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ABSTRACT

Bayesian Personalized Ranking (BPR) has been widely adopted for recommen-
dation by optimizing pairwise score objectives. However, existing BPR-based
methods typically focus on enlarging pairwise score differences, which often leads
to excessive separation or clustering of pairwise data—an issue that can result
in suboptimal performance. In this work, we propose BoxBPR, a novel frame-
work that introduces explicit box constraints into the pairwise score space of BPR.
Specifically, we present the motivation and formulation of both lower and upper
bounds, derive a simple yet effective constraint based on the relationships among
pairwise data, and directly integrate it into the BPR objective. We then introduce the
optimization criteria of BoxBPR and describe the corresponding training process.
From both lower- and upper-bound perspectives, we demonstrate that BoxBPR
establishes a stronger connection to key top-K evaluation metrics than BPR in
recommendation tasks. Extensive experiments on three real-world datasets validate
the effectiveness of BoxBPR, and comprehensive analyses further highlight the
critical role of lower- and upper-bound constraints in BoxBPR.

1 INTRODUCTION

Recommender systems aim to model user preferences from historical interaction data to generate
personalized ranking recommendations Zangerle & Bauer (2022); Yu et al. (2023); Lin et al. (2025).
In practice, implicit feedback—such as clicks, views, or purchases—has become the most widely
used source of historical interactions due to its simplicity and ease of collection. Personalized ranking
from implicit feedback presents unique challenges: it provides only positive observations, while
unobserved interactions are treated as ambiguous negatives Zhang et al. (2025); Chen et al. (2021);
Zhu et al. (2024). This setting has motivated the development of ranking-based learning methods,
among which Bayesian Personalized Ranking (BPR) Rendle et al. (2009) has emerged as one of
the most influential approaches for implicit feedback. BPR seeks to maximize the score difference
between positive and negative items. Over the past decade, numerous BPR variants have been
proposed, either by incorporating additional signals (e.g., semantic informationWang et al. (2021)
or diverse user preferences Wang et al. (2019); Pan et al. (2013a)) or by designing more effective
sampling strategies (e.g., hard negative mining Ma et al. (2024); Lai et al. (2024); Yang et al. (2024))
to further enhance ranking performance.

Despite the rapid progress of BPR-based recommendation methods, the core optimization principle of
BPR and its numerous variants remains largely unchanged: maximizing the score difference between
positive and negative items Rendle et al. (2009); Shi et al. (2023); Zhu et al. (2024). In practice,
these methods assign higher values to user–positive item pairs than to user–negative item pairs, with
the optimization objective encouraging the score difference to be as large as possible. While this
approach has proven effective in improving ranking performance, it imposes no explicit constraints
on the absolute magnitude of the score difference. The absence of such bounds can lead to suboptimal
performance in personalized ranking tasks, as well as creating a mismatch between the optimization
objective and the actual evaluation criteria. As illustrated in Fig. 1, models trained solely under the
BPR optimization produce excessively large score differences for some positive–negative pairs. Such
over-separation can lead to situations where a few positive training items are assigned extremely high
scores, while other relevant items—especially those appearing only in the test phase—are assigned
disproportionately lower scores, thereby being ranked lower than their true relevance would suggest.
On the other hand, the same model may also output overly clustered scores for some positive–negative

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Predicted scores of MF

13 Score1211109876543210-1-2

Positive sample in Training data Negative sample in Training data Positive sample in test dataset 

13 Score1211109876543210-1-2

(b) Predicted scores of LightGCN

13 Score1211109876543210-1-2

13 Score1211109876543210-1-2

Figure 1: Illustration of the predicted scores for a user by BPR-based methods (MF and LightGCN) on
the Yelp dataset. The results highlight two typical issues: (1) excessive separation, where maximizing
pairwise score differences pushes positive and negative samples in the training data too far apart,
leading to positive samples in the test data being ranked closer to negative items; and (2) score
clustering, where the strong emphasis on separation compresses other pairwise scores, resulting in
overlapping distributions of positive and negative samples in the training data and thus reducing their
distinguishability.

pairs, making it difficult to distinguish between positive and negative items. These issues stem from
the lack of explicit lower and upper bounds on pairwise score differences, which causes uncontrolled
score scaling and numerical instability.

