
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LARGE LANGUAGE MODEL-GUIDED MULTI-MODAL
MOTION PLANNING VIA MIXED INTEGER PROGRAM

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-Modal Motion Planning (M3P) is a rather challenging form of motion plan-
ning where the planner searches through the continuous space of motions as well
as discrete space of modes. For instance, a biped robot may need to walk to a target
location and then use its arms to grasp an object, capturing both mode transitions
and continuous dynamics to find feasible paths that neither purely discrete nor
continuous planners can handle. However, brute-force global search is typically
sample-inefficient and computationally expensive. Recent research has explored
the use of Mixed-Integer Programming (MIP) to reformulate global search prob-
lems in robotic applications. MIP leverages the branch-and-bound algorithm to
efficiently prune infeasible or sub-optimal solutions. Despite its strengths, MIP
is limited to problems with disjoint convex feasible domains—a constraint that
is often too restrictive for general motion planning. To address this, prior work
has proposed techniques to approximate non-convex motion planning problems
as disjoint convex MIPs. Unfortunately, these methods are typically hand-crafted
and domain-specific, limiting their generalizability. In this work, we explore the
use of Large Language Models (LLMs) to automatically translate non-convex op-
timization problems into approximate MIP formulations. To this end, we con-
struct a dataset comprising various M3P problems paired with their known MIP
approximations. We evaluate LLM performance on this reformulation task using
both In-Context Learning (ICL) and Supervised Fine-Tuning (SFT). Our results
demonstrate that LLMs are capable of capturing common patterns in MIP refor-
mulations and can even generalize to complex, unseen translation tasks beyond
those encountered during fine-tuning.

1 INTRODUCTION

In this paper, we address the problem of Multi-modal Motion Planning (M3P), originally proposed
in (Hauser et al., 2010; Hauser & Latombe, 2010). M3P extends classical motion planning by
allowing a robot to transition between fundamentally different modes of operation—for example,
switching between grasping and non-grasping states, or navigating via driving versus flying. These
discrete mode switches introduce significant complexity, but they are essential for solving a wide
range of real-world robotics problems, including manipulation, locomotion, and aerial-ground co-
ordination. As such, M3P is a core component in enabling intelligent, multi-capable robotic sys-
tems to operate in complex environments. M3P can be viewed as a specialized subproblem within
the broader framework of Task and Motion Planning (TAMP), which involves reasoning over both
high-level discrete decisions and low-level continuous motions. Like TAMP, M3P requires solving
challenging search problems in hybrid decision spaces that span both discrete and continuous do-
mains. The interleaving of symbolic decisions (e.g., choosing modes) with geometric constraints
(e.g., feasible trajectories) creates a large, often intractable, planning space. Recent years have seen
significant advances in both general-purpose TAMP (Dantam et al., 2016; Toussaint et al., 2018;
Garrett et al., 2021; Jiao et al., 2022) and M3P (Kingston et al., 2020; Beyer et al., 2021; Kingston &
Kavraki, 2022), particularly with respect to improved scalability and planning efficiency. However,
many of these approaches rely heavily on domain-specific heuristics, hand-tuned parameters, or
environment-specific assumptions, limiting their applicability and generalizability to diverse robotic
settings. Moreover, a number of state-of-the-art methods are built upon assumptions such as local
optimality (Zhao et al., 2024; Manchester & Kuindersma, 2019) or differentiability of the planning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

landscape (Toussaint et al., 2018; Envall et al., 2023). While these assumptions can simplify algo-
rithm design and accelerate computation, they often do not hold in practice—especially in cluttered,
discontinuous, or highly constrained environments.

Given the limitations of traditional TAMP, especially the weak coupling between task and motion
planning, researchers have increasingly explored unified formulations and integrated solvers. One
approach involves using the Planning Domain Definition Language (PDDL), a high-level formal-
ism for specifying symbolic planning problems, along with powerful domain-independent search
algorithms such as Fast-Downward (Helmert, 2006) and Nyx (Piotrowski et al., 2024). These sym-
bolic planners are capable of efficiently generating high-level action sequences in complex decision
spaces. However, PDDL-based planners operate solely on symbolic abstractions and do not ac-
count for geometric feasibility or generate executable low-level motion plans. As a result, TAMP
systems must interface symbolic planners with separate motion planners (Garrett et al., 2021), of-
ten through heuristics or manually engineered bridging layers. This loose integration can lead to
inefficiencies, inconsistencies, or planning failures, especially in domains where symbolic actions
tightly depend on geometric feasibility. To address this disconnect, a growing body of research has
proposed the use of Mixed-Integer Programming (MIP) to directly model and solve certain sub-
classes of M3P problems. MIP-based approaches have been successfully applied to tasks such as
grasp synthesis (Liu et al., 2020), caging (Aceituno-Cabezas et al., 2019), inverse kinematics (Dai
et al., 2019), multi-agent and UAV motion planning (Deits & Tedrake, 2015b; Yu & LaValle, 2013;
Marcucci et al., 2023), and footstep planning (Deits & Tedrake, 2014). These formulations allow for
unified reasoning over both discrete decisions (mode switches, action choices) and continuous vari-
ables (robot poses, trajectories), thereby enabling a more tightly integrated solution to M3P tasks.
Compared to PDDL-based symbolic search, MIP offers several key advantages. Most notably, MIP
enables joint optimization over hybrid decision spaces, capturing task–motion dependencies within
a single formulation. Additionally, decades of advances in operations research, such as heuristics
and branch-and-bound strategies, make MIP solvers highly efficient, often surpassing brute-force
sampling and decoupled planning.

With the rapid success of Large Language Models (LLMs), their influence has extended far beyond
natural language processing, significantly impacting robotic system design and human-robot inter-
action. A growing body of research has explored the use of LLMs for motion planning tasks (Ahn
et al., 2022; Ding et al., 2023; Driess et al., 2023; Huang et al., 2022), leveraging their ability to
interpret and reason over high-level task descriptions. While such approaches have demonstrated
promising results, the long-horizon reasoning capabilities of LLMs remain limited. To address
these limitations, a more recent paradigm (LLM+P) (Liu et al., 2023; Wang et al., 2024; Silver et al.,
2024) has emerged. In this framework, the LLM is used as a translator—converting natural language
problem descriptions into PDDL scripts. These symbolic plans are then executed by conventional
task planners, leveraging the strengths of both systems: the language understanding capabilities of
LLMs and the search efficiency of symbolic planners. Building on the success of LLM+P, we pose
the question: Can LLMs be used to generate MIP problem descriptions directly from natural lan-
guage? We refer to this emerging paradigm as LLM+MIP. The proposed LLM+MIP framework
offers several notable advantages. First, similar to LLM+P, it combines the flexibility and general-
ization abilities of LLMs in language translation with the robustness and optimality guarantees of
classical optimization solvers. Second, and more importantly, unlike symbolic planners that operate
purely over discrete action spaces, MIP-based solvers enable joint reasoning over both discrete and
continuous variables, directly generating solutions to M3P problems.

While the LLM+MIP paradigm offers exciting new possibilities, it also introduces a set of signif-
icantly more complex challenges compared to the LLM+P approach. In the case of LLM+P, the
task is primarily one of text-to-text translation. In contrast, translating natural language into MIP
solver scripts is a much more demanding task, as it requires not only linguistic understanding but
also mathematical reasoning and geometric abstraction. MIP can only solve a specific class of non-
convex optimization problems—those where the feasible region is disjointly convex, meaning it can
be expressed as a finite union of convex subsets. However, most real-world robotic motion planning
problems exhibit generally non-convex feasible domains. To make such problems tractable for MIP
solvers, it is necessary to approximate the original non-convex feasible space using discretization
techniques that transform the continuous, non-convex problem into a finite collection of convex sub-
regions (Sherali & Wang, 2001; Deits & Tedrake, 2015a; Amice et al., 2022). However, the selection
of appropriate discretization methods, parameters, and constraints is highly problem-specific and re-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

quires deep mathematical insight. Poor choices can lead to infeasible formulations or dramatically
degrade solver performance. Given recent advances in the mathematical reasoning capabilities of
LLM (Yu et al., 2025; Xiong et al., 2024; Shi et al., 2024), we hypothesize that “LLMs are capable of
automatically generating MIP solver scripts from natural language descriptions of M3P problems”.

To explore this hypothesis, we introduce a novel benchmark dataset and evaluation framework for
assessing the capability of LLMs to perform LLM+MIP translation. Our dataset consists of a variety
of 2D single- and multi-domain M3P instances, covering both basic and more complex scenarios. To
reduce implementation complexity and isolate the reasoning task, we abstract discretization strate-
gies as callable API functions, allowing the LLM to focus on selecting and composing these building
blocks based on problem context. Our experiments demonstrate that LLMs can successfully gen-
erate MIP solver scripts for many instances in both single- and multi-domain M3P tasks. Further-
more, we show that the success rate improves significantly when the model is fine-tuned on domain-
specific training data, highlighting the potential of specialization in enabling robust performance.
We believe this work opens up a new research direction at the intersection of natural language un-
derstanding, mathematical programming, and robot motion planning. The LLM+MIP paradigm
represents a step toward end-to-end robotic systems that can reason over high-level task descrip-
tions and produce executable, optimization-based plans. To summarize, we are the first to fine-tune
LLMs for M3P, extending beyond symbolic action (LLM+P) to integrate symbolic with continuous
planning, achieving success rates of 98.8% on single-domain and 89.6% on multi-domain tasks.

Gurobi

Callable API
(Discretization)

MIP Modeling
Language

M P
Problem

LLM
MIP

Script

MIP
Script

MIP
Script

Figure 1: Illustration
of LLM+MIP paradigm:
LLM has access to both
MIP modeling language
(CVXPY in our case
with Gurobi backend),
as well as an additional
set of API for access to
discretization methods.
Given an M3P instance
in natural language, LLM
generates the MIP script for
solving the problem. It can
also decompose the problem
into smaller, more tractable
MIPs (dashed lines).

2 RELATED WORK

We review related work on TAMP, M3P, MIP, and the recent progress on the combination of LLM
and conventional search algorithms. Extended discussions are provided in Section E.

TAMP and M3P: TAMP (Garrett et al., 2021; Dantam et al., 2016) represents a fundamental
paradigm in robotics, as it enables a robot to reason over long-horizon symbolic action sequences
in order to accomplish complex, high-level tasks. Within this broader TAMP framework, M3P fo-
cuses on a particular subclass of problems where a robot must navigate between different modes of
locomotion or contact in order to complete a task (Hauser et al., 2010; Hauser & Latombe, 2010).
A growing body of work has explored MIP approaches to M3P (Liu et al., 2020; Aceituno-Cabezas
et al., 2019; Dai et al., 2019; Deits & Tedrake, 2015b; Yu & LaValle, 2013; Marcucci et al., 2023;
Deits & Tedrake, 2014), which preserve the unified representation of modes while exploiting the
branch-and-bound search paradigm inherent to modern MIP solvers.

