent is allowed five attempts
at preparing each state; we pick the best one (shortest circuit size). This is done mostly to give the
agent the chance to discover even shorter circuits; almost every attempt yields a successful prepa-
ration nonetheless. Finally, for the local agents, we augment MGR with the incremental Jaccard
distance between |0⟩ and the current state since we found that this improved sample efficiency.

Computational costs of training. Our agent is sample-efficient and accordingly, training times are
short: Training for 40, 000 episodes with n = 5 takes 15 minutes on a single NVIDIA A100 GPU.
At n = 7, training takes 3 hours (130k episodes) and at n = 9 takes 5 hours (180k episodes).

Preparing stabilizer states, full connectivity. In this set of experiments, we train four agents to
prepare arbitrary stabilizer states with number of qubits n = 5, 6, 7, 9 with full connectivity. Our
proposed RL method performs substantially better – circuit sizes are 60% that of baselines – than
other methods at most brickwork sizes, especially at high entanglement. Tab. 3 shows the results of
preparing 200 randomly sampled stabilizer states of each size. We also provide an analysis of the
CNOT gate counts of circuits prepared by our trained agents in App. D.1. We observe efficient use
of these gates despite offering no extra bias towards minimizing the usage of two-qubit gates.

Figs. 3(c) and 3(d) show the comparison of circuit size with existing approaches for stabilizer states
for n = 5 and n = 9 respectively. We benchmark each method with N = 100 random brickwork
circuits (see Fig. 3(a)) for each depth t ∈ {1, 2, · · · , 2n}. Brickwork circuits were chosen to explore
the performance of the RL method in preparing highly entangled states.
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Table 2: Circuit size (↓) comparison with baselines, averaged across 200 uniformly random stabilizer
states of the appropriate size.

Algorithm 5-qubit 6-qubit 7-qubit 9-qubit
Aaronson & Gottesman (2004) 26.00 ± 6.37 36.43 ± 7.25 48.13 ± 7.29 76.56 ± 8.23

Bravyi et al. (2021) 21.10 ± 4.88 29.77 ± 5.97 38.50 ± 5.96 59.24 ± 7.57
RL (linear connectivity) 15.52 ± 3.25 21.68 ± 3.32 30.18 ± 4.09 -
RL (full connectivity) 12.83 ± 2.40 17.86 ± 2.88 24.36 ± 3.47 41.92 ± 5.91

Figure 4: Preparing logical states |0⟩L (a) and |1⟩L (b) of the [5, 1, 3] perfect code (Laflamme et al.,
1996) when constrained to a linear connectivity.

Stabilizer QSP with linear connectivity. In this set of experiments, we construct circuits for sta-
bilizer states with n = 5, 6, 7 with restricted connectivity: the connectivity graph N is a line, i.e. it
only contains edges ({qi, qi+1} for i ∈ {1, · · · , n− 1}. We chose this connectivity since it is often
a subgraph of the connectivity graph of real quantum architectures, and so circuits generated with
this connectivity may be used on these architectures directly. The gateset uses the single-qubit Pauli
gates X , Y and Z in addition to the Clifford gate-set H , S and CNOT. The results are shown in
Tab. 3; we note that even restricting to local gates, the RL approach generates around 30% shorter
circuits.

Preparation of some typical states used in QEC. Fig. 3(e) shows the RL agent’s attempt at prepar-
ing the logical state |0⟩L for the (i) [5, 1, 3] perfect code (Laflamme et al., 1996), (ii) [7, 1, 3] Steane
code (Steane, 1996) and the (iii) [9, 1, 3] Shor code (Shor, 1995). Additionally, Fig. 4 shows the
circuits prepared by the agent for the logical states of the perfect code when restricted to linear
connectivity. Note that the agent was never explicitly trained to prepare any of these states.

We remark here one insight about the preparation of the logical zero state for the Shor code. The
state itself is a tensor product of three copies of the 3-qubit GHZ state; we note that our agent is
indeed simply preparing the GHZ gate three times, one after the other. This in turn signals that the
efficiency of such an agent is intimately linked with whether the correlations in the quantum state
are being captured by the algorithm. We further comment on this below.