Moreover, BPR and its variants primarily optimize the AUC (Area Under the Curve), which measures
the ability to distinguish positive from negative items across all possible pairs Rendle et al. (2009);
Shi et al. (2023). Although useful, this objective treats all pairs equally, regardless of whether the
items appear at the top or bottom of the ranking list. As a result, the optimization process is not
directly aligned with improving key top-K performance—where only the highest-ranked items matter
in practical recommendation scenarios Rendle et al. (2009); Chen et al. (2020); Anand & Maurya
(2025). Without explicit constraints, the model may push score differences to extreme values in order
to improve AUC, leading to excessive separation as illustrated in Fig. 1, even if this provides little or
no benefit for the top-K positions. Such overemphasis on separating arbitrary pairs can distort the
score scale and ultimately degrade ranking metrics.

To this end, we propose BoxBPR, a novel extension of BPR that incorporates explicit lower- and
upper-bound constraints into the score space. The key idea is to treat predicted scores as variables
confined within a “box” defined by well-motivated bounds, ensuring that the gap between positive
and negative items is optimized while keeping scores in a reasonable range. Specifically, we derive
a simple yet effective formulation of bounds from the relative relationship between positive and
negative samples and incorporate them directly into the BPR optimization structure. We then present
the corresponding optimization criteria and training algorithm, which can be seamlessly applied to
existing BPR-based models. From a theoretical analysis, we show that BoxBPR establishes a stronger
connection between pairwise optimization and top-K evaluation metrics compared to standard BPR.
This connection arises because the bounded formulation better controls score magnitudes, making the
learned ranking function more aligned with the objectives used in ranking evaluation. Empirically,
extensive experiments on three real-world benchmark datasets demonstrate the effectiveness of
BoxBPR, with consistent improvements over strong BPR-based baselines. Furthermore, compre-
hensive ablation and analytical studies reveal the complementary roles of lower and upper bounds,
offering new insights into the role of score constraints in BPR-based optimization.

2 RELATED WORK

Personalized ranking has been extensively studied in recommender systems, with Bayesian Person-
alized Ranking (BPR) Rendle et al. (2012) emerging as one of the most widely adopted methods.
Subsequent research has largely extended BPR along two main directions: (i) enhancing preference
modeling by incorporating richer information signals, and (ii) improving training efficiency through
more informative negative sampling strategies. The first line of work enriches BPR with additional
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signals. For instance, GBPR Pan et al. (2013a) introduces group-level preferences, CoFiSet Pan et al.
(2014) models item-set choices, RankMBPR Pan et al. (2013b) considers heterogeneous user attitudes,
and ABPR Ouyang et al. (2014) extends this idea to groups. M-BPR Wang et al. (2019) generalizes
BPR by incorporating multiple preference types. Beyond the pairwise assumption, similarity-based
methods such as MSBPR Zeng et al. (2023), SMSBPR Zeng et al. (2025), and FSBPR Zheng &
Wang (2024) integrate similarity constraints or embeddings. Other refinements include symmetric
pairwise modeling Pan et al. (2023), higher-order relations Pan et al. (2014); Ni et al. (2022), and
topic-aware extensions such as TDD-BPR Wang et al. (2021). The second line of work focuses on
negative sampling Ma et al. (2024); Lai et al. (2024); Yang et al. (2024). Adaptive strategies Zhang
et al. (2013); Yang et al. (2024) adjust sampling according to model states, such as DNS Zhang et al.
(2013), SRNS Ding et al. (2020), and DENS Zhang et al. (2023). Adversarial methods (e.g., IRGAN,
KBGAN, ADVIR Wang et al. (2017); Cai & Wang (2018); Fan et al. (2022)) and recent designs such
as MixGCF Zhao et al. (2021) and AHNS Lai et al. (2024) further synthesize or adaptively select
harder negatives. While these approaches enhance BPR’s ranking performance, they often overlook
a key limitation: the unbounded expansion of the score space in BPR may lead to predicted scores
being excessively separated or overly clustered, ultimately resulting in suboptimal performance.