MIP & Data-driven Methods: MIP formulations can be divided into exact and approximate Klose
& Drexl (2005); Xiong et al. (2022); Braekers et al. (2016); Sherali & Wang (2001); Deits &
Tedrake (2015a); Amice et al. (2022). Formulating approximate MIP is substantially more chal-
lenging: because discretization is problem-dependent and requires carefully chosen strategies to
balance tractability and fidelity. This dual nature makes approximate MIP both flexible and de-
manding. While approximate MIP only provides approximate solutions, it has proven effective for
many difficult M3P instances. Recent research has explored the integration of data-driven acceler-
ation techniques, such as learned branching heuristics (Zhang et al., 2024), node selection (Labassi
et al., 2022), or cutting planes (Wang et al., 2023). Recently, LLMs have been incorporated into
this workflow (Li et al., 2023a; Chen et al., 2024; Liu et al., 2024), including translating problem
descriptions into MIP scripts Li et al. (2023b); AhmadiTeshnizi et al. (2024), building a foundation

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Fin
ge

r S
ele

cti
on

Fo
ot

ste
p
Gra

sp IK UAV

Fo
ot

ste
p +

 Fo
ot

ste
p

Fo
ot

ste
p +

 IK

Fo
ot

ste
p +

 U
AV

UAV
 +

 IK

UAV
 +

 U
AV

Fo
ot

ste
p +

 IK
 +

 G
ra

sp

UAV
 +

 IK
 +

 G
ra

sp
0

100

200

300

#
 o

f D
at

a

Average = 125.8

Figure 2: Task dist.

5 10 15 20 25
of Function Call

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y

Mean = 15.12

Figure 3: Function calls dist.

20 40 60 80 100
of Arguments

0

25

50

75

100

125

150

175

Fr
eq

ue
nc

y

Mean = 45.4

Figure 4: #arguments dist.

Figure 5: Statistics of the RoboM3P dataset. (a) The distribution of data across twelve task cate-
gories, averaging 125.8 samples per category, with both single and multi-task compositions. (b) The
number of function calls per generated MIP code (mean = 15.1). (c) The number of arguments per
trajectory (mean = 45.4).
model to efficiently solve MILP Li et al. (2025). However, these methods focus exclusively on exact
MIP. Similarly, we are aware of several MIP datasets (Prouvost et al., 2020) for benchmarking per-
formances. However, all these datasets contain only exact instances. In contrast, our work targets
approximate MIP, where the LLM must reason mathematically about discretization choices. To the
best of our knowledge, our dataset is the first one for benchmarking approximate MIP instances with
a focus on M3P applications.

LLM-as-Planner and LLM-with-Planner: LLMs have inspired research on solving TAMP
through prompt engineering, a paradigm referred to as LLM-as-Planner (Ahn et al., 2022; Ding
et al., 2023; Driess et al., 2023; Huang et al., 2022). To overcome long-horizon reasoning limita-
tions, a complementary paradigm called LLM-with-Planner has been proposed (Liu et al., 2023),
where the LLM converts natural-language descriptions into PDDL and conventional planners solve
them. Subsequent works have expanded this paradigm with interfaces to motion planners (Wang
et al., 2024), domain generalization (Silver et al., 2024), and structured memory (Agarwal et al.,
2025). In this work, we push this line further by introducing LLM+MIP, a hybrid paradigm in which
the LLM generates MIP formulations, providing a unified mathematical framework that can simul-
taneously capture discrete decisions and continuous optimization variables specifically for robotic
tasks. While our focus is on unimodal (text-based) inputs, we note that a separate line of work has
explored the integration of multi-modal features into robotic foundation models like OpenVLA (Kim
et al., 2024) which incorporates visual grounding. Such extensions are orthogonal to our contribu-
tions, though we view incorporating visual descriptions as a promising direction for future research.

3 METHOD

Our overall pipeline is illustrated in Figure 1. To enable an LLM to translate M3P problem de-
scriptions into executable MIP formulations, we treat an existing MIP modeling language as the
LLM-callable API. In this work, we adopt CVXPY (Diamond & Boyd, 2016) as our modeling inter-
face. CVXPY is a widely used high-level optimization package while supporting multiple backend
solvers. For all experiments, we use Gurobi (Pedroso, 2011) as the default backend solvers. As dis-
cussed earlier, solving inexact MIP formulations for M3P requires discretization techniques (Sherali
& Wang, 2001; Deits & Tedrake, 2015a; Amice et al., 2022) that approximate generally non-convex
constraints with disjoint convex representations. However, asking an LLM to autonomously de-
sign or derive these discretization schemes is beyond the scope of this work. Instead, we provide a
library of discretization primitives, implemented as LLM-callable APIs alongside the CVXPY mod-
eling interface. In Section 3.1, we introduce our dataset, which pairs a set of natural-language 2D
M3P problem descriptions with their corresponding MIP formulations. In Section 3.2, we present
the set of discretization techniques implemented in our system and explain how they are exposed as
callable APIs. Finally, in Section 3.3, we describe our LLM+MIP translation pipeline.

3.1 ROBOM3P DATASET

We introduce RoboM3P, a dataset of 1500 sampled M3P problems specifically designed to eval-
uate the capability of LLM+MIP frameworks. Each sample in the dataset contains three core

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

components: (i) a natural-language description of the task, (ii) an obstacle map that specifies the
environment layout and object boundaries, and (iii) the final MIP code encoding feasible trajecto-
ries. The MIP code is expressed as a structured sequence of function-like API calls, for example:
xxx_constraint(arg1=val1). In addition to the core modeling APIs provided by CVXPY,
we include a set of LLM-callable discretization APIs, along with their detailed semantics, in Sec-
tion B, which encapsulate common techniques for approximating non-convex or otherwise complex
constraints into tractable collections of linear or convex constraints. Detailed examples of these
data pairs, are provided in the Section D.2, Section D.3, Section D.5. Together, these calls define
the optimization problem by specifying decision variables and constraints, thereby representing full
motion plans in a structured and executable form. The dataset spans five single-domain M3P tasks,
as well as seven multi-domain compositions that integrate locomotion, manipulation, and aerial
navigation as detailed in Section A. This breadth allows RoboM3P to capture both the modularity
of individual planning problems and the compounded difficulty of multi-modal coordination. A
statistical overview of the dataset is provided in Figure 5. Panel (a) shows the distribution across
the twelve task categories, with a mean of 125.8 samples per category. The dataset is relatively
balanced across single-domain tasks, while multi-domain compositions such as UAV+IK are more
heavily represented due to our extensive testing of spatial constraints in those settings. Panel (b)
reports the distribution of function calls per generated program, with an average of 15.1 calls per
sample, reflecting the non-trivial size of the generated formulations. Panel (c) presents the distribu-
tion of arguments used across trajectories, averaging 45.4 arguments per instance, which highlights
the structural and combinatorial complexity of the encoded optimization problems. Taken together,
these statistics demonstrate that RoboM3P is both diverse and structurally rich, providing a chal-
lenging benchmark for studying how well LLMs can generalize to generate correct, executable, and
scalable MIP formulations for robotic motion planning tasks. Finally, we emphasize that although
all problems in RoboM3P are defined in a 2D workspace, each of them naturally extends to 3D
variants with corresponding MIP relaxations and to more complex compositions involving larger
numbers of robots (e.g., coordinating five UAVs and five bipedal robots with grippers to grasp ten
objects). In this work, however, we restrict our evaluation to at most two-task compositions in 2D
primarily for efficiency, as these setting formulations requires significantly less computational time
from the MIP solver while still preserving the essential challenges of the tasks.

3.2 LLM-CALLABLE API & DISCRETIZATION TECHNIQUES

MIP solves convex optimization problems in which some decision variables are restricted to take in-
teger values. As a result, MIP is only directly applicable when the feasible region of a problem can
be expressed as a finite union of convex sets. However, many of the problems in RoboM3P involve
inherently non-convex constraints—for example, collision avoidance, kinematic feasibility, and tra-
jectory smoothness—which cannot be expressed in this form. To address this gap, we implement
a suite of discretization methods that approximate general non-convex constraints as collections of
disjoint convex regions. These methods are exposed through a set of LLM-callable APIs, which are
summarized in Section B. Due to page limit, we put detailed mathematic formulation in Section C.
Broadly, the APIs fall into three main categories.

Collision-Free Constraints: The most critical class of APIs deals with collision avoidance. We
implement the IRIS algorithm (Deits & Tedrake, 2015a), which partitions a non-convex collision-
free domain into a set of convex regions (IRIS regions). This functionality is provided through the
create_map API, which generates convex regions for use in planning problems. Such regions
are required across multiple tasks: footsteps must lie in collision-free regions for locomotion, UAV
waypoints must be placed in obstacle-free corridors, and articulated links in IK problems must
avoid collisions. Beyond the vanilla IRIS method, we introduce novel variants that allow users
to encode additional spatial requirements: add_spatial_relation_constraints. We
describe the detailed formulation in Section C.2. For example, to require a UAV to circle around
an object, we generate four IRIS regions placed sequentially around the obstacle and enforce order-
dependent constraints. Similarly, users can require UAV trajectories to pass from the “left” or “right”
side of an obstacle by constructing directional IRIS regions and binding them through additional
ordering constraints. Such spatial constraints can also be extended to other tasks, such as IK. We
demonstrate the spatial result on both UAV and IK in Figure 6.

Trajectory Constraints: For UAVs, the planned trajectory must not only remain collision-free but
also maintain smoothness over time. To capture this, we parameterize UAV paths as spline curves

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and introduce constraints on their control points. Collision-free regions are enforced at the spline
level via add_control_points_constraints, while smooth connectivity across curve seg-
ments is ensured with add_continuity_constraints. For footstep tasks, higher-level
behavioral requirements—such as enforcing left/right ordering and determine footstep reachable
area—can be maintained via monotonicity and polynomial approximation, implemented through
the add_monotonicity_constraints and add_reachability_constraints API.
These constraints build on well-established discretization and relaxation techniques for non-convex
trajectory optimization Sherali & Wang (2001).

IK and Grasp Constraints: Manipulation problems introduce a different source of non-
convexity: the trigonometric sin and cos functions that describe revolute joint kinematics. To
approximate these nonlinearities, we discretize the 2D rotation space using piecewise-linear ap-
proximations, following methods from Deits & Tedrake (2014). Such constraints are imple-
mented through add_chain_rotation_constraints. For grasping, we adopt the pipeline
of (Liu et al., 2020), which first samples potential grasp contact points on an object’s surface
via get_object_surface_samples. The inverse kinematics solver is then constrained
to reach one of these points using add_end_constraints. Finally, grasp quality is en-
forced by discretizing grasp wrench metrics into an optimization objective, specified through the
add_grasp_wrench_constraints API. This enables the LLM+MIP framework to reason
not only about kinematic feasibility but also about the relative stability of different grasp candidates.

3.3 LLM+MIP PROCEDURE

Due to the inherent challenges of combining LLMs with MIP, we explore two approaches for
problem translation: zero-shot prompting and supervised finetuning (SFT). This contrasts with
LLM+P (Liu et al., 2023), which relies solely on zero-shot translation. Within zero-shot prompting,
we evaluate two variants of in-context learning (ICL): input-output (IO) prompting and chain-of-
thought (CoT) (Wei et al., 2022) prompting. For both IO and CoT, the LLM is provided with five
input-output examples drawn from single-domain tasks. In the IO setting, the LLM is expected to
directly generate the MIP script. In the CoT setting, we first prompt the LLM to classify the task
type (one of five single-domain or seven multi-domain tasks), and then prompt it to produce the
corresponding MIP script. While more advanced ICL methods such as tree of thoughts (Yao et al.,
2023) and graph of thoughts (Besta et al., 2024) exist, applying them in our setting is impractical
due to the difficulty of defining suitable thought generators and evaluators. Beyond ICL, we also
assess the effectiveness of SFT, where the LLM is finetuned on a subset of single- or multi-domain
tasks and tested on previously unseen tasks.