Entanglement dynamics. This analysis concerns n-qubit states generated from brickwork circuits
of depth 2n and the agent restricted to a linear connectivity, both of which generate local dynamics
with qubit interactions on O(1) number of qubits at each step. Given a circuit C = [U1, · · · , Uk]
prepared by the local agent for a brickwork state, we compute the entanglement entropy S(t) of the
intermediate states |ψt⟩ = UtUt−1 · · ·U1 |0⟩ for each 1 ≤ t ≤ k as S(t) = SN/2(|ψt⟩). The goal
of this experiment is as follows: for preparing highly entangled n qubit states with local dynamics,
there are known bounds on the rate at which information can spread (Chen et al., 2023) owing to
the locality of the dynamics. From the point of view of circuit optimization, this implies that the
rate of correlations generated by the agent is important: a strong suppression of the entanglement
rate dS(t)/dt would imply longer circuits generated by the agent. Random brick-work circuits on
n qubits are prototypical examples of local quantum dynamics, displaying an initial linear increase
in S(t) followed by saturation at t ≲ 2n. It is thus of interest to contrast the entanglement dynamics
generated by our local agents with the random brickworks.
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The dashed lines in Fig. 3(b) denote the entanglement entropy dynamics of n-qubit brickworks
averaged over 1000 realizations, and the solid lines show S(t) averaged for preparing over 200
volume-law entangled states. The entanglement entropy of the states prepared corresponds to the
saturation value of the dashed lines. Upon close inspection, one bottleneck of the algorithm is seen
to be the initial ‘exploration’ phase where S(t) does not increase, after which the agent generates
linearly increasing entropy although with a rate lesser than the brickwork. This is the underlying
information-theoretic interpretation of the efficiency, whereby scaling this algorithm further cru-
cially depends on the scaling of the exploration phase as well as the post-exploration rate as a
function of n. Moreover, the intermediate entanglement entropies for a particular state are gener-
ally observed to monotonically increase (not shown), suggesting low redundancy in the use of the
entangling CNOT gates on the part of the agent and further justifying our benchmarks.

Theoretical analysis of agent generalization. All experiments so far involve the agent preparing
arbitrary states not seen during training, indicating a generalization to unseen states. We provide
rigorous justification for this observation, showing that with probability at least 1 − 10−10 ≈ 1,
the agent generalizes to at least 95% of the state space. In particular, we show in App. C that the
following concentration result holds.

Proposition 3 (Informal). Fix ε, δ > 0. Let A be a state preparation agent and X to be the random
variable over the uniform distribution on Sn with X(|ψ⟩) = 1 whenever A successfully prepares
|ψ⟩ and 0 otherwise. Let X̄ be the average value of X across N uniformly sampled states |ψ⟩
and suppose that N ≥ 1

2ε2 log
1
δ . Then with probability at least 1 − δ over the choice of samples

(X1, · · · , XN ),
E[X] ≥ X̄ − ε.

We set δ = 10−10, ϵ = 0.05 and N = 2000. For each n = 5, 6, 7, 9, we sample N uniform states
from Sn and run our algorithm. We find that our algorithm prepares all of them exactly, implying
X̄ = 1. It follows that E[X] ≥ 0.95 for each n, which means that at least 95% of Sn will be
prepared successfully by the agent. This implies massive generalization: |Sn| is 2.4M, 315M, 81.3B
and 4.38 × 1016 for n = 5, 6, 7 and 9 respectively. Our result says that our agent will successfully
prepare at least 2.3M, 300M, 77.2B and 4.07 × 1016 states – which are many many orders larger
than the 10-20M states seen during training. This large-scale generalization provides insight into the
empirical success of the agent on virtually all states.

6 CONCLUSIONS AND FURTHER WORK

In this work, we have demonstrated that deep reinforcement learning can facilitate immediate in-
ference on arbitrary stabilizer states without needing re-training. This is achieved through a highly
sample-efficient reverse preparation approach utilizing a novel reward function. Our experiments
perform a thorough analysis of the agent’s inference capabilities and the potential of this approach
to improve performance over existing baselines. We show that our agents remain efficient across
the spectrum of entanglement content of the target. Additionally, we provide information-theoretic
insights into the dynamics and (low) redundancy of the trained agents and also present compelling
arguments for their generalization capabilities. An important contribution is that our algorithm takes
time proportional to the size of the circuit returned, which is of the same order as traditional rule-
based approaches to state preparation. This suggests its use as a replacement for these algorithms, at
least for a small number of qubits. This provides promise for the integration of RL-based methods
into real quantum computing environments for transpilation.