3 PRELIMINARY

In recommendation systems based on implicit feedback, the prediction objective is to estimate a
user’s preference score for each item and then rank items in descending order of these scores to
generate the final recommendation list. Let U denote the set of all users and V the set of all items.
The implicit feedback interaction matrix is defined as:

R = [ruv]|U |×|V | ∈ {0, 1}, (1)

where ruv = 1 indicates that the interaction between user u and item v is observed (i.e., user u has
expressed positive implicit feedback toward v), and ruv = 0 indicates negative feedback (i.e., user
u has not interacted with v, which may imply either disinterest or potential interest). For each user
u ∈ U , we denote the set of items with positive feedback as:

V +
u := {v ∈ V | (u, v) ∈ R}, (2)

and the set of items with negative feedback as

V −
u := {v ∈ V | (u, v) /∈ R}. (3)

Given the interaction matrix R, the goal of recommendation is to predict scores R̂ = [r̂uv]|U |×|V |
that accurately reflect users’ interests in items, thereby improving personalized ranking results. Our
focus is on designing a more effective optimization objective, rather than constraining the architecture
of the recommendation model, to enhance recommendation performance.

3.1 BPR OPTIMIZATION

In recommendation model with the Bayesian Personalized Ranking (BPR) Rendle et al. (2009); Chen
et al. (2020); He et al. (2020), the learning objective is to optimize the pairwise ranking of items such
that, for each user u, the predicted preference score for the positive item i ∈ V +

u is higher than that
for the negative item j ∈ V −

u . Formally, the BPR loss function is given by:

LBPR = −
∑
u∈U

∑
i∈V +

u

∑
j∈V −

u

log σ
(
r̂ui − r̂uj

)
, (4)

where σ(·) is the logistic sigmoid function, and r̂ui denotes the predicted preference score of user u
for item i. The core idea of BPR is to model the preference structure i >u j, meaning that user u is
more likely to prefer item i over item j.

It is important to note that BPR and its variants only require the score of a positive item to be
higher than that of a negative item, without explicitly constraining the magnitude of the score range.
However, unconstrained optimization may cause the predicted scores to become either excessively
separated or undesirably clustered, leading to suboptimal ranking performance. To address this issue,
we focus on defining an optimal range for the score difference between positive and negative items.
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4 METHODOLOGY

In this work, we propose BoxBPR, a novel optimization framework that introduces box constraints
into BPR to regulate the score space and better align the optimization process with ranking metrics.

4.1 CONSTRUCTION OF BOUNDS

To ensure that the proposed box constraints are both practical and effective, we highlight two key
design principles that guide their formulation.

Pair-specific constraints. The proposed bounds are defined at the level of specific user–item pairs.
For different pairs, the feasible score range can naturally vary, since the predicted scores depend on
the characteristics of both the user and the item. This design acknowledges that not all interactions
require the same margin to be meaningful, thereby allowing the model to flexibly adapt the margin
according to the context of each pair.

Dynamic adjustment during training. The bounds are not fixed but evolve dynamically during
training. As the recommendation model is optimized under the BPR framework, its parameters and
learned embeddings continuously update, which in turn alters the predicted scores. Consequently,
the feasible upper and lower bounds of the score difference must also adjust throughout training.
This adaptive mechanism ensures that the margin constraints remain effective and aligned with the
evolving embedding space.

Guided by the above design principles, we now formalize the lower and upper bound constraints on
the score between positive and negative items. Specifically, the constraints are defined as:

r̂ui − r̂uj − α r̂ui > 0, (5)
r̂ui − r̂uj − β r̂uj < 0, (6)
β r̂uj > r̂ui − r̂uj > α r̂ui, (7)

(8)

where α < 1, β < 1. r̂ui and r̂uj denote the predicted scores produced by an arbitrary recommenda-
tion model. These constraints jointly ensure that the score difference remains within a reasonable
range that is adaptively determined by both scores. The lower bound, controlled by α r̂ui, prevents
the score difference from being too small, ensuring that the model sufficiently favors the positive item.
The upper bound, controlled by β r̂uj , prevents the score difference from becoming excessively large,
avoiding the situation where the positive score grows without bound or the negative score becomes
unrealistically small.