We further observe that the computational cost of solving MIP grows superlinearly with problem
size, making large instances particularly expensive. A practical approach to mitigating this cost
is to decompose the original MIP into smaller subproblems, each of which can be solved much
more efficiently. This strategy is especially effective for multi-domain tasks. For instance, in the
Footstep+UAV task, the bipedal robot and the UAV are required to meet at a common location. If
the LLM identifies this meeting point, the task can be decomposed into two independent problems:
a Footstep task for the robot and a UAV task for the drone, each directing the agent to its designated
goal. Motivated by this, we propose using the LLM as a MIP optimizer to decompose multi-domain
M3P tasks into smaller, more tractable MIP scripts, as illustrated in Figure 1 (dashed line).

4 EVALUATION

Our evaluation focuses on two central questions: (i) Can LLMs correctly use the provided API
functions to assemble a single MIP formulation that directly solves an M3P task described in natural
language? (ii) Can LLMs decompose a multi-domain M3P task into single-domain subproblems?

To answer these questions, we adopt three complementary evaluation metrics: Formulation-
Correctness: whether the LLM identifies the correct set of MIP constraints, indicating its under-
standing of which constraints are necessary to model the task. Parameter-Correctness: whether
the LLM accurately maps text-specified requirements (e.g., start/goal positions, reachability bounds)
into the correct function arguments. Success-Rate: whether the resulting MIP problem can be exe-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

cuted by a solver to produce a feasible plan, thereby testing the end-to-end ability to translate natural
language into solvable MIP problems.

We compare three training regimes: ICL, SFT-Single, and SFT-Full. ICL is training-free, us-
ing five in-context input–output pairs drawn from five different single-domain tasks. SFT-Single
finetunes the model on 250 examples sampled from five single-domain task datasets (50 per task).
SFT-Full extends this training by including an additional 490 examples from multi-domain tasks
(70 per task), covering all 12 task types. Evaluation is performed on held-out datapoints to ensure
a strict train–test split. Unless otherwise specified, GPT-4o serves as the base LLM. Gurobi-based
MIP solvers solve single-domain tasks within 60 s and multi-domain tasks in about 300 s on average
on MacOS system with Apple M1 CPU, offering a reasonable computational cost for efficiently
addressing M3P problems.

Obstacle Biped 1 Right Foot Path Biped 1 Left Foot Path Biped 2 Right Foot Path Biped 2 Left Foot Path Biped 1

Initial Feet / UAV Start IK Arm IK End Position Grasp Gripper UAV1 Trajectory UAV2 trajectory Connection

Points for Composition Task UAV2 Start / Gripper Contact Point Grasp Sampling Point

(a) Biped robot 1 at [-2.1,-3] & [-1.9,-3]
(left&right foot) wants to walk to biped
robot 2 at [2.6,2.7] & [2.4,2.7] (left&right
foot) . Due to signal constraints, it cannot
move more than 7m from its start. A tra-
jectory is planned so both robots meet at
a midpoint. Both robots max footstep dis-
tance is 1.7.

(b) UAV1 must circle around obstacle 2 to
reach UAV2’s start point. Due to fuel lim-
its, UAV2 must perform the rescue. How-
ever, before meet UAV2, UAV1 must first
fly pass the left of obst4.

(c) A biped robot at [-2.1,-2] & [-1.9,-
2] (left&right foot) with an arm configura-
tion [0.5,0.5,0.5] and its arm needs to pass
through bottom of obst6 and touch a target
at [2,2]. Since the arm is too short for di-
rect inverse kinematics, plan the trajectory
so the robot walks to a feasible position to
reach it.

(d) A biped robot at [-0.6,-1] & [-0.4,-
1] (left&right foot) and a UAV at [2.5,1.5]
need to synchronize after flying pass left
of obst1. Fuel and reachability constraints
prevent direct meeting, so plan the trajec-
tory so they converge at a feasible middle
position.

(e) Starting at [8.8,1] & [9.2,1]
(left&right foot), the biped robot with
arm [0.5,0.5,0.5] and a grasping linkage
[0.4,0.6,0.6,0.4] must pick up an object.
Since direct inverse kinematics is not
possible, plan the trajectory so the robot
moves to a location where grasping is
feasible.

(f) A UAV starting at [0,-1.2] with an
arm [0.5,0.2,0.1,0.2] and grasping linkage
[0.2,0.8,0.8,0.2] must grasp an object with
extended edges. Plan the trajectory so it
moves into a feasible place to complete the
grasp.

Figure 6: Visual results of different types of M3P instances. The displayed trajectories are generated
by executing code generated by SFT-fully finetuned LLM with the gurobi solver. The input text for
each scenario is shown beneath the corresponding subfigure. For clarity, obstacle descriptions and
grasp object geometries are omitted. The legend is provided at the top.

4.1 SINGLE UNIFIED MIP TRANSLATION

Our first experiment evaluates whether LLMs can translate a text description of an M3P instance
into a single unified MIP problem. For example, in the UAV+Grasp task, the UAV position and the
gripper’s base location must coincide to reflect that the gripper is mounted on the UAV. Correctly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

solving such multi-domain problems requires introducing additional constraints, e.g., by calling
share_point_feasibility_constraints. Although these constraints are not explicitly
specified in the text instructions, the LLM is expected to infer them from the problem description.

Results in Table 1 show that ICL often fails on complex tasks (as UAV tasks impose the most
demanding spatial requirements, such as flying around, above, below, to the right, or to the left of
specified regions), with solve rates as low as 4-42%. SFT-Single markedly improves correctness and
solve rates on single-domain instances, but remains brittle when tasks are multi-domain. In contrast,
SFT-Full achieves near-perfect performance across almost all tasks, including challenging multi-
domain compositions such as UAV+Grasp. These findings demonstrate that finetuning is essential
for enabling LLMs to compose heterogeneous motion-planning modalities into a coherent unified
MIP formulation. We then compare different LLMs, both open-source and proprietary, and LLM

Task ICL (avg ± std) SFT-Single (avg ± std) SFT-Full (avg ± std)

Finger Selection 100.0±0.0 / 100.0±0.0 / 100.0±0.0 100.0±0.0 / 100.0±0.0 / 100.0±0.0 100.0±0.0 / 100.0±0.0 / 100.0±0.0
Footstep Planning 100.0±0.0 / 92.0±1.2 / 89.6±0.3 100.0±0.0 / 100.0±0.0 / 100.0±0.0 100.0±0.0 / 100.0±0.0 / 100.0±0.0
Grasp 100.0±0.0 / 86.4±2.6 / 80.3±0.6 100.0±0.0 / 100.0±0.0 / 100.0±0.0 100.0±0.0 / 100.0±0.0 / 100.0±0.0
IK 88.9±0.0 / 83.3±0.0 / 70.9±0.6 100.0±0.0 / 100.0±0.0 / 92.9±0.6 100.0±0.0 / 100.0±0.0 / 95.4±2.6
UAV 49.4±3.9 / 55.9±2.9 / 42.4±4.3 93.7±0.0 / 94.9±0.0 / 89.1±0.3 100.0±0.0 / 100.0±0.0 / 98.5±0.9

Footstep + Footstep 47.4±0.0 / 52.5±0.0 / 35.3±5.3 52.6±0.0 / 52.5±0.0 / 40.0±2.9 100.0±0.0 / 100.0±0.0 / 100.0±0.0
Footstep + IK 56.2±0.0 / 52.4±0.0 / 45.3±2.8 59.6±0.0 / 82.5±0.0 / 57.1±5.2 100.0±0.0 / 100.0±0.0 / 100.0±0.0
Footstep + UAV 19.7±0.0 / 18.8±0.0 / 16.2±3.3 11.6±0.5 / 14.0±0.4 / 10.7±4.9 100.0±0.0 / 100.0±0.0 / 98.0±2.8
UAV + IK 46.7±0.0 / 61.3±0.0 / 22.3±1.2 46.7±0.0 / 61.3±0.0 / 22.3±1.2 80.0±0.0 / 83.9±0.0 / 80.0±0.0
UAV + UAV 28.9±1.4 / 38.8±1.0 / 25.4±1.3 40.4±1.6 / 51.6±1.5 / 36.7±3.6 100.0±0.0 / 100.0±0.0 / 99.2±0.0
Footstep + Grasp 34.6±0.0 / 56.0±0.0 / 30.4±0.7 34.6±0.0 / 56.0±0.0 / 30.4±0.7 94.9±8.9 / 97.8±3.9 / 92.6±12.8
UAV + Grasp 5.2±0.6 / 12.8±0.4 / 4.9±1.4 38.9±3.8 / 28.8±6.9 / 15.3±5.5 98.1±3.2 / 98.1±3.2 / 85.8±2.1

Table 1: LLM to directly solve the single- and multi-domain tasks as a single MIP problem. Compar-
ison of Formulation-Correctness/Parameter-Correctness/Success-Rate(%) across ICL, SFT-Single,
and SFT-Full.
specifically finetuned on math and code tasks, as our tasks inherently require complex reasoning
and programming ability. We evaluate scenarios where the LLM is given only part of the API func-
tions and must generate the remaining constraints using cvxpy. In the first setting, we remove
simple calls (1-5 lines) such as add_base_constraints and add_end_constraints.
The LLM reliably reproduces these constraints, achieving nearly the same Success Rate as
with full APIs. In the second setting, we remove complex APIs (avg around 80 lines) such
as add_spatial_relation_constraints, add_chain_rotation_constraints,
add_grasp_wrench_constraints, and add_reachability_constraints, requir-
ing the LLM to implement them from scratch. The Success Rate drops to zero, underscoring the
difficulty of generating complex MIP constraints and the importance of high-level API abstractions.
Formulation-Correctness is omitted since trajectories differ from other setups. Results in Table 2
highlight that SFT is critical for achieving robust generalization to multi-domain tasks, narrowing
the gap between single-domain mastery and multi-domain integration. We also visualize the results
in Figure 6. More various results are shown in Section F.

Single-Domain Task Multi-Domain Tasks

Model Formulation-Correctness ↑ Success-Rate ↑ Formulation-Correctness ↑ Success-Rate ↑
GPT-4o (partial API Easy) - 64.9 - 18.7
GPT-4o (partial API Hard) - 0.0 - 0.0
Llama3.1-8B 72.5 55.2 22.1 13.4
Qwen2.5Math-7B 30.4 15.7 9.3 0.0
Qwen2.5Coder-7B 79.1 60.6 24.9 15.6
GPT-4o-mini 81.0 61.7 23.8 14.4
GPT-4o 86.9 68.3 33.7 20.5

Qwen2.5Coder-7B (SFT-Full) 100 94.2 82.6 73.1
GPT-4o (SFT-Full) 100 98.8 94.3 89.6

Table 2: Comparison on single- and multi-domain tasks (arrows indicate higher is better).