An important limitation is that our algorithm does not scale yet to qubit count in the hundreds or
thousands, which traditional approaches can handle, even if sub-optimally. This brings us to the first
direction of future inquiry: an imminent task is designing local RL algorithms which operate on an
O(1) number of qubits by making local queries to the target state (Huang et al., 2024b;a). Further-
more, while the current work addresses the question of finding optimal circuits to be implemented in
a lab setting, it is indeed possible to restrict the agent’s knowledge of the state under preparation to
only local Pauli measurements. Moreover, understanding the fundamental bounds on the scaling of
the exploration phase as the number of qubits in the target state is an important task to gain insight
into the fundamental limits of such algorithms. Overall, our findings illustrate further the promise
of employing deep RL methods for efficient state preparation on near-term quantum systems.
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A ADDITIONAL BACKGROUND

A.1 QUANTUM COMPUTATION AND QUANTUM CIRCUITS

We briefly introduce the principles of quantum computing, quantum circuits and stabilizer states.
For more elaborate discussions of these topics we recommend Nielsen & Chuang (2010); Aaronson
& Gottesman (2004); Yoder (2012).

The state of a single qubit is described by a unit vector |ψ⟩ = a |0⟩ + b |1⟩, where a, b ∈ C with
|a|2 + |b|2 = 1 and {|0⟩ , |1⟩} is a fixed orthonormal basis, often called the computational basis,
spanning the single qubit Hilbert space H ∼= C2. We use the Dirac notation here, where |ψ⟩ =

(a, b)T is a column vector and ⟨ψ| = |ψ⟩† the dual row vector. The state of a bipartite quantum
system which consists of two parts A and B lives in the tensor product space of the individual
Hilbert spaces HA and HB , |ψ⟩AB ∈ HA ⊗ HB . It follows that a general n-qubit state is a linear
combination of the 2n basis states |z⟩ = ⊗ni=1 |zi⟩ ∈ H⊗n (zi ∈ {0, 1}). The fidelity between two
quantum states is F(ψ, ϕ) := |⟨ψ|ϕ⟩|2. An n-qubit state is called entangled if it cannot be written
as a tensor product of single-qubit states. For instance, (|00⟩+ |11⟩) /

√
2 is an entangled state.

A common method to quantify the entanglement content of a pure state |ψ⟩ is through the bipar-
tite entanglement entropy: given any bipartition A ∪ B of the qubits, we define S(|ψ⟩AB) :=
−tr(ρA log ρA), with ρA := TrB(|ψ⟩AB ⟨ψ|AB) where TrB denotes the partial trace over subsys-
tem B. While working with a chain of n qubits in this work, we restrict to the half-chain entangle-
ment entropy by choosing the bipartition A = {1 ≤ i ≤ n/2}.

A quantum gate or operation on a system of qubits is a unitary (U−1 = U†) linear operator U on the
corresponding Hilbert space. The Pauli group consists of the following canonical single-qubit gates
(written wr.t. basis {|0⟩ , |1⟩}).

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
.

From their definition can be inferred that X and Z act as X |b⟩ = |1− b⟩ and Z |b⟩ = (−1)b |b⟩
on the qubit state. The single-qubit Pauli group generalizes to the n-qubit Pauli group Pn, which
consists of tensor products of single-qubit Pauli gates. Other useful quantum gates are the single-
qubit Hadamard gate H and phase gate S, which act as H |b⟩ = (|0⟩+ (−1)b |1⟩)/

√
2 and S |b⟩ =

ib |b⟩ respectively. The canonical two-qubit gate is the controlled-NOT (CNOT), which operates
on one target qubit conditioned on one control qubit by |x, y⟩ 7→ |x, x⊕ y⟩. For our purposes, a
quantum circuit is a visual representation of sequence of quantum gates [U1, U2, · · · , Uk] applied
left-to-right, and is thus associated with the quantum operation U = UkUk−1 · · ·U1.