This dual-constraint optimization acts as a balancing mechanism: the inner objective encourages
increasing r̂ui and decreasing r̂uj to maximize the score difference, while the outer bounds limit this
gap to a controlled range. As a result, the learned ranking satisfies i >u j for each user-item pair
while maintaining stability and preventing overconfident or extreme predictions.

4.2 OPTIMIZATION CRITERIA OF BOXBPR

In BoxBPR, the idea of simultaneously imposing both upper and lower bounds on the BPR optimiza-
tion is formalized by maximizing two posterior probability terms. Let Θ denote the parameter vector
of an arbitrary recommendation model. The lower-bound constraint ensures that the score difference
between a positive and a negative item is sufficiently large, while the upper-bound constraint prevents
the score difference from becoming excessively large. These constraints can be expressed in a
Bayesian form as:

p(Θ|(r̂ui − r̂uj) > α r̂ui) ∝ p((r̂ui − r̂uj) > α r̂ui|Θ)p(Θ), (9)
p(Θ|(r̂ui − r̂uj) < β r̂uj) ∝ p((r̂ui − r̂uj) < β r̂uj |Θ)p(Θ), (10)

where > denotes the desired personalized ranking relation that is consistent with the user’s latent
preference structure.

Following the same assumption as in BPR, we treat the ordering of each pair—comprising one
positive and one negative sample—as independent from the ordering of any other pair in the dataset.
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Under this independence assumption, the likelihood term p(∗ | Θ) can be factorized into the product
of individual pairwise likelihoods and subsequently aggregated over all users u ∈ U :

∏
u∈U

p((r̂ui − r̂uj) > α r̂ui|Θ) =
∏

u∈U,i∈V +
u ,j∈V −

u

p((r̂ui − r̂uj) > α r̂ui|Θ), (11)

∏
u∈U

p((r̂ui − r̂uj) < β r̂uj |Θ) =
∏

u∈U,i∈V +
u ,j∈V −

u

p((r̂ui − r̂uj) < β r̂uj |Θ), (12)

(13)

To ensure the personalized ranking order, we follow the same definition of individual pairwise
probabilities as in BPR, where the probability reflects the likelihood that a user prefers a positive
sample over a negative sample. The key difference in our formulation is that we impose both upper
and lower preference bounds. Specifically, the BoxBPR is defined as:

p((r̂ui − r̂uj) > α r̂ui|Θ) = p((1− α)r̂ui > r̂uj)|Θ), (14)
:= σ((1− α)r̂ui − r̂uj)), (15)

p((r̂ui − r̂uj) < β r̂uj |Θ) = p((1 + β)r̂uj) > r̂ui|Θ), (16)
:= σ((1 + β)r̂uj − r̂ui)) (17)

where σ(·) is the logistic sigmoid function, and α < 1, β < 1 are hyperparameters controlling the
lower and upper margin ratios, respectively. The predicted values r̂ui and r̂uj are computed based on
the model parameters Θ, which capture the latent relationships among user u, positive item i ∈ V +

u ,
and negative item j ∈ V −

u . For notational simplicity, we omit Θ from r̂ui and r̂uj .

Building on the above likelihood definitions, we adopt the maximum a posteriori estimator to derive
our generic optimization criterion for personalized ranking. Under the independence assumption, the
joint posterior of the lower-bound and upper-bound constraints can be expressed as:

BoxBPR :=log p(Θ|(r̂ui − r̂uj) < β r̂uj) + log p(Θ|(r̂ui − r̂uj) > α r̂ui),

=log p((r̂ui − r̂uj) < β r̂uj |Θ)p(Θ) + log p((r̂ui − r̂uj) > α r̂ui|Θ)p(Θ),

=log
∏

u∈U,i∈V +
u ,j∈V −

u

σ((1− α)r̂ui − r̂uj))p(Θ)+

log
∏

u∈U,i∈V +
u ,j∈V −

u

σ((1 + β)r̂uj − r̂ui))p(Θ),

=
∑

u∈U,i∈V +
u ,j∈V −

u

log σ((1− α)r̂ui − r̂uj))+

∑
u∈U,i∈V +

u ,j∈V −
u

log σ((1 + β)r̂uj − r̂ui)) + 2 ∗ log p(Θ),

=
∑

u∈U,i∈V +
u ,j∈V −

u

log σ((1− α)r̂ui − r̂uj))+

∑
u∈U,i∈V +

u ,j∈V −
u

log σ((1 + β)r̂uj − r̂ui))− γΘ ||Θ||2. (18)