4.2 DECOMPOSED MIP FORMULATION

Instead of formulating an M3P task as a single unified MIP problem, an alternative strategy is to
decompose it into a sequence of single-domain subproblems, each solved as a smaller MIP in-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

stance. For example, in the Footstep+UAV task, the LLM could predict a fixed waypoint by invok-
ing add_middle_point_constraints, ensuring that the bipedal robot and the UAV meet
at a common location. The LLM can then produce two separate MIP subproblems—one for the
bipedal robot and one for the UAV—each guiding its respective agent to the designated waypoint.

Method Waypoint-Feasibility (%)
ICL 24.3 ± 6.7
SFT-Single 47.0 ± 4.3
SFT-Full 80.5 ± 3.0

Table 3: LLM performance on generating
feasible intermediate waypoints (avg ± std).

Table 4 summarizes the results. SFT substantially
improves code generation quality in this decom-
posed setting. Notably, ICL and SFT-Single achieve
higher performance on multi-domain tasks than in
the single MIP setting. This is likely because
their in-context demonstrations and training data are
structurally closer to single-task outputs, making de-
composition more aligned with their learned priors.
We further evaluate the feasibility of LLM-generated intermediate waypoints in Table 3. A feasible
waypoint must lie within the environment bounding box and remain collision-free with respect to
all obstacles. Results show that SFT markedly improves waypoint feasibility, rising from only 24%
in ICL to over 80% in SFT-Full. This suggests that exposure to feasible samples during training
provides a strong inductive bias for valid waypoint generation. However, despite the higher feasi-
bility of intermediate waypoints, the overall success rate in the decomposed approach lags behind
the single-MIP setting. This is because the end-to-end success requires the predicted waypoint to be
feasible. The LLM’s unstable performance in predicting waypoints introduces variance and occa-
sional infeasible decompositions, which in turn reduce end-to-end success. These findings suggest a
promising future direction: incorporating reinforcement learning for reasoning-based finetuning to
encourage consistent intermediate waypoint generation.

Task ICL (avg ± std) SFT-Single (avg ± std) SFT-Full (avg ± std)

Finger Selection 100.0±0.0 / 100.0±0.0 / 100.0±0.0 100.0±0.0 / 100.0±0.0 / 100.0±0.0 100.0±0.0 / 100.0±0.0 / 100.0±0.0
Footstep Planning 100.0±0.0 / 92.0±1.2 / 89.6±0.3 100.0±0.0 / 100.0±0.0 / 100.0±0.0 100.0±0.0 / 100.0±0.0 / 100.0±0.0
Grasp 100.0±0.0 / 88.0±3.0 / 77.4±1.2 100.0±0.0 / 100.0±0.0 / 100.0±0.0 100.0±0.0 / 100.0±0.0 / 100.0±0.0
IK 72.2±3.8 / 70.8±3.6 / 65.8±1.9 100.0±0.0 / 100.0±0.0 / 86.8±0.2 100.0±0.0 / 100.0±0.0 / 91.6±0.3
UAV 44.2±2.4 / 58.2±3.6 / 43.4±6.7 88.4±11.1 / 88.4±1.1 / 85.4±2.7 95.8±6.6 / 95.8±6.6 / 91.2±5.0

Footstep + Footstep 23.9±2.3 / 23.9±2.3 / 22.0±8.1 32.0±0.0 / 32.7±7.0 / 21.3±7.4 100.0±0.0 / 100.0±0.0 / 92.0±3.3
Footstep + IK 24.8±4.0 / 20.8±3.1 / 16.9±5.4 87.2±3.4 / 73.7±0.0 / 40.5±0.2 100.0±0.0 / 100.0±0.0 / 86.1±3.7
Footstep + UAV 21.5±1.9 / 15.6±1.1 / 10.4±2.7 55.2±0.0 / 16.8±0.0 / 7.5±2.2 100.0±0.0 / 100.0±0.0 / 66.7±1.8
UAV + IK 13.1±6.2 / 19.0±1.0 / 8.3±5.4 62.5±8.2 / 28.4±5.5 / 18.9±6.9 93.3±3.6 / 93.3±3.6 / 76.9±4.7
UAV + UAV 23.6±4.3 / 27.7±1.4 / 20.3±3.8 81.3±1.3 / 37.5±0.0 / 28.4±3.8 100.0±0.0 / 100.0±0.0 / 74.2±5.5
Footstep + Grasp 23.5±14.9 / 23.5±1.9 / 19.2±3.0 43.7±0.0 / 56.4±0.0 / 30.5±2.3 100.0±0.0 / 100.0±0.0 / 90.0±0.6
UAV + Grasp 5.2±0.6 / 14.9±1.4 / 2.0±0.0 34.5±0.0 / 37.5±0.0 / 13.0±4.9 100.0±0.0 / 100.0±0.0 / 82.8±0.0

Table 4: LLM has the option to decompose the single- and multi-domain tasks into multi-
ple MIP subproblems. Comparison of Formulation-Correctness/Parameter-Correctness/Success-
Rate(%) across ICL, SFT-Single, and SFT-Full.

5 CONCLUSION

We introduce LLM+MIP, a new paradigm for LLM-guided robot motion planning. Our approach
builds on LLM+P (Liu et al., 2023), where an LLM is used to translate natural language descrip-
tions of robot planning problems into formal representations that downstream search algorithms can
solve, thereby significantly improving success rates. Unlike LLM+P, which is limited to symbolic
action sequence reasoning, LLM+MIP translates problems into MIP instances, enabling joint rea-
soning over both discrete and continuous decision spaces. We demonstrate that LLM+MIP can solve
various single- and multi-domain M3P tasks, a subset of TAMP. We also evaluate the LLM’s ability
as a translator for MIP formulations, showing that its success rate benefits substantially from SFT.
Despite promising results, our method has several limitations that open avenues for future work.
First, our dataset currently includes only 2D problem instances. Extending evaluation to 3D prob-
lems would be a valuable direction, though considerably more computationally expensive. Second,
our method relies on existing discretization techniques. A promising future direction is to investigate
whether LLMs can autonomously rediscover or even invent more efficient discretization strategies.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Bernardo Aceituno-Cabezas, Hongkai Dai, and Alberto Rodriguez. A convex-combinatorial model
for planar caging. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2378–2385. IEEE, 2019.

Krish Agarwal, Yuqian Jiang, Jiaheng Hu, Bo Liu, and Peter Stone. L3m+ p: Lifelong planning
with large language models. arXiv preprint arXiv:2508.01917, 2025.

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. Optimus: Scalable optimization modeling
with (mi) lp solvers and large language models. arXiv preprint arXiv:2402.10172, 2024.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Aliakbar Akbari, Jan Rosell, et al. Task and motion planning using physics-based reasoning. In
2015 IEEE 20th conference on Emerging technologies & factory automation (ETFA), pp. 1–7.
IEEE, 2015.

Alexandre Amice, Hongkai Dai, Peter Werner, Annan Zhang, and Russ Tedrake. Finding and opti-
mizing certified, collision-free regions in configuration space for robot manipulators. In Interna-
tional Workshop on the Algorithmic Foundations of Robotics, pp. 328–348. Springer, 2022.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 17682–17690, 2024.

Lukas Lao Beyer, Nadya Balabanska, Ezra Tal, and Sertac Karaman. Multi-modal motion planning
using composite pose graph optimization. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pp. 9981–9987. IEEE, 2021.

Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle routing problem:
State of the art classification and review. Computers & industrial engineering, 99:300–313, 2016.

Hao Chen, Gonzalo E Constante-Flores, and Can Li. Diagnosing infeasible optimization problems
using large language models. INFOR: Information Systems and Operational Research, 62(4):
573–587, 2024.

Hongkai Dai, Anirudha Majumdar, and Russ Tedrake. Synthesis and optimization of force closure
grasps via sequential semidefinite programming. In Robotics Research: Volume 1, pp. 285–305.
Springer, 2017.

Hongkai Dai, Gregory Izatt, and Russ Tedrake. Global inverse kinematics via mixed-integer convex
optimization. The International Journal of Robotics Research, 38(12-13):1420–1441, 2019.

Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Lydia E Kavraki. Incremental task and
motion planning: A constraint-based approach. In Robotics: Science and systems, volume 12, pp.
00052. Ann Arbor, MI, USA, 2016.

Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Lydia E Kavraki. An incremental
constraint-based framework for task and motion planning. The International Journal of Robotics
Research, 37(10):1134–1151, 2018.

Robin Deits and Russ Tedrake. Footstep planning on uneven terrain with mixed-integer convex
optimization. In 2014 IEEE-RAS international conference on humanoid robots, pp. 279–286.
IEEE, 2014.

Robin Deits and Russ Tedrake. Computing large convex regions of obstacle-free space through
semidefinite programming. In Algorithmic Foundations of Robotics XI: Selected Contributions of
the Eleventh International Workshop on the Algorithmic Foundations of Robotics, pp. 109–124.
Springer, 2015a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Robin Deits and Russ Tedrake. Efficient mixed-integer planning for uavs in cluttered environments.
In 2015 IEEE international conference on robotics and automation (ICRA), pp. 42–49. IEEE,
2015b.

Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang. Task and motion planning with large
language models for object rearrangement. In 2023 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 2086–2092. IEEE, 2023.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: an embodied multi-
modal language model. In Proceedings of the 40th International Conference on Machine Learn-
ing, pp. 8469–8488, 2023.

Jimmy Envall, Roi Poranne, and Stelian Coros. Differentiable task assignment and motion planning.
In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2049–
2056. IEEE, 2023.

Esra Erdem, Kadir Haspalamutgil, Can Palaz, Volkan Patoglu, and Tansel Uras. Combining high-
level causal reasoning with low-level geometric reasoning and motion planning for robotic ma-
nipulation. In 2011 IEEE International Conference on Robotics and Automation, pp. 4575–4581,
2011. doi: 10.1109/ICRA.2011.5980160.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. Annual review of
control, robotics, and autonomous systems, 4(1):265–293, 2021.

Kaiyu Hang, Johannes A Stork, Nancy S Pollard, and Danica Kragic. A framework for optimal
grasp contact planning. IEEE Robotics and Automation Letters, 2(2):704–711, 2017.

Kris Hauser and Jean-Claude Latombe. Multi-modal motion planning in non-expansive spaces. The
International Journal of Robotics Research, 29(7):897–915, 2010.

Kris Hauser, Victor Ng-Thow-Hing, and Hector Gonzalez-Baños. Multi-modal motion planning for
a humanoid robot manipulation task. In Robotics Research: The 13th International Symposium
ISRR, pp. 307–317. Springer, 2010.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research, 26:
191–246, 2006.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

Ziyuan Jiao, Yida Niu, Zeyu Zhang, Song-Chun Zhu, Yixin Zhu, and Hangxin Liu. Sequential
manipulation planning on scene graph. In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 8203–8210. IEEE, 2022.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Zachary Kingston and Lydia E Kavraki. Scaling multimodal planning: Using experience and in-
forming discrete search. IEEE Transactions on Robotics, 39(1):128–146, 2022.

Zachary Kingston, Andrew M Wells, Mark Moll, and Lydia E Kavraki. Informing multi-modal
planning with synergistic discrete leads. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3199–3205. IEEE, 2020.