A.2 STABILIZER STATES

We say that an element π ∈ Pn stabilizes state |ψ⟩ if π |ψ⟩ = |ψ⟩. The set of stabilizers of a state
comprises its stabilizer group (generated by at most n elements). A state is a stabilizer state iff its
stabilizer group is generated by n elements. Conversely, every S uniquely determines a correspond-
ing stabilizer state |ψ⟩ as the simultaneous eigenstate with eigenvalue 1, g |ψ⟩ = |ψ⟩ ,∀g ∈ S. Since
a stabilizer group generator ∈ Pn can be represented using 2n+ 1 bits, a stabilizer state |ψ⟩ can be
written using n(2n+ 1) bits.

Stabilizer states can also be characterized as the states that can be reached from the all-zeros state
|0⟩ using Clifford circuits, i.e. unitaries that are a combination of H , S and CNOT gates. No-
tably, the Pauli gates are Clifford unitaries. The action of each of these gates on a stabilizer state’s
bit-representation is simple, resulting in the efficient classical simulation of quantum computation
exclusively with Clifford unitaries (Aaronson & Gottesman, 2004).

Despite this, preparing stabilizer states optimally remains a challenge, since the number of Clif-
ford states grows rapidly as 2O(n2). Known optimal implementations have been limited to 6 qubits
(Bravyi et al., 2022). Further, the (anti-)commutation and involutary properties of Clifford gates
make it harder to reason about locally greedy search steps. We outline existing work towards stabi-
lizer state preparation in Sec. 3.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 5: A Clifford circuit preparing stabilizer state |ψ⟩. The ⊕-end of a CNOT gate denotes its
target qubit.

Due to their simple mathematical structure and their ability to capture volume-law entanglement
(where the entanglement content grows with the volume of the qubit lattice, i.e., S ∼ cn for a linear
n−qubit chain) (Li et al., 2019), stabilizer states enjoy vast applicability. They have found immense
use in the exploration of quantum information (Webb, 2016; Huang et al., 2020) and are also crucial
for quantum error correction (QEC) (Gottesman, 1997; Nielsen & Chuang, 2010; Campbell et al.,
2017; Ryan-Anderson et al., 2021). They are also applied beyond to measurement-based quantum
computing (Raussendorf & Briegel, 2001; Patil & Guha, 2023), quantum-classical hybrid algorithms
(Cheng et al., 2022; Ravi et al., 2022) and even ground-state physics (Sun et al., 2024).

A.3 REINFORCEMENT LEARNING

In a Reinforcement Learning (RL) problem an agent learns through interactions with an environment
to maximize its reward (Sutton & Barto, 2018). The environment is modeled as a Markov decision
process, consisting of (a) a set S of states of the environment, (b) a set of actions A of the agent,
(c) a transition function p : S × A × S → [0, 1] where p(s′|s, a) is the probability that the state
of the environment will be s′ if the environment is in state s and the agent takes action a, (d) a
reward function r : S ×A× S → R with r(s, a, s′) representing the reward that the agent receives
from the environment for taking action a from state s and reaching state s′, and (e) a set T ⊂ S of
terminal states. The interaction between agent and environment stops on reaching a terminal state
or exceeding a maximum number T of actions without reaching a terminal state.

A policy of an RL agent is a function, π : S ×A → [0, 1] with π(a|s) being the probability that the
agent will take action a when in state s. A trace τ of π is a tuple of alternating states and actions,
starting and ending in a state: τ = (s0, a0, s1, · · · , aT−1, sT ). A policy π along with a distribution
µ over possible start states s0 induces a distribution over traces, with ai ∼ π(·|si), si+1 ∼ p(·|si, ai)
for each i. The return of trace τ is defined by G(τ) :=

∑T−1
i=0 γir(si, ai, si+1), where γ ∈ (0, 1) is

the discount factor, describing the value of future actions in the present. The goal in RL is to find a
policy π∗ that maximizes the expected return

Jπ := Eτ∼(µ,π) [G(τ)] . (2)

Two key objects of interest in the search for such a policy are the value function V π(s) :=
Eτ∼π|s0=s [G(τ)] and the Q-function Qπ(s, a) := Eτ∼π|s0=s,a0=a [G(τ)]. An associated function
is the advantage function, denoting how much better a particular action is w.r.t the average:

Aπ(s, a) := Qπ(s, a)− V π(s) .