Here, σ(·) is the logistic sigmoid function, and γΘ is the regularization coefficient. This formulation
unifies the BPR objective with bound-aware score difference constraints, allowing the model to
maintain the personalized ranking order while avoiding overly small or excessively large score
difference. Since both bounds are derived directly from the current pairwise data without introducing
additional variables, BoxBPR requires only minimal changes to the standard BPR formulation and
can be seamlessly integrated into BPR-based recommendation models.

4.3 ANALYSIS OF BOXBPR

In this subsection, we provide a mathematical derivation showing why adding a box constraint
α r̂ui ≤ ∆uij ≤ β r̂uj , ∆uij = r̂ui − r̂uj , α < 1, β < 1

5
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enhances Top-K ranking performance (HRK, NDCGK).

Let user u have candidate set Iu = {i} ∪ V −
u , where i is the positive item and V −

u is the set of
negatives. Let the negative scores be sorted in descending order:

s(1)u ≥ s(2)u ≥ · · · ≥ s
(|V −

u |)
u , s(k)u := the k-th largest among {r̂uj : j ∈ V −

u }.

The rank of the positive item i is
ranku(i) = 1 +

∣∣{j ∈ V −
u : r̂uj ≥ r̂ui}

∣∣,
and the Top-K condition can be written as

ranku(i) ≤ K ⇐⇒ r̂ui > s(K)
u .

1) Lower Bound ∆uij ≥ α r̂ui as a Sufficient Condition

Let j⋆ denote the negative item at rank K, i.e., r̂uj⋆ = s
(K)
u . If the lower bound holds:

∆uij⋆ ≥ α r̂ui ⇒ r̂ui − s(K)
u ≥ α r̂ui ⇒ r̂ui ≥

s
(K)
u

1− α
> s(K)

u ,

which ensures ranku(i) ≤ K. Enforcing a lower bound on the pairwise difference for the K-th hard
negative provides a sufficient condition for achieving better Top-K metrics.

2) Upper Bound ∆uij ≤ βr̂uj and Gradient Stabilization

The standard BPR loss ℓbpr(∆uij) = −logσ(∆uij) has derivative

ℓ′bpr(∆uij) = σ(∆uij)− 1 ∈ (−1, 0), |ℓ′bpr(∆uij)| = σ(−∆uij),

which vanishes as ∆uij → ∞, leading to gradient depletion.

Adding an upper-bound penalty

ℓU (∆uij , r̂uj) = max(0,∆uij − βr̂uj)

yields gradient

∂

∂∆uij
(ℓbpr + ℓU ) =

σ(∆uij)− 1, ∆uij ≤ βr̂uj ,

σ(∆uij)− 1 + (∆uij − βr̂uj), ∆uij > βr̂uj .

Hence, maintains gradients in the effective range, preventing vanishing updates for hard negatives near
the Top-K boundary. Limits relative score inflation: r̂ui ≤ (1 + β)r̂uj , preserving the scale of top-
ranking items and stabilizing NDCG. Specifically, From the upper-bound constraint r̂ui ≤ (1+β) r̂uj ,
we can see that the predicted score of a positive item r̂ui is bounded relative to the score of the
corresponding negative item r̂uj . In particular, when j is selected as a hard negative sample, this
inequality constrains r̂ui to lie within the scale of the ”top” negative items.

Imposing a bounded pairwise constraint αr̂ui ≤ ∆ ≤ βr̂uj . Ensures the positive item exceeds
the top-K negatives with high probability. Maintains effective gradients on hard negatives near the
Top-K boundary. Prevents score inflation, stabilizing relative ordering within Top-K. These effects
collectively explain the improvement in HR@K and NDCG@K.