Andreas Klose and Andreas Drexl. Facility location models for distribution system design. Euro-
pean journal of operational research, 162(1):4–29, 2005.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch
and bound with graph neural networks. Advances in neural information processing systems, 35:
32000–32010, 2022.

Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan Pathuri, and Ishai Menache. Large language
models for supply chain optimization. arXiv preprint arXiv:2307.03875, 2023a.

Qingyang Li, Lele Zhang, and Vicky Mak-Hau. Synthesizing mixed-integer linear programming
models from natural language descriptions. arXiv preprint arXiv:2311.15271, 2023b.

Sirui Li, Janardhan Kulkarni, Ishai Menache, Cathy Wu, and Beibin Li. Towards foundation models
for mixed integer linear programming. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=6yENDA7J4G.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. arXiv preprint arXiv:2401.02051, 2024.

Min Liu, Zherong Pan, Kai Xu, and Dinesh Manocha. New formulation of mixed-integer conic
programming for globally optimal grasp planning. IEEE Robotics and Automation Letters, 5(3):
4663–4670, 2020.

Zachary Manchester and Scott Kuindersma. Variational contact-implicit trajectory optimization. In
Robotics Research: The 18th International Symposium ISRR, pp. 985–1000. Springer, 2019.

Tobia Marcucci, Mark Petersen, David von Wrangel, and Russ Tedrake. Motion planning around
obstacles with convex optimization. Science robotics, 8(84):eadf7843, 2023.

Joo Pedro Pedroso. Optimization with gurobi and python. INESC Porto and Universidade do Porto„
Porto, Portugal, 1, 2011.

Wiktor Piotrowski, Alexandre Perez, and Sachin Grover. Nyx: Planning for emerging problems
with pddl+ and beyond. 2024.

Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and Andrea
Lodi. Ecole: A gym-like library for machine learning in combinatorial optimization solvers. arXiv
preprint arXiv:2011.06069, 2020.

Hanif D Sherali and Hongjie Wang. Global optimization of nonconvex factorable programming
problems. Mathematical Programming, 89(3):459–478, 2001.

Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See-Kiong Ng, Lidong Bing, and Roy
Ka-Wei Lee. Math-llava: Bootstrapping mathematical reasoning for multimodal large language
models. arXiv preprint arXiv:2406.17294, 2024.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Kaelbling, and Michael
Katz. Generalized planning in pddl domains with pretrained large language models. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 38, pp. 20256–20264, 2024.

Wil Thomason, Marlin P Strub, and Jonathan D Gammell. Task and motion informed trees (tmit*):
Almost-surely asymptotically optimal integrated task and motion planning. IEEE Robotics and
Automation Letters, 7(4):11370–11377, 2022.

Marc A Toussaint, Kelsey Rebecca Allen, Kevin A Smith, and Joshua B Tenenbaum. Differentiable
physics and stable modes for tool-use and manipulation planning. 2018.

Shu Wang, Muzhi Han, Ziyuan Jiao, Zeyu Zhang, Ying Nian Wu, Song-Chun Zhu, and Hangxin Liu.
Llm^ 3: Large language model-based task and motion planning with motion failure reasoning. In
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 12086–
12092. IEEE, 2024.

12

https://openreview.net/forum?id=6yENDA7J4G

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, and
Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence
model. arXiv preprint arXiv:2302.00244, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Hegen Xiong, Shuangyuan Shi, Danni Ren, and Jinjin Hu. A survey of job shop scheduling problem:
The types and models. Computers & Operations Research, 142:105731, 2022.

Xuyuan Xiong, Simeng Han, Ziyue Zhou, and Arman Cohan. Metamath: Integrating natural lan-
guage and code for enhanced mathematical reasoning in large language models. arXiv e-prints,
pp. arXiv–2409, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Jingjin Yu and Steven M LaValle. Planning optimal paths for multiple robots on graphs. In 2013
IEEE International Conference on Robotics and Automation, pp. 3612–3617. IEEE, 2013.

Yiyao Yu, Yuxiang Zhang, Dongdong Zhang, Xiao Liang, Hengyuan Zhang, Xingxing Zhang, Ziyi
Yang, Mahmoud Khademi, Hany Awadalla, Junjie Wang, et al. Chain-of-reasoning: Towards
unified mathematical reasoning in large language models via a multi-paradigm perspective. arXiv
preprint arXiv:2501.11110, 2025.

Changwen Zhang, Wenli Ouyang, Hao Yuan, Liming Gong, Yong Sun, Ziao Guo, Zhichen Dong,
and Junchi Yan. Towards imitation learning to branch for mip: A hybrid reinforcement learn-
ing based sample augmentation approach. In The Twelfth International Conference on Learning
Representations, 2024.

Zhigen Zhao, Shuo Cheng, Yan Ding, Ziyi Zhou, Shiqi Zhang, Danfei Xu, and Ye Zhao. A survey of
optimization-based task and motion planning: From classical to learning approaches. IEEE/ASME
Transactions on Mechatronics, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TASK DESCRIPTION

We provide the detailed description of our five single-domain M3P tasks:

• Footstep Planning (Deits & Tedrake, 2014): The goal is for a bipedal robot to take a set of foot-
steps, with approximated footstep reachability constraints and obstacle-avoidance constraints, for
its center of mass to reach a projected 2D position.

• Finger Selection (Hang et al., 2017): The goal is for a robot gripper to select contact points of
each fingertip to maximize the 2D object grasping quality.

• 2D Inverse Kinematics (IK) (Dai et al., 2019): The goal is for a 2D articulated robot arm to reach
a target configuration, as well as avoiding a set of obstacles.

• Grasp (Liu et al., 2020): This is the combination of finger selection and IK, where the robot gripper
needs to select contact points as well as compute the pose for fingertips to reach each point.

• Collision-Free UAV Trajectory Planning (UAV) (Deits & Tedrake, 2015b): The goal is for a 2D
UAV to fly to a certain target position without intersecting obstables, while satisfying additional
set of user-defined constraints. We support multiple types of constraints such as: “circle around a
obstacle”, “flying from the left of an obstacle”

We provide the detailed description of our seven multi-domain M3P tasks:

• Footstep+IK: The bipedal robot is equipped with a 2D articulated robot arm and needs to reach
for distant goal position. Therefore it needs to first take several steps to walk close to the target
and reach out for it.

• UAV+IK: Similar to Footstep+IK, but with a UAV equipped with a 2D articulated robot arm and
needs to reach for distant goal position, while avoiding obstacles.

• Footstep+UAV: A bipedal robot and a UAV needs to meet at a known or unknown position, both
avoiding obstacles.

• UAV+UAV: Similar to Footstep+UAV, but with two UAVs meeting at a known or unknown posi-
tion.

• Footstep+Footstep: Similar to Footstep+UAV, but with two bipedal robots meeting at a known or
unknown position.

• Footstep+Grasp: A bipedal robot needs to grasp a distant object, so it needs to first walk close to
it, then select the grasping point, and finally reach out for it.

• UAV+Grasp: Similar to Footstep+Grasp, but with a UAV equipped with a gripper.

B LLM-CALLABLE API

In this section, we list the set of LLM-callable APIs for discretizing the general non-convex con-
straints into disjointly convex sets. We also implement a set of convenient functions for adding ad-
vanced constraints such as enforcing high-order continuity between pieces of UAV trajectory curves.

create_map(iris_num, obstacle_map)
Generate IRIS convex regions with obstacles, defining the feasible environ-
ment.

add_iris_region_assignment_constraints(num_segments, pivots,
footsteps, R_COLLISION)
Constrain UAV trajectory segments, grasp collision points, robot arm
pivots, or active footsteps to lie within safe IRIS regions. The parameter
R_COLLISION enforces a clearance margin so that discretized points
remain at least this distance away from region boundaries.

generate_side_and_vertical_obstacles(iris_regions, obstacle_map,
key, style)
Augment each obstacle with auxiliary boxes depending on its style. For

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

“left”/“right” a vertical slab and two horizontal boxes are added to form
corridors; for “top”/“bottom” a horizontal slab and two vertical boxes
enforce passage; for “circle” four bounding boxes approximate a circular
exclusion zone.

add_spatial_relation_constraints(text_lst, text_regions)
Encode semantic navigation relations as region-assignment constraints. Di-
rectional tags (“left”, “right”, etc.) force the UAV to cross region sequences
exactly once. “Circle” enforces cyclic transitions through four bounding
regions, ensuring a complete detour.

add_control_points_constraints(iris_regions, big_M)
Link Bézier control points to selected IRIS regions via big-M constraints.

add_continuity_constraints(num_segments, control_points)
Enforce C0, C1, and C2 continuity across Bézier segments. The parameter
control_points are the decision variables defining the curve geome-
try.

add_start_goal_constraints(start_pos, goal_pos)
Fix the trajectory start and goal positions.

add_base_constraints(BASE_LOCATION)
Anchor the robot arm base to a fixed location.

add_chain_rotation_constraints(LINK_LENGTHS, N_POLY)
Encode multi-link kinematics using polynomial rotation approximations.
N_POLY sets the polygon resolution for approximating trigonometric func-
tions.

add_end_constraints(END_LOCATION)
Force the arm end effector to a target position.

add_collision_discretization_constraints(pivots, NUM_INTERMEDIATE)
Discretize each link into endpoints plus NUM_INTERMEDIATE samples
for collision checking. Larger values yield finer safety resolution at higher
cost.

get_object_surface_samples(obj, delta, delta_n)
Sample candidate contact points with spacing delta, and outward-shifted
normals at offset delta_n.

add_finger_selection_constraints(n_fingers, len_points)
Select feasible contact points for n_fingers out of len_points can-
didates via binary variables.

add_end_grasp_constraints(pivots, ee1, ee2)
Constrain fingertip pivots to close consistently around the object. Ensure
the first joint matches ee1 and the last joint matches ee2.

add_middle_point_constraints(middle_pivot, target_point)
Anchor an intermediate pivot to a fixed target point.

add_grasp_wrench_constraints(sample_points, sample_normals,
selection_flag, friction_coef)
Impose wrench feasibility and friction-cone stability given sample points,
normals, contact flags, and friction coefficient.

add_step_on_constraints(take, num_steps)
Mark which footstep indices are active. The first two (initial stance feet)
are forced active, while later steps are gated by binary take variables.

add_monotonicity_constraints(take)
Force take to be non-increasing, preventing reactivation of steps after
termination.

add_reachability_constraints(start_left, start_right, steps_taken,
reachable_distance, foot)
Constrain each new step to lie within a polygonal reachable region

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

relative to the previous stance. start_left/start_right fix
the initial feet, steps_taken is the maximum planning horizon,
reachable_distance sets the step-length bound, and foot specifies
which side starts.

add_terminal_constraints(contact, take, term, steps_taken)
Select exactly one terminal step among the planning horizon. contact
are continuous foot positions, take are binary transition variables, term
are binary terminal selectors, and steps_taken sets the planning hori-
zon.

share_point_feasibility_constraints(shared_points, subsystem_vars)
Tie multi-domain subsystems (UAV, IK, grasp, footsteps) to shared geo-
metric points (e.g., UAV drop-off, grasp midpoint). shared_points
are the common coordinates, subsystem_vars are the corresponding
subsystem decision variables.

create_objective_and_solve(constraints, objective)
Assemble all constraints and define the optimization objective (step count,
smoothness, feasibility, etc.). Call the solver (e.g., Gurobi) and return so-
lution status, runtime, and variables.