We use Proximal Policy Optimization (PPO) throughout our experiments. PPO (Schulman et al.,
2017) is a reinforcement learning algorithm from the class of actir-critic algorithms designed to im-
prove stability and efficiency in policy optimization. A running policy function π (parameterized by
θ) and value function V (parameterized by ϕ) are maintained, typically as neural networks. Mul-
tiple agents gather experience by taking actions in the environment, according to current policy π.
Concurrently, advantages Aπ(s, a) are estimated, approximating Qπ(s, a) and V π(s) using sample
averages over the experiences collected. In practice, one replaces advantages by generalized ad-
vantages, exponentially-weighted linear combinations of the advantages along a trace, which yield
more robust estimates (Schulman et al., 2018).
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Once sufficiently many steps are collected, we perform several optimization steps. Each optimiza-
tion step starts by sampling a minibatch D = {(si, ai, Âi)}i, where Âi is the advantage estimate,
from the experience pool E . We next compute the policy objective of PPO, which can be viewed as
a simplified alternative to the objective in Trust Region Policy Optimization (Schulman et al., 2015):

J CLIP(θ) = E(si,ai,Âi)∼E

[
min

(
r(θ)Âi, clip (r(θ), 1− ϵ, 1 + ϵ) Âi

)]
(3)

where ri(θ) = πθ(ai|si)/πθold(ai|si) denotes the probability ratio between new and old policies
with respective parameters θ and θold. The clip function is defined for a < b by clip(x, a, b) =
max(a,min(x, b)). ϵ is the clipping hyperparameter; clipping ensures that the new policy does not
deviate significantly from the old policy, thereby providing more stable learning. The gradient of the
objective is computed and the parameters θ updated by gradient ascent. This completes one policy
optimization step, and the process is now repeated, starting with sampling a new minibatch. Along
with the policy objective, the value function is trained via the (clipped) value loss defined by

Lvalue(ϕ) = E(si,ai,Ĝi)∼E

[
max

((
Ĝi − Vϕ(si)

)2

,
(
Ĝi − V clip

ϕ (si)
)2

)]
. (4)

Here, V clip
ϕ (si) = Vϕold(si) + clip (Vϕ(si)− Vϕold(si),−ϵ, ϵ) stabilizes the update ϕold → ϕ. Ĝi

refers to the cumulative reward obtained starting from (si, ai), estimated from the trace containing
the step (si, ai). Finally, to encourage exploration, an entropy term is also included as part of the
policy objective,

JH(θ) = −Esi∼E [H(πθ(· | si))] , (5)

here H(πθ(· | si)) represents the entropy of the policy in state si.

B PROOFS

B.1 MGR RETURN

We formally prove the following proposition.

Proposition 4. Let Φ be an arbitrary potential function on state space S, and γ be the discount
parameter. Consider the following MGR reward function r: Given k ≥ 0 and k-step trajectory
τ = (s0, a0, s1, · · · , sk, ak, sk+1). Letting Mk = max0≤i≤k Φ(si), we set

r(sk, ak, sk+1) :=

{
γΦ(sk+1)−Mk Φ(sk+1) > Mk

(γ − 1)Mk otherwise
.

Consider a trajectory τ = (s0, a0, · · · , sT−1, aT−1, sT ) that ran for T steps. Then we have

G(τ) =

T−1∑
i=0

γir(si, ai, si+1) = γTΦ∗ − Φ(s0),

where Φ∗ = max{Φ(si) | 0 ≤ i ≤ T}.

Proof. Fix step k, and let rk := r(sk, ak, sk+1). If Φ(sk+1) > Mk, we have Mk+1 = Φ(sk+1)
and the reward rk = γΦ(sk+1) −Mk = γMk+1 −Mk. Otherwise, Mk+1 = Mk and in this case,
rk = (γ − 1)Mk = γMk+1 −Mk. It follows that

G(τ) =

T−1∑
i=0

γiri =

T−1∑
i=0

γi+1Mi+1 −
T−1∑
i=0

γiMi = γTMT −M0.

We finish by noting that MT = Φ∗ and M0 = Φ(s0).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C GENERALIZATION BOUNDS FOR SUCCESS PROBABILITY

We use concentration to establish lower bounds on the probability p of successfully preparing a
uniformly sampled n-qubit stabilizer state.