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

Datasets. We select three public and widely used benchmark datasets to evaluate our proposed
BoxBPR model, namely Yelp, Amazon-kindle, and Douban-Book Yu et al. (2021); Chen et al. (2025);

6
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Zhao et al. (2016). These datasets cover different recommendation scenarios and exhibit varying
levels of interaction sparsity. Following common practices in recommendation research He et al.
(2020); Ding et al. (2020); Chen et al. (2020), we adopt the 5-core filtering strategy to ensure data
quality, and split each dataset into training, validation, and test sets with a ratio of 7:1:2. The detailed
statistics of the datasets are summarized in Appendix A.2.

Baselines. Our experiments include two sets of baselines: one consists of recommendation model
backbones, and the other comprises variants of BPR. The first group of baselines includes models
optimized only with the BPR loss (e.g., MF, LightGCN He et al. (2020)) and models optimized
with multiple loss functions (e.g., SimGCL Ding et al. (2020), NCL Lin et al. (2022), DCCF Ren
et al. (2023), BIGCF Zhang et al. (2024), NLGCL Xu et al. (2025)). The second group of baselines
includes enhanced BPR with more information(e.g., DNS Zhang et al. (2013), SRNS Ding et al.
(2020), MixGCF Zhao et al. (2021) and AHNS Lai et al. (2024)).

Evaluation Metrics and Implementation Details. We evaluate the recommendation performance
using the commonly used top-K ranking metrics HR@K and NDCG@K, with K = 20 He et al.
(2020); Chen et al. (2020; 2021). Following widely adopted practice Chen et al. (2020; 2021); Ni
et al. (2022), we adopt the full-ranking evaluation protocol, where predictions are ranked against the
entire item set. Since the proposed BoxBPR improves only the BPR optimization objective, we keep
all other components identical to the original recommendation backbone. In addition, we tune the
parameters consistently to ensure a fair comparison.

Table 1: Overall perfermance of BoxBPR on three datasets.

Model Yelp Amazon-kindle Douban-Book
HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20

MF 0.04320 0.03941 0.11626 0.09131 0.09374 0.10313
MF+BoxBPR 0.04548 0.04213 0.1232 0.09608 0.10122 0.11511
LightGCN 0.05158 0.04809 0.14954 0.11921 0.10914 0.12207
LightGCN+BoxBPR 0.05551 0.05142 0.15750 0.12640 0.11775 0.13042
NCL 0.05910 0.05499 0.14777 0.11378 0.12022 0.13963
NCL+BoxBPR 0.06112 0.05628 0.15141 0.11621 0.12420 0.14480
SimGCL 0.06392 0.05993 0.15489 0.11678 0.13254 0.14609
SimGCL+BoxBPR 0.06414 0.0615 0.15960 0.11978 0.13547 0.14980
DCCF 0.06089 0.05395 0.15595 0.11667 0.13982 0.14332
DCCF+BoxBPR 0.06239 0.0558 0.15975 0.12077 0.14450 0.14861
BIGCF 0.06295 0.05672 0.15687 0.11606 0.14270 0.14839
BIGCF+BoxBPR 0.06459 0.05860 0.16072 0.11969 0.14652 0.15302
NLGCL 0.06590 0.06155 0.16534 0.12367 0.14826 0.16636
NLGCL+BoxBPR 0.06793 0.06334 0.16958 0.12770 0.15258 0.16980

5.2 OVERALL COMPARISON

1) Comparison on backbones optimized solely with the BPR loss. We first evaluate BoxBPR
on some backbones (MF and LightGCN) that are optimized only with the BPR loss. This setting
allows us to directly examine how BoxBPR improves over standard BPR optimization. As shown in
Table 1, BoxBPR consistently achieves more than 5% performance gains across all three datasets.
Specifically, the average improvements reach 6.68%, 5.64%, and 8.58% on Yelp, Amazon-Kindle,
and Douban-Book, respectively. These results demonstrate the effectiveness and stability of BoxBPR
in diverse recommendation scenarios.