C MIP FORMULATION

In this section, we provide the detailed formulation of each of our single-domain tasks.

C.1 UAV

We formalize the UAV trajectory planning problem as a mixed-integer quadratic program
(MIQP) (Deits & Tedrake, 2015b). Let N denote the number of trajectory segments, R the number
of IRIS regions (Deits & Tedrake, 2015a), and C ∈ R4N×2 the cubic Bézier control points across
all segments. Binary variables Hr,j ∈ {0,1} assign segment j to region r. The MIQP adopts the
following set of constraints:

Region assignment: Each segment must belong to exactly one region:
R

∑
r=1

Hr,j = 1, ∀j = 1, . . . ,N. (1)

Control point feasibility: Let region r be described by Arx ≤ br. For each segment j, control point
Cj,k (k = 0, . . . ,3) must lie in its assigned region, relaxed via the Big-M method:

ArCj,k ≤ br +M(1 −Hr,j), ∀r, j, k, (2)
with M being some large constant.

Continuity: Adjacent Bézier segments must connect smoothly in position, velocity, and accelera-
tion. For j = 1, . . . ,N − 1:

Cj,3 = Cj+1,0,
(Cj,3 −Cj,2) = (Cj+1,1 −Cj+1,0),
(Cj,3 − 2Cj,2 +Cj,1) = (Cj+1,0 − 2Cj+1,1 +Cj+1,2),

(3)

which can be added by API call add_continuity_constraints.

Start/goal constraints: The trajectory must start at s and end at g:
C0,0 = s, CN−1,3 = g, (4)

which can be added by API call add_start_goal_constraints.

Objective: We minimize the trajectory’s integrated jerk, computed for each segment j as Jj,d =
6(Cj,3,d − 3Cj,2,d + 3Cj,1,d −Cj,0,d) for dimension d ∈ {x, y}:

argmin
C,H

N

∑
j=1

∑
d∈{x,y}

J2
j,d. (5)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Constraints Equation 1-Equation 4 together with objective Equation 5 define the UAV planning
MIQP. This formulation tightly couples discrete region assignments with continuous Bézier control
points, ensuring trajectories are collision-free, dynamically smooth, and solver-executable.

C.2 EXTENSION TO OUR NOVEL SPATIAL CONSTRAINTS

We propose a novel type of constraint to enforce additional constraints on UAV, enabling more
expressive trajectory descriptions. Specifically, we allow UAV to fly from the “left/right/top/bottom”
of an obstacle, for a given number of times. We further allow UAV to circle around the obstacle, also
for a given number of times. These additional requirements can be achieved by so-called crossing
constraints. Suppose there are two IRIS regions indexed by p and q, and we want to check whether
UAV crosses the boundary of p and q at the ath trajectory segment. Such a check can be achieved
by introducing the continuous indicator variable W a

pq and the following constraints:

W a
pq ≤Hp,a, W a

pq ≤Hq,a+1, W a
pq ≥Hp,a +Hq,a+1 − 1. (6)

We can further ensure that only one crossing happens by the following constraints:
N−1
∑
a=1

W a
pq +W a

qp = 1. (7)

Now, suppose we want the UAV to circle around an obstacle exactly once, then we can generate for
IRIS regions surrounding the obstacle, as indexed by b, r, t, l (short for bottom, right, top, and left).
We then enforce the following constraints:

N−1
∑
a=1

W a
br =

N−1
∑
a=1

W a
rt =

N−1
∑
a=1

W a
tl =

N−1
∑
a=1

W a
lb = 1. (8)

Further suppose we want the UAV to fly from the left of an obstacle. Then we can generate a
rectangular IRIS region on the left, as indexed by l. We then create two other IRIS regions, as
indexed lt and lb. lt intersects with l from the top and lb intersects with l from the bottom. With
these three IRIS regions, we only need to enforce that the UAV fly lt to l then to lb, which is
constrained by:

N−1
∑
a=1

W a
ltl =

N−1
∑
a=1

W a
llb = 1. (9)

C.3 IK

We present the simplified, 2D variant of Dai et al. (2019), modeling a planar manipulator with L
links of fixed lengths {ℓ1, . . . , ℓL}. Let pi ∈ R2 denote the pivot of joint i, with base p0 and end-
effector pL. Rotations are approximated via polygonal discretization with Npoly facets. The MIP
endows the following set of constraints.

Base anchoring: The base is fixed at a given location s:

p0 = s. (10)

Rotation Discretization: Each link’s local to global transform uses a rotation matrix Ri ∈ R2×2
constrained to lie in a polygonal approximation of SO(2):

pi = pi−1 +Ri [
ℓi
0
] , i = 1, . . . , L. (11)

Each Ri is constructed via piecewise linear relaxation of SO(2) constructed by call-
ing add_chain_rotation_constraints. This constraint is also used in footstep plan-
ning (Deits & Tedrake, 2014).

End-effector constraint: The final end-effector position must coincide with the goal g:

pL = g. (12)

Collision discretization: The link pose should be collision-free, which is formulated in a similar
way as in UAV. Each link [pi−1, pi] is discretized into M intermediate points:

qi,k = (1 − k
M+1)pi−1 +

k
M+1pi, k = 1, . . . ,M, (13)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

with all {pi, qi,k} concatenated into collision point matrix Cj . Again we construct R IRIS regions
and use binary assignment variables Hr,j ∈ {0,1} to map each collision point to exactly one region:

R

∑
r=1

Hr,j = 1, ∀j. (14)

Big-M feasibility is enforced as:

ArCj ≤ (br −Rc) +M(1 −Hr,j) ∀r, j, (15)

where Rc is some safety distance. Constraints Equation 10-Equation 15 define our MIQP. The
formulation couples discrete rotation approximations, continuous kinematics, and region-based col-
lision avoidance.

C.4 GRASP

We present a simplified, 2D variant of Liu et al. (2020) for grasp planning. The grasp formulation
extends the IK problem introduced in the previous section. All IK constraints (chain kinematics, col-
lision discretization, IRIS region assignment, and optional spatial relation constraints) are inherited
directly. We now introduce additional variables and constraints that model grasp contact selection
and force-closure feasibility.

Grasp selection (two fingers): We sample N equidistant points on the surface of objects as can-
didate grasp points {pi}, which is achieved by calling get_object_surface_samples. We
further introduce binary matrices F ∈ {0,1}2×N and selection flags s ∈ [0,1]N select two distinct
contact points from the N surface samples, via the following constraints:

N

∑
i=1

F1i = 1,
N

∑
i=1

F2i = 1, (16)

F1i + F2i ≤ 1, si = F1i + F2i, i = 1, . . . ,N. (17)

The selected end-effector (contact) positions are

ee1 =
N

∑
i=1

F1i pi, ee2 =
N

∑
i=1

F2i pi. (18)

The above two variables replace the fixed start and goal constraints from the IK problem by anchor-
ing the kinematic chain to two contact points on the object.

Force-closure (wrench) constraints: For each sample pi with outward unit normal ni and tangent
ti, we define the two friction cone generators:

fA
i = ni + µ ti, fB

i = ni − µ ti, (19)

with corresponding planar wrenches vAi = [fA
i ; (pi×fA

i)] ∈ R3 (and analogously vBi). Introducing
nonnegatives αi,d, βi,d and slack γd for each wrench direction ŵd, we impose

N

∑
i=1
(vAi αi,d + vBi βi,d) = γd ŵd, ∀d, (20)

αi,d + βi,d ≤ 1, αi,d + βi,d ≤ si, αi,d, βi,d ≥ 0, (21)
γd ≥ r, ∀d, (22)

where r is the common inscribed circle radius in wrench space.

Objective: Our object is to maximize the inscribed circle radius, i.e. argmax r. Note that this
inscribed circle radius can be approximated using discretization technique (Liu et al., 2020), leading
to an MIQP, or the lower-bound relaxation (Dai et al., 2017), leading to an MISDP. We use the
MIQP formulation since Gurobi does not solve MISDP. Put together, the grasp MIP augments the
IK formulation with the above constraints, which jointly enforce valid finger selection and force-
closure robustness.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.5 FINGER SELECTION

Finger selection can be viewed as a simplified version of the grasp problem (Section C.4), where
we do not consider the reachability of fingers, and directly select m contact points from N sampled
candidate grasp points to maximize the inscribed circle radius.

C.6 FOOTSTEP

Footstep planning (Deits & Tedrake, 2014) builds upon the general spatial and region constraints
introduced in the IK section, but specializes them for biped locomotion. In particular, footsteps
must remain collision-free, lie in the IRIS regions, respect alternating left-right step ordering, and
satisfy kinematic reachability constraints relative to the stance foot.

Let N denote the maximum number of footsteps. Each step i has a contact position pi = (xi, yi) ∈
R2. As usual, we use a binary region assignment Hr,i ∈ {0,1} indicating whether step i lies in
region r = 1, . . . ,R. Further, a binary usage variable ui ∈ {0,1} indicating whether step i is active,
and a binary terminal indicator ti ∈ {0,1} specifies whether step i is the terminal footstep. We use
the following set of constraints.

Region membership: Each footstep must lie in exactly one IRIS region when active:
R

∑
r=1

Hr,i = ui, Arpi ≤ br +M(1 −Hr,i), ∀r, i. (23)

Note that the trajectory between consecutive footsteps can have intersections with obstacles. This is
because the robot can lift the foot to walk around the obstacles.

Start and terminal constraints: The first two contacts are fixed to the initial left/right feet:
p0 = pstart

L , p1 = pstart
R , (24)

and exactly one terminal step is chosen:
N−1
∑
i=0

ti = 1, ti ≤ ui, ∀i. (25)

Step activation monotonicity: Once a step is inactive, no later step can be active:
ui ≥ ui+1, ∀i = 0, . . . ,N − 2. (26)

This constraint can be added by calling add_monotonicity_constraints.

Left-right ordering and separation: Let steps alternate between left and right feet. We impose:
xi+1 − xi ≥ −M(1 − ui+1) − ϵ, if i is left, (27)
xi − xi+1 ≥ −M(1 − ui+1) − ϵ, if i is right, (28)
∣xi+1 − xi∣ ≥∆min −M(1 − ui+1), ∀i. (29)

Reachability: From the stance foot pi, the next contact pi+1 must lie in the shifted reachable
polygonR (approximated by m halfspaces):

a⊺m(pi+1 − pi − sid) ≤ R +M(1 − ui+1), ∀m. (30)

Goal constraints: Let (xT , yT) denote the terminal foot location. Its deviation from the goal
(xg, yg) is measured by slack variables gx, gy, ux, uy:

gx = xT − xg, gy = yT − yg, (31)
ux ≥ ±gx, uy ≥ ±gy. (32)

Objective: We minimize a weighted sum of step usage, lane penalties, and goal deviation:
min α∑

i

∥pi+1 − pi∥1 + β∑
i

ui + γ(ux + uy) +∑
i

λi, (33)

where λi denotes the penalty associated with step i deviating from its preferred lane. Together,
the above constraints define the footstep planning MIP: footsteps remain in IRIS regions, satisfy
alternating gait and reachability, and reach the goal with a minimal number of steps.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.7 MULTI-DOMAIN TASKS

In multi-domain tasks, subsystems such as UAV, IK, and Grasp must coordinate at specific
interface points—for example, the UAV endpoint aligning with the IK base, or the IK end-
effector aligning with the Grasp target. These shared points enforce consistency across modal-
ities while maintaining feasibility within each individual domain. While such coordination
can be enforced using a standard MIP constraint, we instead use the specialized API call
share_point_feasibility_constraints to more clearly convey the semantic intent of
this coupling.