Proposition 5. Let A be a state preparation agent, taking a state |ψ⟩ as input and outputting a circuit
A|ψ⟩. Let U(Sn) be the uniform distribution over n-qubit stabilizer states, and define X to be the
random variable over U(Sn) by

X(|ψ⟩) =
{
1 F

(
A|ψ⟩ |ψ0⟩ , |ψ⟩

)
= 1,

0 otherwise.

Now suppose that |ψ1⟩ , |ψ2⟩ , · · · , |ψN ⟩ are sampled i.i.d ∼ U(Sn). Let Xi = X(|ψi⟩) and define
empirical mean X̄ = 1

N

∑
iXi.

Let ε, δ > 0. Then with probability at least 1− δ over the choice of samples (X1, · · · , XN ),

E[X] ≥ X̄ − ε

whenever

N ≥ 1

2ε2
log

1

δ
.

Proof. Denote the distribution ofX by P , and let p := E[X]. By sampling uniformly random states,
we essentially pick a sample X1, · · · , Xn independently and identically distributed according to P .
Since 0 ≤ X ≤ 1, it follows by Hoeffding’s inequality that

Pr
(
X̄ ≥ E[X] + ε

)
≤ e−2Nε2 .

The right-hand side is at most δ > 0 whenever N ≥ 1
2ε2 log

1
δ , so for such N ,

Pr
(
E[X] ≥ X̄ − ε

)
= Pr

(
X̄ ≤ E[X] + ε

)
≥ 1− δ

as required.

D ADDITIONAL EXPERIMENTS AND HYPER-PARAMETERS

D.1 TWO-QUBIT GATE COUNT

We detail here an experiment that is not directly related to the problem that we attack, to which our
agents continue to provide a good answer despite never being biased to do so.

CNOT gate count. Our metric for circuit size is the total number of gates, with both one and two-
qubit gates counted as one unit each. However, since two-qubit gates are often noisier than single-
qubit gates, we check our agents to examine the CNOT count, to see if we receive an additional
benefit of smaller CNOT counts for free.

To this end, we benchmark our trained agents using the CNOT gate count as the metric of per-
formance. Note that our agents are never explicitly trained to minimize two-qubit gates, and are
trained with one and two-qubit gates placed on an equal footing. However, as our experiments on
entanglement dynamics show (see Fig. 3(b)), the agent’s actions do not display much redundancy
and monotonically increase entanglement; one could expect good usage of the entangling CNOT
gate. The results are shown in Tab. D.1. Note that the two baseline methods use the SWAP gate in
addition to CNOT.

Tab. D.1 shows that we perform well, sometimes better than the optimized Bravyi et al. (2021)
algorithm with respect to CNOT gates, despite having given no bias towards minimizing the number
of two-qubit gates. This further emphasizes our efficiency in zero-shot state preparation.
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Table 3: Average number of CNOT gates (↓) used by different algorithms across 200 randomly
sampled uniform stabilizer states.

Two-qubit gate count →) 5-qubit 6-qubit 7-qubit 9-qubit
Aaronson & Gottesman (2004) 9.12 ± 3.29 14.92 ± 3.85 21.34 ± 4.16 38.22 ± 5.46

Bravyi et al. (2021) 7.56 ± 2.46 11.89 ± 2.81 16.30 ± 2.86 26.46 ± 3.17
RL (linear connectivity) 10.16 ± 4.16 14.50 ± 7.34 18.44 ± 4.10 -
RL (full connectivity) 6.08 ± 2.45 9.13 ± 2.28 19.52 ± 7.71 34.20 ± 13.48

Table 4: The list of PPO Hyperparameters that were tuned for agent preparation.
Hyperparameter Value

Learning rate (policy) 0.0003
Learning rate (value) 0.0005

Num. optimization epochs 8
Minibatch size 256
Discount (γ) 0.99, 0.9 (9-qubit)

GAE parameter (λ) 0.95
policy optimization epochs 8

policy clip range 0.2
value optimization epochs 8

value clip range ∞
entropy loss weight 0.01

D.2 HYPER-PARAMETERS

We describe additional hyper-parameters part of the PPO algorithm (Schulman et al., 2017) that we
used to train our agents.

All policy and value networks used had two hidden layers of 512 nodes each.
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