2) Comparison on backbones optimized with BPR plus additional losses. We further evaluate
BoxBPR on advanced backbones (NCL, SimGCL, DCCF, BIGCF and NLGCL) that combine
the BPR loss with other auxiliary objectives. This setting reflects more complex optimization
scenarios and allows us to assess the generality of BoxBPR. From Table 1, we observe that BoxBPR
consistently yields improvements, with an average gain of 2.78% across all datasets, demonstrating its
effectiveness. Compared with backbones optimized solely by the BoxBPR, the relative improvements
are smaller, which can be explained by the fact that BoxBPR directly affects only a subset of objectives

7
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Table 2: Performance of BoxBPR compared to BPR variants on all datasets

Backbone Method Yelp Amazon-kindle Douban-Book
HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20

MF

BPR 0.04320 0.03941 0.11626 0.09131 0.09374 0.10313
DNS 0.04370 0.04047 0.12144 0.09411 0.09397 0.10511

SRNS 0.04419 0.03992 0.11950 0.09459 0.09421 0.10251
MixGCF 0.04415 0.04102 0.11823 0.09496 0.09324 0.10684
AHNS 0.04470 0.04135 0.12170 0.09511 0.09545 0.10939

BoxBPR 0.04548 0.04213 0.12320 0.09608 0.10122 0.11511

LightGCN

BPR 0.05158 0.04809 0.14954 0.11921 0.10914 0.12207
DNS 0.05313 0.04708 0.15128 0.12120 0.11115 0.12457

SRNS 0.05202 0.04804 0.15494 0.12028 0.10745 0.12028
MixGCF 0.05351 0.04973 0.15469 0.12113 0.10983 0.12603
AHNS 0.05452 0.05054 0.15490 0.12410 0.11080 0.12751

BoxBPR 0.05551 0.05142 0.15750 0.12640 0.11775 0.13042

in multi-loss optimization. Nevertheless, BoxBPR yields clear improvements on both HR and NDCG,
highlighting its adaptability and generality across diverse backbone models.

3) Comparison to BPR Variants Consistent with the experimental setting of BPR variants Shi
et al. (2023); Liu & Wang (2023); Lai et al. (2024), we also adopt MF and LightGCN as the CF
backbones to validate the effectiveness of different BPR optimization methods. As shown in Table 2,
our model achieves average improvements of 2.86% and 3.99% over the best baseline when using MF
and LightGCN as backbones, respectively. In addition, across the three datasets, we obtain average
gains of 2.29%, 1.44%, and 6.19%. These consistent improvements demonstrate the effectiveness
of BoxBPR. This can be explained by the fact that existing BPR variants mainly enhance AUC
optimization by incorporating additional information, whereas our method constrains the score space
to directly optimize for top-k metrics, which aligns more closely with the recommendation tasks and
thus leads to better performance.

Table 3: Ablation study of BoxBPR.

Model Yelp Amazon-kindle Douban-Book
HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20

MF+BoxBPR 0.04548 0.04213 0.12320 0.09608 0.10122 0.11511
w/o low 0.04453 0.04091 0.12023 0.09355 0.09822 0.11197
w/o up 0.04395 0.04061 0.11838 0.09290 0.09770 0.11222

LightGCN+BoxBPR 0.05551 0.05142 0.15750 0.12640 0.11775 0.13042
w/o low 0.05433 0.05041 0.15392 0.12337 0.115381 0.12788
w/o up 0.05437 0.05013 0.1533 0.12353 0.11497 0.12679

5.3 ABLATION STUDY

We conduct an ablation study to examine the effects of the lower- and upper-bound constraints in
BoxBPR. In particular, we set α = 0 in Equation 19 to remove the lower bound (w/o low) and set
β = 0 to remove the upper bound (w/o up). For simplicity, we adopt MF and LightGCN as backbones,
since these models are optimized solely with the BPR loss, making them more suitable for isolating
the contributions of each constraint. Consistent trends are also observed across other backbone
models. The results in Table 3 show that removing either the lower- or upper-bound constraint leads
to performance drops of 2.43% and 2.99% on average, respectively. Nevertheless, both variants still
outperform the standard BPR model, demonstrating the overall effectiveness of introducing bound
constraints. These findings confirm that both bounds are crucial for BoxBPR, with each contributing
significantly to its performance.
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(a) Performance of MF + BoxBPR (b) Performance of LightGCN + BoxBPR

Figure 2: Sensitivity Analysis on Yelp w.r.t. α and β in Eq. 18. “H@K” and “N@K” refer to
“HR@K” and “NDCG@K”, respectively.