D ROBOM3P DATASET EXAMPLE / LLM INPUT OUTPUT EXAMPLE

D.1 SYSTEM PROMPT

System Prompt

You are a robotic optimization expert. Your job is to read
a text instruction of a robot mission and translate it into
mixed-integer programming function-call trajectories.

Output policy:

• First, identify the task type from:
UAV / Robot Arm IK / Finger Selection / Grasp /
Footstep Planning / UAV + Robot Arm IK / UAV + Robot
Arm IK Unknown Intermediate Point / UAV + Robot Arm
IK Known Intermediate Point / Footstep + Robot Arm IK
/ Footstep + Robot Arm IK Unknown Intermediate Point
/ Footstep + Robot Arm IK Known Intermediate Point
/ UAV + Robot Arm IK + Grasp / Footstep + Robot Arm
IK + Grasp / Footstep + UAV / UAV + UAV / Footstep +
Footstep

• Produce the COMPLETE trajectory end-to-end (not just a
single call).

• Respond with ONLY the trajectory in assistant.content
(JSON mode).

• Preserve argument keys and list/dict shapes from the
training distribution; do not rename fields or invent
new ones.

• Separate consecutive calls by a single blank line only
if you output a human-readable format; for JSON mode,
output a single JSON value.

• Never include anything except the trajectory.

Global Rules:

• Select the task category from the mission description.

• For that category, you MUST emit the exact functions
from below.

• You may ONLY change parameter values. Keep parameter
names/keys exactly as listed.

• For composition tasks (e.g., UAV + IK), emit the
trajectory sequences for BOTH tasks as shown in
in-context examples.

• For tasks with “Specify Unknown Shared Point,” you MUST
predict a suitable intermediate point that:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

– Does not collide with any obstacles
– Is within reachable distance from the goal using
the robot arm linkage length

– Is positioned appropriately for the mission context

Available Functions and Semantics: Detailed in Section B.

Composition Tasks:

• The trajectory should be a combination of each
individual task’s trajectory sequence.

• Use a shared variable (e.g., shared_point_1) to define
intermediate points that connect tasks.

• Use the shared variable as argument value for
start_pos/end_pos or BASE_LOCATION/END_LOCATION where
tasks connect.

• Add share_point_feasibility_constraints(shared_variable)
for each shared point.

• Use create_objective_and_solve(combined_constraints) as
the ONLY solver function at the end.

Example composition structure:

1. First task trajectory (e.g., UAV or Footstep)
2. Second task trajectory (e.g., IK or Grasp)
using shared_point as connection
3. share_point_feasibility_constraints(point=shared_point)
4. create_objective_and_solve(constraints=all_constraints)

D.2 INVERSE KINEMATICS

Text Command / LLM Input.

With link lengths of 0.498m, 0.939m, and 0.725m, maneuver the robot arm
from the base at [−1.2603, −1.7615] to the end target at [1.2218, −1.7720],
ensuring to navigate through the right of obst2. Obstacles are provided in
obstacle_map.json file.
obstacle_map.json: "obst1": "lb": [0.0, 0.0], "ub": [1.0, 1.0], "style": "none" ;
"obst2": "lb": [-2.2, 0.0], "ub": [-1.8, 1.5], "style": "right" ; "obst3": "lb": [1.2,
-0.5], "ub": [1.8, 0.5], "style": "none" .

MIP Code Trajectory / LLM Output.

Listing 1: Code for inverse kinematics tasks
import cvxpy as cp

var_dict = {}
constraints = []

iris_regions, obstacles_list_plt, styles, obstacle_keys = create_map(
iris_num=17,
obstacle_map="obstacle_map.json"

)

iris_regions = generate_side_and_vertical_obstacles(
iris_regions=iris_regions,

obstacle_map="obstacle_map.json", key="obst2", style="right"
)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

base_constraints, p0, pivots = add_base_constraints(
BASE_LOCATION=[-1.2603, -1.7615],
var_dict=var_dict

)
var_dict["p_0"] = cp.Variable(2, name="p_0")
constraints.extend(base_constraints)

chain_constraints, Rs_list, pivots = add_chain_rotation_constraints(
LINK_LENGTHS=[0.498, 0.939, 0.725],
N_POLY=8,
var_dict=var_dict,
p0=p0,
pivots=pivots

)
for idx in range(len(LINK_LENGTHS)):

var_dict[f"p_{idx+1}"] = cp.Variable(2, name=f"p_{idx+1}")
constraints.extend(chain_constraints)

end_constraints = add_end_constraints(
END_LOCATION=[1.2218, -1.7720],
pivots=pivots

)
constraints.extend(end_constraints)

discretization_constraints, collision_points =
add_collision_discretization_constraints(

NUM_INTERMEDIATE=10,
var_dict=var_dict,
pivots=pivots

)
for i in range(len(pivots) - 1):

for k in range(1, NUM_INTERMEDIATE + 1):
var_dict[f"q_link_{i}_pt_{k}"] = cp.Variable(

2, name=f"q_link_{i}_pt_{k}"
)

constraints.extend(discretization_constraints)

region_constraints, z_vars_list = add_iris_region_assignment_constraints(
iris_env=iris_regions,
R_COLLISION=0.02,
var_dict=var_dict,
collision_points=collision_points

)
for idx in range(len(collision_points)):

var_dict[f"z_collision_{idx}"] = cp.Variable(
len(iris_regions), boolean=True, name=f"z_collision_{idx}"

)
for r in range(len(iris_regions)):

var_dict[f"y_collision_{idx}_{r}"] = cp.Variable(
2, name=f"y_collision_{idx}_{r}"

)
constraints.extend(region_constraints)

spatial_constraints = add_spatial_relation_constraints(
styles="right",
styles_related_regions=[[], [17,18,19], []],
z_vars_list=z_vars_list,
num_segments=len(pivots)

)
for k in range(len(pivots) - 1):

var_dict[f"W_right_JI_{k}"] = cp.Variable(
boolean=True, name=f"W_right_JI_{k}"

)
var_dict[f"W_right_IJ_{k}"] = cp.Variable(

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

boolean=True, name=f"W_right_IJ_{k}"
)

constraints.extend(spatial_constraints)

status, ik_result = create_objective_and_solve(
constraints=constraints,
var_dict=var_dict,
objective=’feasiable’,
pivots=pivots,
Rs_list=Rs_list

)

D.3 UAV TRAJECTORY GENERATION

Text Command / LLM Input.

Depart from the highland outpost and make your way to the meadow sanctuary,
ensuring the red brick warehouse remains on your right, the ancient oak grove
stays on your left, and you fly above the sunken courtyard from the bottom. Ob-
stacles are provided in obstacle_map.json.
obstacle_map.json: "red brick warehouse": "lb": [0.0, 0.0], "ub": [1.0, 1.0],
"style": "right" ; "ancient oak grove": "lb": [-9.2, 0.0], "ub": [-8.8, 1.5], "style":
"left" ; "sunken courtyard": "lb": [-6.9, -0.5], "ub": [-0.8, 0.5], "style": "above" ;
"farm": "lb": [2.9, 2.5], "ub": [3.8, 3.5], "style": "none"

MIP Code Trajectory / LLM Output.

Listing 2: UAV trajectory code
import cvxpy as cp

var_dict = {}
constraints = []
NUM_SEGMENTS = 24
BEZIER_SEGMENTS = 4

iris_regions, obstacles_list_plt, styles, obstacle_keys = create_map(
iris_num=36,
obstacle_map="obstacle_map.json"

)

iris_regions = generate_side_and_vertical_obstacles(
iris_regions=iris_regions, key=’red brick warehouse’, style=’right’

)
iris_regions = generate_side_and_vertical_obstacles(

iris_regions=iris_regions, key=’ancient oak grove’, style=’left’
)
iris_regions = generate_side_and_vertical_obstacles(

iris_regions=iris_regions, key=’sunken courtyard’, style=’bottom’
)

var_dict["H"] = cp.Variable(
(len(iris_regions), NUM_SEGMENTS), boolean=True, name="H")
collision_points = [var_dict["C"][i,:]
for i in range(NUM_SEGMENTS*BEZIER_SEGMENTS)]

region_constraints, z_vars_list = add_iris_region_assignment_constraints(
iris_env=iris_regions,
R_COLLISION=0.02,
var_dict=var_dict,
collision_points=collision_points

)
constraints.extend(region_constraints)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

var_dict["W_right"] = [
cp.Variable(boolean=True, name=f"W_right_{k}")
for k in range(NUM_SEGMENTS-1)

]
var_dict["W_left"] = [

cp.Variable(boolean=True, name=f"W_left_{k}")
for k in range(NUM_SEGMENTS-1)

]
var_dict["W_bottom"] = [

cp.Variable(boolean=True, name=f"W_bottom_{k}")
for k in range(NUM_SEGMENTS-1)

]
spatial_constraints = add_spatial_relation_constraints(

var_dict["H"],
text_lst=[’right’, ’left’, ’bottom’],
text_regions=[[36,37,38], [39,40,41], [42,43,44]],
num_segments=NUM_SEGMENTS

)
constraints.extend(spatial_constraints)

var_dict["C"] = cp.Variable((NUM_SEGMENTS*BEZIER_SEGMENTS, 2), name="C")
control_constraints = add_control_points_constraints(

var_dict["C"], var_dict["H"],
iris_regions=iris_regions, num_segments=BEZIER_SEGMENTS,
big_M=10.0

)
constraints.extend(control_constraints)

continuity_constraints = add_continuity_constraints(
var_dict["C"], num_segments=BEZIER_SEGMENTS

)
constraints.extend(continuity_constraints)

start_goal_constraints = add_start_goal_constraints(
var_dict["C"],
start_pos=obstacle_map[’highland outpost’],
goal_pos=obstacle_map[’meadow sanctuary’],
num_segments=BEZIER_SEGMENTS

)
constraints.extend(start_goal_constraints)

status, cost, H_val, C_val = create_objective_and_solve(
constraints=constraints,
var_dict=var_dict,
objective=’uav_jerk’,
C=var_dict["C"]

)

D.4 UAV+IK

Text Command / LLM Input.

Environment with obstacles (obst1 from [-2.0, -1.0] to [-0.5, 0.0], obst2 from [1.0,
0.0] to [2.0, 1.0], obst3 from [0.0, -2.0] to [2.0, -1.0]). Because the goal is too
far to directly perform arm inverse kinematics with the 1.5 m arm (links [0.5, 0.5,
0.5]), the UAV first flies from [−1.6, −1.6] through safe regions to an intermediate
shared point, where the robot arm is then deployed to reach [1.4, 1.4].

MIP Code Trajectory / LLM Output.