5.4 SENSITIVITY ANALYSIS

We study the sensitivity of BoxBPR to the hyperparameters α and β in Eq. 18, where α controls the
strength of the lower bound and β controls the strength of the upper bound. We conduct experiments
using MF and LightGCN as the backbone models on the Yelp datasets. As shown in Fig. 2, different
backbones exhibit the same optimal configurations of α and β, indicating that our model is stable
and relatively insensitive to hyperparameter choices. Moreover, compared to α, the parameter β
has a larger impact on performance, which is consistent with the ablation study where removing the
upper-bound constraint leads to a larger performance drop. This suggests that constraining the upper
bound plays a more critical role in achieving the best results for BoxBPR.

(a) Predicted scores of MF with BPR

13 Score1211109876543210-1-2

Positive sample in Training data Negative sample in Training data Positive sample in test dataset 

13 Score1211109876543210-1-2

(b) Predicted scores of MF with BoxBPR

13 Score1211109876543210-1-2

13 Score1211109876543210-1-2

Figure 3: Comparison of results for the same user under BPR and BoxBPR with MF model.

5.5 CASE STUDY

In the case study, we compare the predicted score distributions on the Yelp dataset using the same
MF backbone under BPR and BoxBPR optimization. Similar trends are consistently observed across
other datasets and backbone models, with additional results provided in Appendix A.3. As shown in
Fig. 3(b), BoxBPR effectively constrains the score space, leading to more distinguishable distributions
between positive and negative samples. This avoids the excessive separation and clustering issues
observed with BPR in Fig. 3(a), thereby yielding higher rankings for positive samples in the test set.
Overall, the case study highlights both the effectiveness and the rationality of our proposed BoxBPR.

6 CONCLUSION

In this work, we highlight the limitations of existing BPR and its variants, which primarily incorporate
additional information to better optimize the AUC objective but fail to directly target ranking
metrics, often resulting in suboptimal performance. To address these issues, we design the BoxBPR
optimization that explicitly bounds the score space for BPR-based optimization. In particular, we
present the motivation and formulation of introducing both lower- and upper-bound constraints, and
derive the corresponding optimization criteria and training details. Finally, extensive experiments on
three real-world datasets validate the effectiveness of our model.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

Yes, it helps refine writing by providing grammar checking and correction, thereby enhancing the
overall quality of the text.

A.2 DATASET

In our study, we conduct experiments on three publicly available datasets: Yelp, Amazon-Kindle, and
Douban-Book. The Yelp dataset is sourced from the 2018 edition of the Yelp Challenge. The Amazon-
Kindle dataset is extracted from Amazon reviews, focusing specifically on Kindle products. The
Douban-Book dataset is collected from Douban, a popular book review website in China. Table A.2
summarizes the statistics of these three datasets.

Table 4: Statistics of the two datasets.
Datasets Users Items Interaction Density

Yelp 31,668 38,048 1,561,406 0.130%
Amazon-kindle 138,333 98,572 1,909,965 0.014%
Douban-Book 12,638 22,222 598,420 0.213%

A.3 CASE STUDY

Positive sample in Training data Negative sample in Training data Positive sample in test dataset 
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(a) Predicted scores of LightGCN with BPR (b) Predicted scores of LightGCN with BoxBPR

Figure 4: Comparison of results for the same user under BPR optimization and BoxBPR optimization
with LightGCN model.

In the case study, we analyze the predicted score distributions on the Yelp dataset using the same
LightGCN backbone under both BPR and BoxBPR optimization. As illustrated in Fig. 4(b), BoxBPR
effectively constrains the score space, resulting in more clearly separated distributions for positive
and negative samples. Consistent patterns can also be observed in Fig. 3. Overall, the case study
demonstrates both the effectiveness and the soundness of the proposed BoxBPR method.

13


	Introduction
	Related Work
	Preliminary
	BPR Optimization

	METHODOLOGY
	Construction of Bounds
	Optimization Criteria of BoxBPR
	Analysis of BoxBPR

	Experiments
	Experiments Setup
	Overall Comparison
	Ablation study
	Sensitivity Analysis
	Case Study

	Conclusion
	Appendix
	The Use of Large Language Models 
	Dataset
	Case Study