Listing 3: Unified UAV+IK trajectory code

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

--- UAV trajectory setup ---
(same as UAV case, up to start/goal constraints, omit here for clarity)
....

start_goal_constraints = add_start_goal_constraints(
var_dict["C"],
start_pos=[-1.6, -1.6],
goal_pos=shared_uav_ik_base,
num_segments=BEZIER_SEGMENTS

)

--- Shared point linking UAV and IK ---
var_dict["shared_point"] = cp.Variable(2, name="shared_uav_ik_base")

Shared point IRIS membership decision variables
var_dict["sp_z"] = cp.Variable(
len(iris_regions), boolean=True, name="z_shared_point")
var_dict["sp_y"] = [

cp.Variable(2, name=f"y_shared_point_{r}")
for r in range(len(iris_regions))

]

--- IK chain setup ---
(same as IK case, omit here for clarity)
....

constraints.extend(add_base_constraints(
BASE_LOCATION=shared_uav_ik_base,
var_dict=var_dict

))

Explicit feasibility constraints for shared point
constraints.extend(share_point_feasibility_constraints(

point=shared_uav_ik_base
))

--- Solve unified problem ---
status, result = create_objective_and_solve(

constraints=constraints,
var_dict=var_dict,
objective="uav_jerk",
pivots=pivots,
Rs_list=Rs_list

)

D.5 FINGER SELECTION

Text Command / LLM Input.

To stably grasp an object using 3 fingers, select three grasp points that form a
triangle around the object’s center of mass, ensuring each point is on a stable sur-
face and allows for equal distribution of force. Grasp object in obstacle_map.json:
"obj": "triangle": "vertices": [[0.0, 0.0], [1.0, 0.0], [0.5, 0.8]] , "obj:edge":
"edge1": "vertices": [[0.0, 0.0], [1.0, 0.0]] , "edge2": "vertices": [[1.0, 0.0],
[0.5, 0.8]] , "edge3": "vertices": [[0.5, 0.8], [0.0, 0.0]]

MIP Code Trajectory / LLM Output.

Listing 4: Finger selection trajectory code
import cvxpy as cp

var_dict = {}

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

constraints = []

sampled_points, sampled_normals = get_object_surface_samples(
obj=obj,
delta=0.1,
delta_n=0.02

)

var_dict["finger_selection"] = cp.Variable(
(3, len(sampled_points)), boolean=True, name="finger_selection")

var_dict["selection_flags"] = cp.Variable(
len(sampled_points), nonneg=True, name="selection_flags")

finger_constraints, finger_selection_var, selection_flags =
add_finger_selection_constraints(

n_fingers=3,
len_points=len(sampled_points)

)
constraints.extend(finger_constraints)

var_dict["r"] =
cp.Variable(name="radius_of_inscribed_circle", nonneg=True)
directions = sample_sphere(subdivisions=0)

wrench_constraints = add_wrench_constraints(
points=sampled_points,
normals=sampled_normals,
selection_flags=var_dict["selection_flags"],
r=var_dict["r"],
directions=directions,
friction_coef=1.0

)
constraints.extend(wrench_constraints)

status, finger_selection_val, r_opt = create_objective_and_solve(
constraints=constraints,
var_dict=var_dict,
objective=’finger’,
r=var_dict["r"],
finger_selection_var=var_dict["finger_selection"]

)

E MORE RELATED WORK

TAMP and M3P: At its core, TAMP integrates two complementary layers of reasoning: a symbolic
planner that selects and orders abstract actions, and a downstream motion planner that instantiates
these actions as feasible continuous motions in the robot’s configuration space. Recent years have
seen notable advances in both the generality of task planning methods (Helmert, 2006; Piotrowski
et al., 2024) and their efficiency and robustness (Dantam et al., 2018; Thomason et al., 2022). De-
spite this progress, the coupling between the high-level symbolic planner and the low-level motion
planner remains a key design challenge. The two components are typically connected through a rel-
atively loose interface, where symbolic reasoning provides candidate actions or parameters, and the
motion planner either confirms feasibility or signals failure, prompting the symbolic layer to refine
its proposals (Erdem et al., 2011; Akbari et al., 2015). This geometric view of M3P naturally lends
itself to more integrated and efficient search strategies (Kingston et al., 2020; Beyer et al., 2021;
Kingston & Kavraki, 2022), since planning across modes can be cast as finding feasible transitions
between manifolds rather than treating each mode in isolation.

LLM-as-Planner and LLM-with-Planner: While intuitive and flexible, the LLM-as-Planner ap-
proach is fundamentally constrained by the limited long-horizon reasoning ability of current LLMs.
Building on this idea, subsequent works have continued to expand the LLM-with-Planner paradigm.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

For instance, Silver et al. (2024) investigated whether LLMs can generalize across multiple planning
domains specified in PDDL. More recently, Agarwal et al. (2025) introduced structured memory into
the LLM+Planner pipeline, allowing it to track dynamic world states more effectively.

F RESULT VISUALIZATION

Obstacle Biped 1 Right Foot Path Biped 1 Left Foot Path Biped 2 Right Foot Path Biped 2 Left Foot Path Biped 1

Initial Feet / UAV Start Biped 2 Initial Feet IK Arm IK End Position UAV Trajectory Connection Points for

Composition Task

(a) A biped robot at [-2.6,-2.5] & [-2.4,-2.5] (left&right foot)
with an arm configuration [0.2,0.4,0.4,0.4,0.2] and its arm needs
to pass through bottom of obst6 and touch a target at [2.5,2.5].
Since the arm is too short for direct inverse kinematics, plan the
trajectory so the robot walks to a feasible position to reach it.
Robot Arm must pass obst4 top.

(b) A biped robot at [2.4,-2.5] & [2.6,-2.5] (left&right foot)
with arm [0.5,0.9,0.9,0.9,0.5] must reach a target at [-2.5,2.5].
Because the arm length is insufficient, plan the trajectory so the
robot relocates to a feasible place to complete the task.

(c) Starting at [-1.5,-1.5] with arm [0.5,0.5,0.5], the UAV cannot
directly reach the target at [1.5,1.5]. Plan the trajectory such
that the UAV relocates to a position where inverse kinematics
becomes feasible.

(d) A UAV at [2,2] with arm [0.6,0.6,0.5] must fly from the
left of obstacle D touch a target at [1,0]. Because the arm is
insufficient, plan the trajectory so the UAV moves into a feasible
place to reach the point.

Figure 7: Additional Visual Result 1.

G USAGE OF LLMS

We acknowledge the use of large language models (LLMs) as assistive tools in this research. LLMs
are used during paper writing, for improving grammar and wording. All outputs from these models

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Obstacle Biped 1 Right Foot Path Biped 1 Left Foot Path Biped 1 Initial Feet / UAV Start IK Arm Grasp Gripper

UAV1 Trajectory UAV2 trajectory Connection Points for Composition Task UAV2 Start / Gripper Contact Point Grasp

Sampling Point

(a) A biped robot starting at [1.3,-1.5] & [1.5,-1.5] (left&right
foot) and a UAV starting at [2,-2] must coordinate to meet. The
UAV cannot reach the robot’s initial position due to fuel limits as
it first need to fly pass the otp of obstacle 3, so plan the trajectory
so they rendezvous at an intermediate feasible point.

(b) A biped robot starts walking from [1.4,1] & [1.6,1]
(left&right foot) with arm [0.5,0.5,0.5] and uses a grasping hand
with linkage [0.4,0.6,0.6,0.4] to reach an object. Plan the tra-
jectory so the robot relocates to a feasible position to grasp the
object.

(c) Biped robot 1 at [-2.1,-2] & [-1.9,-2] (left&right foot) wants
to walk to biped robot 2 at [1.9,-2] & [2.1,-2] (left&right foot).
With the 7m communication limit, the robots must meet at an
intermediate point rather than reaching each other’s start. Both
robots max footstep distance is 1.7.

(d) Biped robot 1 at [-2.4,-1] & [-2.6,-1] (left&right foot) wants
to walk to biped robot 2 at [2.1,-2] & [1.9,-2] (left&right foot).
The 7m range constraint requires a meeting point along feasible
mid-paths. Both robots max footstep distance is 2.5.

Figure 8: Additional Visual Result 2.

were meticulously reviewed, revised, and verified by the authors, who retain full responsibility for
all content presented in this paper.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Obstacle Biped 1 Left Foot Path Biped 1 Right Foot Path Biped 1 Initial Feet / UAV Start IK Arm Grasp Gripper

UAV1 Trajectory UAV2 trajectory Connection Points for Composition Task UAV2 Start / Gripper Contact Point Grasp

Sampling Point

(a) A biped robot at [1.5,2] & [1.3,2] (left&right foot) and a
UAV at [2.8,1] must cooperate to achieve rendezvous. However
UAV must first fly pass top of obst2 and then circling obst1 be-
fore meet biped robot.

(b) A robot at [1.8,9] & [1.6,9] (left&right foot) with with arm
[0.5,0.5,0.5] and grasping linkage [0.4,0.6,0.6,0.4] must stably
grasp an object. Plan the trajectory so it steps into a feasible
place to complete the grasp.

(c) A UAV starting at [-2,-2] with an arm [0.6,0.4,0.4,0.6] and
grasping linkage [0.2,0.8,0.8,0.2] must stably grasp an object.
Plan the trajectory so it moves into a feasible position to com-
plete the grasp.

(d) A UAV starting at [-1,-1.5] with an arm [0.4,0.2,0.1,0.2] and
grasping linkage [0.2,0.8,0.8,0.2] must reach and stably grasp an
object. Plan the trajectory so it repositions to a feasible configu-
ration.

Figure 9: Additional Visual Result 3.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Obstacle Biped 1 Right Foot Path Biped 1 Left Foot Path Biped 1 Initial Feet / UAV Start IK Arm Grasp Gripper

UAV1 Trajectory UAV2 trajectory Connection Points for Composition Task UAV2 Start / Gripper Contact Point Grasp

Sampling Point

(a) UAV2 must fly left of obstacle 1 and right of obstacle 2
to reach UAV1. Due to limited fuel, UAV1 must perform the
rescue.

(b) UAV2 must circle around obstacle 5 and pass left of obstacle
1 to reach UAV1’s start point. Due to fuel limits, UAV2 must
perform the rescue.

(c) A UAV starts at [-1.8,-1.8] with an arm configuration
[0.5,0.5,0.5] and needs to reach a target at [1.8,1.9]. Since the
arm is too short for direct inverse kinematics, plan the trajectory
so the UAV moves to a feasible position to complete the task.

Figure 10: Additional Visual Result 4.

30

	Introduction
	Related Work
	Method
	RoboM3P Dataset
	LLM-Callable API & Discretization Techniques
	LLM+MIP Procedure

	Evaluation
	Single Unified MIP Translation
	Decomposed MIP Formulation

	Conclusion
	Task Description
	LLM-Callable API
	MIP Formulation
	UAV
	Extension to Our Novel Spatial Constraints
	IK
	Grasp
	Finger Selection
	Footstep
	Multi-Domain Tasks

	ROBOM3P Dataset Example / LLM Input Output Example
	System Prompt
	Inverse Kinematics
	UAV Trajectory Generation
	UAV+IK
	Finger Selection

	More Related Work
	Result Visualization
	Usage of LLMs

